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Abstract– In this report, we briefly discuss Bayesian lin-
ear regression as well as the proof for the inference to
perform prediction based on the training data using this
technique.

1. MODEL DESCRIPTION

• Training data: input-output pairsD = {(xm, ym)|m =
1, 2, ...,M}

• Each input is a vector xm of dimension N

• Suppose that the training dataD be a set of i.i.d. sam-
ples from some unknown distribution

• The standard probabilistic interpretation of linear re-
gression states that

ym = θTxm + εm, m = 1, 2, ...,M, (1)

where ε is the noise and εm ∼ N (0, σ2)

• For notational convenience, define

X :=


xT
1

xT
2
...

xT
m

 ,y :=


y1
y2
...
ym

 , and ε :=


ε1
ε2
...
εm

 ,

where X ∈ RM×N , y ∈ RM , and ε ∈ RM .

• In Bayesian linear regression, we assume that a “prior
distribution” over parameters is given

• Prior over the weight vector θ:

θ ∼ N (0, τ2IN ) (2)

2. POSTERIOR DISTRIBUTION OVER θ

• Apply Bayes’ theorem to obtain the posterior distri-
bution on the weight set θ

p(θ|X,y) ∝ p(y|X,θ)p(θ) (3)

• Use equations (2) and (3) to find the posterior distri-
bution over θ

log p(θ|X,y) ∝
(y −Xθ)T (σ2IM )−1(y −Xθ) + θT (τ2IN )−1θ

• Collect the terms dependent on θ

log p(θ|X,y) ∝

θT (
1

σ2
XTX +

1

τ2
IN )θ − 2θT (

1

σ2
XTy)

• Therefore, the posterior distribution over θ becomes

p(θ|X,y) = N (µθ,Σθ), (4)

where

µθ = (
1

σ2
XTX +

1

τ2
IN )−1 1

σ2
XTy (5)

and

Σθ = (
1

σ2
XTX +

1

τ2
IN )−1 (6)

• DefineA := Σ−1
θ to be compatible with the notations

used in [1]

• Posterior distribution over θ becomes

p(θ|X,y) = N (
1

σ2
A−1XTy, A−1) (7)

3. PREDICTION USING BAYESIAN LINEAR
REGRESSION

• Assume that there is the same noise model on the
testing point, {x?, y?}, as our training points



• Posterior predictive distribution over y?:
Integrate out the weight vector θ

p(y?|x?, X,y) =

∫
θ

p(y?|x?,θ)p(θ|X,y)dθ

=

∫
θ

exp
{
− [(y? − xT

? θ)T (σ2I)−1(y? − xT
? θ)+

(θ − 1

σ2
A−1XTy)TA(θ − 1

σ2
A−1XTy)]

}
dθ

(8)

• Matrix A is symmetric (covariance matrix), hence

p(y?|x?, X,y) =∫
θ

exp
{
− [θT (A+

1

σ2
x?x

T
? )θ − 2θT 1

σ2
(x?y∗ +XTy)

+ (
1

σ2
yT? y? +

1

σ4
yTXA−1XTy)]

}
dθ

• Results in

P (y?|x?, X,y) =

e−[ 1
σ2

(yT? y?+
1
σ2

yTXA−1XTy)− 1
σ4

(x?y?+XTy)T (A+ 1
σ2

x?x
T
? )

−1(−)]

×
∫
θ

e−[(θ−(A+ 1
σ2

x?x
T
? )

−1 1
σ2

(x?y?+XTy))T (A+ 1
σ2

x?x
T
? )(−)]dθ

• Collect terms that only depend on y?

log p(y?|x?, X,y) ∝

yT?
( 1

σ2
− 1

σ4
xT
? (A+

1

σ2
x?x

T
? )−1x?

)
y?

− 2yT?
( 1

σ4
xT
? (A+

1

σ2
x?x

T
? )−1XTy

)
• Therefore, the posterior of y? is Gaussian with the

following terms

Σy? =
( 1

σ2
− 1

σ4
xT
? (A+

1

σ2
x?x

T
? )−1x?

)−1
(9)

and

µy? = Σy?

1

σ4
xT
? (A+

1

σ2
x?x

T
? )−1XTy. (10)

• Remark: Matrix Inversion Lemma for equation

(A+BCD)−1 =

A−1 −A−1B(C−1 +DA−1B)−1DA−1
(11)

• Simplifying covariance matrix Σy? in (9) using (11)

Σy? =
(
(σ2 + xT

?A
−1x?)−1

)−1

Σy? = σ2 + xT
?A

−1x? (12)

• Simplifying the mean µy? in (10) using (11):

µy? =Σy?

1

σ4
xT
? (A+

1

σ2
x?x

T
? )−1XTy

=
1

σ4
(σ2 + xT

?A
−1x?)xT

? (A+
1

σ2
x?x

T
? )−1XTy

=
1

σ4
(σ2 + xT

?A
−1x?)xT

? (A−1 − A−1x?x
T
?A

−1

σ2 + xT
?A

−1x?
)XTy

=
1

σ4
(σ2 + xT

?A
−1x?)xT

?A
−1 − xT

?A
−1x?x

T
?A

−1)XTy

• Therefore,

µy? =
1

σ2
xT
?A

−1XTy (13)

4. SUMMARY ON THE PREDICTION

p(y?|x?, X,y) = N (µy? ,Σy?),

where

µy? =
1

σ2
xT
?A

−1XTy

and

Σy? = σ2 + xT
?A

−1x?.
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