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ABSTRACT 

Emerging Technologies and Advanced Analyses for Non-Invasive Near-Surface Site 

Characterization 

 

 

 

by 

 

 

 

Aser Abbas, Doctor of Philosophy. 

Utah State University, 2024 

 

 

 

Major Professor: Dr. Brady R. Cox  

Department: Civil and Environmental Engineering 

 

 

Recent years have witnessed a growing interest in non-invasive subsurface 

imaging techniques for determining the small-strain shear modulus (Gmax) and damping 

ratio (D) through seismic wave propagation. This dissertation explores two primary 

domains: analysis techniques for estimating Gmax and D, and advancements in data 

acquisition systems. For estimating Gmax, a novel frequency-velocity domain 

convolutional neural network (CNN) is developed to rapidly and non-invasively image 

the near-surface geo-materials' shear wave velocity (Vs). Operating in the frequency-

velocity domain allows for significant flexibility in the linear-array, active-source 

experimental testing configurations used for generating the CNN input, which are 

normalized dispersion images. While normalized dispersion images retain the most 

important aspects of near-surface wavefields, they are relatively insensitive to the exact 

experimental testing configuration used to generate and record the wavefields, 

accommodating various source types, source offsets, numbers of receivers, and receiver 



iv 

spacings. The CNN was validated through synthetic simulations and blind testing using 

field data collected at a site in Austin, Texas, USA. 

To develop a comprehensive profile of the soil small-strain parameters, a 

methodology is presented for estimating frequency-dependent attenuation coefficients. 

These coefficients, alongside phase velocity dispersion data, can be utilized in a joint 

inversion to determine the Vs and D profiles of the subsurface. The methodology relies 

on recording ambient vibrations using two-dimensional (2D) arrays of surface seismic 

sensors and employs an attenuation-specific wavefield conversion and frequency-domain 

beamforming. Comparisons with synthetic and field data demonstrate the efficacy of the 

developed approach. The dissertation also introduces an open-access comprehensive 

subsurface imaging experiment conducted in Newberry, Florida, where distributed 

acoustic sensing (DAS) and three-component nodal stations were employed to record 

seismic waves generated from both active sources and ambient vibrations. The active-

source data were generated using a vibroseis shaker truck and impact sources. The 

dissertation provides detailed information on the experiment layout, acquisition 

parameters, processing steps, and data availability. 

Finally, the dissertation concludes with a review of recent advancements in 1D 

and 2D imaging techniques, including machine learning, full waveform inversion (FWI), 

and 2D multichannel analysis of surface waves (MASW). These methods were applied at 

the same site, enabling direct comparison between them. 

(255 pages) 
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PUBLIC ABSTRACT 

Emerging Technologies and Advanced Analyses for Non-Invasive Near-Surface Site 

Characterization 

Aser Abbas 

 

This dissertation introduces novel techniques for estimating the soil small-strain 

shear modulus (Gmax) and damping ratio (D), crucial for modeling soil behavior in 

various geotechnical engineering problems. For Gmax estimation, a machine learning 

approach is proposed, capable of generating two-dimensional (2D) images of the 

subsurface shear wave velocity, which is directly related to Gmax. The dissertation also 

presents a method for estimating frequency dependent attenuation coefficients from 

ambient vibrations collected using 2D arrays of seismic sensors deployed across the 

ground surface. These attenuation coefficients can then be used in an inversion process to 

estimate D. The developed techniques for Gmax and D estimation have undergone 

rigorous validation and testing through synthetic simulations and field experiments, 

demonstrating their effectiveness. Furthermore, the dissertation presents a comprehensive 

dataset collected using cutting-edge seismic sensing technologies, including distributed 

acoustic sensing, three-component seismometers, and a large mobile shaker truck. This 

dataset has been archived and made publicly available, aiding researchers worldwide in 

developing and testing new non-invasive imaging techniques. Finally, the dissertation 

concludes with a review and comparison of recent advancements in non-invasive 

subsurface imaging techniques and their application at the same site. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Non-invasive geophysical imaging techniques utilizing seismic wave propagation 

have garnered escalating attention in recent decades owing to their remarkable cost-

effectiveness compared to conventional invasive site characterization methods and their 

potential to cover large areas. These methods capitalize on the fact that the characteristics 

of propagating seismic waves in the subsurface are associated with the medium’s 

mechanical parameters through simple relationships. Geophysical testing often involves 

subsurface strain levels that are very small. For minimal strains, soils typically display a 

linear stress–strain relationship, which can be modeled using the theory of linear 

viscoelasticity. Linear viscoelasticity is the simplest constitutive theory capable of 

capturing the mechanical response of geomaterials undergoing low-amplitude dynamic 

oscillations, showcasing their ability to simultaneously store and dissipate strain energy 

over a finite period of time (Lai and Özcebe, 2016). Wave propagation in a linear 

viscoelastic media can be completely described using the real-valued primary or 

compressional wave (P-wave) velocities (Vp) and the secondary or shear wave (S-wave) 

velocities (Vs), along with their associated attenuation coefficients, αP and αS (Lai and 

Rix, 2002). In fully saturated, near-surface soil deposits, Vp is mainly controlled by the 

compressibility of water in the soil’s pore structure and as a result is much faster than the 

Vp of dry soils (Foti et al., 2014). Hence, Vp is less revealing of the soil’s structure when 
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the materials are relatively soft and saturated. Conversely, Vs is mainly a function of the 

soil skeleton parameters, with the influence of pore fluid on S-wave propagation being 

negligible, as pore fluid lacks shearing resistance and their influence is linked to changes 

in mass density (Biot, 1956a, 1956b; Foti et al., 2014). Therefore, for geotechnical 

engineering purposes, geophysical imaging techniques primarily focus on capturing two 

crucial soil parameters: Vs and the small-strain damping ratio (D). Vs is directly related to 

the small-strain shear modulus (Gmax), representing the stiffness of the soil, while D 

quantifies the soil internal energy dissipation at low strains. Understanding these 

properties is vital for predicting ground shaking during seismic events, modeling ground-

borne vibrations' impact on structures, and predicting deformation under static loads. 

1.2 Research Objectives 

The overall objective of the dissertation is to present new innovations in seismic 

waves data acquisition (DAQ) and introduce novel analysis techniques for estimating 

Gmax and D. 

To estimate Gmax, a novel frequency-velocity convolutional neural network 

(CNN) is presented for rapid, non-invasive, 2D-Vs imaging of near-surface geo-materials. 

Operating in the frequency-velocity domain offers significant flexibility in the linear-

array, active-source experimental testing configurations used to generate the CNN input, 

which are normalized dispersion images. These images retain crucial aspects of near-

surface wavefields while accommodating various source types, offsets, receiver numbers, 

and spacings in the testing configuration. The ultimate vision of this imaging approach is 

to provide a cost-effective and accurate alternative to current pseudo-2D multichannel 

analysis of surface waves (MASW) imaging, or to develop 2D starting models for more 
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rigorous imaging methods such as full waveform inversion (FWI) (Tarantola, 1984; 

Mora, 1987), especially when fully developed for a wide range of geological conditions. 

In regard to estimating D, the dissertation introduces a methodology for 

estimating frequency-dependent attenuation coefficients through the analysis of ambient 

noise wavefield data recorded by 2D arrays of surface seismic sensors. The approach 

relies on the application of an attenuation-specific wavefield conversion and frequency-

domain beamforming (FDBF). Using an FDBF approach enables the direction of ambient 

noise propagation to be determined for each noise window and frequency, and does not 

require an equally-partitioned ambient noise wavefield such as in the case of noise cross-

correlation methods (Sánchez-Sesma and Campillo, 2006; Snieder et al., 2007). The 

experimental dispersion and attenuation data can then be inverted to determine not only 

the Vs profile but also the D profile of the subsurface to greater depths. 

The dissertation also presents a comprehensive and open-access dataset of seismic 

wave recordings gathered using some of the most advanced technologies available in 

geophysical-noninvasive subsurface imaging. A test site in Newberry, Florida, USA, was 

selected for this extensive subsurface imaging experiment due to its complex geology, 

which includes many known and unknown karstic voids of variable size and depth. A 2D 

layout of distributed acoustic sensing (DAS) fiber optic cable and a 2D array of three-

component (3C) geophone nodal stations covering an area approximately 155 m x 75 m 

were used at the site to record both active-source and passive-wavefield seismic waves. 

The active sources used to initiate seismic wave propagation comprised both a 

broadband, three-dimensional, vibroseis shaker truck named T-Rex from the 

NHERI@UTexas experimental facility (Stokoe et al., 2020), and more-variable impact 
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sources. In total, approximately 2 km of DAS fiber optic cable and 144, 3C nodal stations 

were used to record wavefields from more than 367 shot locations. This unique and 

publicly accessible dataset is available on DesignSafe (Rathje et al., 2017; 

https://www.designsafe-ci.org/) under project PRJ-3521, “Active-source and Passive-

wavefield DAS and Nodal Station Measurements at the Newberry Florida Site”. This 

dataset will serve as a valuable resource for researchers seeking to explore novel 

approaches for anomaly detection and subsurface imaging. 

Lastly, the dissertation delves into a detailed examination of some of the most 

recent advancements in imaging techniques, encompassing both 1D and 2D 

methodologies. Within the realm of 1D imaging, the dissertation showcases the use of 

DAS as the DAQ for 1D MASW, as well as the joint estimation of phase velocity and 

phase attenuation data within a 1D MASW test setup, achievable through either 

geophones or DAS as the DAQ. Furthermore, it presents the application of DAS for 

simultaneously characterizing the stiffness and dissipative parameters of a test site. 

Moving into the domain of 2D imaging, the dissertation explores a range of techniques, 

including machine learning, 2D MASW utilizing DAS data, and FWI with DAS data. 

These state-of-the-art methodologies were successfully applied and tested at the Hornsby 

Bend test site at Austin, Texas, USA, a thoroughly documented case study location, 

providing an invaluable opportunity for comparative analysis and discussion of their 

findings. 

1.3 Dissertation Organization 

The dissertation comprises six chapters, four of which are presented in paper 

formats. Chapter 1 serves as a general introduction, delineating the significance of two 
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critical small strain soil parameters in geotechnical engineering: Gmax and D. 

Additionally, it outlines the methodologies proposed within this dissertation to measure 

and process seismic wave data for their evaluation. In Chapter 2, a frequency-velocity 

CNN is introduced for the development of near-surface 2D-Vs images using linear-array, 

active-source wavefield measurements. Chapter 3 introduces a frequency-domain 

beamforming procedure for extracting Rayleigh wave attenuation coefficients from 

ambient noise recordings of 2D microtremor array measurements (MAM) arrays. Chapter 

4 describes an open-access dataset comprising active-source and passive-wavefield DAS 

and nodal station measurements conducted at a site in Newberry, Florida, USA. Chapter 

5 provides a comprehensive overview of emerging technologies and advanced analyses 

pertinent to non-invasive near-surface site characterization. Finally, Chapter 6 

encapsulates a summary and conclusions derived from the research presented throughout 

the dissertation.    
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CHAPTER 2 

A FREQUENCY-VELOCITY CNN FOR DEVELOPING NEAR-SURFACE 2D VS 

IMAGES FROM LINEAR-ARRAY, ACTIVE-SOURCE WAVEFIELD 

MEASUREMENTS 

Abstract 

This paper presents a frequency-velocity convolutional neural network (CNN) for 

rapid, non-invasive 2D shear wave velocity (VS) imaging of near-surface geo-materials. 

Operating in the frequency-velocity domain allows for significant flexibility in the linear-

array, active-source experimental testing configurations used for generating the CNN 

input, which are normalized dispersion images. Unlike wavefield images, normalized 

dispersion images are relatively insensitive to the experimental testing configuration, 

accommodating various source types, source offsets, numbers of receivers, and receiver 

spacings. We demonstrate the effectiveness of the frequency-velocity CNN by applying it 

to a classic near-surface geophysics problem, namely, imaging a two-layer, undulating, 

soil-over-bedrock interface. This problem was recently investigated in our group by 

developing a time-distance CNN, which showed great promise but lacked flexibility in 

utilizing different field-testing configurations. Herein, the new frequency-velocity CNN is 

shown to have comparable accuracy to the time-distance CNN while providing greater 

flexibility to handle varied field applications. The frequency-velocity CNN was trained, 

validated, and tested using 100,000 synthetic near-surface models. The ability of the 

proposed frequency-velocity CNN to generalize across various acquisition configurations 

is first tested using synthetic near-surface models with different acquisition configurations 
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from that of the training set, and then applied to experimental field data collected at the 

Hornsby Bend site in Austin, Texas, USA. When fully developed for a wider range of 

geological conditions, the proposed CNN may ultimately be used as a rapid, end-to-end 

alternative for current pseudo-2D surface wave imaging techniques or to develop starting 

models for full waveform inversion. 

Keywords: machine learning; CNN; subsurface imaging; surface waves 

2.1 Introduction 

Non-invasive subsurface imaging techniques based on stress wave propagation 

have gained increased interest over the past few decades due to their significant cost 

savings over traditional invasive site characterization methods and their potential to cover 

large areas. The current study proposes a frequency-velocity domain, deep-learning 

technique for rapid, non-invasive 2D shear wave velocity (VS) imaging of near-surface 

geo-materials. The ultimate vision of this type of imaging approach is that when fully 

developed for a wide range of geological conditions, it may be used as a cost-effective and 

accurate alternative to current pseudo-2D multichannel analysis of surface waves (MASW) 

(e.g., Park 2005) imaging, or in developing 2D starting models for more rigorous imaging 

methods like full waveform inversion (FWI) (Tarantola, 1984; Mora,1987). The 

information provided below illustrates the need for new approaches to near-surface site 

characterization, presents background information on previous work related to deep-

learning subsurface imaging, and explains why a frequency-velocity domain approach is 

desirable for field application flexibility.      

At depths of greatest interest to geotechnical engineering (less than ~ 30 m), surface 

waves dominate the energy of the elastic wavefield (Miller and Pursey, 1955). As a result, 
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surface wave methods are the most common techniques for developing 1D Vs profiles for 

near-surface application (e.g., Stokoe et al., 1994; Park et al., 1999; Foti, 2000; Louie, 

2001; Okada, 2003; Tokimatsu et al., 1992). Surface wave methods work by exploiting the 

dispersive properties of surface waves in vertically heterogeneous media to develop 1D Vs 

profiles through the solution of an inverse problem. Solving the inverse problem involves 

assuming a 1D model with elastic properties (Foti et al., 2014; 2018) and iteratively solving 

a theoretical wave propagation problem (i.e., the forward problem) until the theoretical 

dispersion curves from the assumed model match the dispersion data extracted from 

experimental measurements of surface waves phase velocity. The surface wave inverse 

problem, commonly referred to as surface wave inversion, has been explored extensively 

in the literature and is known to be particularly challenging due to it being ill-posed and 

without a unique solution (Vantassel & Cox 2021a, b; Cox & Teague 2016; Foti et al., 

2014; 2018). Despite these challenges, surface wave methods have been applied widely in 

practice and are commonly used to develop 1D, and even pseudo-2D, subsurface models, 

for example with methods such as 2D MASW (Park 2005; Ivanov et al., 2006). It is 

important to note, however, that these are not true 2D models due to underlying 1D 

assumptions in the numerical solution of the dispersion data forward problem used during 

inversion. Thus, the process of spatially interpolating between numerous 1D Vs profiles 

collected along a linear array produces a pseudo-2D subsurface image rather than a true 

2D subsurface image. Presently, the only linear-array, active-source subsurface imaging 

method capable of producing a true 2D subsurface image is FWI.   

While FWI can produce a true 2D model, it is less commonly used than surface 

wave methods for near-surface imaging due to its more complex and time-consuming field 
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acquisition and data processing requirements. However, it is a more promising approach 

for recovering true 2D and 3D subsurface images, as it utilizes the entirety of the seismic 

wavefield (rather than only the surface wave dispersion in surface wave methods). FWI 

can be described as a data-fitting procedure that seeks to minimize the misfit between the 

experimentally acquired seismic waveforms and the synthetic wavefield obtained by 

solving a wave propagation simulation through a candidate model. The FWI optimization 

process can be performed using either a global or a local search algorithm. Even though 

numerical methods for modeling the propagation of elastic waves through 2D and 3D earth 

models exist (e.g., finite-difference, spectral-element), they are computationally expensive, 

making global search methods, which are already computation demanding, uncommon for 

FWI (Virieux and Operto 2009). Local search methods (e.g., Pratt et al., 1998; Pratt 1999; 

Nocedal and Wright 2006) are less computationally expensive, as they begin with a 

predefined starting model and iteratively refine that model until the misfit between the 

recorded seismic waveforms and the calculated wavefield becomes sufficiently small. As 

a result, they require solving fewer forward problems than their global counterparts, 

making them computationally less expensive. However, if the starting model is not 

sufficiently similar to the true subsurface model, these methods are likely to be trapped in 

a local minimum, or saddle point, that prevents them from converging to the true solution 

(Monteiller et al., 2015; Smith et al., 2019; Feng et al., 2021; Vantassel and Cox 2022). 

Given the sensitivity of FWI results to the starting model (Shah et al., 2012; Vantassel et 

al., 2022a), rapid and accurate ways of generating 2D and 3D starting models are needed 

to more fully take advantage of FWI in engineering practice. 
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There has been growing interest in the past few years in using deep-learning 

methods to either enhance or completely replace FWI. An extensive review on integrating 

these deep-learning methods in various parts of the FWI can be found in Alder et al., 

(2021). Several end-to-end techniques, which aim to retrieve subsurface models directly 

from seismic wavefield data are also available in the literature (e.g., Araya-polo et al., 

2018; Mosser et al., 2018a, b; Mao et al., 2019; Yang and Ma, 2019; Li et al., 2020). 

However, most previous works have either targeted recovering crustal-scale subsurface 

velocity models, as indicated by Vantassel et al. (2022a), or/and suffered from a weak 

generalization ability, preventing them from being used for a wide variety of field 

applications, as noted by Feng et al. (2021) and Liu et al. (2020). Additionally, a significant 

portion of the deep learning seismic imaging literature has focused on developing 2D 

velocity models using the acoustic approximation (Araya-polo et al., 2018; Mosser et al., 

2018a, b; Mao et al., 2019; Yang and Ma, 2019; Li et al., 2020), which only models the 

propagation of compression wave velocities (Vp) and makes them poorly suited for near-

surface applications. In fully saturated near-surface soil deposits, Vp is mainly controlled 

by the compressibility of the water and is much faster than the Vp of dry materials (Foti et 

al., 2014). Hence, Vp is less revealing of actual subsurface soil properties when the 

materials are relatively soft and saturated. On the other hand, the small strain shear modulus 

calculated from VS represents that of the soil skeleton only and is independent of the ground 

saturation (Aziman et al., 2016). Due to the interest in retrieving Vs for engineering site 

characterization and the predominance of surface waves in actively-generated wavefields, 

deep learning approaches based only on acoustic wave propagation are not applicable for 

near-surface site characterization. To the authors' knowledge, the sole deep-learning, end-
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to-end, 2D imaging technique for near-surface geotechnical engineering purposes was 

proposed by Vantassel et al. (2022a).  

Vantassel et al. (2022a) demonstrated the ability of deep-learning methods in 

utilizing complicated wavefields comprised of surface and body waves to image the near-

surface. They designed a CNN that could be used to generate 2D Vs images for subsurface 

profiles consisting of soil over undulating rock. Their CNN could predict a 24-m deep and 

60-m wide VS image directly from waveforms recorded by 24 receivers at 2-m spacing, 

which is a common configuration for active-source, linear-array imaging techniques for 

FWI. They used 100,000 synthetic soil-over-rock models in training the CNN and tested it 

on an additional 20,000 synthetic models. Their CNN showed great promise for developing 

starting models for near-surface FWI and, in some cases, yielded 2D subsurface models 

that could not be improved upon by local search FWI. However, the authors acknowledged 

that their approach could not generalize beyond the data acquisition configurations selected 

during CNN training (e.g., source type, source location, number of receivers, and receiver 

spacing).  

The present work aims to show that developing a CNN with a frequency-velocity 

domain input image can yield comparable accuracy to the time-distance domain input 

approach proposed by Vantassel et al. (2022a), while providing the flexibility necessary to 

generalize for a broader range of field applications. We demonstrate that once trained for 

an appropriate set of geological conditions, the proposed frequency-velocity CNN 

approach can be used to instantly generate a 2D subsurface Vs image directly from a 

normalized dispersion image obtained from linear-array, active-source wavefield 

measurements. Normalized dispersion images are shown to be relatively insensitive to the 
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experimental testing configuration and can be easily generated due to their wide use in 

surface wave testing. The effectiveness of our frequency-velocity CNN is demonstrated by 

applying it to a classic near-surface geophysics problem; namely, imaging a two-layer, 

undulating, soil-over-bedrock interface. A total of 100,000 models were developed to train, 

validate, and test the frequency-velocity CNN. The ability of the proposed frequency-

velocity CNN to generalize across various acquisition configurations is first tested using 

synthetic near-surface models using different acquisition configurations from that of the 

training set, and then applied to experimental data collected at the Hornsby Bend site in 

Austin, Texas, USA. We also compare the performance of the frequency-velocity CNN 

with the time-distance CNN for different near-surface models. 

2.2 Overview of the frequency-velocity CNN  

The 2D Vs imaging approach proposed herein builds on the work of Vantassel et 

al. (2022a) by developing a frequency-velocity CNN that accommodates different linear-

array, active-source experimental testing configurations. A schematic illustrating the 

similarities and differences between the time-distance CNN (left) and the frequency-

velocity CNN (right) required for subsurface Vs imaging is illustrated in Figure 2-1. The 

time-distance CNN proposed by Vantassel et al. (2022a) receives an input seismic 

wavefield recorded at specific receiver locations relative to a single source type and 

location and predicts a 2D VS image. The proposed frequency-velocity CNN generalizes 

beyond specific receiver locations, source types and source locations by using a frequency-

dependent normalized dispersion image as its input for predicting a 2D sub-surface VS-

image. Unlike the time-distance CNN, which would require additional training and tuning 

to handle multiple source types and receiver spacings, the frequency-velocity-based CNN 
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is relatively insensitive to the experimental testing configuration and, therefore, saves the 

network from needing to learn that additional complexity. In both cases, time-distance and 

frequency-velocity, developing and training the CNN takes a significant amount of time 

and effort, but after it has been trained it can be used to instantaneously produce a VS image 

from the input.  

To demonstrate the key difference between training a CNN using a time-distance 

input (i.e., seismic wavefield) versus a frequency-velocity input (i.e., dispersion image), 

several synthetic seismic wavefields acquired with different testing configurations on the 

same subsurface model are shown in Figure 2-2 along with their associated dispersion 

images. Figure 2-2a depicts a synthetic soil-over-rock VS image. At its surface, 48 receivers 

with 1-m spacing and two source locations at 5 m and 20 m to the left of the first receiver 

are shown. Figures 2-2b through 2-2i show the seismic wavefields resulting from several 

different source and receiver configurations and their associated dispersion images. For 

example, Figures 2-2b and 2-2c show the wavefield sampled by 48 receivers at a 1-m 

receiver spacing and its corresponding dispersion image, respectively, due to a 30-Hz 

Ricker wavelet source (Figure 2-3a) at 5-m distance from the first receiver. This will be 

referred to as the base configuration. The experimental configuration used to obtain the 

seismic wavefield and dispersion image illustrated in Figures 2-2d and 2-2e, respectively, 

differs from the base configuration in that the source is excited at 20 m from the first 

receiver. While the wavefield image in Figure 2-2d is clearly different from the wavefield 

image of the base configuration (Figure 2-2b) due to the increased travel time associated 

with a greater source offset, the dispersion images from both configurations (Figure 2-2c 

and 2-2e) are similar. The experimental configuration used to obtain the wavefield and 
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dispersion image illustrated in Figures 2-2f and 2-2g, respectively, differ from the base 

configuration in that the 30-Hz Ricker wavelet excited 5 m from the first receiver is now 

recorded by only 24 receivers at a 2-m spacing (i.e., using half the number of receivers at 

two-times the spacing). Once again, the wavefield image for the alternate testing 

configuration (Figure 2-2f) is clearly different from the base configuration (Figure 2-2b) 

due to wavefield sampling at one-half the spatial resolution, but the dispersion images 

(Figures 2-2c and 2-2g) are very similar. Figure 2-2h shows a wavefield sampled by 48 

receivers at a 1-m receiver spacing from a source located 5 m from the first receiver (similar 

to the base configuration), however, the source function is now a 12-second-long linear 

chirp from 3-Hz to 80-Hz (Figure 2-3c). Once again, while this wavefield is drastically 

different from the base configuration wavefield (Figure 2-2b), its dispersion image is 

visually identical to the others.  

To quantitatively illustrate the good agreement between the dispersion images 

across different experimental testing configurations, the mean structural similarity index 

(MSSIM) proposed by Wang et al. (2004) is used. In this case, the MSSIM is used to 

compare the similarity between the base configuration dispersion image (Figure 2-2c) and 

the dispersion images obtained using the varied testing configurations (refer to Figures 2-

2e, 2-2g, and 2-2i). The value of the MSSIM index between two images can range between 

0 and 1, where a value of 0 indicates no structural similarity, while a value of 1 means 

perfect structural similarity. More information about MSSIM is provided in section 5.1. In 

the meantime, the high values of MSSIM for the different testing configurations (0.81 – 

1.0) echo the qualitative observations made previously that the four dispersion images are 

very similar to one another. This insensitivity of dispersion images to acquisition 

https://scikit-image.org/docs/stable/api/skimage.metrics.html#re0d1cfbcf329-1
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configurations of sources and receivers grants the frequency-velocity CNN approach the 

flexibility needed to predict on diverse testing configurations independent of the training 

dataset on which the CNN was trained, which is imperative for field applications. 

 
Figure 2-1. Time-distance CNN framework proposed by Vantassel et al. (2022a), which 

follows the blue arrow’s path (left), and the new frequency-velocity CNN framework, 

which follows the green arrow’s path (right).  
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Figure 2-2 (a) a 104-m wide and 24-m deep soil-over-rock 2D model with a 47-m array of 

receivers at 1-m spacing and two source locations at 5 and 20 m off the end of the array. 

(b) the seismic wavefield recorded by 48 receivers from a 30-Hz Ricker source at the 5 m 

source location and (c) its associated dispersion image. (d) the seismic wavefield recorded 

by 48 receivers from a 30-Hz Ricker source at the 20 m source location and (e) its 

associated dispersion image. (f) the seismic wavefield recorded by 24 receivers from a 30-

Hz Ricker source at the 5 m source location and (g) its associated dispersion image. (h) the 

seismic wavefield recorded by 48 receivers from a 3-Hz to 80-Hz chirp/sweep over 12-

seconds at the 5 m source location and (i) its associated dispersion image. The mean 

structural similarity index (MSSIM) of each dispersion image relative to the base case (i.e., 

panel c) is presented above each panel. 
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Figure 2-3 Source functions used in this study and their associated normalized Fourier 

amplitude spectra. (a) the time series of a 30-Hz Ricker wavelet. (b) the time series of a 

15-Hz high-cut filtered spike wavelet. (c) the time series of a 3-Hz to 80-Hz linear 

chirp/sweep over 12-seconds. (d) the normalized Fourier amplitude spectra of each source 

function. 

 

The present study is structured as follows. We start by describing the synthetic soil 

models developed for this study. Next, the details of the wave propagation simulations and 

the post-processing of the results used in constructing the dataset for this study are 

presented. We then outline the architectures of the time-distance and frequency-velocity 
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CNNs and evaluate their relative performances on the developed dataset. Subsequently, we 

demonstrate the advantages of operating in the frequency-velocity domain in terms of 

flexibility and generalization across different testing configurations that are not present in 

the training set relative to the time-distance CNN. Lastly, we validate the potential of the 

frequency-velocity CNN for handling experimental data based on comparisons with field 

observations at the Hornsby Bend site in Austin, Texas, USA. 

2.3 Development of synthetic near-surface models 

The synthetic near-surface models developed for this study used a slightly modified 

version of the framework developed by Vantassel et al. (2022a) for generating realistic 

soil-over-undulating bedrock subsurface profiles. A brief description of the models with 

changes relative to those implemented by Vantassel et al. (2022a) is highlighted in this 

section. A total of 100,000 synthetic near-surface models representative of soil overlying 

irregular bedrock were developed to train, validate, and test the CNN. A 104-m wide and 

24-m deep domain was utilized in the present work. This domain is larger than the 60-m 

by 24-m domain used by Vantassel et al. (2022a) to accommodate the different receiver 

and source configurations required for testing the abilities of the proposed frequency-

velocity approach to generalize across different field acquisition setups. 

Similar to Vantassel et al. (2022a), the base Vs models were constructed by first 

assuming the vertical variation of Vs in the overlying soil layer (i.e., the upper part of the 

model) followed the approximate relationship between Vs and mean effective confining 

pressure for dense granular soils proposed by Menq (2003). To avoid unrealistically low 

velocities, the Vs relationship was truncated near the ground surface (i.e., at low mean 

effective stresses) to ensure no Vs less than 200 m/s. To model a broader range of realistic 
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dense soil-velocities, the relationship was scaled up and down by a random variable, the 

soil velocity factor, between 0.9 and 1.1. The average interface boundary between the stiff 

soil layer and bedrock ranged between 5 m and 20 m in depth. Several different soil-to-

bedrock interface conditions were simulated; namely, 30% of the models had highly 

undulating interfaces (e.g., Figure 2-4a through 2-4f), 60% had slightly undulating 

interfaces (e.g., Figure 2-4g through 2-4r), and 10% of the models had planar soil-rock 

interfaces (e.g., Figure 2-4s and 2-4t). These percentages of models with different bedrock 

undulation conditions were preserved throughout the CNN training, validation, testing, and 

generalization evaluation stages. Three overlapping spatial undulation frequencies were 

used to control the interface undulation intensity. The range of spatial frequencies used for 

the highly undulating interfaces was between 1/5 m-1 and 1/60 m-1, while the range of 

frequencies used for the slightly undulating interfaces was between 1/10 m-1 and 1/60 m-1. 

These values are smaller than those used by Vantassel et al. (2022a), making the soil-

bedrock interface less variable in the present study. The bedrock VS was randomly varied 

following a uniform distribution between a lower bound of 360 m/s and an upper bound of 

760 m/s. Lateral and vertical perturbations were imposed on both the soil and rock portions 

of the VS model to simulate inhomogeneities present in natural materials. The small-scale 

irregularities introduced by the perturbations were 1 m to 2 m in the vertical direction and 

4 m to 6 m in the horizontal direction. Further details on the computations used to introduce 

these small-scale irregularities, including the assumed correlation structure, can be found 

in Vantassel et al. (2022a). 

The 100,000 synthetic models were developed by randomly changing the stiff soil 

VS multiplier values, the weathered rock VS, the VS lateral and vertical perturbations, the 
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interface depth, and the interface undulation frequencies within the upper and lower bound 

for each variable. Following the development of each Vs image, a Vp image was generated 

by using a Poisson’s ratio of 0.33 for soil and 0.2 for rock. The mass density image was 

constructed by assigning a value of 2000 kg/m3 for soil and 2100 kg/m3 for rock. Twenty 

randomly selected Vs images generated using the procedures described above are shown 

in Figure 2-4. Note that while the Vs images in Figure 2-4 have been selected at random, 

the number of images for each of the three model types (i.e., highly undulating, lightly 

undulating, and planar) have been selected to follow the distribution of model types in the 

training set (i.e., 30%, 60%, and 10%, respectively). 

 
Figure 2-4 Twenty randomly selected synthetic, near-surface 2D VS images from the 

20,000 models used to test the convolutional neural networks (CNNs). The first six models 

(from a to f) have a highly undulating soil-rock interface, the following 12 models (from g 

to r) have a slightly undulating soil-rock interface, and the last two models (s and t) have a 

planar soil-rock interface.  
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2.4 Development of synthetic seismic wavefields  

The 2D finite-difference software DENISE (Köhn, 2011; Köhn et al., 2012) was 

used to simulate elastic wave propagation through the synthetic models. Forty-eight 

receivers were placed at 1-m spacing across the center of the 104-m wide models to sample 

the wavefield generated by a source located 5 m to the left of the first receiver. This 

contrasts with the 24 receivers at a 2-m spacing and source located at the center of the array 

used by Vantassel et al. (2022a). The receivers occupied the distance between 28 m to 75 

m, so they were as far away from the model boundaries as possible (refer to Figure 2-2a). 

A 30-Hz Ricker wavelet (Figure 2-3a) was used as a forcing function during the 

development of the training, validation, and testing datasets. This is a higher-frequency 

wavelet than that used by Vantassel et al. (2022a), allowing, in theory, high-resolution 

predictions to be developed. The finite-difference simulations were used to model two 

seconds of wave propagation to allow for recording of all wave types by the receivers. A 

sixth-order finite-difference operator in space and a second-order finite difference operator 

in time were utilized during the simulations. Perfectly matched layer absorbing boundaries 

(Komatitsch and Martin, 2007) were placed at the sides and the bottom of the domain, 

while the ground surface was modeled using a free boundary condition (Levander, 1988). 

Prior to wave propagation simulations, the soil models were interpolated from 1-m pixels 

to 0.2-m pixels to ensure that the wavefield was spatially sampled with a small enough grid 

to avoid numerical artifacts and instabilities, as recommended by Köhn et al. (2011). A 5E-

5 second time step was used to satisfy the Courant-Friedrichs-Lewy criterion (Courant et 

al., 1967). The waveforms at each receiver location were recorded at a 400-Hz sampling 

rate. The simulations were performed on the Texas Advanced Computing Center’s 
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(TACCs) high-performance cluster Stampede2 using a single Skylake (SKX) compute 

node. Each simulation took approximately 5 seconds to complete.   

1.1.1 Post-processing to obtain the wavefield and dispersion input images  

To evaluate the relative performance between the time-distance and frequency-

velocity CNNs, two identical datasets for training and testing of the two CNNs were 

developed. A total of 100,000 near-surface VS images and their corresponding seismic 

wavefields formed the image pairs in the dataset developed for the time-distance CNN. 

The same soil models and the dispersion images derived from their respective wavefields 

composed the dataset produced for the frequency-velocity CNN. Even though the synthetic 

models were 104-m wide and 24-m deep, only the 48 m at the center of the models 

immediately below the receivers were considered in training and testing the CNN, making 

the utilized soil models 48-m wide and 24-m deep, as illustrated in Figure 2-4. The near-

surface VS images were then normalized by the maximum VS value in the training set to 

facilitate the training process. The waveforms recorded by the 48 receivers used for the 

time-distance CNN were normalized by the maximum amplitude across all receivers to 

preserve the rate of amplitude decay. The input shape for the time-distance CNN was 

48x800x1, which represents the 48-receiver wavefield sampled for two seconds at 400 Hz.  

The frequency-velocity CNN utilizes a normalized dispersion image as input. The 

dispersion image is computed using a wavefield transformation of the time-distance 

wavefield recorded by a linear array of receivers. Several wavefield transformation 

techniques can be used to generate a dispersion image from a recorded time-distance 

wavefield. For example, the frequency-wavenumber (f-k) (Gabriels et al., 1987; Nolet and 

Panza, 1976), slant-stack (McMechan and Yedlin, 1981), phase-shift (Park et al., 1998), 



24 

and frequency-domain beamformer (FDBF) (Zywicki, 1999) transformations are all 

commonly used in various commercial and open-source surface wave processing software. 

The FDBF approach with a plane wave steering vector and no amplitude weighting 

(Zywicki, 1999) was used in the present study to develop the dispersion images used in 

training and testing the frequency-velocity CNN. We chose the FDBF over the more 

common frequency-wavenumber (f-k) approach because the FDBF technique allows the 

transformation of time-distance wavefields collected using non-uniformly spaced arrays of 

receivers and the calculation of dispersion power above the aliasing wavenumber 

(Vantassel and Cox, 2022a), thereby making the inputs to the CNN easier to acquire in the 

field. Furthermore, the FDBF approach has been judged to be superior to other wavefield 

transformation methods as assessed by Rahimi et al. (2021). Along with the FDBF, we use 

the plane wave steering vector to be consistent with the wavefield simulations. In 

particular, the seismic wavefield data were produced under the 2D, plane-strain 

assumption, and as a result are representative of waveforms generated by a line source (i.e., 

a plane wave source). Importantly, the FDBF method can be adjusted when applied to field 

data that is truly 3D in nature by swapping out the plane-wave steering vector and no 

amplitude weighting for cylindrical-wave steering and square-root-distance weighting to 

appropriately compensate for the effects of radiation damping in 3D data (Zywicki and 

Rix, 2005). This substitution removes the need to “correct” 3D waveforms collected in the 

field to 2D equivalents before dispersion processing and use in the frequency-velocity 

CNN. 

The dispersion images in this study were generated using a frequency range of 5 

Hz to 80 Hz with a 1-Hz frequency step and a phase velocity range of 100 m/s to 1000 m/s 
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with 2.25 m/s velocity step. The dispersion image, therefore, had an input shape of 

75x400x1 (i.e., 75 frequencies x 400 phase velocities). After computing the MASW 

dispersion images we utilized frequency-dependent normalization to further simplify the 

learning task of the CNN. With frequency-dependent normalization, sources with different 

frequency contents and offsets appear more similar than with other forms of normalization, 

such as absolute maximum normalization proposed by Park et al. (1998). By performing 

frequency-dependent normalization, we remove the need for the CNN to learn this aspect 

of the underlying physics, allowing for better generalization across various source types 

and locations. All dispersion images in this study were generated programmatically using 

the open-source Python package swprocess (Vantassel, 2021). 

2.5 Time-distance and frequency-velocity CNN architectures  

CNNs are an excellent tool for computer vision tasks and have shown great 

potential for use in seismic imaging (Wu and Lin, 2019; Yang and Ma, 2019; Liu et al., 

2020; Vantassel et al., 2022a). The time-distance and frequency-velocity CNNs follow the 

architecture proposed by Vantassel et al. (2022a) of five convolutional layers interspersed 

with max-pooling layers. The convolutional layers employ a set of kernels, also called 

feature detectors or stencils, to capture the relevant patterns (i.e., feature maps) in the 

dataset images. Once the relevant features of the images are detected, subsampling or 

pooling layers are utilized to decrease the feature maps' spatial resolution, which in turn 

reduces the reliance on precise positioning within feature maps produced by the 

convolutional layers. Disregarding the exact position of features within a feature map while 

maintaining the relative position of features with respect to each other allows for a better 

CNN performance on inputs that differ from the training data. Max-pooling layers were 
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used in the current study, as they were shown to be superior in capturing invariances in 

image-like data compared to subsampling layers (Scherer et al., 2010). The final 

convolutional layer is flattened and connected to a fully connected layer to perform the 

regression task. Table 2-1 shows the architectures used for the two CNNs. Google Collab 

and the open-source machine learning library Keras (Chollet et al., 2015) were used in 

training and testing the CNNs. 70%, 10%, and 20% of the developed 100,000 image pairs 

were used in the two CNNs training, validation, and testing stages, respectively. The two 

CNNs' architectures were adjusted from that originally proposed by Vantassel et al. 

(2022a) to accommodate their respective input sizes. 

In addition to the networks’ architectures, the model’s hyperparameters need to be 

rigorously tuned to provide optimal performance. In the present study, we tuned the 

following hyperparameters by varying them between the upper and lower bounds listed 

below. We then selected the set that produced the best performance on the validation set. 

The hyperparameters considered include: the learning rate (0.1 to 0.0001), batch size (8 to 

64), number of training epochs (10 to 100), optimizer (RMSprop and Adam), and loss 

function (mean squared error and mean absolute error). Ultimately, a learning rate of 

0.0005, batch size of 16, training epoch of 40, Adam optimizer (Kingma and Ba, 2014), 

and mean absolute error (MAE) were selected for both the time-distance and frequency-

velocity CNNs. We note these hyperparameters are similar to the ones selected by 

Vantassel et al. (2022a) despite being chosen after independent hyperparameter tuning 

exercises. The validation dataset MAEs for the time-distance and frequency-velocity 

CNNs using the selected hyperparameters are 0.022 and 0.025, respectively. 
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Table 2-1 Architectures for the time-distance and frequency-velocity convolutional neural 

networks (CNNs) developed in this study. 

Network layer type Time-distance CNN  Frequency-velocity CNN 

Filter size Size of output layer  Filter size Size of output 

layer 
2D Convolution 1x3 48x798x32  3x1 398x76x32 

2D Max Pooling 1x3 48x266x32  3x1 132x76x32 

2D Convolution 1x3 48x264x32  3x1 130x76x32 

2D Max Pooling 1x3 48x88x32  3x1 43x76x32 

2D Convolution 1x3 48x86x64  3x1 41x76x64 

2D Max Pooling 2x3 24x28x64  1x3 41x25x64 

2D Convolution 3x3 22x26x128  3x3 39x23x128 

2D Max Pooling 2x2 11x13x128  3x3 13x7x128 

2D Convolution 3x3 9x11x128  3x3 11x5x128 

Flatten  12672   7040 

Dense  1152   1152 

Reshape  24x48   24x48 

 

2.5.1 CNNs accuracy evaluation  

The accuracy of the time-distance and frequency-velocity CNNs were evaluated 

using their respective 20,000 testing image pairs, which the networks were not trained on. 

The mean absolute percent error (MAPE) and MSSIM were used to provide a quantitative 

assessment of the CNN’s performance. MAPE is the mean of the absolute value of the 

pixel-by-pixel percent error of each predicted VS image in physical units. The MSSIM 

index assess the quality of one image relative to another that is deemed to be of perfect 

quality based on three key features: luminance, contrast, and structure (Wang et al., 2004). 

MSSIM was calculated using a Gaussian windowing approach to match the 

implementation of Wang et al. (2004) and using a dynamic range equal to the difference 

https://scikit-image.org/docs/stable/api/skimage.metrics.html#re0d1cfbcf329-1
https://scikit-image.org/docs/stable/api/skimage.metrics.html#re0d1cfbcf329-1
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between the absolute maximum and minimum VS values of the true models in the testing 

set. 

The average values of MAPE and MSSIM for the time-distance CNN are 5.3% and 

0.80, respectively, while the MAPE and MSSIM for the frequency-velocity CNN are 6.0% 

and 0.78, respectively (refer to Table 2-2). While the time-distance CNN provides slightly 

better accuracy than the frequency-velocity CNN, their performances are quite similar. 

Furthermore, we will show that the advantages permitted by operating in the frequency-

velocity domain in terms of flexibility and generalization across data acquisition 

configurations outweigh the minor loss of accuracy. Figures 2-5 and 2-6 show the Vs image 

predictions for the time-distance and the frequency-velocity CNNs, respectively, for 

comparison with the 20 true images depicted in Figure 2-4. As noted above, Figure 2-4 

depicts six highly undulating, 12 slightly undulating, and two linear soil-rock interface 

models. The MAPE and MSSIM values for each CNN prediction relative to the true image 

are also provided in Figures 2-5 and 2-6. While, on average, the time-distance CNN slightly 

outperforms the frequency-velocity CNN in terms of overall MAPE and MSSIM, there are 

some individual models for which the frequency-velocity CNN is slightly more effective 

(e.g., model S in Figures 2-5s and 2-6s). Furthermore, by-eye it would be difficult to 

distinguish the time-distance and frequency-velocity predictions from one another.     

Table 2-2 The mean absolute percent error (MAPE) and mean structural similarity index 

(MSSIM) between the true VS images and the VS images predicted using the time-distance 

and frequency-velocity convolutional neural networks for the testing set and the different 

acquisition configurations. The values in the table represent the average MAPE and 

MSSIM over the number of images used for each acquisition configuration. The base 

acquisition configuration comprised 48 receivers with a 1-m spacing, a source offset of 5 

m relative to the first receiver in the linear array, and a 30-Hz Ricker wavelet source forcing 

function.  
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Acquisition 

variation 

CNN used Deviation from base 

configuration 

Number 

of images 

MAPE 

(%) 

MSSIM 

Base case 

Time-distance - 20,000 5.3 0.80 

Frequency-

velocity 

- 20,000 6.0 0.78 

Varying receiver 

spacing 

Frequency-

velocity 

24 receivers at 2-m 

spacing 

5,000 6.0 0.77 

16 receivers at 3-m 

spacing 

5,000 9.9 0.65 

12 receivers at 4-m 

spacing 

5,000 24.0 0.32 

Varying source 

location 

Frequency-

velocity 

Source at 6 m from 

first receiver 

5,000 6.8 0.77 

Source at 10 m from 

first receiver 

5,000 11.0 0.69 

Source at 20 m from 

first receiver 

5,000 12.7 0.64 

Average between 5-m 

source and 20-m 

source offsets 

5,000 8.1 0.73 

Average between 10-m 

source and 20-m 

source offsets 

5,000 11.2 0.67 

Varying source 

forcing function 

Frequency-

velocity 

15-Hz high-cut filtered 

spike forcing function 

5,000 5.9 0.78 

3-Hz to 80-Hz linear 

sweep over 12-seconds 

forcing function 

4,887 7.3 0.75 
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Figure 2-5 The time-distance CNN’s predictions of the true synthetic 2D Vs images 

presented in Figure 2-4. The inputs used to obtain these predictions are the wavefields 

recorded by 48 receivers at 1-m spacings, which were excited by a 30-Hz Ricker source 

wavelet at 5 m from the first receiver. The mean absolute percent error (MAPE) and mean 

structural similarity index (MSSIM) of each predicted image are presented above each 

panel. 
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Figure 2-6 The frequency-velocity CNN’s predictions of the true synthetic 2D Vs images 

presented in Figure 2-4. The inputs used to obtain these predictions are the normalized 

dispersion images obtained by post-processing the wavefields recorded by 48 receivers at 

1-m spacings, which were excited by a 30-Hz Ricker source wavelet at 5 m from the first 

receiver. The mean absolute percent error (MAPE) and mean structural similarity index 

(MSSIM) of each predicted image are presented above each panel. 

Figure 2-7 shows the residuals between the predicted frequency-velocity VS images 

(Figure 2-6) and the true images (Figure 2-4). It can be seen that large portions of the 

residual images have neutral colors, indicating relatively small differences in Vs between 

the true and predicted images. Specifically, the Vs of the soil and rock layers are generally 

well predicted, whereas most of the error is concentrated at the undulating soil-rock 

interfaces. While only shown herein for the frequency-velocity CNN, similar, localized 

interface errors are present in the time-distance predicted images and were also reported 

by Vantassel et al. (2022a) for their time-distance CNN. Nonetheless, the interface 

locations and major undulations are still fairly well preserved in the predictions.       
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Figure 2-7 The pixel-by-pixel difference between the twenty true 2D VS near-surface 

images presented in Figure 2-4 and the corresponding frequency-velocity CNN image 

predictions shown in Figure 2-6. The mean absolute percent error (MAPE) and mean 

structural similarity index (MSSIM) of each predicted image are presented above each 

panel. 

2.6 Generalizing the frequency-velocity CNN across acquisition configurations  

The acquisition generalization capabilities of the frequency-velocity CNN are 

evaluated by simulating different testing configurations than the base case configuration 

used during model training. The testing setup variations investigated herein include 

modifications to the number of receivers and receiver spacings, the source offset, and the 

source forcing function. The effects of each variation in the testing configuration are 

assessed separately, while the remainder of the setup is maintained identical to the base 

case configuration used in training the CNN. As a reminder, this base case training 

configuration was: 48 receivers with a 1-m spacing, a source offset of 5 m relative to the 
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first receiver in the linear array, and a 30-Hz Ricker wavelet source forcing function (refer 

to Figure 2-2b). Due to the high computational costs required to run numerous wave 

propagation simulations with various acquisition configurations, only 5,000 of the 20,000 

testing models were evaluated during this stage. These 5,000 models were randomly 

selected, but with the stipulation that this smaller population of models maintained the 

same ratios of 30% highly undulating interfaces, 60% slightly undulating interfaces, and 

10% linear soil-rock interfaces as the original training and testing sets. We evaluate the 

performance of the frequency-velocity CNN image predictions for these 5,000 testing 

models with wavefields recorded using a wide range of simulated acquisition testing 

configurations using the same MAPE and MSSIM statistics used to evaluate the full 20,000 

testing model set. The following sections discuss the performance of the frequency-

velocity CNN for different testing configurations. 

2.6.1 Generalizing to the number of receivers and receiver spacings 

In the field, the number of receivers used to image the subsurface is dependent on 

equipment availability, testing space, and the objective of the experiment (e.g., better near-

surface resolution versus greater imaging depth). Therefore, a CNN that can provide 

accurate 2D images from wavefields collected with different numbers of receivers is 

desirable. To test the frequency-velocity CNN for such acquisition generalization ability, 

three sets of 5,000 input dispersion images were obtained from wave propagation 

simulations on the 5,000 testing models. The first set of dispersion images was generated 

using the wavefields from 24 receivers at 2-m spacing, the second set from 16 receivers at 

3-m spacing, and the third set from 12 receivers at 4-m spacing. The accuracy of the CNN’s 

predictions for the three sets of inputs is presented in Table 2-2 in terms of MAPE and 
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MSSIM. From Table 2-2, it is clear that the frequency-velocity CNN is capable of 

generalizing across various numbers of receivers and receiver spacings, but only within 

reasonable adjustments to the base configuration. For example, the MAPE and MSSIM 

values for 24 receivers at 2-m spacing are equal to 6.0 and 0.77, respectively, essentially 

equivalent to those from the base configuration. The MAPE and MSSIM values for 16 

receivers at 3-m spacing are equal to 9.9 and 0.65, respectively, indicating a slight 

degradation in performance. However, the MAPE and MSSIM values for 12 receivers at 

4-m spacing are equal to 24.0 and 0.32, respectively, which show a significant reduction 

in predictive capabilities as fewer receivers with larger receiver spacings are used to record 

the wavefield. Reasons for these observations are investigated further by considering plots 

presented in Figure 2-8.  

Figure 2-8a shows the true VS image depicted in Figure 2-4j. Figures 2-8b and 2-

8c show the input dispersion image and CNN output Vs image, respectively, for the 48-

receiver base configuration. The input dispersion images and output Vs images for 

modified acquisition configurations are shown in Figures 2-8d and 2-8e, respectively, for 

24 receivers and in Figures 2-8f and 2-8g, respectively, for 12 receivers. Also shown in all 

dispersion images are the high frequency spatial array resolution limits (sometimes called 

the f-k aliasing limits) for the respective receiver configurations, which are plotted as 

dashed white lines. The f-k aliasing limits represent the largest wavenumber (k), or 

equivalently the smallest wavelength (), that can be measured without concern for spatial 

aliasing. The spatial aliasing limit is a constant wavelength that is equal to two-times the 

receiver spacing (i.e., at least two measurements per spatial wavelength). Note that proper 

spatial sampling is analogous to proper time-domain sampling following the Nyquist 
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sampling theorem. However, unlike in time-domain sampling the presence of 

contaminating short wavelength (i.e., high frequency) waves are less common due to 

material damping, and as a result clear dispersion data above the spatial aliasing limit can 

be used, albeit cautiously (Foti et al., 2018). 

As can be seen in Figures 2-8b, 2-8d, and 2-8f, the portion of the input dispersion 

image that exists below the spatial aliasing line increases as the number of receivers 

decreases and the receiver spacing increases. This means that when larger receiver spacings 

are used the higher frequency data may not be resolved accurately due to spatial aliasing. 

For example, the high-power trend at frequencies greater than 60-Hz in Figure 2-8f is not 

a true higher mode, but rather an artefact of spatial aliasing. While the frequency-velocity 

CNN can generalize across different receiver spacings to a certain extent, as evident by 

comparing the Vs-images MAPE and MSSIM values for the 48-receiver and 24-receiver 

configurations (refer to Figs. 8c and 8e), it cannot accurately generalize across receiver 

spacings that are drastically different from the base configuration, as the input dispersion 

images are affected by spatial aliasing. Even though the MAPE increases significantly 

when 12 receivers at 4-m increments are used (refer to Figure 2-8g), the CNN was still able 

to qualitatively predict the location of the soil rock interface quite well. Nonetheless, the 

actual Vs values for the soil and rock are not well resolved, a clear result of the limitations 

imposed by the CNN’s training data (i.e., no spatial aliasing was present in the training 

set). 
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Figure 2-8 (a) the true synthetic image from Figure 2-4j. (b & c) the input dispersion image 

and output frequency-velocity CNN Vs image prediction, respectively, from the base 

receiver configuration (i.e., 48 receivers at 1-m spacing). (d & e) the input dispersion image 

and output frequency-velocity CNN Vs image prediction, respectively, from 24 receivers 

at 2-m spacing. (f & g) the input dispersion image and output frequency-velocity CNN Vs 

image prediction, respectively, from 12 receivers at 4-m spacing. The white dashed lines 

in (b), (d), and (f) represent the spatial array resolution limit for each array configuration. 

Peak power points obtained from the apparent fundamental Rayleigh wave mode of each 

dispersion image are also shown. The mean absolute percent error (MAPE) and mean 

structural similarity index (MSSIM) of each predicted image are presented above each 

panel. 
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2.6.2 Generalizing to source offset 

When performing linear-array, active-source surface wave testing, it is good 

practice to record the waveforms generated at several different source locations with 

increasing offset distance to help identify dispersion data contaminated by near-field 

effects and quantify dispersion uncertainty (Cox and Wood, 2011; Vantassel and Cox, 

2022b). Near-field effects, which result from measuring low frequency (i.e., long 

wavelength) waves too close to the source location, are known to bias phase velocity 

estimates to lower velocities (Rosenblad and Li, 2011; Li and Rosenblad, 2011; Yoon and 

Rix 2009). As such, one needs to be cautious about placing an active source too close to a 

linear array. To complicate matters, near-field affects are site-dependent and, as a result, it 

is difficult to know a-priori what source offset distances are appropriate at a site. In 

addition to near-field effects, other wave propagation phenomena like body wave 

reflections and refractions influence the recorded seismic wavefield when varying source 

offset distances are used. This is particularly true when the subsurface conditions are 

neither 1D nor homogeneous. Therefore, a CNN that is capable of generalizing to different, 

or possibly multiple, source offsets is desirable.  

To test the frequency-velocity CNN’s ability to generalize in terms of source offset 

distance, five sets of 5,000 input dispersion images were obtained from wave propagation 

simulations on 5,000 testing models using different source offset distances relative to 48 

receivers with 1-m spacing. Specifically, the first set of dispersion images was generated 

using a 6-m source offset, the second set using a 10-m offset, and the third set using at 20-

m offset. The fourth and fifth sets of dispersion images were generated by combining 

dispersion images from two different source offsets in the frequency-phase velocity domain 
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as follows: the fourth set resulting from stacking dispersion images from a 5-m and 20-m 

offset, and the fifth set from stacking dispersion images from a 10-m and 20-m offset. The 

accuracy of the CNN’s predictions for the five sets of varied source offset inputs is 

presented in Table 2-2 in terms of MAPE and MSSIM. From Table 2-2, it is clear that, as 

with the receiver number and spacing discussed previously, the frequency-velocity CNN 

is capable of generalizing across various source offset distances, but only within reasonable 

adjustments to the base configuration. For example, the MAPE and MSSIM values for the 

6-m source offset are only slightly worse than the base configuration, while the values for 

the 10-m offset and 20-m offset show increasing error as the source offset distance 

increases. Nevertheless, the average MAPE for the 20-m offset only increase by 

approximately 7% relative to the base configuration (i.e., 12.7% compared to 6.0%).   
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Figure 2-9 (a) the true synthetic model from Figure 2-4r. (b & c) the input dispersion image 

and output frequency-velocity CNN Vs image prediction, respectively, from the base 

receiver configuration (i.e., 5-m source offset). (d & e) the input dispersion image and 

output frequency-velocity CNN Vs image prediction, respectively, from a 10-m source 

offset. (f & g) the input dispersion image and output frequency-velocity CNN Vs image 

prediction, respectively, from a 20-m source offset. The magenta dashed lines represent 

constant wavelengths set equal to two-times the array-center distance that correspond to 

phase velocity errors less than 5% as presented by Yoon and Rix (2009). Peak power points 

obtained from the apparent fundamental Rayleigh wave mode of each dispersion image are 

also shown. The mean absolute percent error (MAPE) and mean structural similarity index 

(MSSIM) of each predicted image are presented above each panel. 
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Figure 2-9a shows the true VS image depicted in Figure 2-4r. Figures 2-9b and 2-

9c show the input dispersion image and CNN output Vs image, respectively, for the 5-m 

source offset base configuration. The input dispersion images and output Vs images for 

modified acquisition configurations are shown in Figures 2-9d and 2-9e, respectively, for 

a source offset of 10-m and in Figures 2-9f and 2-9g, respectively, for a source offset of 

20-m. Also shown in all dispersion images are magenta dashed lines that delineate zones 

where the low frequency (i.e., long wavelength) dispersion data from the various source 

offset distances may be influenced by near-field effects. These lines represent constant 

wavelengths set equal to two-times the array-center distances that correspond to phase 

velocity errors less than 5%, as presented by Yoon and Rix (2009). The array-center 

distance is equal to the distance from the source to the center of the linear array. Hence, 

the larger the source offset distance, the greater the array-center distance, and the longer 

the maximum wavelength that can be extracted from the dispersion data without 

contamination from near-field effects. As noted above, near-field effects manifest in 

dispersion data as phase velocity estimates that are lower than actual conditions. Near-field 

effects can be observed at low frequencies in the dispersion images shown in Figure 2-9 

by comparing the peak power points from the 5-m, 10-m, and 20-m source offset dispersion 

images. The peak power points from the 20-m offset have the highest phase velocity values 

at low frequencies, while those from the 5-m offset have the lowest phase velocity values. 

These differences are only visible for frequency-phase velocity pairs near the magenta 

dashed lines that delineate zones where low frequency data may be influenced by near-

field effects. Other than these low frequency zones, the dispersion images from the various 

source offsets appear very similar to one another. As such, the increasing errors resulting 
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from increasing source offset are simply due to the fact that the CNN was trained on 

dispersion images generated from only a single source offset (i.e., 5 m) and this single 

source offset had dispersion data at lower frequencies that were slightly biased to lower 

velocities due to near-field effects. This does not imply that the dispersion images used for 

training the CNN are incorrect, but rather that the network learned to associate the near-

field dispersion data with its corresponding true Vs image. We observe that the dispersion 

images obtained from larger source offsets have lesser near-field effects and, therefore, 

result in Vs image predictions that are stiffer at depth than the ones obtained from a 5-m 

offset. This is the greatest source of increasing error when larger source offset distances 

are used.  

The dispersion images generated from several different offsets can be stacked 

together to balance out the impact of near-field effects and other differences in the 

wavefields caused by source location. Table 2-2 demonstrates that the increased error 

caused by using larger source offset distances can be combatted by stacking dispersion 

images from both near and far source offsets. This stacking of dispersion images is 

facilitated by normalizing each image by its absolute maximum power to counteract the 

varying dispersion image powers caused by the same source type being excited at different 

offset distances (i.e., closer sources having higher absolute dispersion power than distant 

sources). Once all images are normalized by their absolute maximum power, the images 

are summed and re-normalized by the maximum power at each frequency (i.e., frequency-

dependent normalization). As discussed above regarding Table 2-2, this results in reduced 

MAPE values relative to using only a single, larger source offset. Vs images obtained from 

the frequency-velocity CNN after stacking the 5-m and 20-m source offset dispersion 
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images are shown in Figure 2-10. These 20 predicted images can be compared to their 

ground truth images shown in Figure 2-4, time-distance CNN predictions in Figure 2-5, 

and the base case frequency-velocity CNN predictions in Figure 2-6. While the MAPE 

values associated with the predicted Vs images in Figure 2-10 are slightly greater than 

those in Figure 2-5 and Figure 2-6, the images, except for a few high and low velocity 

artifacts, do not look significantly different. In fact, as detailed in Table 2-2, the average 

MAPE values across all 5,000 testing models for the combined 5-m and 20-m source 

offsets are only about 2% higher than the average MAPE values for the base case 

configuration. This demonstrates the ability of the frequency-velocity CNN to generalize 

to a number of different source offset distances, enabling more flexible field data 

acquisition.       

2.6.3 Generalizing to source forcing function 

Different source types are commonly used to excite the ground surface during 

linear-array, active-source wavefield testing. These active sources can range from large 

shaker trucks, to accelerated weight drops, to sledgehammer impacts, depending on the 

desired depth of profiling and the relative importance of the experiment. Therefore, a CNN 

that is capable of generalization in terms of providing accurate Vs images from wavefields 

collected with different source forcing functions is imperative for handling field 

applications.  

To test the frequency-velocity CNN for acquisition generalization ability in terms 

of source forcing function, two sets of 5,000 input dispersion images were obtained from 

wave propagation simulations on 5,000 testing models using two different source forcing 

functions. Specifically, the first set of dispersion images was generated using a 15-Hz high-
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cut filtered spike wavelet, while the second set of dispersion images was generated using a 

12-second-long linear chirp over frequencies from 3-Hz to 80-Hz. Recall that these two 

forcing functions, as well as the base case forcing function (i.e., a 30-Hz Ricker wavelet), 

are shown in both the time and frequency domains in Figure 2-3. It is clear from Figure 2-

3 that the time and frequency domains of the source forcing functions are drastically 

different. However, we will demonstrate that the exact frequency-dependent amplitude of 

the source is not critical when using normalized dispersion images, provided the source 

induces broadband energy across the frequencies of interest. 

The accuracy of the CNN’s predictions for the two sets of varied source forcing 

functions is presented in Table 2-2 in terms of MAPE and MSSIM. From Table 2-2, it is 

clear that the frequency-velocity CNN is capable of generalizing across source forcing 

functions that are drastically different from one another. For example, the MAPE and 

MSSIM values for the 15-Hz high-cut filtered spike are virtually identical to those of the 

base configuration, which used a 30-Hz Ricker wavelet. Furthermore, the MAPE and 

MSSIM values for the 12-second chirp are only slightly worse than those for the base 

configuration. Note that the finite difference wave propagation simulations had to be 

extended to 13 seconds to capture the reflected and refracted waves from the extended 

chirp propagating through the models, and a total of 113 models out of the 5,000 testing 

models had to be discarded due to significant numerical artifacts caused by the length and 

complexity of the simulations. Despite these challenges, the average MAPE based on the 

12-second chirp was less than 1.5% greater than the base configuration. 

The effects of using a 12-second chirp as a forcing function are more clearly 

visualized in Figure 2-11 by observing the Vs image predictions obtained from the 
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frequency-velocity CNN. These 20 predicted images are for the same 20 true synthetic 

models shown in Figure 2-4, and the results can be compared directly to those shown for 

the time-distance CNN predictions in Figure 2-5 and the base case frequency-velocity CNN 

predictions in Figure 2-6. On average, the MAPE values associated with the predicted Vs 

images in Figure 2-11 are higher than those in Figures 2-5 and 2-6, but the differences are 

minimal, and the images appear to be quite similar. This exhibits notable generalization 

capabilities for the frequency-velocity CNN in terms of using different source forcing 

functions, provided they contain energy across the CNN input frequency band. 

 
Figure 2-10 The frequency-velocity CNN’s predictions of the true synthetic 2D Vs images 

presented in Figure 2-4. The inputs used to obtain these predictions are the normalized 

dispersion images obtained by averaging the 5-m and 20-m source offset dispersion 

images. The mean absolute percent error (MAPE) and mean structural similarity index 

(MSSIM) of each predicted image are presented above each panel. 
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Figure 2-11 The frequency-velocity CNN’s predictions of the true synthetic 2D Vs images 

presented in Figure 2-4. The inputs used to obtain these predictions are the dispersion 

images obtained by post-processing the waveforms recorded by 48 receivers at 1-m 

spacings, which were excited by a 12-seconds long 3-Hz to-80 Hz sweep/chirp at 5 m from 

the first receiver. The mean absolute percent error (MAPE) and mean structural similarity 

index (MSSIM) of each predicted image are presented above each panel. 

2.7 Field application and validation 

The proposed frequency-velocity CNN was used to predict the near-surface 2D VS 

image at the NHERI@UTexas Hornsby Bend site in Austin, Texas, USA, where extensive 

site characterization studies have been conducted in recent years (e.g., Stokoe et al., 2020; 

Vantassel et al., 2022b). The wavefields used for testing the frequency-velocity CNN were 

actively generated using a sledgehammer to strike vertically on a square aluminum strike-

plate. The wavefields were recorded by 24, 4.5-Hz vertical geophones. Five distinct 
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sledgehammer blows were recorded at a distance of 5 m relative to the first geophone for 

subsequent stacking in the time domain to increase the signal-to-noise ratio. The input to 

the CNN was the dispersion image obtained from the FDBF with cylindrical-steering 

vector and square-root-distance weighting. Figure 2-12 shows the stacked waveforms, 

input dispersion image, and the predicted frequency-velocity CNN 2D VS image. The 

predicted Vs image indicates stiff soil (Vs ~ 200 to 300 m/s) overlying gently dipping rock, 

with an interface at ~ 12 to 14 m. 

 

 
Figure 2-12 Application of the frequency-velocity CNN to linear-array, active-source 

wavefield measurements collected at the Hornsby Bend site. (a) the staked waveforms from 

five sledgehammer impacts at 5-m source offset relative to the first geophone in a linear 

array of 24 receivers at 2-m spacing. (b) the dispersion image associated with the wavefield 

presented in (a), which was used as input for the frequency-velocity CNN. (c) the 

frequency-velocity CNN output 2D VS image for the Hornsby Bend site. For comparison 

with actual field conditions, a borehole log (i.e., B1) is superimposed on the predicted 

VS image at 12.5 m, which is the location where the boring was conducted.     
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 Two boreholes were recently drilled at the Hornsby Bend site to investigate 

subsurface layering down to rock; the first (i.e., B1) was located 12.5 m from the start of 

the geophone array, while the second (i.e., B2) was located 137.5 m away. Both borehole 

logs indicated a shale layer at approximately 13.5 m below the ground surface. Figure 2-

12c shows a schematic of the lithology and 1D layer boundaries obtained from borehole 

log B1 superimposed at its correct location on the CNN-predicted 2D VS image. Based on 

Figure 2-12c, the CNN was not only capable of precisely determining the depth of the shale 

layer, but it was also capable of characterizing the increase in stiffness from the near-

surface sandy silty clay (CL-ML) soils to the underlying clayey sand (SC) soils. This is an 

interesting finding since the frequency-velocity CNN was only trained on two-layer 

synthetic models (i.e., variable soil overlying undulating rock). Nonetheless, the 2D Vs 

image predicted by the frequency-velocity CNN appears to properly capture the expected 

trends in Vs for this three-layer field site. This is a particularly notable finding given that 

the boreholes at the site were drilled after the CNN predictions were developed, such that 

the 2D Vs image was produced in a truly blind manner without any a priori constraints 

from boring logs. It is worth mentioning that the CNN input dispersion image in Figure 2-

12b was generated in less than one minute, while the 2D Vs prediction in Figure 2-12c took 

less than two seconds to obtain.  

While the borehole lithology log from B1 provides great insights into the 1D 

subsurface layering, it has not yet been used to perform downhole Vs profiling and can 

therefore not be used to judge the accuracy of the Vs predictions. So, to compare the CNN 

predicted 2D VS image with other VS estimates at the Hornsby Bend site, the extensive 1D 

surface wave inversions performed by Vantassel et al. (2022c) were used. Vantassel et al. 
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(2022c) processed MASW data collected at the Hornsby Bend site and inverted it using 

four layering parameterizations of 3, 5, 7, and 9 layers, based on the layering by number 

(LN) approach, to investigate subsurface layering uncertainty (Vantassel and Cox, 2021). 

They reported a suite of 1D Vs profiles representing the uncertainty in Vs across the 

MASW array. The median 1D Vs profiles obtained from each of these four layering 

parameterizations, along with the lognormal discretized median VS profile from all the 

inversion realizations investigated by Vantassel et al. (2022c), are provided in Figure 2-13. 

The entire MASW inversion process performed by Vantassel et al. (2022c) took 

approximately six hours to complete on four SKX nodes on the Stampede2 supercomputer 

cluster. Vantassel et al. (2022c) also reported three VS profiles along the array that were 

obtained from correlations to cone penetration testing (CPT) data, which are also shown in 

Figure 2-13. Each CPT-based 1D Vs profile was obtained from a CPT sounding by 

averaging the correlated VS values from three CPT-Vs relationships developed by Hegazy 

and Mayne (2006), Andrus et al. (2007), and Robertson (2009). To facilitate comparison 

between the CNN-predicted 2D VS image and the 1D Vs profiles reported by Vantassel et 

al. (2022c), the predicted 48-m wide 2D VS image was discretized into 48 1D VS profiles 

by slicing vertically through the 2D Vs image at 1-m increments, as shown in Figure 2-13. 

As can be seen in Figure 2-13, the median trend from the 1D MASW inversions reported 

by Vantassel et al. (2022c) is slightly stiffer (higher Vs) than the median trend from the 1D 

slices through the 2D Vs image obtained from the CNN prediction over the top 13 m, and 

slightly softer at depths greater than 13 m. Nevertheless, the agreement between the CNN 

and MASW Vs predictions is quite good. Figure 2-13 also shows good agreement between 

the 1D Vs profiles from the CNN prediction and the 1D VS profiles obtained from the CPT-
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Vs correlations reported by Vantassel et al. (2022c). Log B1 is also repeated in Figure 2-

13 so that the expected soil-type lithology can be visualized relative to the 1D Vs profiles. 

The increasing stiffness from the CL-ML soils to the underlying SC soils is further 

validated by observing the trends in the standard penetration test (SPT) raw blow count (N) 

values, which are presented next to the B1 lithology log.  

The strong agreement between the CNN predictions and the 1D Vs profiles derived 

from both MASW and CPT-Vs correlations, as well as the precision in locating the rock 

depth relative to the ground truth (i.e., log B1), demonstrate that the frequency-velocity 

CNN is capable of rapidly generating accurate Vs images for geologic conditions similar 

to those on which it was trained (i.e., stiff soil overlying rock). Furthermore, even though 

the network was trained using a 30 Hz Ricker wavelet source recorded by 48 receivers with 

a 1-m spacing, it was capable of utilizing field data collected with sledgehammer impacts 

recorded by 24 receivers with a 2-m spacing. This illustrates that the proposed frequency-

velocity CNN can generalize across different field data acquisition configurations. 

To further assess the 2D Vs image predicted by the frequency-velocity CNN, Figure 

2-14 compares the measured and predicted MASW dispersion images. In particular, Figure 

2-14a shows the measured MASW dispersion image that was computed from the stacked 

experimental waveforms from the sledgehammer source at the Hornsby Bend site. 

However, the predicted MASW dispersion image shown in Figure 2-14b required some 

extra work to obtain. First, the frequency-velocity CNN’s predicted 2D Vs image (recall 

Figure 2-12c) was used to obtain a full 2D predicted subsurface model by applying the 

simple Vp and mass density rules discussed above in regards to synthetic model 

development. Then, finite difference wave propagation simulations were performed using 
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a 30 Hz Ricker wavelet located 5 m from the array. The waveforms were measured on a 

24-receiver array at a 2-m spacing to be consistent with the actual field data. Then, the 

dispersion image was obtained using the FDBF with plane-wave steering vector and no 

amplitude weighting. For the purpose of comparison, the peak dispersion data amplitudes 

in Figure 2-14a are repeated in Figure 2-14b. Overall, we observe consistency between the 

modal trends in the measured and predicted MASW dispersion image, with the R0 mode 

between 10 and 40 Hz showing particularly strong agreement. However, the higher modes 

observed in Figure 2-14a are not as pronounced in Figure 2-14b. Nonetheless, on careful 

inspection of Figure 2-14b it is possible to observe some higher mode trends that show 

some consistency with the locations of the higher mode dispersion data present in the 

experimental wavefield. This comparison serves to emphasize that, while not perfect, the 

2D Vs image predicted by the frequency-velocity CNN (i.e., Figure 2-12b) is relatively 

consistent with the experimental wavefield data and measured dispersion image (i.e., 

Figure 2-12a) from the field experiment. 
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Figure 2-13 Comparison of 1D Vs profiles for the area imaged by the frequency-velocity 

CNN at the Hornsby Bend site. The figure shows four layer-by-layer median 1D VS profiles 

from four layering by number (LN) MASW inversion parameterizations, as well as the 

overall lognormal discretized median 1D VS profile from the 1D MASW inversions 

performed by Vantassel et al. (2022c). The figure also shows three 1D VS profiles obtained 

from correlations with three CPT soundings, as reported by Vantassel et al. (2022). These 

1D VS profiles are plotted relative to the 48 1D Vs profiles extracted from the 2D Vs image 

obtained from the frequency-velocity CNN and their lognormal median. To compare the 

CNN predictions with ground truth, the lithology log from borehole B1 is also provided. 
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Figure 2-14 (a) dispersion image developed using field measurements, and (b) the 

dispersion image obtained from the predicted 2D Vs model. To allow comparisons between 

the dispersion images, the peak power at each frequency in panel (a) is shown in panel (b) 

using white circles. 

2.8 Conclusions 

A frequency-velocity CNN has been developed for rapid, non-invasive 2D Vs near-

surface imaging using stress waves. The CNN uses a normalized dispersion image as an 

input and outputs a 2D Vs image. The proposed framework provides significant flexibility 

in the linear-array, active-source experimental testing configuration used in generating the 

CNN input at a given site, accommodating various source types, source offsets, numbers 

of receivers, and receiver spacings. Such acquisition flexibility permits the use of the 

developed CNN as an end-to-end imaging technique, or as a means for generating rapid 

starting models for FWI. A total of 100,000 soil-over-rock synthetic models were used to 

train, validate, and test the CNN. The testing metrics of the developed frequency-velocity 

CNN revealed similar prediction accuracy to the time-distance CNN recently developed 

within our research group, which showed great promise but lacked flexibility important for 

field applications. The acquisition generalization ability of the proposed frequency-

velocity CNN was first demonstrated using sets of 5,000 synthetic near-surface models. 

For each set of 5,000 models, the inputs to the CNN were dispersion images obtained using 
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different testing configurations than the ones used during training the CNN. The CNN 

showed remarkable acquisition generalization ability with regards to the number of 

receivers, receiver spacings, source offset distances, and source forcing functions, as long 

as the testing configuration was not drastically different relative to the base case 

configuration on which the CNN was trained. Finally, the ability of the proposed CNN to 

handle field data was demonstrated using the experimental tests conducted at the Hornsby-

Bend site in Austin, Texas, USA. The good agreement between the CNN's predicted 2D 

Vs image and the actual subsurface structure determined through 1D surface wave 

inversions, CPT-Vs correlations, and boring logs reinforce the capabilities of the proposed 

CNN for accurately retrieving 2DVs images using field data from testing configurations 

different from the one used during training.   
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CHAPTER 3 

A FREQUENCY-DOMAIN BEAMFORMING PROCEDURE FOR EXTRACTING 

RAYLEIGH WAVE ATTENUATION COEFFICIENTS AND SMALL-STRAIN 

DAMPING RATIO FROM 2D AMBIENT NOISE ARRAY MEASUREMENTS 

Abstract 

The small-strain damping ratio plays a crucial role in assessing the response of soil 

deposits to earthquake-induced ground motions and general dynamic loading. The 

damping ratio can theoretically be inverted for after extracting frequency-dependent 

Rayleigh wave attenuation coefficients from wavefields collected during surface wave 

testing. However, determining reliable estimates of in-situ attenuation coefficients is much 

more challenging than achieving robust phase velocity dispersion data, which are 

commonly measured using both active-source and ambient-wavefield surface wave 

methods. This paper introduces a new methodology for estimating frequency-dependent 

attenuation coefficients through the analysis of ambient noise wavefield data recorded by 

two-dimensional (2D) arrays of surface seismic sensors for the subsequent evaluation of 

the small-strain damping ratio. The approach relies on the application of an attenuation-

specific wavefield conversion and frequency-domain beamforming. Numerical simulations 

are employed to verify the proposed approach and inform best practices for its application. 

Finally, the practical efficacy of the proposed approach is showcased through its 

application to field data collected at a deep, soft soil site in Logan, Utah, USA, where phase 

velocity and attenuation coefficients are extracted from surface wave data and then 

simultaneously inverted to develop deep shear wave velocity and damping ratio profiles. 
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3.1 Introduction 

The small-strain shear modulus (Gmax) and small-strain damping ratio (D) form the 

starting point for many soil constitutive models and play a crucial role in assessing the 

response of soil deposits to earthquake-induced ground motions and general dynamic 

loading. Gmax is directly related to the in-situ shear wave velocity (Vs), and it represents the 

soil stiffness and its resistance to deformation under applied shear stress. D characterizes 

the energy dissipation properties of the material. The influence of D on the amplitude and 

frequency content of seismic waves has been recognized since at least 1940 (Ricker, 1940), 

with subsequent research establishing it as a pivotal parameter for seismic site response 

studies and for modeling ground-borne vibrations (e.g., Anderson et al., 1996; Tao and 

Rathje, 2019; Papadopoulos et al., 2019; Foti et al., 2021). Despite its significance, the in-

situ estimation of D has received far less attention when compared to measurements of Vs 

(Parolai, 2014). D can theoretically be inverted for after extracting frequency-dependent 

Rayleigh wave phase velocity and attenuation coefficients (α) from wavefields collected 

during surface wave testing (Lai, 1998; Foti, 2004). However, in-situ α values are generally 

much more difficult to reliably measure than phase velocities (Haendel et al., 2016; Parolai 

et al., 2022), which are commonly measured using both active-source and ambient-

wavefield surface wave methods.  

This paper introduces a new noninvasive method to estimate frequency-dependent 

Rayleigh wave α using ambient noise wavefield data collected with two-dimensional (2D) 

arrays of surface seismic sensors for the subsequent evaluation of D. The approach relies 
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on frequency-domain beamforming (FDBF) and applies an attenuation-specific wavefield 

conversion, known as the FDBFa approach. While Aimar et al. (2024a) previously used 

this approach for active-source surface wave testing, it has not been applied to ambient 

noise surface wave testing. In this paper, we introduce a new method called the noise 

FDBFa (NFDBFa) approach and document its development and application. 

The subsequent sections of this paper are organized as follows: first, we cover 

important background information on attenuation and damping. Second, we present a 

concise overview of the FDBF technique introduced by Lacoss et al. (1969) and the FDBFa 

wavefield conversion methodology proposed by Aimar et al. (2024a), along with the 

integration of these methods within our proposed NFDBFa approach. Then, synthetic 

studies are presented to showcase the capabilities of the proposed NFDBFa approach and 

inform best practices for its application. The synthetic studies offer valuable insights into 

the influence of 2D array size and proximity to noise sources on attenuation estimates. For 

example, it is demonstrated that the optimal 2D ambient noise array design principles for 

attenuation estimation differ from the principles governing 2D array design for phase 

velocity estimation. Finally, we demonstrate the practical utility of our proposed NFDBFa 

technique through a field application at a deep, soft soil site in Logan, Utah, USA. In this 

field application, phase velocity and attenuation coefficients are extracted from surface 

wave data and then simultaneously inverted to develop deep Vs and D profiles. The good 

agreement observed between the attenuation estimates derived from our new NFDBFa 

technique and those obtained through the standard FDBFa analysis of active-source data 

collected using the multichannel analysis of surface waves (MASW) provides compelling 

evidence of the effectiveness of our new ambient noise approach. 
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3.2 Background  

The attenuation of seismic waves in a continuum is related to the damping ratios of 

both compression waves (Dp) and shear waves (Ds). Surprisingly, little is known about the 

relative relationship between Dp and Ds, and one can find instances in the literature where 

researchers have assumed Dp = Ds (Badsar et al., 2010; Verachtert et al., 2017; Aimar et 

al., 2024b), Dp > Ds (Bergamo et al., 2023), and Dp < Ds (Xia et al., 2002). In this paper, 

when 'D' is used without a subscript, it implies that the statement or equation is valid for 

both Dp and Ds. The damping ratio (D) is commonly used in engineering, while its inverse, 

the quality factor (Q), where 𝑄 −1 =  2𝐷, is more prevalent in seismological and 

geophysical literature (Foti, 2004). Consequently, Q, being the inverse of D, also varies for 

compressional waves (Qp) and shear waves (Qs). 

Seismic wave attenuation is commonly attributed to three mechanisms: material 

damping, geometric spreading, and apparent attenuation (Zywicki, 1999). Material 

damping, or anelastic attenuation, arises from the collective interaction of diverse factors 

(Johnston et al., 1979). These factors encompass frictional losses among solid particles and 

fluid flow losses due to the relative motion between solid and fluid phases, a phenomenon 

particularly notable in coarse-grained soils (Biot, 1956; Walsh, 1966 and 1968; Stoll, 

1974). Fine-grained soils, however, showcase more intricate phenomena influenced by 

electromagnetic interactions between water dipoles and microscopic solid particles (Lai, 

1998). This intrinsic material damping is typically approximated as frequency-

independent, especially within the seismic frequency band, primarily spanning 0.1 to 10 

Hz (Aki and Richards, 1980; Shibuya et al., 1995). Material damping gives rise to a cyclic 

stress-strain curve exhibiting a hysteretic loop and is commonly referred to as hysteretic 

damping (Rix et al., 2000; Parolai et al., 2022).  
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Geometric or radiation damping involves the spread of a fixed amount of energy 

over a broader area or volume as the wavefront moves away from the source. Take, for 

instance, a harmonic unit point load applied along the normal direction to the surface of a 

homogeneous and isotropic half-space; this perturbation generates both body waves and 

Rayleigh waves. The body waves propagate radially from the source, forming a 

hemispherical wave front, while Rayleigh waves travel outward along a cylindrical wave 

front. As these waves travel, they traverse an expanding volume of material, leading to a 

decrease in energy density as the distance from the source increases. The amplitude of the 

body waves attenuates in proportion to the ratio of 𝑟−1 (where r is the radial distance from 

the source), except when along the surface of the half-space. In that case, the amplitude 

attenuates proportionally to 𝑟−2. Conversely, the amplitude of the Rayleigh waves 

attenuates as 𝑟−0.5 (Lamb, 1904; Ewing et al., 1957; Richart et al., 1970). Consequently, 

at substantial distances from the surface source, the dominant influence on overall particle 

motion stems from the surface wavefield (Lai, 1998). It is worth mentioning that these 

geometric spreading rules do not hold with transient waveforms (Keilis-Borok, 1989) or 

non-homogeneous media (Lai, 1998).  

Apparent attenuation includes wave scattering, which arises from the interaction of 

waves with heterogeneities along the seismic path (O’Doherty and Anstey, 1971; Spencer 

et al., 1977), as well as the reflection and transmission of seismic waves at interfaces and 

mode conversions (Rix et al., 2000). Therefore, apparent attenuation is highly site-specific 

and difficult to generalize.  

Both laboratory tests and in-situ methods have been proposed to estimate D. 

Laboratory tests, such as the resonant column (ASTM D4015-21), are valuable for 
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parametrically studying the material/intrinsic damping ratio, but they cannot capture the 

other two mechanisms contributing to the attenuation of seismic waves in situ. Conversely, 

the damping ratio estimates obtained using in-situ methods are influenced by all the seismic 

wave damping mechanisms mentioned above (Parolai et al., 2022). In-situ methods also 

have the advantage of assessing soil characteristics in their natural and undisturbed state 

(Rix et al., 2000). Additionally, in-situ tests encompass a greater soil volume, effectively 

reducing biases that might arise from localized variations in soil properties (Badsar et al., 

2010). Furthermore, they provide parameter estimates on a spatial scale relevant to 

common engineering applications (e.g., Comina et al. 2011). In the scope of estimating D, 

in-situ methods can be dissected into two categories: invasive and noninvasive methods. 

Invasive methods encompass techniques such as cross-hole testing (Jongmans, 1989; Hall 

and Bodare, 2000) and downhole testing (Michaels, 1998; Crow et al., 2011). Noninvasive 

methods, particularly surface wave techniques, offer numerous advantages. By situating 

sensors at the ground surface, surface wave methods accelerate data acquisition, minimize 

costs, streamline validation of soil-receiver coupling, and encompass a frequency range 

closely aligned with those pertinent to earthquake engineering applications (Rix et al., 

2000; Verachtert et al., 2017; and Parolai et al., 2022). 

Surface wave testing became popular in the 1980’s as an effective way to non-

invasively develop 1D layering and Vs profiles for both soil deposits and pavement systems 

(e.g., Nazarian et al., 1983; Stokoe et al., 1989). Typically, the use of surface wave methods 

involves acquiring experimental phase velocity dispersion data through active-source 

methods, ambient-noise methods, or a combination of both (Tokimatsu, 1995). These 

dispersion data are then inverted to obtain layered subsurface models, with the primary 
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goal of resolving changes in Vs. The combined use of active-source and ambient-noise 

methods facilitates the generation of dispersion data across a wide frequency range, which 

enables resolution of both near-surface and deeper layers. Active sources predominantly 

produce energy concentrated at higher frequencies, typically ranging from several Hertz to 

perhaps 100 Hertz, with limited energy generation below 5-10 Hz for small sources like 

sledgehammers and drop weights. Consequently, the effective profiling depth using active-

source methods is often constrained to approximately 15 to 40 m, contingent on the 

subsurface velocity and source mass (Foti et al., 2018). The primary hindrance to achieving 

increased penetration depths lies in generating lower frequency (i.e., longer wavelength) 

waves with affordable and highly-portable sources. This difficulty is circumvented by 

ambient-noise methods, which do not involve the active generation of wave energy. 

Instead, they rely on ground motions induced by cultural noise and microtremors (i.e., 

ambient noise), encompassing an abundance of low-frequency components (Lai, 1998). 

Consequently, ambient-noise surveys offer valuable insights for deep characterization, 

extending to depths of hundreds of meters or more (Foti et al., 2014; Teague et al., 2018a). 

Nevertheless, the spectral power of microtremors is generally low at higher frequencies 

(Peterson, 1993), which limits their ability to resolve changes in stiffness near the ground 

surface (Tokimatsu, 1995; Foti et al., 2014). Combining both active and ambient-noise 

measurements offers a solution to overcome this limitation. 

Ambient-noise surveys typically employ 2D arrays of surface seismic sensors due 

to the a-priori unknown location of the ambient noise sources. Unlike linear arrays, 2D 

arrays allow for the determination of wave propagation direction, which is necessary for 

resolving the true phase velocity (Cox and Beekman, 2011). While 2D ambient noise array 
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measurements have been referred to using several names, in this paper we will refer to 

them as microtremor array measurements (MAM; Ohrnberger et al., 2004; Teague et al., 

2018b). A schematic representation of a typical survey utilizing both active and ambient-

noise arrays is presented in Figure 3-1a. The active-source array in Figure 3-1a is in 

accordance with the MASW method (Park et al., 1999), utilizing a linear array of receivers 

to capture the wavefield generated by active sources off each end of the array. Example 

waveforms recorded by 24 receivers placed in-line with one of the active sources to the left 

of the array are depicted in Figure 3-1b. The ambient wavefield array depicted in Figure 3-

1a is in accordance with MAM testing, where surface sensors are deployed in a 2D circular 

pattern (note that other 2D geometries are also permissible). Example ambient noise 

waveforms recorded by nine sensors in the circular array are depicted in Figure 3-1d. 

Figure 3-1c schematically illustrates phase velocity dispersion data that are commonly 

extracted from active-source MASW waveforms and ambient noise MAM waveforms 

using various well-known wavefield transformation techniques (Vantassel and Cox, 2022). 

Examples of these techniques include frequency-domain beamforming (FDBF; Lacoss et 

al., 1969), high-resolution frequency-wavenumber (f-k) spectrum analysis (Capon 1969), 

cylindrical FDBF (Zywicki 1999; Zywicki and Rix, 2005), and Rayleigh three-component 

beamforming (Wathelet et al., 2018). The combined dispersion data from MASW and 

MAM spans a wide frequency range, encompassing both low frequencies obtained from 

the MAM testing and high frequencies obtained from the MASW testing, with some 

overlap in between. The phase velocity dispersion data are then typically used to solve the 

parameter identification problem (i.e., inversion) and obtain 1D Vs profiles of the 
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subsurface (Foti et al., 2018; Vantassel and Cox, 2021). Note that the inversion step and 

resulting Vs profiles are not illustrated schematically in Figure 3-1. 

 
Figure 3-1 Schematic illustrating the data acquisition and processing stages of active-

source and ambient-wavefield surface wave testing used to extract phase velocity and 

phase attenuation data. Panel (a) presents a typical acquisition setup consisting of 

concentric MASW and MAM arrays, featuring active sources for the MASW array and an 

ambient wavefield for the MAM array. Panel (b) shows waveforms from a single active-
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source location collected using the MASW array, while Panel (c) presents the combined 

phase velocity dispersion data resulting from MASW and MAM Frequency Domain 

Beamforming (FDBF) processing. Panel (d) depicts the ambient noise waveforms collected 

from the MAM array. In Panel (e), phase attenuation data processed through active-source 

FDBFa and ambient-wavefield NFDBFa techniques are illustrated. 

As noted above, much more effort has been devoted to extracting phase velocity 

information from surface wave approaches than to extracting attenuation information. 

Nonetheless, multiple active-source methods have been developed to estimate the 

attenuation of surface waves. The methods introduced by Lai (1998), Lai et al. (2002), Rix 

et al. (2000), Xia et al. (2002), and Foti (2004) are founded on assessing the spatial decay 

of Rayleigh waves, a phenomenon that is influenced by both Dp and Ds, as described by 

Aki and Richards (1980). These approaches assume the dominance of a single Rayleigh 

wave mode of propagation. Consequently, they might yield inaccurate results in soil 

profiles where multiple surface wave modes significantly contribute to the wavefield 

propagation (Rix et al. 2001). Badsar et al. (2010) introduced the half-power bandwidth 

method, originally developed in the field of mechanical and structural dynamics to 

determine the modal damping ratio of a structure, to assess Rayleigh modal attenuation by 

analyzing the width of the Rayleigh peaks in the f-k domain. Verachtert et al. (2017) 

employed the circle fit method, originally developed to determine eigenfrequencies and 

modal damping ratios in structural dynamics (Ewins 1984), to estimate multimodal 

Rayleigh dispersion and attenuation curves. Both the half-power bandwidth and circle fit 

methods facilitated the determination of modal attenuation curves from multimode 

wavefields (Verachtert et al., 2017). Recently, Aimar et al. (2024a) introduced an 

innovative technique that combines a novel wavefield conversion approach coupled with 

FDBF (Lacoss et al., 1969) for processing active-source data collected using MASW to 
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estimate the frequency-dependent α values. They called this the FDBF attenuation 

(FDBFa) method. Notably, the wavefield conversion proposed by Aimar et al. (2024a) to 

extract  differs from the conventional wavefield transformations commonly used to go 

from the time-distance domain to the f-k domain, as detailed in the following section. To 

avoid confusion, we will refer to the wavefield transformation proposed by Aimar et al. 

(2024a) as ‘wavefield conversion,’ while reserving the term ‘wavefield transformation’ 

specifically for the more common f-k domain transformations used to extract phase 

velocity data. 

While important research on extracting phase attenuation coefficients using active-

source methods is ongoing, similar to phase velocity data, combining active-source and 

ambient noise methods is desirable for resolving attenuation data over a broader frequency 

band. The majority of ambient noise techniques aimed at estimating the attenuation of 

surface waves were developed for regional-scale estimation (Haendel et al., 2016; Parolai 

et al., 2022). Only a limited number of approaches have considered local scales that hold 

relevance for engineering purposes, like site-specific seismic ground response analyses or 

dynamic vibration studies. These local-scale approaches are predominantly based on 

retrieving attenuation properties from the cross-correlation of seismic noise (e.g., Albarello 

and Baliva, 2009; Parolai, 2014; Haendel et al., 2016). Albarello and Baliva (2009) 

proposed a methodology that reconstructs the Green’s function based on the temporal 

derivative of averaged cross-correlations from noise recordings obtained by pairs of 

geophones, thereby incorporating attenuation effects into the process. They further 

validated this approach by demonstrating its potential in estimating attenuation coefficients 

at two distinct sites. Parolai (2014) estimated the Rayleigh phase velocity and attenuation 
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coefficients by fitting a damped zero-order Bessel function, introduced by Prieto et al. 

(2009), using data generated from the space correlation function introduced by Aki (1957). 

To mitigate the impact of uneven source distribution on cross-correlations, Haendel et al. 

(2016) employed a higher-order noise cross-correlation technique to extract the phase 

velocity and attenuation coefficient of Love waves. They illustrated that their approach 

yields correlation functions with higher signal-to-noise ratios compared to simple noise 

cross-correlations.  

The importance of seismic noise cross-correlation methods cannot be 

underestimated. Nonetheless, in theory, the reconstruction of the full Green’s function 

requires the noise wavefield energy to be equally partitioned in all directions (Sánchez-

Sesma and Campillo, 2006; Snieder et al., 2007). This is a highly specific condition that 

rarely met rigorously by ambient noise on Earth (Cupillard and Capdeville, 2010; Tsai, 

2011; Haendel et al., 2016). Furthermore, while travel time measurements from cross-

correlation of ambient noise are theoretically understood, amplitude measurements lack a 

corresponding theoretical background, except when the noise is equipartitioned (Snieder 

et al., 2007; Tsai, 2011). Studies by Cupillard and Capdeville (2010) and Tsai (2011) have 

shown that attenuation estimates using cross-correlations are significantly influenced by 

the distribution of the noise sources. In light of the challenges posed by the equipartitioning 

condition for the reconstruction of the full Green’s function in ambient noise studies 

(Sánchez-Sesma and Campillo, 2006; Snieder et al., 2007), and considering the limitations 

highlighted by Cupillard and Capdeville (2010) and Tsai (2011) regarding the influence of 

noise source distribution on attenuation estimates, we introduce a paradigm-shifting 

approach herein for calculating attenuation coefficients from ambient noise. This novel 
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method not only eliminates the need for an equipartitioned noise wavefield, but also 

remains robust in the face of uneven noise source distribution, marking a departure from 

existing methodologies. 

This paper builds upon Aimar et al.'s (2024a) work on developing an FDBFa 

technique for estimating α from active-source MASW testing and expands the FDBFa 

approach to ambient noise data recorded using MAM. Importantly, using an FDBF 

approach enables the actual direction of ambient noise propagation to be determined for 

each noise window and frequency, and does not require equipartitioning of ambient noise 

energy. Furthermore, using an FDBF approach enables the phase attenuation data 

generated from MASW and that from MAM to be combined in order to generate phase 

attenuation data spanning a broader frequency range, as illustrated schematically in Figure 

3-1e. The experimental dispersion and attenuation data can then be combined and inverted 

to determine not only the Vs profile but also the D profile of the subsurface to greater 

depths. This inversion of dispersion and attenuation data to obtain Vs and D profiles can be 

carried out either sequentially, as demonstrated in the work of Rix et al. (2000), or 

simultaneously, as shown by both Lai (1998) and Aimar et al. (2024b). 

3.3 Wavefield conversion proposed by Aimar et al., (2024a) 

The method introduced by Aimar et al. (2024a) to estimate Rayleigh wave 

attenuation (α) assumes that the recorded wavefield is dominated by planar surface waves, 

specifically Rayleigh waves observed in the far field, with a dominant propagation mode. 

Several techniques have been developed to estimate the wavenumber (k) and therefore the 

phase velocity from such wavefields (e.g., Lacoss et al., 1969; Capon, 1969; Zywicki and 

Rix, 2005; Wathelet et al., 2018). Aimar et al. (2024a) harnessed this concept and 
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introduced a novel wavefield conversion approach that provides a pathway for calculating 

α by utilizing methods from existing literature originally developed for estimating k. The 

methodology involves converting the recorded wavefield into a function interpreted as a 

pseudo-wave. This pseudo-wave exhibits dispersion characteristics reflecting the phase 

attenuation of the original wave. The determination of α then becomes straightforward 

through the application of existing techniques for estimating k.  

Consider the harmonic, exponentially decaying displacement wavefield, U(r), 

depicted in Figure 3-2a and expressed by Equation 1. This wavefield is observed at many 

discrete distances at a specific moment in time and is induced by the passage of a 

monochromatic plane wave. Within this wavefield, α governs the amplitude decay 

resulting from material damping in accordance with a viscoelastic constitutive model. 

When the wavefield is plotted as log amplitude versus radial distance (r) from the source, 

the slope of the amplitude decay is α, as illustrated in Figure 3-2b. When the wavefield is 

plotted as phase angle versus r, k denotes the slope of the unwrapped phase (i.e., the linear 

phase shift), as shown in Figure 3-2c. Aimar et al. (2024a) proposed raising the recorded 

wavefield, U(r), to the power of the imaginary number, i (see Equation 2). Consequently, 

a pseudo displacement wavefield, 𝑣(𝑟), is generated, wherein the wavenumber is 

modulated by α, signifying that when the unwrapped phase of the converted wavefield is 

graphed against radial distance, the slope of that phase corresponds to the value of α (refer 

to Figure 3-2d). Conversely, when the log amplitude of the converted wavefield is plotted 

against distance, the slope manifests as k, with an inverted sign (refer to Figure 3-2e). This 

wavefield conversion allows for estimating α using any of the already established and 
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common wavefield transformation techniques for calculating k (e.g., f-k or FDBF 

methods). 

𝑈(𝑟) =  𝑒−𝛼𝑟𝑒−𝑖𝑘𝑟                                                                                                            (1) 

𝑣(𝑟) = ⌈𝑈(𝑟)⌉𝑖 =  𝑒−𝑖𝛼𝑟𝑒𝑘𝑟                                                                                             (2) 

 
Figure 3-2 Schematic illustrating the wavefield conversion approach proposed by Aimar 

et al. (2024a) to extract attenuation coefficients (). Panel (a) displays the particle 

displacement of a monochromatic wave experiencing exponential amplitude decay with 

distance, indicative of material damping in a viscoelastic constitutive model. Panel (b) 

depicts linear amplitude decay in log amplitude versus linear distance space, where the 

slope represents the phase attenuation coefficient. In Panel (c), the modulation of the 

unwrapped phase slope with distance by the wavenumber (k) is demonstrated. Panel (d) 

illustrates the modulation of the unwrapped phase slope by the phase attenuation 

coefficient in the converted wavefield. Panel (e) showcases the control of the slope of the 

log amplitude decay with linear distance by the wavenumber, albeit with an inverted sign. 
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This wavefield conversion can also be extended to a broadband wavefield, 

comprised of a superposition of monochromatic plane waves by exponentiating the 

wavefield in the frequency domain with the power of the imaginary number. To address 

numerical artifacts introduced by the wrapped phase on the pseudo wavefield, Aimar et al. 

(2024a) recommended normalizing v(r) by its amplitude on a frequency-by-frequency 

basis. Aimar et al. (2024a) showed that this wavefield conversion can be successfully 

applied to active-source wavefields recorded using MASW as a means to estimate α. In 

this paper, we extend this approach to estimate α from ambient noise wavefields recorded 

using MAM arrays, employing the FDBF technique introduced by Lacoss et al. (1969). 

3.4 Noise frequency domain beam forming - attenuation (NFDBFa)  

The inherent challenge in ambient noise measurements stems from the lack of a 

priori information about the source location or the direction of wave propagation, 

necessitating the use of spatial 2D arrays to determine the noise propagation directions 

during post-processing (Zywicki, 1999). As ambient noise wavefields operate in two 

spatial dimensions (e.g., x and y), it is necessary to represent the wavenumber using 2D 

vectors (Johnson and Dudgeon, 1993; Zywicki, 1999), where �⃗� =  𝑘𝑥𝑖̂ + 𝑘𝑦𝑗̂, and 𝑖̂ and 𝑗̂ 

are unit vectors in the x and y directions, respectively. Similarly, 𝛼  is also expressed as a 

2D vector (i.e., 𝛼 =  𝛼𝑥𝑖̂ + 𝛼𝑦𝑗̂) in this paper. Beamforming refers to a diverse set of array 

processing algorithms that concentrate the signal-capturing capabilities of the array in a 

specific direction. The fundamental concept behind beamforming is straightforward: when 

a propagating signal exists within an array's aperture, the outputs of the sensors, delayed 

by appropriate amounts and added together, enhance the coherent signal while mitigating 

the incoherent signal from waves propagating in different directions. The delays that 
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enhance the signal are directly linked to the time it takes for the signal to travel between 

sensors (Johnson and Dudgeon, 1993). Delays in the time domain correspond to linear 

phase shifts in the frequency domain, providing information about the wavenumber. FDBF 

calculations are exclusively performed within the frequency domain. Applying FDBF to 

the original wavefield, 𝑈(𝑟 ), provides information about �⃗� , which informs the estimation 

of the phase velocity. This paper aims to demonstrate that applying FDBF to the converted, 

normalized pseudo wavefield, 𝑣(𝑟 ), informs the estimation of 𝛼 . Henceforth, in this paper, 

we will denote FDBF applied to the converted noise wavefield as NFDBFa, emphasizing 

its role in estimating the phase attenuation from ambient noise.  

In the NFDBFa approach, the first step is to partition the noise data collected by a 

2D array of m sensors into B time windows. The m sensors are located at the ground surface 

at coordinates (𝑥𝑖 , 𝑦𝑖) denoted by the vector 𝑟𝑖⃗⃗ , where i varies from 1 to m. For each time 

window, Fourier spectra are calculated. Following this, the complex number at each 

frequency in the spectra is exponentiated to the imaginary power. Then, each exponentiated 

complex number is normalized by dividing it by its absolute amplitude. This process is 

conducted to obtain the normalized spectra of the pseudo wavefield (Aimar et al., 2024a). 

These spectra are then used to compute the Hermitian symmetric spatio-spectral correlation 

matrix, 𝑅𝑖𝑗, with i and j representing indices of the m sensors in the 2D array, using 

Equation 3: 

𝑅𝑖𝑗(𝜔) =  
1

𝐵
∑ 𝑣𝑖,𝑛(𝜔)𝐵

𝑛=1 𝑣𝑗,𝑛
∗ (𝜔)                                                                                     (3) 

where 𝑅𝑖𝑗(𝜔) is the averaged pseudo cross-power spectrum between the ith and jth 

sensors in the array across all windows, 𝑣𝑖,𝑛(𝜔) is the normalized pseudo spectra of the ith 

sensor’s data in the nth window, * indicates complex conjugation, and 𝜔 is the angular 
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frequency. Despite being frequency-dependent, the spatio-spectral correlation matrix 

conveys spatial wavefield properties. Power within specific frequency-phase attenuation 

(f-𝛼 ) pairs is determined by steering the array towards various directions and potential 

phase attenuation values. Array steering involves exponential phase shift vectors 

determined by trial 𝛼  values in pseudo space, as given by Equation 4: 

𝑒(𝛼 ) =  [exp(−𝑖𝛼 . 𝑟1⃗⃗⃗  ) , … , exp(−𝑖𝛼 . 𝑟𝑚⃗⃗⃗⃗ )]
𝑇                                                                      (4) 

where 𝑒(𝛼 ) is a steering vector associated with a trial 𝛼  and T denotes the transpose 

of the vector. The power in a particular f-𝛼  pair, 𝑃𝑁𝐹𝐷𝐵𝐹𝑎(𝛼 , 𝜔), is estimated by multiplying 

𝑅𝑖𝑗(𝜔) by 𝑒(𝛼 ) and summing the total power over all sensors, as given by Equation 5: 

𝑃𝑁𝐹𝐷𝐵𝐹𝑎(𝛼 , 𝜔) =  𝑒𝐻(𝛼 )𝑅𝑖𝑗(𝜔)𝑒(𝛼 )                                                                               (5) 

where H indicates the Hermitian transpose. The steering vectors aim to align the 

array with plane waves propagating from a specified direction and phase attenuation for 

each frequency. The successful alignment results in a peak within the 𝑃𝑁𝐹𝐷𝐵𝐹𝑎(𝛼 , 𝜔) 

pseudo-spectrum estimate. Thus, the NFDBFa technique presented herein allows for 

estimating α from ambient noise data without requiring an equipartitioned wavefield. 

Even though there are similarities between the FDFBa method proposed by Aimar 

et al. (2024a) for estimating α using an MASW test setup and the NFDBFa method 

introduced in this study, there are notable differences between the two. Part of the 

difference is a consequence of the inherent dissimilarities between MASW and MAM. In 

the FDBFa method, the source location is predetermined and the array is aligned with the 

source, simplifying the problem and enabling the use of wavefield transformations like 

cylindrical frequency domain beamforming (Zywicki and Rix, 2005). Moreover, the 

signal-to-noise ratio can be readily enhanced by time-domain or frequency-domain 
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stacking, as advocated by Vantassel and Cox (2022) and Foti et al., (2018). Additionally, 

dispersion and attenuation uncertainties can be quantified using the multiple source offset 

approach proposed by Cox and Wood (2011). In contrast, the NFDBFa approach developed 

in this study encounters distinct challenges, primarily arising from the a priori unknown 

location of the source(s). This necessitates the utilization of 2D arrays and involves 

azimuthally scanning the 2D space to ascertain the direction of the most coherent source 

of energy at each frequency for each window. Furthermore, the enhancement of the 

coherent noise-to-incoherent noise ratio involves averaging multiple time windows, while 

uncertainty quantification involves analyzing various time blocks, each composed of 

different windows. Thus, in the NFDBFa approach, data are recorded for significantly 

longer durations (i.e., hours) compared to FDBFa (i.e., seconds). Additionally, the 

NFDBFa approach relies on measurements of ambient noise, which is typically assumed 

to be generated by sources located in the far field. If this assumption holds true, it helps to 

mitigate the impact of geometric spreading, which plays a significant role on attenuation 

estimates near an active source (Badsar, 2012). Nearfield noise sources lead to 

complications in extracting accurate attenuation estimates, as discussed in greater detail 

below.  

Figure 3-3 presents examples of the FDBF and NFDBFa responses obtained from 

a synthetic wavefield recorded by a ten-receiver circular MAM array for a single frequency 

and single time window. The array comprises nine sensors equally spaced on the perimeter 

of the circle and one sensor in the middle. The FDBF method is utilized to estimate �⃗�  and 

the NFDBFa method is utilized to estimate 𝛼 . In Figures 3-3a and 3-3b, the results of 

applying the FDBF technique to the original noise wavefield recorded by the array are 
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depicted. Figure 3-3a illustrates the f-�⃗�  spectrum at the considered frequency in a 2D wave 

number space (𝑘𝑥-𝑘𝑦). Stronger powers are represented by a darker purple color. This 

spectrum offers insights into the power and vector velocities of propagating waves. In this 

example, a wave propagates along the x-axis with a velocity represented by a vector wave 

number �⃗�  at the chosen frequency. Consequently, a spectrum peak emerges on the positive 

𝑘𝑥 axis at a distance of |�⃗� | from the origin. The associated phase velocity can be calculated 

as 𝑉𝑟 = 2𝜋𝑓/|�⃗� |, and the wavelength, λ, can be determined as 𝜆 = 2𝜋/|�⃗� |. Figure 3-3b 

illustrates the cross-section a-a from Figure 3-3a, revealing the main and side lobes. 

Generally, the narrower the main lobe and the shorter the side lobes the better the array and 

processing algorithm are at accurately identifying the correct �⃗�  values for a given 

frequency. 

Figures 3-3c and 3-3d display the f-𝛼  spectrum obtained from applying the 

NFDBFa method to the converted noise wavefield for the same time window used to 

develop Figure 3-3a. In this case, instead of presenting the beamforming peak powers in 

the 𝑘𝑥-𝑘𝑦 space, as seen in Figure 3-3a, they are now depicted in the 𝛼𝑥-𝛼𝑦 space. This 

transition occurs because the phase in the pseudo wavefield is modulated by 𝛼 (refer to 

Figure 3-2), rather than k. Figure 3-3c employs a different color scheme, where stronger 

powers are represented by darker blue colors. The f-𝛼  spectrum shown in Figure 3-3c 

illustrates wave propagation for a single frequency along the x-axis with a phase 

attenuation represented by the vector 𝛼 . Figure 3-3d illustrates the cross-section x-x from 

Figure 3-3c, revealing the main and side lobes along the positive x-axis (i.e., direction of 

wave propagation). Similar to estimating �⃗� , the narrower the main lobe and the shorter the 

side lobes the better the array and processing algorithm are at accurately identifying the 
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correct 𝛼  values for a given frequency. The ability of the NFDBFa approach to develop 

phase attenuation estimates from ambient-noise recorded using MAM arrays is 

investigated in the following section using synthetic data. 

 
Figure 3-3 Schematic illustrating the FDBF and NFDBFa responses obtained from an 

ambient noise wavefield recorded by a ten-receiver circular MAM array for a single 

frequency and single time window. Panel (a) presents the f-�⃗�  spectrum resulting from 

applying the FDBF method to the original wavefield, displaying the beamforming peak 

powers in kx-ky space. Panel (b) shows the cross-section a-a from Figure 3-3a, revealing 

the main and side lobes. Panel (c) presents the f-𝛼  spectrum resulting from applying the 

NFDBFa technique to the pseudo wavefield, presenting the beamforming peak powers in 

𝛼𝑥-𝛼𝑦 space. Panel (d) illustrates the cross-section x-x from Figure 3-3c, showing the main 

and side lobes along the direction of wave propagation. 
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3.5 NFDBFa evaluation with synthetic wavefields 

This section uses synthetic data to validate the effectiveness of the NFDBFa 

approach in estimating phase attenuation from ambient noise recorded using MAM arrays. 

Specifically, the approach is tested on two soil models: a half-space model and a single 

layer above a half-space model. All numerical simulations discussed in this section were 

executed using Salvus (Afanasiev et al., 2019), a comprehensive 2D and 3D full-waveform 

modeling software suite based on the spectral element method. The simulations were 

performed on the Texas Advanced Computing Center’s (TACCs) high-performance cluster 

Lonestar6 using two compute nodes.  

3.5.1 Half-space model  

This subsection presents a simple wave propagation simulation consisting of a 

single surface source generating body and surface waves propagating through a half-space 

soil model. Despite the simplicity of the model, the outcomes obtained from this simulation 

offer key insights into the attenuation of a wavefield generated by a surface source and 

elucidate the capabilities of the NFDBFa approach. Figure 3-4 depicts a schematic plan 

view illustrating the source location and MAM array configurations employed in the half-

space simulation. The wavefield was generated by a point source acting in the vertical 

direction at coordinates (0, 0, 0) in an x, y, z cartesian coordinate system. The source was 

a single Ricker wavelet with a center frequency of 5 Hz. This source function produces 

broadband energy over a frequency range of approximately 1 to 10 Hz. The wavefield 

emanating from the source was recorded using five circular MAM arrays, each comprising 

10 sensors, with one sensor at the center and nine sensors evenly spaced around the 

perimeter. In this paper, the arrays are named using the convention 'C' followed by the 
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diameter of the array, where 'C' denotes that the array is circular. Therefore, the first array, 

located two kilometers away from the source and with a diameter of one kilometer, is 

denoted as C1000 at 2 km. The remaining four arrays, concentrically-centered five 

kilometers from the source, have diameters of 60 m (C60), 300 m (C300), 1000 m (C1000 

at 5 km), and 2000 m (C2000). It is noteworthy that, although currently only the vertical 

component of the displacement wavefield is utilized in NFDBFa, each sensor recorded 

both horizontal and vertical displacement components, and plans for utilizing all 

components from noise recordings are ongoing. Additionally, the NFDBFa processing 

operated independently of any knowledge about the source location, mirroring the 

conditions of an ambient noise MAM survey, ensuring an unbiased analysis. 

The half-space constitutive soil parameters are presented in Figure 3-5a, where Vp, 

and υ are the compression wave velocity, and Poisson’s ratio, respectively. Due to the large 

spatial extent of the model and the substantial computational expense associated with 

running a simulation over such a vast domain, a 2D simulation was conducted rather than 

a 3D simulation. In the 2D simulations, the sensor locations were projected onto a 2D 

plane, as illustrated in Figure 3-5a. This entailed setting the y-coordinate to zero for each 

surface sensor location shown in Figure 3-4, resulting in their positions being determined 

exclusively by their x-axis coordinates. For example, the sensor initially situated at 

coordinates (2321.4, 383, 0) in an x, y, z system (as depicted in Figure 3-4), transformed 

to (2321.4, 0) in the 2D x, z system presented in Figure 3-5. However, it is important to 

note that, during NFDBFa processing, the coordinates assigned to each sensor were derived 

from those shown in Figure 3-4; consequently, the aforementioned sensor retained 

coordinates of (2321.4, 383, 0) during processing. This approach not only substantially 
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reduced the computational cost of the simulations, but also ensured that the arrays were 

measuring plane waves. The simulation required 4 hours and 20 minutes of computation 

utilizing 256 threads on the high-performance cluster Lonestar6. 

Before describing the application of the NFDBFa method, some preliminary 

features of the amplitude decay versus distance are discussed, as they directly influence 

attenuation estimates. To better observe this decay pattern, the wavefield emanating from 

the source was recorded every ten meters along the surface. Those time histories were then 

filtered at discrete frequencies so the amplitude decay at each frequency could be observed. 

The decay of Fourier amplitudes with distance from the vertical Ricker wavelet source for 

frequencies 1, 2, 3, 4, and 5 Hz are shown in Figures 3-5b and 3-5c. In Figure 3-5b, the 

amplitudes for each frequency are normalized by their respective maximum values at the 

source and plotted on a log scale, while the distances are not normalized and plotted on a 

linear scale. In contrast, in Figure 3-5c, the distances from the source are normalized by 

the wavelength (λ) corresponding to each plane wave frequency and plotted on a linear 

scale. The figures depict a sharp amplitude decrease near the source due to nearfield effects. 

Following this, amplitude oscillations with diminishing power are superimposed over a 

linear decay trend. Note that a linear decay trend in log amplitude scale corresponds to an 

exponential decay in linear amplitude scale. These amplitude oscillations tend to flatten 

greatly after propagating approximately 10 λ away from the source. It is noteworthy that 

these oscillations, although verified using other software packages, such as the 

ElastoDynamics Toolbox (EDT; Schevenels et al., 2009), challenge conventional intuition 

regarding wave attenuation in a half-space. Neither the geometric spreading of Rayleigh 

waves nor the attenuation due to material damping should exhibit such oscillations in a 
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half-space, as detailed by Lai (1998). The oscillating amplitude decay pattern in a half-

space model is a result of body wave amplitude decay oscillations, as shown by Tokimatsu 

(1995) and Holzlohner (1980). Hence, when estimating phase attenuation using ambient 

noise, it is essential for the MAM arrays to be at a sufficient distance (more than 

approximately 10 λ) away from any potential surface sources, such that wave amplitude 

oscillations do not contaminate the expected trend of amplitude decay with distance.  

It is worth noting that in layered media, oscillating amplitude decay of Rayleigh 

waves due to geometric spreading has been reported and accounted for in attenuation 

studies, as observed in the work of Lai (1998). Thus, in layered media, wave amplitude 

oscillations can be more pronounced and may extend beyond 10 λ from the surface source, 

as demonstrated by Tokimatsu (1995). This may be thought of as a type of near-field effect 

specific to attenuation studies, wherein the wavefield amplitude decay patterns are 

significantly more complicated at distances less than approximately 10 λ from source. This 

is distinct from, and more severe than, the typical range of near-field effects for phase 

velocity estimations, which generally deteriorate between 0.5 λ and 2 λ from the source, 

depending on the subsurface velocity structure (Tokimatsu 1995; Rix et al., 2001).  
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Figure 3-4 Plan view of the source (star symbol) and receiver (inverted triangle symbols) 

configurations used for synthetic wavefield simulations. The source was a single Ricker 

wavelet with a center frequency of 5 Hz. The wavefield was recorded using five MAM 

arrays. The first array (C1000 at 2 km) has a diameter of 1 km and is positioned 2 km from 

the source. The remaining four arrays are concentrically-centered 5 km away from the 

source and have diameters of 60 m (C60), 300 m (C300), 1 km (C1000 at 5 km), and 2 km 

(C2000), respectively. 

 
Figure 3-5 Half-space wavefield simulation: Panel (a) presents a cross-section view of the 

configuration of the source and receivers shown in Figure 3-4, along with the half-space 

soil properties. Panel (b) shows the decay of particle vertical displacement as a function of 

distance from the source for five distinct frequencies, each normalized by its maximum 

amplitude at the source. Panel (c) presents the particle displacement decay patterns from 

Panel b, with distance now normalized by the wavelength for each frequency. Panel (d) 
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shows the particle ellipticities for each frequency, expressed as the horizontal particle 

displacement divided by the vertical particle displacement, with the dotted horizontal line 

indicating the theoretical ellipticity calculated based on the Poisson’s ratio of the half-space 

soil model. 

To further demonstrate the more severe near-field effects associated with amplitude 

decay, Figure 3-5d presents the simulated wavefield ellipticity, expressed through the 

horizontal-to-vertical (H/V) ratio of particle displacement, measured with distance in 

wavelengths for the same frequencies outlined in Figure 3-5b. The ellipticity also displays 

oscillations that decrease and stabilize at normalized distances greater than about 10 λ from 

the source. This observation underscores that the near-field amplitude decay oscillations 

stem from body waves, as Rayleigh wave ellipticity in a half-space is determined solely by 

Poisson’s ratio (Tokimatsu 1995) and should not oscillate. In Figure 3-5d, we observe that 

the calculated ellipticities oscillate around the theoretical value anticipated for Rayleigh 

wave ellipticity in a half-space with Poisson’s ratio equal to 0.33, depicted by the dotted 

horizontal line in Figure 3-5d.  

The synthetic time histories recorded by the C1000 at 2 km and the C1000 at 5 km 

MAM arrays (refer to Figures 3-4 and 3-5) were processed using the FDBF and NFDBFa 

methods to estimate phase velocity and attenuation, respectively, as illustrated in Figure 3-

6. Figure 3-6 aims to highlight the impact of wave amplitude decay patterns on the 

attenuation estimates. In terms of abilities to resolve phase velocity, both the C1000 arrays 

seem to perform approximately the same, whether 2 km away from the source (Figure 3-

6a) or 5 km away from the source (Figure 3-6b). However, upon inspecting Figures 3-6c 

and 3-6d, it becomes evident that the array located 5 km from the source (i.e., Figure 3-6d) 

provides more reliable attenuation estimates at lower frequencies compared to the array 

closer to the source. This observation can be explained by referring to Figure 3-5b, where 
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the amplitude decay patterns measured by the array positioned 2 km from the source are 

shaded in pink. It is apparent that in close proximity to the source, the low-frequency waves 

have not traveled a sufficient number of wavelengths, resulting in amplitude decay that 

does not conform to pure exponentials (i.e., linear decay in log scale). However, by the 

time these waves reach the array positioned 5 km from the source (blue shading in Figure 

3-5b), the oscillations in amplitude decay have diminished significantly, approaching a 

pure exponential decay. Therefore, it is noteworthy that in an ambient-noise survey, even 

though the source location is unknown, if the noise source is close to the array in terms of 

wavelengths traveled by the desired frequency, it may lead to unreliable and scattered 

attenuation results. Nonetheless, Figures 3-6c and 6d clearly demonstrate the reliability of 

the new NFDBFa approach in retrieving phase attenuation estimates over a broad range of 

frequencies. 
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Figure 3-6 Half-space wavefield simulation: phase velocity (top) and phase attenuation 

(bottom) dispersion data estimated with FDBF and NFDBFa, respectively, from 1 km 

arrays positioned at two distinct distances from the ambient noise source: (left) at two 

kilometers (C1000 at 2 km), and (right) at five kilometers (C1000 at 5 km). 

 

Finally, the performance of the NFDBFa in the presence of incoherent noise is 

investigated. For this purpose, Figure 3-7 illustrates the influence of incoherent noise and 

array size on phase attenuation estimates using the same half-space simulation results. The 

analysis focuses on the four arrays of different sizes concentrically-centered 5 km from the 

source (refer to Figures 3-4 and 3-5a). Incoherent noise was introduced to the signal, with 

a target signal-to-noise ratio (SNR) at 20 dB, which resulted in the frequency-dependent 

amplitude decay patterns depicted in Figure 3-7a (compared to Figure 3-5b). Figures 3-7b, 

3-7c, 3-7d, and 3-7e display the attenuation estimates obtained using the C60, C300, 
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C1000, and C2000 MAM arrays, respectively. It becomes evident that larger arrays yield 

more accurate attenuation estimates in the presence of incoherent noise. Figure 3-7a 

elucidates the rationale behind this enhanced performance for larger arrays across all 

frequencies. The C2000 MAM array samples a significantly larger area, enabling it to 

discern the exponential amplitude decay even in the presence of noise. The C60 MAM 

array samples a significantly smaller area, and thus is considerably more sensitive to 

amplitude fluctuations caused by incoherent noise, resulting in the significant scatter 

observed in the attenuation estimates shown in Figure 3-7b.  
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Figure 3-7 Half-space wavefield simulation with noise: Panel (a) shows the amplitude 

decay of the same five frequencies depicted in Figure 3-5 but now with added incoherent 

noise to the signal, setting the signal-to-noise ratio (SNR) at 20 dB. Panels (b) to (e) present 

the predicted phase attenuation data from the NFDBFa analysis for four arrays 

concentrically-centered at five kilometers from the source, with diameters of 60 m (C60), 

300 m (C300), 1 km (C1000 at 5 km), and 2 km (C2000), respectively. 
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Figure 3-8 further illustrates the impact of array size on resolving attenuation 

coefficients by showcasing the f-𝛼  spectra for a frequency of 3 Hz that were calculated 

from the wavefield recorded by the four concentrically-centered arrays located 5 km from 

the source. Notably, the mainlobe (dark blue shaded area) is considerably narrower for 

larger arrays, resulting in more reliable estimates of phase attenuation. Two key points 

warrant attention here. First, the feasibility of employing larger arrays might be restricted 

due to limitations in access at a given site, or to help maintain approximately a one-

dimensional (1D) subsurface condition beneath the array, which is an implicit assumption 

in the analysis technique (i.e., no lateral spatial variability). Meeting this assumption 

becomes more challenging as the array size expands. Second, it is essential to highlight 

that the method used to determine the optimal MAM array size for attenuation estimates 

differs from the one employed in obtaining phase velocity estimates. In dispersion 

estimation, smaller MAM arrays are more effective at capturing high frequency phase 

velocities, whereas larger arrays are better suited for resolving lower frequency phase 

velocities (Foti et al., 2018; Vantassel and Cox, 2022). However, according to the results 

depicted in Figure 3-7, the larger arrays demonstrated superior ability in resolving phase 

attenuation across the entire considered frequency range compared to the smaller arrays. 
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Figure 3-8 Half-space wavefield simulation with noise: Panels (a) through (d) present the 

f-𝛼  spectra obtained through NFDBFa analysis for a frequency of 3 Hz. The spectra are 

derived from the wavefield recorded by the four arrays concentrically-centered five 

kilometers from the source with diameters of 60 m (C60), 300 m (C300), 1 km (C1000), 

and 2 km (C2000), respectively, as depicted in Figure 3-7. 

3.5.2 Layer above a half-space model 

The performance of the NFDBFa approach on a synthetic model consisting of a 

single layer above a half-space is illustrated in this subsection. The model's constitutive 

small-strain parameters and the source and receiver configurations are provided in Figure 

3-9a. For this synthetic study, 150 vertical point sources with varying forcing functions and 

trigger times were activated. The sources were triggered five kilometers away from the 

center of a one-kilometer diameter circular array consisting of 10 sensors: one in the center 

and nine equally distributed around its perimeter (just like the C1000 at 5 km MAM array 



93 

depicted in Figure 3-4). The waveforms recorded by the array are depicted in Figure 3-9b. 

These waveforms were subsequently processed using FDBF and NFDBFa to derive the 

Rayleigh wave phase velocity dispersion data shown in Figure 3-9c and the phase-

attenuation data shown in Figure 3-9d, respectively. The theoretical Rayleigh-wave phase 

velocity dispersion and attenuation curves for the model are also presented in Figures 3-9c 

and 9d, respectively. In these figures, the fundamental theoretical mode is denoted as Mode 

1, while the 1st-higher mode is denoted as Mode 2. 

The FDBF method is able to extract experimental phase velocity dispersion data 

from the synthetic wavefield that well-matches the theoretical dispersion curves and 

captures the transition from Mode 1 to Mode 2 at approximately 7 Hz. A strong agreement 

is also observed between the theoretical attenuation curves and the experimental 

attenuation data extracted from the synthetic wavefield using the NFDBFa method, 

particularly for Mode 1. Interestingly, the attenuation data shifts to Mode 2 at the same 

frequency where the phase velocity dispersion data transitions to Mode 2. A similar 

observation about possible links between the frequencies where phase velocity and 

attenuation mode transitions occur was also reported by Aimar et al., (2024a) using MASW 

data. While further studies are needed to validate the observations that phase velocity and 

phase attenuation data tend to jump modes at identical frequencies, this is a potentially 

important point, as patterns in attenuation modes are much more complex than phase 

velocity modes.  

The effectiveness of the proposed NFDFBa approach has been successfully 

demonstrated through the analyses conducted on synthetic datasets, as discussed above. 



94 

Now, we shift our focus to applying this approach to real field data, offering a thorough 

demonstration of its effectiveness in a practical, real-world situation. 

 
Figure 3-9 Layered model simulation: Panel (a) presents the soil properties utilized in the 

simulation for the soil layer and the half-space, along with the surface sources and 1-km 

receiver array located 5 km from the source (C1000 at 5 km). Panel (b) displays the 

waveforms collected from the C1000 array. In Panel (c), the good agreement between the 

theoretical Rayleigh-wave phase velocity curves (Mode 1 and Mode 2) and the 

experimental phase velocity data obtained through the FDBF approach on the original 

wavefield is demonstrated. Finally, Panel (d) showcases the good agreement between the 

theoretical phase attenuation curves and the experimental phase attenuation data extracted 

from the converted wavefield using the proposed NFDBFa approach. 
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3.6 Field application and validation 

A surface wave field-testing campaign was conducted at the Drainage Farm Site in 

Logan, Utah, USA (refer to Figure 3-10), a property owned by Utah State University 

(USU). Structural geology indicates that Southern Cache Valley, encompassing the 

Drainage Farm Site and located in the northeastern part of the Basin and Range province, 

is a graben bounded by high-angle normal faults (Williams, 1962). The site is underlain by 

Paleozoic rocks, which are overlain by Tertiary formations such as the Wasatch and Salt 

Lake formations, composed of conglomerate, siltstone, and tuffaceous sandstone. In certain 

areas of Cache Valley, these formations reach thicknesses of up to 2,440 m (Evans et al., 

1996). The near-surface geology of the Drainage Farm Site is characterized by sediments 

from ancient Lake Bonneville, which receded to form the Provo shoreline. These sediments 

include alluvial, lacustrine, and deltaic deposits (Williams, 1962; Evans et al., 1996). Well 

logs presented by Williams (1962) reveal alternating layers of silt and clay, sand, and 

gravel above the Salt Lake formation. Moreover, limited deep well logs from the vicinity 

of the Drainage Farm Site indicate that rock can be encountered at depths ranging from 

176 m to more than 350 m (Perez, 1969). 

The goal of the testing was to collect a high-quality surface wave dataset that could 

be used for attenuation studies to validate the proposed NFDBFa technique. The field 

testing involved both active-source MASW testing and ambient noise MAM testing. The 

sensor array configurations utilized for MASW and MAM at the Drainage Farm Site are 

illustrated in Figure 3-10. MASW testing was performed using 24, 4.5-Hz vertical 

geophones placed with a spacing of two meters between successive geophones, resulting 
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in an array length of 46 m. Wavefields with strong Rayleigh wave content were actively 

generated by striking vertically on a strike-plate with a sledgehammer. The sledgehammer 

was used at eight distinct "shot" locations that were offset by 5, 10, 15, and 20 m relative 

to the first/last geophone off each end of the array. Five distinct sledgehammer blows were 

recorded at each location for subsequent stacking to increase the signal-to-noise ratio (Foti 

et al. 2018). MAM testing utilized three concentric circular arrays that were aligned with 

the middle of the MASW array, as depicted in Figure 3-10. The three arrays were 700-m, 

300-m, and 60-m in diameter, and will be referred to as C700, C300, and C60, respectively. 

Each array consisted of nine evenly distributed three-component broadband seismometers 

(Nanometrics Inc. Trillium Compact 120s seismometers) along its circumference to 

capture ambient vibrations. The three arrays did not record data simultaneously; instead, 

the nine sensors were used to collect noise data for each of the MAM arrays one array at a 

time. First, the sensors recorded seismic noise for 13 hours and 30 minutes for the C700 

array. Subsequently, the sensors were relocated to their designated locations for the C60 

and C300 arrays, recording ambient noise for an hour and a half and three hours, 

respectively. 
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Figure 3-10 Plan view of the MASW and MAM arrays employed for testing at the Drainage 

Farm Site in Logan, Utah, USA. The concentric MAM arrays featured diameters of 60 m 

(C60), 300 m (C300), and 700 m (C700), while the MASW array comprised 24, 4.5-Hz 

vertical geophones, spanning 46 m. 

 

For Rayleigh-wave phase velocity dispersion analysis, MASW data were analyzed 

using the FDBF method with cylindrical-wave steering (Zywicki and Rix, 2005), as coded 

in the open-source surface wave processing package swprocess (Vantassel, 2021). This 

processing was coupled with the multiple source-offset technique for identifying near-field 

contamination and quantifying dispersion uncertainty (Cox and Wood, 2011; Vantassel 

and Cox, 2022). As a result, eight phase velocity estimates were obtained for each 

frequency, corresponding to one phase velocity estimate from each of the eight shot 

locations. MASW Rayleigh wave dispersion data influenced by near-field effects or 

significant offline noise were trimmed before calculating phase velocity dispersion 

statistics.  
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The three-component beamforming approach (Wathelet et al., 2018) coded in the 

open-source software package Geopsy (Wathelet et al., 2020) was used to generate 

Rayleigh-wave phase velocity dispersion data for each of the MAM arrays. The recorded 

time for each array was discretized into blocks, with each block further divided into at least 

30-time windows. The window lengths were selected to contain at least 30 cycles (periods) 

at the lowest processing frequency that could be extracted from each MAM array 

(Vantassel and Cox, 2022). For each MAM array, eight phase velocity estimates were 

extracted at each analyzed frequency using the three-component beamforming (Wathelet 

et al., 2018) approach to ensure consistency with the eight phase velocity estimates 

obtained from the MASW processing. Spurious dispersion data stemming from high-

amplitude noise in the near-field (e.g., traffic noise close to the sensors) and incoherent 

noise were manually eliminated before calculating dispersion statistics. Ambient noise 

phase velocity dispersion data from all MAM arrays were combined with the active phase 

velocity dispersion data obtained from MASW processing, as shown in Figure 3-11a. The 

combined data, used to compute mean and ± one standard deviation dispersion estimates 

(Vantassel and Cox, 2022), are displayed in Figure 3-11b relative to the individual MASW 

and MAM dispersion data points for the Drainage Farm Site. 



99 

 
Figure 3-11 Experimental phase velocity and attenuation data extracted from MASW and 

MAM testing at the Drainage Farm Site in Logan, UT, USA. Panel (a) displays the 

experimental phase velocity dispersion data of Rayleigh waves processed from an MASW 

array and three circular MAM arrays, with diameters of 60 m, 300 m, and 700 m. Panel (b) 

showcases the mean and ± one standard deviation of the experimental Rayleigh wave phase 

velocity dispersion data derived from the combined MASW and MAM datasets. Panel (c) 

displays the experimental phase attenuation data from MASW and three circular MAM 

arrays. Panel (d) illustrates the mean ± one standard deviation of the experimental phase 

attenuation data calculated from the combined MASW, C300, and C700 MAM arrays. 

 

The cylindrical FDBFa (CFDBFa) approach, as proposed by Aimar et al. (2024a), 

was employed to derive attenuation estimates from the MASW data. Mirroring the MASW 

phase velocity dispersion analysis, the multiple source-offset technique was utilized for 

quantifying attenuation uncertainty. Thus, eight attenuation estimates were extracted from 

the MASW data at each analyzed frequency using CFDBFa. For the MAM attenuation 

estimates, the new NFDBFa approach introduced in this study was employed. The recorded 

time for each array was discretized into eight blocks, with each block further divided into 
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30 windows. Consequently, the window length employed for each MAM array can be 

determined by dividing the total recording time of the array by the product of 8 blocks and 

30 windows (i.e., 240). Similar to MAM phase velocity dispersion analysis, the window 

lengths were selected to contain at least 30 periods at the lowest processing frequency that 

could be extracted from each MAM array (Vantassel and Cox, 2022). Averaging the 

estimates from all windows within each block yielded a single data point per block, thus 

providing eight unique attenuation estimates per frequency. This processing approach 

ensured that an equal number of attenuation data points were obtained at each frequency 

for all of the MASW and MAM arrays. The combined ambient-noise attenuation data from 

all MAM arrays and the active attenuation data from the MASW array are plotted together 

in Figure 3-11c. A good agreement is observed between the attenuation estimates derived 

from the MASW array and those obtained from the C300 and C700 arrays for frequencies 

ranging from 4 to 10 Hz. The MASW testing did not generate coherent attenuation data at 

frequencies less than 4 Hz, due to the limitations of the active sledgehammer source. 

However, the MAM testing was able to extract coherent attenuation data at frequencies 

below 1 Hz. The agreement observed between the active-source and ambient noise 

attenuation estimates serves as compelling evidence for the efficacy of the proposed 

NFDBFa approach. However, it is notable that there is significant scatter in the attenuation 

estimates obtained using the C60 array. This variability is likely attributed to the challenges 

previously discussed in regards to using smaller MAM arrays for attenuation studies, as 

the phase velocity data extracted from the C60 array was very good (refer to Figure 3-11a). 

Hence, the attenuation data from the C60 array was removed prior to calculating 

attenuation statistics. The combined attenuation estimates from the MASW, C300, and 
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C700 arrays, and the mean and ± one standard deviation attenuation estimates obtained 

from those three arrays, are depicted in Figure 3-11d. While a noticeable agreement exists 

among the three arrays, there is significantly greater scatter in the attenuation estimates 

(Figure 3-11d) compared to the phase velocity dispersion estimates (Figure 3-11c). This 

observation aligns with the findings reported by Aimar (2022). The application of the new 

NFDBFa approach in this field test showcases its effectiveness in estimating attenuation 

coefficients from ambient noise wavefield data. 

Finally, the statistical experimental Rayleigh-wave phase velocity and attenuation 

parameters derived from both the MASW and MAM testing (refer to Figures 3-11b and 3-

11d) were used to invert for Vs and Ds profiles at the Drainage Farm Site. This was achieved 

through the Monte Carlo-based joint inversion of phase velocity and phase attenuation data 

developed by Aimar et al. (2024b). Although the effectiveness of the joint inversion 

procedure has been proven for active surface wave data (Lai and Rix, 1998; Aimar et al., 

2024b), its application to combined dispersion data from MASW and MAM testing, 

covering a broad frequency range, is novel. This is because past studies on inverting MAM-

based attenuation data to retrieve damping properties at large depths typically adopted an 

uncoupled inversion approach, based on a separate inversion of Rayleigh-wave phase 

velocity and α (e.g., Prieto et al., 2009; Parolai, 2014). 

The inversions performed herein involved 50,000 five-layer trial Earth models with 

progressively increasing thicknesses, covering a comprehensive range of layer thicknesses, 

Vs, and Ds values. The layering was informed by a preliminary inversion study based solely 

on phase velocity dispersion data, which is omitted here for simplicity. Realistic values 

were fixed for the Poisson’s ratio and mass densities. A constant Dp/Ds ratio of 1.4 was 
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used during the inversion, similar to the approach taken by Bergamo et al. (2023). Forward 

dispersion and attenuation modeling were conducted using the Computer Programs for 

Seismology software (Herrmann, 2013). The fit to the experimental data was quantitatively 

assessed using a normalized root mean square (RMS) error that accounts for estimation 

uncertainty, similar to the metric proposed by Wathelet et al. (2004).  

The ten best inversion results are shown in Figure 3-12. The theoretical phase 

velocity and attenuation curves are shown relative to the experimental data in Figures 3-

12a and 3-12b, respectively. The Vs and Ds profiles are shown in Figures 3-12c and 3-12d, 

respectively, down to a depth of 400 m, which is approximately 1/2 of the maximum 

resolved phase velocity wavelength. The Vs profiles in Figure 3-12c collectively feature a 

shallow layer about 25 m thick with velocities ranging from approximately 90 to 185 m/s, 

including a low-velocity zone, which is consistent with known near-surface layering. 

Below this, there is generally a thicker layer extending down to approximately 180 m with 

velocities varying around 500 m/s. At depths of 150-200 m, a stiff layer with velocities 

around 1500 m/s is commonly identified across the profiles. These depths, while variable, 

are consistent with the location of Salt Lake Formation rock surface, as discussed above. 

The Ds profiles in Figure 3-12d indicate that damping in the top 25 m is less than 

approximately 1%. Below this depth, there is a noticeable variability in the estimated Ds 

values between the ten best profiles. Nonetheless, Ds can be observed to increase to 

approximately 2% to 4% in the deeper soil deposits, which consist of alternating clay, sand, 

and gravel layers. At the top of the Salt Lake Formation rock surface, Ds collectively 

decreases again to less than 2% for all of the ten best profiles. The large variability in Ds 

can be attributed to the complex geology of the site, the significant standard deviation in 
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the experimental attenuation data, and the moderately low sensitivity of theoretical 

attenuation curves to Ds at greater depths (e.g., Badsar et al., 2012; Aimar et al., 2024b). 

 
Figure 3-12 Inversion results for the experimental Rayleigh-wave phase velocity and 

attenuation data collected at the Drainage Farm Site in Logan, UT, USA. The figure 

highlights the ten best-fitting models, with Panels (a) and (b) comparing the theoretical 

curves for phase velocity and attenuation, respectively, against the experimental data 

represented by mean values with ± one standard deviation error bars. Panels (c) and (d) 

display the Vs and Ds profiles, respectively, for the ten best theoretical models. 

 

Despite these limitations, the joint inversion procedure successfully provided in-

situ estimates of Ds at depths not reached by conventional site characterization techniques. 

This confirms the advantages of combining MASW and MAM data for the combined 

estimation of stiffness and dissipation parameters of soil deposits. 
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3.7 Conclusions 

A new methodology for estimating frequency-dependent attenuation coefficients 

through the analysis of ambient noise wavefield data recorded by 2D arrays of surface 

seismic sensors has been presented. The approach relies on the application of an 

attenuation-specific wavefield conversion and frequency-domain beamforming (FDBF). It 

has been termed the noise FDBF attenuation (NFDBFa) method. Importantly, using an 

FDBF approach, as opposed to a noise cross-correlation approach, enables the direction of 

ambient noise propagation to be determined for each noise window and frequency, and 

does not require an equipartitioned ambient noise wavefield. Furthermore, using an FDBF 

approach enables the phase velocity and attenuation data generated from active-source 

testing like MASW to be combined with phase velocity and attenuation data generated 

from ambient noise testing like MAM in order to span a broader frequency range. This 

enables the joint inversion of phase velocity and attenuation to be performed as a means to 

extract shear wave velocity and small-strain damping ratio profiles to significantly greater 

depths than previously possible using only active-source data.  

Numerical simulations were conducted to deepen our understanding of the 

proposed NFDBFa method. These simulations aimed to evaluate how the proximity of the 

MAM array to the noise source, the presence of incoherent noise, and the size of the array 

affect the estimates of phase attenuation. The results demonstrated that near-field effects 

are more pronounced and extend over greater distances for phase attenuation estimates in 

comparison to those considered for phase velocity estimation. Furthermore, it was 

discovered that larger array sizes consistently provided more accurate phase attenuation 

estimates across all considered frequencies, contrary to the conventional MAM design 

criteria used for phase velocity dispersion estimation, where larger arrays are typically 
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preferred for resolving lower frequencies while smaller arrays excel at resolving higher 

frequencies. This distinction emphasizes the need for unique design criteria when planning 

a MAM array for attenuation estimation.  

The proposed NFDBFa approach underwent validation through numerical wave 

propagation simulations, comparing predicted frequency-dependent phase attenuation 

values against theoretical phase attenuation curves for two synthetic models. Furthermore, 

validation of the developed technique was reinforced using MASW and MAM field data 

collected at the Drainage Farm Site in Logan, Utah, USA. The phase velocity and 

attenuation data extracted from the MASW and MAM recordings agreed well over a 

common bandwidth, while the ambient noise MAM data allowed the phase velocity and 

attenuation estimates to be extracted at significantly lower frequencies. The joint inversion 

of the experimental Rayleigh-wave phase velocity and phase attenuation data obtained 

from both MASW and MAM testing facilitated the estimation of shear wave velocity and 

small-strain damping ratio profiles to significant depths (400 m) at the Drainage Farm Site.  

As noted herein and in other studies like Aimar et al. (2024a), attenuation data are 

significantly more variable and more complex to understand (e.g., modal curves that 

repeatedly cross one another) than phase velocity data. As such, there is a need for future 

studies to better understand attenuation data and how to invert them to retrieve reliable in-

situ profiles of the small-strain damping ratio. Future efforts should involve additional 

numerical and experimental testing of diverse subsurface conditions, coupled with 

comparisons to damping estimates obtained from invasive tests. With the validity of this 

approach demonstrated on the vertical component, future research will also explore the 
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utilization of the three components of the noise wavefield to enhance attenuation estimates 

beyond the current method's capabilities. 
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CHAPTER 4 

AN OPEN-ACCESS DATA SET OF ACTIVE-SOURCE AND PASSIVE-

WAVEFIELD DAS AND NODAL STATION MEASUREMENTS AT THE 

NEWBERRY FLORIDA SITE 

 

Abstract 

This paper documents a comprehensive subsurface imaging experiment using stress 

waves in Newberry, Florida, at a site known for significant spatial variability, karstic voids, 

and underground anomalies. The experiment utilized advanced sensing technologies, 

including approximately two kilometers of distributed acoustic sensing (DAS) fiber optic 

cable, forming a dense 2D array of 1920 channels, and a 2D array of 144 three-component 

nodal stations, to sense active-source and passive-wavefield stress waves. The active-

source data were generated using a vibroseis shaker truck and impact sources, and it was 

simultaneously sensed by both the DAS and the nodal stations. The vibroseis truck was 

used to excite the ground in the three directions at 260 locations inside and outside the 

instrumented array, while the impact sources were used at 268 locations within the 

instrumented array. The passive-wavefield data recorded using the nodal stations 

comprised 48 hours of ambient noise collected over a period of four days in four twelve-

hour time blocks. Meanwhile, the passive wavefield data collected using DAS consisted of 

four hours of ambient noise recordings. This paper aims to provide a comprehensive 

overview of the testing site, experiment layout, the DAS and nodal station acquisition 

parameters, implemented processing steps, and potential use cases of the dataset. While 

potential use cases, such as surface wave testing, full waveform inversion, and ambient 
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noise tomography, are discussed relative to example data, the focus of this paper is on 

documenting this unique dataset rather than on processing the data for detecting anomalies 

or generating subsurface 2D/3D imaging results. The raw and processed data, along with 

detailed documentation of the experiment and Python tools to aid in visualizing the DAS 

dataset have been archived and made publicly available on DesignSafe under project PRJ-

3521.  

Keywords: DAS; SmartSolo; Nodal Stations; Vibroseis Shaker Truck; T-Rex; FWI; 

Imaging; Surface Wave; Inversion; Ambient Noise; Dataset 

4.1 Introduction 

Non-invasive imaging techniques are increasingly being used for geotechnical site 

characterization due to their advantages in time, cost, and spatial coverage when compared 

to traditional invasive methods. Geophysical imaging based on stress wave propagation 

continues to evolve, with new innovations emerging to meet increasingly complex 

demands, such as higher imaging resolution for elastic moduli, anomaly detection, and 

damping estimation. High-quality field data are essential for developing and testing these 

emerging techniques. This paper presents a comprehensive and open-access dataset of 

stress wave recordings gathered using some of the most advanced technologies available 

in geophysical-non-invasive subsurface imaging. A test site in Newberry, Florida was 

selected for this extensive subsurface imaging experiment due to its complex geology, 

which includes many known and unknown karstic voids of variable size and depth. A 2D 

layout of distributed acoustic sensing (DAS) fiber optic cable and a 2D array of three-

component (3C) geophone nodal stations covering an area approximately 155 m x 75 m 

were used at the site to record both active-source and passive-wavefield stress waves (refer 
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to Figure 4-1). The active sources used to initiate seismic wave propagation comprised both 

a broadband, three-dimensional, vibroseis shaker truck named T-Rex from the 

NHERI@UTexas experimental facility (Stokoe et al., 2020), and more-variable, narrow-

band, impact sources. In total, approximately 2 km of DAS fiber optic cable and 144, 3C 

nodal stations were used to record wavefields from more than 367 shot locations. This 

unique and publicly accessible dataset is available on DesignSafe (Rathje et al., 2017; 

https://www.designsafe-ci.org/) under project PRJ-3521, “Active-source and Passive-

wavefield DAS and Nodal Station Measurements at the Newberry Florida Site”. The 

ensuing paragraphs offer a concise overview of the sensing technologies employed in this 

experiment and the potential value of the dataset documented herein. 

The first sensing technology used in this experiment was DAS, which is a rapidly 

evolving technique for transforming fiber-optic cables into a distributed array of ground 

motion sensors (Cox et al., 2012; Yu et al., 2019). It is increasingly being used to sense 

active and passive stress waves for geophysical imaging and seismic monitoring of the near 

surface (e.g., Dou et al., 2017; Hubbard et al., 2022; Vantassel et al., 2022). DAS measures 

dynamic strain by using an interrogator unit (IU) to fire a series of laser pulses (probe 

pulses) through a fiber optic cable. The interaction between a probe pulse and the fiber's 

inhomogeneities returns a backscattered signal, mainly composed of Rayleigh backscatter, 

to the launching end. The relative phase of the Rayleigh backscattered light is used to 

determine changes in length between scattering regions along the cable. This determination 

is repeated for each resolvable point along the fiber, resulting in a measure of the dynamic 

strain as a function of time and location (Hartog, 2018). Studies by Daley et al. (2016), 

Hubbard et al. (2022), and Vantassel et al. (2022) have demonstrated that DAS 

https://www.designsafe-ci.org/
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measurements can yield very similar waveforms and processed data (e.g., surface wave 

dispersion data) as geophones when proper care is taken. Furthermore, DAS can provide 

unprecedented spatial resolutions (on the order of meters) and length scales (on the order 

of tens of kilometers), surpassing traditional sensing technologies (Soga & Luo, 2018). For 

instance, DAS measurements with the ~2-km long fiber optic cable used in the present 

study resulted in 1920 channels of vibration data sensed at a spatial resolution of 1.02 m, 

which is equivalent to deploying 1920 unidirectional geophones. In recent years, several 

studies have been conducted to evaluate the potential of using DAS for non-invasive near-

surface imaging. Most of these studies utilized either a 1D (i.e., line) DAS cable (e.g., 

Hubbard et al., 2022; Vantassel et al., 2022), a 2D DAS cable configuration and an impact 

source (e.g., Castongia et al., 2017), or a 2D DAS cable configuration and ambient noise 

(e.g., Dou et al., 2017). Lancelle et al. (2014) employed a 2D DAS fiber optic cable 

configuration along with shear and vertical vibrational sources at the Garner Valley testing 

site in California, United States (US). However, the cable runs were sparsely spaced and 

the sources were utilized at a limited number of locations. Obermann et al. (2022) 

conducted a seismic study in the Hengill geothermal area in southwest Iceland using a 

network of 3C nodal stations and two DAS fiber optic cables, along with a vibroseis shaker. 

Their research focused on imaging the top four kilometers of the crust, and thus, their nodal 

stations were spaced out over several kilometers in each direction, with interstation 

distances varying from tens to hundreds of meters. Furthermore, their DAS cables had a 

nearly linear configuration, and the vibroseis source only generated vertical vibrations. In 

contrast, the experiment documented herein focuses on the near surface depths relevant to 

geotechnical engineering (less than ~ 50 m). The study stands out for its use of a densely 
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spaced 2D configuration of DAS cable to capture both passive- and active-wavefields 

generated by vibroseis shaking in three directions. These wavefields were simultaneously 

recorded by a dense 2D array of 3C geophone nodal stations, allowing for a detailed 

comparison of DAS and nodal station measurements, further setting this dataset apart from 

prior work. 

The second sensing technology deployed at the test site was 3C nodal stations, 

which allow for the concurrent measurement of ground shaking in all three directions. This 

complements the unidirectional sensitivity of the DAS system, thereby providing a more 

comprehensive view of the seismic wavefield, albeit at approximately 1/5 the spatial 

resolution of the DAS measurements across the site. The three perpendicular geophones 

(two horizontal and one vertical) exhibit sensitivity to different types of waves. For 

instance, Rayleigh and compression waves are best identified on the vertical and horizontal 

inline components, while the horizontal crossline component is better suited to detect Love 

waves (Foti et al., 2018; Vantassel, Cox, et al., 2022; Vantassel & Cox, 2022). Since 

different wave types carry information about different mechanical properties of the 

subsurface (Sheriff & Geldart, 1995), analyzing the data collected by 3C nodal stations can 

provide valuable insights into the 3D mechanical properties of the site. The versatility of 

the 3C nodal station measurements open avenues for researchers to use the dataset who are 

working on techniques that leverage either the vertical, any of the horizontal, or any 

combination of the three directions of ground shaking measurements (e.g., Cheng et al., 

2020, 2021; Cox et al., 2020; Fathi et al., 2016; Kristekova et al., 2020; Nakamura, 1989; 

Pan et al., 2016; Smith et al., 2019; Wang et al., 2019; Wathelet et al., 2018).  
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The karstic voids at the testing site add an intriguing dimension to this experiment. 

Several non-invasive seismic techniques have been developed to detect voids and other 

underground anomalies (e.g., Belfer et al., 1998; Branham & Steeples, 1988; Cook, 1965; 

Kolesnikov & Fedin, 2018; Kristekova et al., 2020; Pernod P. and Piwakowski, 1989; 

Sloan et al., 2012; Smith et al., 2019; Wang et al., 2019). However, detecting anomalies 

using real field data remains challenging (Grandjean & Leparoux, 2004; Sloan et al., 2010; 

Smith et al., 2019). For example, Smith et al. (2019) and Wang et al. (2019) conducted an 

experiment to image a known 0.9 m x 1.5 m x 96 m tunnel situated ten meters below the 

surface at Yuma Proving Ground, Arizona, US. The experiment utilized a dense 2D array 

comprising 720 vertical and 720 horizontal geophones and an accelerated weight-drop 

source. They used both 2D and 3D full waveform inversion (FWI) to image the tunnel. 

Smith et al. (2019) highlighted the advantages of using various source orientations with 

multicomponent seismic sensors when imaging for voids. Their research revealed that 

different combinations of source orientations with receiver components produced varying 

resolutions of the tunnel. The Smith et al. (2019) and Wang et al. (2019) studies also 

showed that 2D FWI was effective in imaging the known location of the tunnel, because 

the experiment was designed specifically for that purpose. However, for imaging unknown 

void locations with complex shapes, 3D FWI would be more suitable. Smith et al. (2019) 

noted that the resolution of the tunnel was limited by the lack of higher-frequency data 

used in the inversion. We anticipate that the present dataset, featuring a powerful, triaxial 

vibroseis shaker and 3C sensors, in conjunction with the dense DAS array, will serve as a 

valuable resource for researchers seeking to explore novel approaches for void imaging. 

4.2 Site Overview 
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The test site is a dry retention pond located in Newberry, Florida (29°39'0.39" N, 

82°35'51.20" W) along State Road 26 (refer to Figure 4-1). Sinkholes are common in this 

area and generally an immense problem in parts of Florida due to karstic geology. The 

Newberry retention pond site has undergone thorough investigations over the years, 

utilizing both invasive and non-invasive methods. Findings from these previous studies 

indicate that the subsurface is comprised of medium-dense fine sand and silt that range in 

depth from two to ten meters overlying highly variable limestone (Tran et al., 2013; Tran 

& Hiltunen, 2011). The site also contains sinkholes of different sizes and depths, some of 

which have been repaired. The varied stiffness and depth of the limestone layer, along with 

the presence of surficial and underground anomalies, make this site a prime location for 

non-invasive subsurface imaging research. Tran and Hiltunen (2011) conducted ten cone 

penetration tests (CPT), eight geotechnical borings with standard penetration tests (SPT), 

and 12 consecutive seismic refraction tests using a linear array of 31, 4.5-Hz vertical 

geophones and a sledgehammer source. The first arrival times from the refraction tests 

were inverted using simulated annealing to develop 2D compression wave velocity (Vp) 

profiles of the site. However, no voids were identified via seismic refraction testing by 

Tran and Hiltunen (2011). Tran et al. (2013) used a linear array of 24, 4.5-Hz vertical 

geophones and a sledgehammer source to collect seismic data at ten different locations at 

the site. The seismic data were then inverted using 2D FWI, which identified an 

underground anomaly that was later verified to be a void through an SPT sounding. 

Nonetheless, they observed that the predicted depth of the void was greater than its actual 

depth. They attributed this discrepancy to the difference between the measured wavefield, 

which is affected by the three-dimensional variations in the subsurface, and the assumed 
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plane strain condition used in their 2D FWI. Tran et al. (2020) expanded on the FWI studies 

at the site by utilizing the one-dimensional, small vibroseis shaker truck named Thumper 

from the NHERI@UTexas experimental facility (Stokoe et al., 2020) to excite the ground 

at 65 locations within and around a 2D grid of 48, 4.5-Hz vertical geophones arranged in a 

4 x 12 configuration. The source and receiver 2D grids were uniform, with 3-m spacing, 

covering a total area of 12 m x 36 m. Using the collected data and 3D FWI analyses, Tran 

et al. (2020) created a 3D subsurface model below the sensor grid, identifying a low 

velocity anomaly and a void that was confirmed through an SPT sounding. 
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Figure 4-1 Overhead-view of the Newberry test site captured from a drone, showing the 

trenches used for fiber optic cable installation, as indicated by white, linear markings on 

the ground surface, and the 3C geophone nodal station locations, indicated by blue circle 

symbols. Additionally, the figure highlights one of the T-Rex shot locations, one of the 

voids present inside of the array, and the instrumentation trailer outside of the array. 

Despite being used for a number of previous subsurface imaging studies, the 

authors felt there was an opportunity to collect a unique subsurface imaging dataset at the 

Newberry site that would improve upon previous studies by: (a) covering a larger spatial 

area, (b) using DAS to enable much more dense spatial sampling, (c) using 3C nodal 

stations to enable multi-component processing, (d) using a dense grid of more numerous 

shot locations, and (e) incorporating 3C shaking capabilities from a broadband and 

powerful vibroseis shaker truck. It is hoped that this will enable more advanced processing 

techniques to be applied, both in the present and in the future, with the goal of achieving 

deeper and higher resolution imaging to resolve subsurface anomalies. 
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4.3 Overview of the Dataset 

The subsurface imaging dataset documented in this paper was collected over the 

course of eight days, beginning Monday, May 9th, 2022, and ending Monday, May 16th, 

2022. The dataset consists of both active-source and passive-wavefield stress wave 

recordings that were sensed using 2D arrays of DAS fiber optic cable and 3C nodal stations. 

Approximately two kilometers of continuous DAS fiber optic cable was laid out in the 

zigzag pattern shown schematically by a black line in Figure 4-2, which is also visible 

through the white markings from the fiber optic cable trenches shown in the drone image 

presented in Figure 4-1. The fiber optic cable was interrogated using an OptaSense ODH 

4+ interrogator unit (IU) configured to have a 1.02-m channel separation, resulting in a 

total of 1920 channels. A 2D array of 144, 3C geophone nodal stations was also deployed 

on site, as indicated by the blue-solid circles in Figures 4-1 and 4-2. These stations were 

arranged in a 12 x 12 grid, evenly spaced every five and ten meters in the X (west-east) 

and Y (south-north) directions, respectively. The active-source data were generated from 

260 shot locations inside and outside of the instrumented area where T-Rex was used to 

shake the ground in all three directions, and 286 shot locations inside the instrumented area 

where impact sources were used to strike the ground vertically (refer to Figure 4-2). The 

passive wavefield data consisted of approximately four hours of ambient noise recordings 

using DAS, and approximately 48 hours of ambient noise recordings using the nodal 

stations. The dataset is permanently archived and publicly available on DesignSafe (Rathje 

et al., 2017; https://www.designsafe-ci.org/) under a project titled “Active-source and 

Passive-wavefield DAS and Nodal Station Measurements at the Newberry Florida Site”. 

The project houses three parent folders: a "Raw data" folder, which contains both the DAS 

https://www.designsafe-ci.org/
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and the nodal station data in their original, as-collected form; a "Processed data" folder, 

which organizes the data in a user-friendly format after undergoing preprocessing; and a 

"Supporting documents" folder, which includes complete and thorough documentation of 

the experiment. The experimental setup and dataset organization are explained in detail in 

the following sections.   

4.4 Experiment layout 

The experiment was laid out on a 2D survey grid, as illustrated in Figure 4-2. The 

grid consisted of 25 horizontal lines pointing approximately east (bearing 89°) and 16 

vertical lines pointing approximately north (bearing 359°). The horizontal lines, except for 

the lowermost and uppermost, were uniformly spaced at five meters and were labeled with 

the letters A through W in order from south to north, respectively. The lowermost line, Z, 

was 15 m south of line A, while the uppermost line, ZZ, was 30 m north of line W. The 

vertical lines were spaced five meters apart and named from west to east, 101, 102, 1, 2, 3, 

… through 12, 103, and 104, respectively. The grid intersection points will be referenced 

first by the letter and then by the number representing the intersecting horizontal and 

vertical lines, respectively (e.g., A101). Although the global latitude and longitude 

coordinates of the grid points were surveyed and are included in the electronic dataset, this 

paper will utilize a local coordinate system for ease of reference, with the origin at point 

A101 (local coordinate 0,0), the positive X direction pointing eastward, and the positive Y 

direction pointing northward.  

The site is relatively flat and the grass was generally quite short at the time of 

testing. The lines and points of the survey grid, which mark the fiber optic cable and nodal 
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station locations, as detailed in subsequent sections, were surveyed into position using two 

total stations and several 100-m tape measures. The first total station was deployed at point 

A102 (coordinate 5,0) and was oriented in the positive direction of the Y axis (refer to 

Figure 4-2). With the bearing set, the intersection points between all the horizontal lines 

(e.g., B, C, D, etc.) with line 102 were established. The total station was then rotated 90° 

towards the east to align with the positive direction of the X axis. With this bearing set, the 

intersection points between all the vertical lines (e.g., 1, 2, 3, etc.) with line A were 

established. At that point, the second total station was deployed at point A103 (coordinate 

70,0) to survey the intersection points between all the horizontal lines (e.g., B, C, D, etc.) 

with line 103. This process was repeated for all lines of the grid, with forward- and back-

sights established whenever a total station was relocated to maintain orthogonality. 

Projecting the experiment layout onto the test site was completed in the first day, although 

minor surveying was performed throughout the experiment to ensure the proper placement 

of the fiber optic cable, nodal stations, shots, etc. 

4.5 Distributed Acoustic Sensing (DAS) 

Selecting the right fiber optic cable is crucial for good DAS measurements, since 

the cable functions as both the strain sensing element and the means of transmitting optical 

signals (Hartog, 2018). In this experiment, a fiber optic tactical cable (AFL 

X3004955180H-RD) consisting of four tight buffered fibers coated in a layer of aramid 

yarn and enclosed by a polyurethane jacket was used. Studies by Hubbard et al. (2022) and 

Vantassel et al. (2022) confirm that this cable offers good deformation coupling between 

the internal optical fiber and the ground when buried with soil compacted around/over it. 

The length of cable installed at the site was approximately 2 km (exactly 1958.4 m), with 
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one end connected to the IU at the instrumentation trailer located in the southeast corner of 

the testing site (refer to Figure 4-1), and the other end appropriately terminated at the 

northwest corner of the site to reduce end reflections. The cable was buried in a shallow 

trench to ensure optimal coupling between the ground and the cable. To facilitate precise 

trenching along the grid lines, a total station was positioned at the endpoint of each cable 

route and a tape measure was pulled tight to mark the trenching path. A second tape 

measure was then horizontally offset from the first by an amount equal to the distance 

between the trencher blade and its tire, as illustrated in Figure 4-3a. The trencher was 

guided along the surveyed line to create a trench that was approximately 20-cm wide and 

10- to 15-cm deep, ensuring its straightness. The cable was then manually placed at the 

bottom of the trench by rolling the cable spool over it (Figure 4-3b), with slight tension 

applied to minimize slack. The corners of the trench were rounded to a radius of 

approximately 20 cm (Figure 4-3c), which is greater than the AFL cable’s allowable bend 

radius. Following cable installation, the trench was backfilled with native soil, or with clean 

sand when the native soil was too hard and clotted to allow for good coupling (Figure 4-3d 

and 3e). The backfilled soil was then manually compacted over the cable to ensure good 

coupling with the native ground (Figure 4-3f). All cable corners were left exposed until tap 

tests could be performed to index the DAS cable (i.e., map the DAS channel numbers to 

their physical locations). The tap tests involved lightly tapping on the fiber optic cable at 

all corners and other important locations (such as the start and end of the cable) and noting 

the DAS channels that responded with significant energy. Based on the tap tests, the first 

and last channels on the cable with usable data (i.e., the first and last buried channels) are 

channels 31 and 1905, respectively, as shown in Figure 4-2. A tap test can only locate the 
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measurement point with an accuracy of the gauge length of the DAS system, meaning it 

has a +/- one-half gauge length margin of error. As noted below with respect to DAS data 

acquisition, the gauge length used throughout the study was 2.04 m, so the absolute spatial 

location of each channel is accurate to within about 1 m. However, the relative 

location/spacing between channels is exactly equal to one-half of the gauge length, or 1.02 

m. The corners were backfilled and compacted to ensure proper coupling between the cable 

and the surrounding soil. Trenching started on Monday, May 9th, from point Z104 and 

ended at point J102. On Tuesday, May 10th, trenching was completed, and the cable 

installation began from Z104, reaching J07 by the end of the day. The cable installation 

was completed on Wednesday, May 11th. 
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Figure 4-2 Schematic layout of the test site showing locations of the: 3C geophone nodal 

stations, fiber optic cable, T-Rex and impact shots, and voids that are visible from the 

ground surface. The layout is comprehensive, including all of the line numbers/letters and 

dimensions used to arrange the equipment. 
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Figure 4-3 Pictures illustrating the fiber optic cable installation procedure, starting with: 

(a) trenching the cable route, (b) laying the cable by rolling it off the cable spool along the 

trench, (c) rounding the cable at the corners, (d) and (e) filling the trench with native soil 

or clean sand as required, and finally (f) compacting the backfilled soil to ensure proper 

coupling between the cable and the ground.  

4.6 Nodal stations 

4.6.1 Instrumentation 

The nodal stations used in this experiment were SmartSolo IGU-16HR 3C. They 

have a compact, all-in-one modular design, with a GPS-synced, 32-bit digitizer (accurate 

to ±10 microseconds), a maximum input signal of ±2.5 Volts at 0 dB gain, and a storage 

capacity of 64 GB. Each station is equipped with three, orthogonal, 5-Hz geophones and a 

self-contained power supply with a 30-day battery life. The geophones are wired such that 

a tap from the north, east, or top causes an upward voltage departure in the geophone 

oriented along that axis (refer to Figure 4-4d). Four conical spikes were mounted on each 

nodal station to ensure good coupling with the ground. These IGU-16HR 3C stations have 
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a small footprint of 95 mm x 103 mm, a height of 30 cm, and weigh around 2.4 kg with 

spikes attached. The 144 nodal stations used in this experiment were sourced from two 

locations: 88 stations from the Earthquake Engineering and Subsurface Imaging Lab at 

Utah State University (labeled USU01 through USU90, excluding stations USU07 and 

USU42), and 56 stations from the NHERI@UTexas experimental facility (labeled UT01 

through UT56). The stations from both sources were independently labeled in ascending 

order based on their serial numbers. 

 

Figure 4-4 Picture illustrating the installation of nodal stations next to the fiber optic calbe. 

In panels (a) and (b), excavation is performed with either a post-hole digger or a gas-

powered auger, respectively, while the fiber optic cable is protected with a shovel. Panel 

(c) depicts a completed installation, with the station securely in place and its top exposed. 

Panel (d) describes the voltage polarity of the three geophones in each nodal station.  
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4.6.2 Installation 

The 144, 3C geophone nodal stations were arranged in a 12 x 12 grid configuration 

with ten- and five-meter spacings in the south-north and west-east directions, respectively, 

as shown in Figures 4-1 and 4-2. Starting with the USU stations, the stations were placed 

in order from south to north along line 1 (USU01 to USU13), then along line 2 (USU14 to 

USU25), and subsequently all the way to line 12. Remember, stations USU07 and USU42 

were not used in this experiment. Thus, the UT stations started at I08 and followed the 

same pattern until the last station was installed at W12. The stations were deployed right 

next to the fiber optic cable in their respective locations. Depending on the stiffness of the 

ground, either a gas-powered earth auger or a manual post-hole digger was used to excavate 

a hole approximately 20-cm in diameter and 25-cm deep for the stations. The fiber optic 

cable was protected from the hole digging operations using a shovel, as shown in Figures 

4-4a and 4-4b. The orientation of the stations was such that the north arrow pointed towards 

the +Y direction, which was orthogonal to the fiber optic cable, conveniently aligning with 

true north (within 1° tolerance). This ensured that the east-west geophone/channel in the 

three-component nodal stations was properly aligned with the fiber optic cable. The 

stations were then leveled and the holes backfilled using either excavated soil or clean sand 

when needed, leaving only the station's top exposed, as shown in Figure 4-4c. Following 

deployment of all stations, the stations were activated for continuous recording. This 

process involved booting up each station using a magnet switch, confirming successful 

activation by observing a flashing green LED state indicator, conducting a quality scan 

using a designated handheld device, and surveying its final location. Deploying and 

activating the stations started on Wednesday, May 11th, and ended on Thursday, May 12th.   
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4.7 Active-source wavefield generation 

On Friday, May 13th, following installation of the fiber optic cable and all 

SmartSolo nodal stations, active-source wavefield recording commenced. Two source 

types were used for active wavefield generation: a highly controlled, powerful, broadband 

vibroseis source, and more variable, narrow-band, impact sources. The vibroseis source 

used in this experiment was the NHERI@UTexas, large mobile shaker truck named T-Rex 

(Figure 4-5a). T-Rex is a 29-ton, tri-axial vibroseis truck capable of shaking its baseplate 

in the vertical, longitudinal, and transverse directions (Stokoe et al., 2020). It has a 

maximum force output of about 267 kN in the vertical direction and 134 kN in each 

horizontal direction. In this experiment, T-Rex was used to generate a 12-second-long chirp 

with a linear frequency sweep from 5 to 80 Hz. In addition to GPS time and coordinates 

for each shot location, the T-Rex electronics recorded the baseplate and mass accelerations 

and the ground force with 1 kHz sampling rate for each shot. Herein, a “shot” refers to an 

instance where a source was used to excite the ground at a given location. In total, T-Rex 

vibrated at 260 distinct locations; 81 outside and 179 inside the instrumented area, as 

illustrated in Figure 4-2. Shots outside (SO) of the instrumented area were distributed 

among 30 locations to the south (S), 48 locations to the west (W), and three locations to 

the north (N). These locations will be referred to as SOS, SOW, and SON, respectively. 

Note that the three SON locations are not shown in Figure 4-2 due to their significant 

offsets from the main instrumentation grid. The location numbers for each shot location 

increase in order with the positive X direction for the SOS and SON locations, and with 

the positive Y direction for the SOW locations. Shots inside (SI) of the instrumented area 

are referred to by SI and the horizontal line directly south of them. For instance, the first 
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line of shot locations furthest to the south and inside the instrumented area (refer to Figure 

4-2) is named SIA. Similar to the outside shot locations, the inside shot location numbers 

along any given line increase with the positive X direction. For example, to aid the reader 

with orientation, shot locations SOW01, SOS01, SIL07, SIL12, and others are labelled in 

Figure 4-2. While the inside shot locations are organized on a regular 5-m x 5-m grid, T-

Rex could not be used at all shot locations inside the instrumented area, either because of 

restricted maneuverability around trees or the presence of voids nearby that might collapse 

due to the weight of the truck. Thus, the SI locations illustrated in Figure 4-2 are clearly 

denoted as those where both T-Rex and impact sources were used and those where only 

impact sources were used (i.e., those where T-Rex could not be used). At each shot location 

where T-Rex was used, all three shaking modes were utilized: P-mode for vertical shaking, 

SL-mode for shear longitudinal shaking (i.e., in-line with the truck), and ST-mode for shear 

transverse shaking (i.e., cross-line to the truck). However, these three modes of shaking 

were not excited consecutively at each location. Instead, for each line of shots (e.g., SOS), 

a vibration mode was set (e.g., P-mode) and shots were performed along the entire line. 

Then, the shaking mode was switched (e.g., to SL-mode) and shot locations along the line 

were revisited using the updated mode. This was found to be more efficient than switching 

shaking modes at each shot location. Due to the significant number of shot locations and 

shaking modes used, and given the powerful nature of the source, no shot stacking was 

performed (i.e., only a single shot was collected for a given shaking mode at each shot 

location).   
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Figure 4-5 Pictures illustrating the various sources utilized in the experiment. Panel (a) 

shows the large, tri-axial vibroseis shaker truck, T-Rex, from the NHERI@UTexas 

experimental facility, panel (b) shows the PEG-40kg impact source mounted on a Ford F-

350 pickup truck, and panel (c) shows an eight-pound sledgehammer. 

The impact sources consisted of a 40-kg propelled energy generator (PEG-40kg), 

also known as an accelerated weight drop, manufactured by R.T. Clark Companies (Figure 

4-5b), and an eight-pound sledgehammer (Figure 4-5c). The PEG-40kg is a portable source 

that generates seismic energy when a hammer mass is propelled downward by an elastomer 

band onto an impact plate. The hammer drop mass and height are 40 kg and ~40 cm, 

respectively, generally producing an impact frequency range of 10-250 Hz. There are two 

modes of operation for the PEG-40kg: single-cycle and continuous-cycle. For this 

experiment, the single-cycle mode was used. To ease mobility, the PEG-40kg was mounted 

on a Ford F-350 pickup truck, as shown in Figure 4-5b. The impact sources were only used 

to excite the ground inside the instrumented area, as shown in Figure 4-2. Since the F-350 



135 

pickup truck was significantly lighter and smaller than T-Rex, it was able to reach more 

shot locations. In the rare cases when the F-350 was unable to reach a shot location, an 

eight-pound sledgehammer was utilized instead of the PEG-40kg, ensuring that all inside 

shot locations in the 5-m x 5-m grid were covered by one of the impact sources.   

4.8 Passive-wavefield monitoring 

The DAS passive-wavefield data consisted of approximately four hours of ambient 

noise recordings on May 15th between 16:58 to 21:04 Universal Time Coordinated (UTC). 

During this period, there were two instances of rainfall which took place from 17:20 to 

17:35 UTC and 20:54 to 20:56 UTC. Additionally, there was notable interference (i.e., 

noise) from an electric power generator on channels 30 to 66 and 1720 to 1742 during this 

time. 

Every day from May 12th to May 16th the nodal stations were left to record ambient 

noise between 23:00 UTC, when work at the site was completed, to 11:00 UTC, when work 

resumed the next day. This resulted in a total of 48 hours of ambient noise data distributed 

over four, 12-hour time blocks gathered over a period of four days.  

4.9 Data acquisition 

4.9.1 DAS 

An OptaSense ODH4+ IU was used in this experiment. The IU was borrowed from 

the NHERI@UTexas experimental facility (Stokoe et al., 2020) and was configured with 

a 2.04 m gauge length and 1.02 m channel separation, the minimum allowed by the 

OptaSense ODH4+. The gauge length refers to the average straight-line distance between 

the consecutive origins of the Rayleigh backscatter. Hence, the measurements of vibrations 
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at each sampling location (channel separation) represent the average over the 2.04-m gauge 

length. The IU configuration and the cable length resulted in a total of 1920 DAS channels. 

In DAS it is desirable to set the laser pulse repetition (ping rate) as rapid as possible for a 

given cable length to increase signal-to-noise ratio and to mitigate phase demodulation 

errors. Phase demodulation errors arise when the strain change rate exceeds the DAS 

system's capability to detect, similar to how amplitudes that are too high for traditional 

seismographs result in clipping (Hubbard et al., 2022). This sometimes happens when a 

large source is activated near the fiber optic cable. To mitigate such errors, the ping rate 

can be set much higher than the desired time resolution/sampling rate, and the signal can 

be subsequently decimated to lower sampling rates relevant to the study being conducted 

in order to save memory space. On Friday, May 13th, during the first day of active wavefield 

data acquisition, the OptaSense ODH4+ IU was configured with a (ping rate) of 50 kHz, 

and the DAS data were decimated to 10 kHz in real-time. On subsequent days, the ping 

rate was reduced to 20 kHz, and the data were decimated to 1 kHz. This lowering of the 

ping rate was necessitated by unanticipated problems with the laser pulse balancing on the 

ODH4+. Thus, the data collected on Friday, May 13th are of slightly higher quality because 

a 50 kHz ping rate was used. This should not be interpreted to mean that the data collected 

on other days are of poor quality due to it being acquired with a 20 kHz ping rate. Indeed, 

a 20 kHz ping rate is still more than adequate for interrogating a 2-km long cable. It's 

noteworthy that, on Friday, May 13th, T-Rex executed all shots along the SOS and SOW 

lines.  

The OptaSense ODH4+ IU outputs the raw data in consecutive one-minute H5 files 

that encompass all the DAS channels. Each channel contains the digitized output from the 
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light phase difference over a gauge length, presented in radians relative to the average 

wavelength of the source light. Specifically, radians scaled by a factor of 2π/216. H5 files 

utilize the hierarchical data format (HDF) to store vast amounts of data in the form of 

multidimensional arrays. At the end of the experiment, 538 GB of active and passive 

wavefield raw DAS data were collected and organized into three parent folders according 

to the source/excitation type: T-Rex, Impact sources, and Ambient noise.  

4.9.2 Nodal stations 

For this experiment, the SmartSolo nodal stations were configured with a sampling 

rate of 250 Hz. Every SmartSolo nodal station generated a folder, titled after its serial 

number, that housed three miniSEED files with amplitude units of counts, each file being 

associated with one of the station's three channels. These files contained the recording of 

the full duration of the experiment, from activation to deactivation of the stations. At the 

end of the experiment, the SmartSolo nodal stations had collected 48.6 GB of active-source 

and passive-wavefield data. The MiniSEED format, a commonly used subset of the 

Standard for the Exchange of Earthquake Data (SEED) format, was selected to facilitate 

data sharing and analysis. This format is widely recognized in the geophysical community, 

and there are open-source libraries like obspy and libmseed that provide support for reading 

and converting MiniSEED files to other formats. Thus, the raw data provided in the dataset 

comprises 144 folders, each corresponding to one of the 144 deployed nodal stations in the 

experiment. 

4.10 Supporting metadata documents 
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The field handwritten notes were carefully reviewed, converted to digital format, 

and synthesized with other electronic notes and files to describe the dataset. All of this 

metadata have been organized in the “Supporting documents” folder. The information on 

the SmartSolo nodal stations, including serial numbers, station names, location codes, and 

both local and global coordinates, can be found in the "Nodal stations information" Excel 

file provided with the archived electronic dataset. The frequency instrument response 

curves for the vertical and horizontal geophones in the nodal stations are provided in the 

"DT-Solo5Hz(HP305) Frequency Response" Excel file. The "Cable information" Excel 

file contains the DAS channel indices, local and global coordinates for each corner along 

the fiber optic cable, as well as the cable's start and end points. The "T-Rex and impact 

sources information" Excel file provides information on all shots, whether from T-Rex or 

impact sources, including local and global coordinates for each shot, the shot location code, 

and the shot start time. Local and global coordinates for all the observed surface voids and 

trees in the vicinity of the instrumented area are provided in the “Voids and trees locations” 

Excel file. While these documents are best viewed using Excel due to the presence of 

illustrative images and multiple tabs for organizing information, alternative open-source 

CSV files are also provided, albeit without the images and advanced organization of the 

Excel files. A comprehensive and interactive PDF layout schematic (similar to what is 

shown in Figure 4-2, but with more information) has also been added to the supporting 

documents to enhance visual understanding of the experimental configuration. This multi-

layered layout includes a representation of the fiber optic cable, nodal stations, and shot 

locations, with the assigned DAS channel for each cable corner and the experiment 

dimensions, voids, and trees locations all clearly marked.  
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4.11 Processed data 

The electronic dataset publicly accessible through DesignSafe and documented 

herein contains both the raw and processed data from the DAS and SmartSolo sensing 

systems. While the raw data may be of interest to some readers, parsing and interpreting it 

in preparation for subsequent analyses can be a time-consuming task. Thus, we anticipate 

that the processed data will be of greater interest to most readers. Nonetheless, this paper 

and the accompanying electronic dataset provide all of the necessary information to 

completely re-interpret the raw data if desired. Figure 4-6 depicts the folder structure of the 

"Processed data" folder, showcasing two parent folders, "DAS" and "SmartSolo." Within 

these parent folders, the data are organized, based on the specific type of wavefield source, 

into three folders, namely: "T-Rex," "Impact sources," and "Ambient noise." Figure 4-6 

also indicates the number of subfolders and files in each folder, along with the naming 

convention used for the files. The following subsections outline the processing steps used 

for the DAS and the SmartSolo nodal stations data and provide further details about the 

files stored in each folder and their naming convention. 

4.11.1 DAS 

As mentioned above, the DAS parent folder contains folders that correspond to data 

collected from T-Rex, Impact sources, and Ambient noise. For each T-Rex shot, the 

following processing steps were followed: (1) The shot start time was retrieved from the 

T-Rex electronics trigger file, where the GPS times for all shots were recorded. The times 

for the T-Rex shots automatically included a one-second pre-trigger delay. As noted above, 

these times are also provided in the "T-Rex and impact sources information" Excel file. (2) 

A 15-second window encompassing the shot was extracted from the one-minute-long DAS 
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H5 files, which included a one-second pre-trigger delay, 12 seconds of T-Rex shaking, and 

two seconds of listen time post-T-Rex shaking to capture the waves reaching the array 

extremities. The 15-second windows were checked for dropped samples due to IU 

digitization and data storage errors in any of the 1920 DAS channels. Two of the 780 T-

Rex shots had dropped samples on one or more channels. Specifically, Shots Z_SID11 and 

Z_SIF07 failed this check and were excluded from the processed dataset. (3) The raw data 

were scaled by 2π/216 to convert it into phase change measurements in radians. (4) A 3-Hz 

high-pass filter was applied to remove low-frequency artifacts from laser drift and static 

strains caused by shaking close to the fiber optic cable, as recommended by Hubbard et al. 

(2022). (5) The DAS waveforms from the SOS and SOW shots were decimated from 10 

kHz to 1 kHz to align with the rest of the collected data. (6) Phase data were converted to 

strain using Equation 1 (Hubbard et al. 2022): 

𝜀𝑥𝑥 =
𝜆 𝑑ɸ

4𝜋𝑛g𝜉
                                                                                                                        (1) 

where λ is the average laser wavelength of the DAS system in a vacuum, equal to 1550 

nm; dϕ is the phase change measured by the DAS in units of radians; n is the group 

refractive index of the sensing fiber, approximately 1.47; ξ is the photoelastic scaling factor 

for longitudinal strain in an isotropic medium, equal to 0.78; g is the gauge length, 

approximately 2.04 m; and ε is the normal strain per single gauge length. (7) For each shot, 

the processed DAS data, along with the T-Rex pilot signal, base plate and mass 

accelerations, ground force in engineering units, and other shot-related information, such 

as local and global coordinates, shot time, and sampling rate, were organized into an 

"event" object and saved in an H5 file. The event object was created using a Python class, 
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designed to efficiently organize the data collected during this experiment. To ensure that 

researchers with minimal programming proficiency can utilize the dataset, we have 

included Python tools in the Supporting documents folder for effortless querying and 

visualization of the H5 files (i.e., event objects). Each H5 file was given a unique label 

composed of T-Rex shaking direction, shot location, and shot timestamp. For example, file 

Z_SOS01_20220513154814.50 contains the data obtained when T-Rex was shaking 

vertically (i.e., in the P-mode Z-direction) at shot location SOS01 on 13 May 2022 at 

15:48:14.5 UTC. The H5 files were organized in the T-Rex folder by shot location into two 

folders, “Inside shots” and “Outside shots”, as illustrated in Figure 4-6. The Inside shots 

folder contains 535 H5 files, with a file for each T-Rex shaking direction for each of the 

179-T-Rex inside shot locations (two shots were discarded as mentioned above). The 

Outside shots folder contains 243 H5 files, with a file for each T-Rex shaking direction for 

each of the 81 shot locations outside the array (refer to Figure 4-2). (8) All the DAS 

channels for each shot were cross-correlated with the T-Rex pilot signal and stored in H5 

files, categorized into two folders: "Inside shots" and "Outside shots" based on the shot 

location. These folders contain the same number of files as the uncorrelated shots folders 

noted above. Additionally, the naming convention for the cross-correlated H5 files follow 

the same format as the uncorrelated shots, but with "CC" added to indicate "cross-

correlated" (refer to Figure 4-6). For example, for the file described above, the cross-

correlated data are stored in a file named Z_SOS01_CC_20220513154814.50, where CC 

distinguishes it from the uncorrelated records. 

The same processing steps were followed for the impact sources, with a few notable 

exceptions. The shot start times were extracted from the field datasheet and verified 
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through inspection of the closest nodal station waveforms. The impact arrival time at the 

nearest station was manually selected as the first instance of energy surpassing the noise 

floor. These times are provided in the “T-Rex and impact sources information” Excel file. 

The impact time was used to trim a three-second time window from the raw, one-minute 

H5 files, which included a one-second pre-impact portion and a two-second post-impact 

portion. The header of each processed H5 file for an impact source indicates if the shot was 

generated by an accelerated weight drop (i.e., the PEG-40kg) or the 8-lb hammer. The 

processed impact shot files were named using the same convention as noted above, but 

started with an "I" to denote "Impact" instead of an "X," "Y," or "Z" used to describe the 

T-Rex shaking orientation. These files are in a folder named “Inside shots” within the 

Impact sources folder to indicate that all the impact sources were excited inside the 

instrumented area. The Inside shots folder contains 286 H5 files corresponding to the 286 

impact-source shot locations (refer to Figure 4-2). 

The same processing steps followed for the active-source data were also followed 

for the four hours of ambient noise recorded by the DAS. However, the files were 

maintained as one-minute-long segments and labeled with the prefix "N" to distinguish 

them as noise recordings. These files are stored in the Ambient noise folder, which contains 

246, one-minute-long H5 files that correspond to approximately four hours of ambient 

noise DAS recordings. 

4.11.2 Nodal stations 

The SmartSolo nodal station data processing was limited to extracting the shot time 

windows (15-second windows for T-Rex shots and 3-second windows for impact shots), 
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merging the three individual components into a single miniSEED file, editing the header 

file information, and arranging them in a user-friendly format.  

For T-Rex shots, the T-Rex trigger file was utilized to obtain the shot times, which 

were then used to trim a 15-second time window from all three components of the nodal 

stations for each shot. This included a one-second pre-trigger delay, a 12-second T-Rex 

shaking duration, and a 2-second listen segment post-T-Rex shaking. The T-Rex shot data 

collected from the nodal stations follows a comparable folder structure as that of the DAS, 

featuring two principal folders for "Inside shots" and "Outside shots". Nonetheless, each 

of these two folders is additionally subdivided into three folders based on the T-Rex 

shaking direction, namely "X Shaking", "Y Shaking", and "Z Shaking," corresponding to 

the local coordinate system. In each shaking direction folder for "Inside shots," individual 

folders are present for the 179-T-Rex inside shot locations. These folders encompass 145 

files, out of which 144 correspond to the 144 nodal stations, while the remaining file 

comprises the T-Rex pilot signal, base plate and mass accelerations, and ground force in 

engineering units. Likewise, for the "Outside shots," the shaking directions folder comprise 

individual folders for the 81 outside shot locations, each of which contains 145 files. The 

miniSEED files for each nodal station include three components: DHN, DHE, and DHZ, 

following the naming convention recommended by FDSN (2012). The "D" in the name 

refers to the use of a 250 Hz sampling rate, "H" indicates the use of a high gain 

seismometer, and "N", "E", and "Z" indicate the geophone orientation (north, east, or 

vertical). The miniSEED header file holds important information, such as the record's 

sampling rate, start and end times, and the station location. The miniSEED files related to 

T-Rex shaking were named according to the format presented in Figure 4-6, including the 
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T-Rex shaking direction, shot location, UTC date and time, station location, and the 

designation "3c" to indicate that the file includes the station's three perpendicular geophone 

records. For example, the file "X_SIA01_20220514143604.85_A01_3C.miniseed" is a 15-

second miniSEED recording of T-Rex shaking in the X direction at shot location SIA01 on 

14 May 2022 at 14:36:04.85 UTC captured by a nodal station located at A01. The 

miniSEED files containing the T-Rex source information follow the same naming 

convention, except they end with "Source.miniseed" instead of the station location name 

and "3c.miniseed". 

The miniSEED files corresponding to the impact sources have a 3-second duration, 

with 1 second before the impact and 2 seconds following it. The SmartSolo data from the 

impact sources are organized in a folder named "Inside shots" within the Impact sources 

folder, following a structure similar to that of the DAS folder. Nevertheless, in contrast to 

the DAS folder structure, each of the 286 impact-source shots is stored in a separate folder. 

The impact source signature was not recorded. As a result, each folder for a given impact 

shot location contains 144 miniSEED files (one for each nodal station). The file naming 

convention is similar to that previously described for T-Rex shots, with the only difference 

being that the files begin with the letter "I" instead of the T-Rex shaking direction, as shown 

in Figure 4-6. 

As noted above, the nodal stations were used to record 48 hours of ambient noise 

over a period of four days, in 12-hour increments from 23:00 to 11:00 UTC. The recorded 

data are stored in the Ambient noise folder, which is subdivided into four folders, one for 

each day during which the ambient noise was recorded. Each of these four folders 
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comprises 1728 miniSEED files, consisting of 12 one-hour miniSEED files for each of the 

144 nodal stations. These files are distinguished by the prefix "N" at the beginning, as 

depicted in Figure 4-6. 

 

Figure 4-6 Schematic of the hierarchical folder structure for the processed data, indicating 

the number of subfolders and files within each folder. The blue, italicized text represents 

dynamic content, such as the T-Rex "shaking direction", which can be "X Shaking", "Y 

Shaking", or "Z Shaking", or the "shot location", which can be any of the numerous outside 

or inside shot locations, such as "SOS01". All dates and times are in Universal Time 

Coordinated (UTC). 
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4.12 Potential Dataset Use Cases 

This section presents raw and pre-processed data examples from the archived, 

open-access dataset, with the aim of inspiring potential use cases for those interested in the 

dataset. The high-quality active-source data can be used for seismic migration, -refraction 

tomography, surface wave inversion, full-waveform inversion (FWI), and other imaging 

techniques. Similarly, the passive-wavefield data can be employed in techniques like 

horizontal-to-vertical spectral ratio (HVSR), microtremor array measurements (MAM), 

ambient noise tomography, and more. While no imaging results are presented in this 

section, we showcase that the waveforms and dispersion data extracted from the dataset 

are of high quality and can be used in such active-source and passive-wavefield imaging 

techniques. Additionally, we provide one or two example papers for each potential use case 

to aid readers in exploring further details. 

4.12.1 One-, two- and three-dimensional imaging 

Previous research conducted at this site by Tran and Hiltunen (2011), Tran et al. 

(2013), and (2020) revealed a high degree of spatial variability in its subsurface. This 

variability, coupled with the existence of karstic voids, suggests that employing 2D and 3D 

imaging techniques would be more suitable than 1D methods in effectively characterizing 

the subsurface. These imaging techniques can capitalize on the high spatial sensing 

resolution provided by the DAS, as well as the 3D sensitivity of the nodal stations, despite 

being more sparsely spaced in comparison to the DAS. Successful attempts have been 

reported in the literature in imaging the subsurface using active source 2D FWI (e.g., Wang 

et al., 2019; Tran et al., 2013) and 3D FWI (e.g., Fathi et al., 2016, Smith et al., 2019; Tran 

et al., 2020) using geophone data, and recently 2D FWI using DAS data (e.g., Yust et al., 



147 

2023). The efficacy of active-source imaging techniques critically depends on the 

wavefield generated by the source being sufficiently strong throughout the entire spatial 

extent of the instrumented area. Thus, rather than demonstrating specific imaging 

strategies/results, we instead focus on illustrating the quality of the collected waveforms 

and some potential ideas for taking advantage of the multi-direction sensing and multi-

directional shaking on such a dense grid.  

Figure 4-7 shows the waveforms generated by T-Rex shot X_SIL07 (refer to Figure 

4-2) and recorded by the DAS channels and the DHE component of the nodal stations at 

the four furthest corners of the instrumented area (i.e., DAS channels 1787, 1733, 277, and 

222, and nodal stations A01, A12, W01, and W12), which are labelled in Figure 4-2. These 

plots demonstrate that the wavefields generated by T-Rex were clearly sensed by both the 

DAS and nodal stations. Further evidence of this can be seen by examining a waterfall plot 

of the waveforms recorded by the longest DAS line (i.e., line 104) for T-Rex shot Y_SIL12, 

as shown in Figure 4-8. This waterfall plot presents the cross-correlated waveforms 

captured by DAS channels 31 through 183 (refer to Figure 4-2), with each trace normalized 

by its absolute maximum amplitude. Figure 4-8 reveals that clear waveforms were sensed 

by the entire DAS line. Furthermore, disturbances to the classical linear arrival-time 

moveout patterns can be observed in the spatially-dense DAS waveforms, potentially 

resulting from local heterogeneities and spatial variability at the site. The waveforms 

shown in Figures 4-7 and 4-8 are typical of the quality contained in this extensive dataset. 

As such, the waveforms should be more than adequate for performing various 1D, 2D 

and/or 3D imaging studies.  
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Figure 4-7 The waveforms generated by T-Rex shot X_SIL07 (refer to Figure 2), as 

captured by both the DAS channels and the DHE component of nodal stations positioned 

at the four furthest corners of the instrumented area (i.e., channels 1787, 1733, 277, and 

222, and nodal stations A01, A12, W01, and W12). 

 

Figure 4-8 Waveforms recorded by DAS channels 31-183 along Line 104 (refer to Figure 

4-2) after cross correlating with the T-Rex pilot signal for T-Rex shot Y_SIL12, and 

normalizing each waveform by its absolute maximum value. 
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The numerous shot locations and spatially-dense DAS channels and nodal stations 

provide ample opportunities to visualize wave propagation patterns in an attempt to locate 

anomalies prior to more rigorous processing, such as that used for psedu-2D MASW or 

2D/3D FWI. One way to visualize the data is by observing the wave propagation as a 

function of time across an entire sensing array (i.e., either the DAS or the nodal stations) 

initiated by a T-Rex shot at one location. Alternatively, the wavefield recorded by a section 

of the sensing array, like a DAS line, generated by T-Rex shaking at multiple shot locations 

can be used to create wavefield animations. Figure 4-9 illustrates an example of the latter, 

where the cross-correlated waveforms generated by shots Z_SOW26, Z_SOW31, and 

Z_SOW37 and recorded by DAS channels 1810 through 1890 (refer to Figure 4-2) are 

shown, along with the location of a known surface void. In these waveforms, the peaks and 

troughs are filled with red and blue shading, respectively, to help better visualize 

disruptions to the wave polarities and wave propagation directions. Some of the backscatter 

events at the location of a known surface void can be observed in Figures 4-9a and 4-9c 

for shots Z_SOW26 and Z_SOW37, respectively, as highlighted by the dashed blue and 

red lines. Additionally, there is a noticeable increase in the amplitude of the late-arriving 

waves at the void location, as indicated by the intensity of the color and circumscribed by 

the dashed ellipses in Figures 4-9a and 4-9c. These observations are consistent with the 

outcomes of a synthetic study conducted by (Rector et al., 2015) that investigated a 

wavefield produced by an active source and measured by geophones situated on the surface 

directly above underground voids. Moreover, significant backscatter is evident between 

channels 1830 and 1840 for shots Z_SOW26 and Z_SOW31 (Figures 4-9a and 4-9b), 

which may indicate the presence of an underground anomaly, although no surface voids 
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were observed at that location. The low signal strength in this zone could be caused by the 

presence of an anomaly and/or poor cable coupling. The waveforms from this zone need 

to be examined from other shot locations in order to conclusively determine the cause(s).  

Regarding the potential to use the dataset for 1D and/or pseudo-2D surface wave 

imaging; Figure 4-10 shows a selection of surface wave dispersion images that can be 

derived from various permutations of T-Rex shaking directions at just one-shot location, 

namely SOW40, and utilizing a single line, line Q, of DAS channels and nodal stations. 

The locations of shot SOW40 and line Q are shown relative to the entire experiment in the 

schematic map presented in Figure 4-10a. The dispersion images displayed in Figure 4-10 

were generated using the frequency-domain beamformer (FDBF) technique with 

cylindrical-wave steering, square-root-distance weighting (Zywicki and Rix, 2005), and 

frequency dependent normalization, as implemented in the open-source Python package 

swprocess (Vantassel, 2022). Figures 4-10b and 4-10c display dispersion images derived 

from channels DHN (crossline) and DHZ (vertical) in nodal stations Q01 through Q12 for 

shots Y_SOW40 and Z_SOW40, respectively, conforming to the customary multi-channel 

analysis of surface waves (MASW) configuration used for processing Love and Rayleigh 

waves with nodal stations, respectively. The peak power points at each frequency are 

indicated by white dots. Clear fundamental mode Love (L0) and Rayleigh (R0) wave trends 

are visible in the dispersion images in Figures 4-10b and 4-10c, respectively, along with 

some potentially 1st-higher mode Rayleigh wave (R1?) trends. 
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Figure 4-9 Waveforms recorded by DAS channels 1810 through 1880 for shots Z_SOW26, 

Z_SOW31, and Z_SWO37 (refer to Figure 4-2) in Panels (a), (b), and (c), respectively. A 

surface void location is indicated by a black dashed line in all panels, with backscatter 

evident at its location, highlighted by dashed blue and red lines. The dashed ellipses in 

panels (a) and (c) circumscribe the relatively higher amplitude of the late-arriving waves 

at the void location compared to other locations in the wavefield at similar time lags, as 

indicated by the intensity of the color.  
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Figure 4-10 Dispersion images obtained from DAS and nodal stations along line Q due to 

T-Rex shaking at location SOW40. Panel (a) presents a schematic map highlighting the 

locations of shot location SOW40 and line Q. Panels (b), (c), and (d) showcase dispersion 

images from nodal stations Q01 through Q12 for shots Y_SOW40, Z_SOW40, and 

Z_SOW40, respectively, derived from DHN, DHZ, and DHE components, respectively. 

Panel (e) displays the dispersion image derived from DAS waveforms, spanning channels 

629 to 693 located at line Q, for shot Z_SOW40. Panel (f) shows the superimposed peak 

power points from panels (b), (c), (d) and (e). 

While Figure 4-10c illustrates the more common approach to calculating Rayleigh 

wave dispersion images (i.e., using the vertical components to record the wavefield from a 
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vertical source), theoretically, Rayleigh wave dispersion data could be obtained from a 

vertical excitation using either the vertical particle motion or the horizontal inline particle 

motion (Vantassel et al., 2022). Figures 4-10d and 4-10e present dispersion images 

obtained from the DHE (inline) channels in nodal stations Q01 through Q12 and DAS 

channels 629 through 693, respectively, for shot Z_SOW40. This configuration of vertical 

shaking and horizontal inline DAS channels is typically employed as a standard MASW 

arrangement for processing Rayleigh waves with DAS, however, the use of inline 

geophones for Rayleigh waves is not common practice. Nonetheless, for comparative 

purposes with the DAS Rayleigh wave dispersion image, we include them in this study, as 

previously done by Vantassel et al. (2022). Despite the disparity in the number of Line Q 

DAS channels (65) and nodal stations (12) utilized in developing the dispersion images in 

panels 10d and 10e, respectively, the resemblance between the resulting dispersion images 

is evident, which agrees with the observations of Vantassel et al. (2022). Nonetheless, the 

DAS line offers a significant advantage in such a spatially variable site, as it enables 2D 

MASW-type processing (M. Yust et al., 2022), which is not feasible using the nodal 

stations due to the limited number of stations deployed at each line. Comparing the 

dispersion image in Figure 4-10c to the ones in Figures 4-10d and 4-10e, it seems that the 

vertical particle motion recorded by the SmartSolo DHZ components resolves more of the 

apparent R0 trend. However, there is a benefit to using both the vertical and horizontal 

particle motions to obtain a better understanding of the Rayleigh wave propagation. For 

example, the benefits of integrating Rayleigh wave dispersion data from both vertical and 

horizontal particle motions becomes apparent when examining Figure 4-10f, which 

compares the dispersion data obtained from combining the peak power trends from all four 
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dispersion images in Figure 4-10b – 4-10e. This combined approach enables a more clear 

identification of fundamental and higher mode trends and clearly highlights the anticipated 

higher Love wave phase velocities at higher frequencies, as compared to Rayleigh waves 

(Soomro et al., 2016). In summary, the multi-direction shaking and multi-component 

sensing allows for more robust surface wave dispersion processing.  

The dataset can also be utilized in machine learning imaging studies, which have 

been gaining significant interest in the last few years. For instance, recent studies have 

showcased the potential of applying convolutional neural networks (CNNs) to image the 

near surface (e.g., Abbas et al., 2023; Crocker et al., 2023; Vantassel et al., 2022). Vantassel 

et al. (2022) trained a CNN to take a wavefields inputs and generate 2D VS images of the 

near surface, while Abbas et al. (2023) developed a CNN that employs dispersion images 

as inputs to produce 2D VS near surface images that was validated on field data. The high-

quality waveforms and their derived dispersion images shown in Figures 4-7 through 4-10 

demonstrate the potential of using the dataset in such machine learning studies.  

In the preceding paragraphs, potential use cases for the application of active-

wavefield data in imaging have been presented. However, it should be noted that successful 

imaging of the subsurface using passive-wavefield data has also been documented in the 

literature. For instance, the 3-component (3C) noise data could be utilized in 2D 

microtremor array measurements (e.g., Wathelet et al., 2018) and 2D/3D ambient noise 

tomography (Wang et al., 2021, 2023). Additionally, the horizontal-to-vertical spectral 

ratio (HVSR) measurement technique has been demonstrated to provide valuable 

information about the subsurface, as discussed in the following section.  
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4.12.2 Horizontal-to-Vertical Spectral Ratio (HVSR) 

HVSR can be used to infer the spatial variability of fundamental site period (T0) at 

each 3C nodal station. The fundamental site period can reveal important information about 

the location/depth of strong impedance contrasts beneath each nodal station (Bard & 

SESAME Team, 2004). For example, stations with higher T0 values (or lower fundamental 

frequency, f0) are expected to have deeper impedance contrasts, while stations with lower 

T0 values (or higher f0) are expected to have more shallow impedance contrasts. The 

calculation of HVSR can be accomplished using the passive-wavefield data collected by 

the nodal stations. The HVSR was computed using only one hour of ambient noise 

recordings captured on the 14 May at 4:00 UTC (i.e., files N_20220514040000_station 

location_3C). The data were processed with the open-source Python package hvsrpy 

(Vantassel, 2021). The one-hour long recording for each station was divided into 30, 120-

second-long time windows and the horizontal components were combined using the 

geometric-mean, as recommended by Cox et al., (2020) Further, smoothing was performed 

using the filter proposed by (Konno & Ohmachi, 1998) with b=40. A color-mapped 

representation of the 144 stations’ fundamental frequency from the HVSR median curve 

(f0,mc) can be found in Figure 4-11, indicating a notable fluctuation in f0,mc throughout the 

site, with a range of values spanning from 4.19 to 7.03 Hz. HVSR amplitude with frequency 

plots for stations A01, M01, and W01 are also shown in Figure 4-11. Higher f0,mc values 

are indicative of shallower depths to limestone, while lower f0,mc values correspond to 

deeper depths. This lends additional support to the site’s significant spatial variability, as 

concluded by Tran and Hiltunen (2011) and Tran et al., (2013) and (2020). The HVSR data 
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could be processed in more rigorous ways to extract more qualitative estimates for the 

depth to bedrock (e.g., Bignardi et al., 2016; Hobiger et al., 2009; Scherbaum et al., 2003).  

4.12.3 DAS reception patterns 

Using one-dimensional strain measurements to detect stress waves can greatly 

impact the waves measured phase and magnitude, owing to their directional sensitivity. 

The sensitivity of a DAS array to stress waves depends on the angle at which the waves 

impinge on the cable and the ratio between the wavelength and the gauge length (Martin 

et al., 2021). It is therefore essential to study and consider this phenomenon when using 

DAS for active source stress wave measurements. Martin et al. (2021) developed a 

comprehensive analytical full waveform representation of pointwise and distributed strain-

rate measurements for all kinds of planar surface and body waves. Similarly, Hubbard et 

al. (2022) developed numerical representations of DAS reception patterns for different 

source orientations and wavelength-to-gauge-length ratios. Figure 4-12a demonstrates 

their work for a wavelength-to-gauge-length ratio of five, depicting the horizontal strain 

measurements (εxx) resulting from X-direction Ricker wavelet excitation caused by a point 

force at the surface. The εxx values shown in Figure 4-12a resemble those that a horizontally 

placed DAS cable oriented in the X direction would measure. In this representation, red 

indicates tension while blue represents compression. Notably, a distinct change in 

wavefield polarity is evident between the left and right sides of the shot location in Figure 

4-12a, with a zone of zero sensitivity directly above and below the shot location (i.e., at 90 

and 270 degrees from the zero X axis). The dataset documented herein offers a valuable 

resource for analyzing DAS reception patterns using real field data, thanks to its abundance 

of shot locations and shaking directions, as well as the utilization of a dense 2D DAS array. 
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Figure 4-12b displays a snapshot of the waveforms recorded on DAS channels 218 through 

1791 at 1.9 seconds into shot X_SIL07 (refer to Figure 4-2). In this figure, a clear polarity 

flip can be observed between the right and left of the shot location, particularly between 

the two wavefronts marked by the dotted black circles. To highlight this contrast, we 

inverted the polarity of all channels to the right of the shot location by multiplying their 

values by -1. Figure 4-12c shows the results from this reversal of the DAS polarity on the 

channels to the right of the source. After flipping the polarity of the channels to the right 

of the source location, the two dotted circles in Figure 4-12c mainly encompass a tension 

wave propagating away from the source, as inferred by the red cable color. By reproducing 

Hubbard et al.'s (2022) numerical simulations with real-field data, Figure 4-12b 

underscores the potential of the dataset for investigating DAS reception patterns and any 

potential effects of underground anomalies on them. 
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Figure 4-11 Spatial distribution of the fundamental site frequency (𝑓0), as determined by 

the peak of the lognormal median curve (𝑓0,𝑚𝑐), obtained from the Horizontal-to-vertical 

spectral ratio (HVSR) analysis of one hour of ambient noise data collected at each nodal 

station. Detailed HVSR plots are shown for selected nodal stations (i.e., A01, M01, and 

W01), depicting the HVSR calculations for each time window, the lognormal median curve 

(𝐿𝑀𝑐𝑢𝑟𝑣𝑒), the ± 1 lognormal standard deviation (STD) curves, and the fundamental site 

frequency from the median curve (𝑓0,𝑚𝑐). 
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Figure 4-12 Reception patterns of DAS due to a horizontal excitation at the ground surface, 

as obtained from a numerical simulation in Panel (a) and field measurements in Panels (b) 

and (c). Panel (a) displays the numerical x-direction surface strain (εxx) results, with 

compression shown in blue and tension in red, obtained from an elastic half space excited 

by a Ricker wavelet in the X direction with wavelength-to-gauge length ratio (λ/g) of five, 

after Hubbard et al. (2022). Panel (b) displays the DAS field measurements, as detected by 

channels 218 through 1791, 1.9 seconds after the initiation of T-Rex-induced shaking in 

the X direction at location SIL07. Panel (b) also highlights a clear reversal of polarity 

between the left and right sides of the shot, which is best observed by examining the colors 

between the wavefronts indicated by dotted lines. To accentuate the distinction, Panel (c) 

replicates Panel (b) after the polarity of channels to the right of the shot location have been 

flipped. 

4.13 Conclusions 

This research paper outlines a comprehensive subsurface imaging experiment in 

Newberry, Florida using stress waves. The site is spatially variable and contains karstic 

surface and underground voids and anomalies, which have been documented in the 

literature and indicated through preliminary processing of the collected data. The sensing 

technologies used comprised a dense 2D array of 1920 DAS channels and a 12 x 12 grid 

of 144 SmartSolo 3C nodal stations, which covered an area of 155 m x 75 m and were used 
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to record both active-source and passive-wavefield data. The active-source data were 

generated by a variety of vibrational and impact sources, namely: a powerful three-

dimensional vibroseis shaker truck, a 40-kg propelled energy generator (PEG-40kg), and 

an 8-lb sledgehammer. The vibroseis shaker truck was used to vibrate the ground in the 

three directions at 260 locations inside and outside the instrumented area, while the impact 

sources were used at 268 locations inside the instrumented area. In addition to active source 

data, four hours of ambient noise were recorded using the DAS, while the nodal stations 

recorded 48 hours of ambient noise in four 12-hour increments over a period of four days. 

The waveforms obtained from the 1920 DAS channels for every active-source shot or 

passive-wavefield time block were extracted, processed, and stored in H5 files. These files 

can be easily visualized using a Python script incorporated with the open-access dataset. 

Additionally, the three-component data gathered from each SmartSolo nodal station were 

consolidated into a single miniSEED file, and the data from all 144 nodal stations obtained 

during each active-source shot or passive-wavefield time block were extracted and saved 

into a separate folder. To enable efficient retrieval of all necessary information, the dataset 

was systematically organized into three parent folders - raw data, processed data, and 

supporting documents - with a consistent naming convention employed for all files and 

folders. The raw and processed dataset, along with complete and detailed documentation 

of the experiment, have been archived and made publicly available on DesignSafe. We 

anticipate that this dataset will be a valuable resource for researchers developing techniques 

for void and anomaly detection using non-invasive, stress wave-based subsurface imaging 

techniques. We have provided examples of the data and potential use cases as a means to 
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inspire present and future researchers who need a high-quality experimental dataset with 

known and unknown anomaly locations for testing imaging methods.  
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CHAPTER 5 

EMERGING TECHNOLOGIES AND ADVANCED ANALYSES FOR NON-

INVASIVE NEAR-SURFACE SITE CHARACTERIZATION 

Abstract 

The in-situ small-strain shear modulus of soil and rock materials is a parameter of 

paramount importance in geotechnical modeling. It can be derived from non-invasive 

geophysical surveys, which provide the possibility of testing the subsurface in its natural 

and undisturbed condition by inferring the velocity of propagation of shear waves. In 

addition, for soil dynamics and earthquake engineering applications, the small-strain 

damping ratio plays a relevant role, yet its estimation is still challenging, lacking 

consolidated approaches for its in-situ evaluation. Recent advancements in 

instrumentation, such as distributed acoustic sensing (DAS), combined with advanced 

analysis methodologies for the interpretation of stress wave propagation (e.g., machine 

learning and full waveform inversion), open new frontiers in site characterization. This 

paper presents and compares some advanced applications of measuring 1D and 2D 

variations in shear wave velocity and attenuation in-situ with reference to a specific case 

history.  

Keywords: Shear wave velocity; Rayleigh waves; DAS; Damping; FWI; Machine learning  

5.1 Introduction 

Non-invasive subsurface imaging techniques utilizing stress wave propagation have 

garnered escalating attention in recent decades owing to their remarkable cost-

effectiveness compared to conventional invasive site characterization methods and their 
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potential to cover large areas. These imaging techniques primarily focus on capturing two 

crucial soil parameters of particular interest in geotechnical engineering: the small-strain 

shear wave velocity (Vs) and the small-strain damping ratio in shear (DS). Vs is directly 

related to the small-strain shear modulus (G0 or Gmax), representing the stiffness of the soil, 

while DS quantifies the soil internal energy dissipation at low strains. This paper provides 

a review of some of the latest advancements in non-invasive subsurface imaging techniques 

for the estimation of Vs and DS and their practical application at a well-characterized case 

history site called the Hornsby Bend site in Austin, Texas, USA. The subsequent 

paragraphs highlight the importance of Vs and DS in geotechnical engineering applications 

and discuss the challenges and advancements in the non-invasive techniques developed for 

their estimation. 

Vs and Ds play a key role in evaluating the response of soil deposits to both general 

dynamic loading and ground motion amplification caused by earthquakes. In regard to 

seismic loads, Vs and Ds are especially important parameters to quantify when the soil is 

subjected to low-intensity shaking (e.g., Tao & Rathje, 2019; Rodriguez-Marek et al. 2021; 

Fernandes et al. 2023). For instance, Rodriguez-Marek et al. (2021) observed that Ds is the 

most influential parameter at high frequencies, with an impact even more relevant than Vs, 

whereas the low-frequency soil response is mainly affected by Vs of shallow layers. 

According to Foti et al. (2021), Ds has a substantial influence on the seismic amplification 

in deformable soil deposits. However, this influence is less pronounced under conditions 

of strong shaking that strain the soil sufficiently to induce nonlinear soil behavior. 

Additionally, in a site-specific study, Foti et al. (2021) compared the amplification resulting 

from the epistemic uncertainty in Ds with that caused by Vs and the nonlinear soil behavior 
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modeled using modulus reduction and damping (MRD) curves. They found that a change 

in Ds leads to a significant variation in amplification compared to the overall variability of 

the results. This effect is particularly relevant at high frequencies and near the resonance 

peak, even under higher seismicity conditions. 

Furthermore, studies such as Kouroussis et al. (2011), Papadopoulos et al. (2019), and Dos 

Santos et al. (2016) highlight the importance of Vs and Ds in assessing vibrational impact. 

The small-strain and anelastic properties of the soil significantly influence the energy 

transmission from the source, its propagation, and the resulting motion at the receiver. 

These properties directly impact the amplitude and frequency content of the vibrations. For 

instance, Lombaert & Degrande (2003) and Lombaert et al. (2006) observed that when 

dealing with rail traffic as the noise source, uncertainties in defining the spatial variation 

of dynamic soil characteristics lead to poor agreement between simulated and experimental 

data. Rail vehicles mainly generate high-frequency signals, reaching up to 200 Hz (Pyl, 

2004). Due to their short wavelengths, these signals are highly sensitive to local 

heterogeneities in the soil deposit. Moreover, Schevenels (2007) demonstrated the impact 

of uncertainties in Ds and Vs on free-field wave propagation, whose variability 

exponentially increases with the frequency, especially at large distances from the source. 

The small-strain dynamic soil properties also play an important role in soil-structure 

interaction problems, where the deformability of the supporting soil impacts both the 

fundamental period and the energy dissipation of the system (Veletsos & Meek, 1974). 

Among these properties, Vs holds particular significance as it directly governs soil 

deformability, which is a key factor in this phenomenon (Veletsos & Meek, 1974). Energy 

dissipation, on the other hand, arises from various sources, including inelastic phenomena 
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within the structure, hysteretic dissipation in the soil deposit, and radiation damping. 

Radiation damping refers to the geometric effect of waves radiating from the foundation-

soil interface, carrying energy away from the foundation system as they propagate outward. 

It is commonly assumed that radiation damping represents the primary mechanism for 

energy dissipation, especially at small strains. However, Martakis et al. (2017) observed 

through centrifuge tests that significant dissipation also occurs due to hysteretic effects 

linked to the intrinsic dissipation of the soil, even at small strains. 

The preceding paragraphs underscore the importance of accurately estimating Vs and Ds 

for dynamic modeling of seismic and general vibration problems. Traditionally, these 

small-strain soil properties have been estimated through laboratory testing or empirical 

relationships (e.g., Darendeli, 2001; Menq, 2003; Ciancimino et al., 2020). However, their 

in-situ estimated values often deviate from those obtained in the laboratory. This deviation 

can be attributed to the disturbances that inevitably occur during the acquisition of soil 

samples for laboratory testing, leading mostly to a reduction in soil stiffness (e.g., Stokoe 

& Santamarina, 2000). Additionally, at the site scale, complex wave propagation 

phenomena (e.g., wave scattering) result in additional energy dissipation beyond material 

dissipation, which cannot be captured accurately through laboratory tests (e.g., Stewart et 

al., 2014; Tao & Rathje, 2019). Geophysical field measurements offer the advantage of 

estimating the ground response in its natural state thus mitigating the uncertainties 

associated with sample disturbance and scale effects often encountered when working with 

rock-like materials. Overall, non-invasive techniques investigate a large volume of the 

medium, whose size depends on the array geometry (Comina et al., 2011; Passeri, 2019), 

providing parameter estimates at a scale compatible with those of geotechnical systems. 
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Furthermore, some design criteria in geoengineering directly rely on these testing 

procedures. For instance, rail infrastructure design requires the train speed to be smaller 

than a “critical” speed, corresponding to the Rayleigh phase velocity, VR, of the underlying 

medium (e.g., Connolly et al., 2015). Indeed, at higher speeds, the amplitude of track 

vertical deflection dramatically increases (Timoshenko, 1927; Krylov, 1995; Madshus & 

Kaynia, 2000; Madshus et al., 2004). For this reason, the rail operational speed is often 

determined through a dispersion diagram, which involves the experimental VR at various 

frequencies as an input parameter, determined through surface wave-based geophysical 

techniques (Thompson, 2009). Finally, the field-based small-strain estimates of Vs and Ds 

can be used in conjunction with laboratory tests to map and un-normalize the nonlinear 

mechanical response of soil, which is most easily characterized in the lab at strains ranging 

from moderate to large. This approach enables the development of advanced numerical 

models or simplified procedures for evaluating the behavior of geotechnical systems 

subjected to either static or dynamic loading (e.g., settlement of shallow foundations and 

seismic site response) across a broad range of induced strains. 

Given the importance of accurately estimating Vs and Ds in situ, the field of geophysical 

imaging based on stress wave propagation is continuously advancing, introducing new 

innovations aimed at increasing imaging resolution and reducing uncertainty. These 

innovations encompass improvements in both data acquisition systems (DAQ) and imaging 

methodologies. A notable recent development in data acquisition is the utilization of 

distributed acoustic sensing (DAS) for stress wave measurements. DAS offers 

unprecedented spatial resolutions (in the order of meters) and length scales (on the order 

of tens of kilometers), surpassing conventional sensing technologies (Soga & Luo, 2018). 
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Further details on DAS technology, which is employed as the DAQ for most of the 1D and 

2D imaging techniques discussed in this paper, are provided in a separate, dedicated section 

later in this paper. This paper also highlights some of the significant advancements in 

imaging techniques, encompassing both 1D and 2D approaches. In the field of 1D imaging, 

two notable developments have emerged. Firstly, there is the utilization of DAS as the 

DAQ for 1D multichannel analysis of surface waves (MASW). Secondly, the joint 

estimation of phase velocity and phase attenuation data within a 1D MASW test setup has 

become achievable using either geophones or DAS as the DAQ. This paper demonstrates 

the pioneering use of DAS for jointly characterizing the stiffness and dissipative 

parameters of a soil deposit. In the realm of 2D imaging, the presented techniques comprise 

the application of 2D MASW using DAS data, the utilization of machine learning for 2D 

imaging, and the use of full waveform inversion (FWI) with DAS data. All of these 1D and 

2D imaging techniques were successfully applied at a well-characterized case history site 

called the Hornsby Bend test site, providing a valuable opportunity to compare and discuss 

their results.  

The subsequent sections of the paper are organized as follows. First, a brief overview of 

DAS technology is presented, highlighting its key features and capabilities. Following that, 

the testing conducted at the Hornsby Bend site is discussed. The paper then delves into the 

advancements in 1D and 2D imaging techniques in regard to measuring Vs and Ds at the 

Hornsby Bend site. Then, a discussion about the advantages and disadvantages of each 

technique is presented. Lastly, a comprehensive subsurface imaging experiment conducted 

at the Newberry site in Florida, USA utilizing some of the latest sensing technologies is 

showcased. 
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5.2 The DAS technology 

DAS is an innovative technique that transforms fiber-optic cables into a distributed array 

of ground motion sensors (Cox et al., 2012; Yu et al., 2019). This rapidly evolving 

technology allows for the simultaneous collection of high-resolution data with small 

channel separations (e.g., 1-m) over long arrays spanning kilometers, making it highly 

suitable for near-surface imaging applications. Unlike traditional geophones that measure 

particle velocity (∂u/∂t) at discrete points along the acquisition array (Figure 5-1a), DAS 

records the spatially-averaged axial strain e(r,t) induced on the fiber-optic cable by the 

passing wavefield. Here, "r" represents the location coordinate and "t" represents the time 

instant. When properly coupled with the ground, the passage of mechanical waves 

generates an axial strain in the fiber-optic cable that coincides with the horizontal, in-line 

strain ε(r,t) in the ground. An interrogator unit (IU) reads the consequent shift in phase lag 

of a laser pulse traveling in the cable, induced by the variation in the length of the cable. 

Thus DAS measurements represent the variation in phase difference over a reference length 

2g, called gauge length, around the investigated location, from which the average strain 

e(r,t) is derived (Figure 5-1b; Grattan & Sun, 2000). The resulting average strain at each 

measurement point can be linked with the displacement u(r,t), as it equals the difference of 

the radial displacement at two points separated by a distance equal to the gauge length 

(Mateeva et al. 2014; Bakku, 2015; Jousset et al. 2018; Vantassel et al. 2022a):  

( ) ( ) ( )
1

, , ,
2

e r t u r g t u r g t
g

= + − −                                        (1) 
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Figure 5-1 a) Schematic model of an acquisition system based on geophones, wherein the 

output (labeled as “OUT”) is the particle velocity ∂u/∂t; b) Schematic model of the DAS 

system, where a source generates a laser pulse which is then interpreted by an interrogator 

unit (labeled as I.U.) and the output (labeled as “OUT”) is the average strain e (modified 

from Bakku, 2015); c) Amplitude response in terms of e/ε ratio, as a function of the 

wavelength-normalized gauge length 2g/λ. 

 

It is noteworthy that the gauge length is not necessarily linked with the channel separation 

(i.e., the distance between two subsequent measurement points). The gauge length plays a 

crucial role in the spatial sampling quality, as it limits the range of investigable 

wavelengths. In the simple scenario of a spatially harmonic radial displacement field, it is 

demonstrated that the averaging procedure (i.e., the mapping from ε(r,t) to e(r,t)) is 

equivalent to applying a lowpass filter (such as a sinc filter) in the wavenumber domain 

(e.g., Bakku, 2015). This filtering tends to attenuate wave components with shorter 

wavelengths λ, particularly affecting the high-frequency components of the Rayleigh 

wavefield (Figure 5-1c). Increasing the gauge length results in a greater loss of information 

for short-wavelength data, although it improves the overall signal quality and signal-to-

noise ratio (e.g., Bakulin et al., 2020). Therefore, selecting an optimal gauge length is a 

critical task that should consider various factors such as the acquisition setup, source 
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quality, magnitude of incoherent noise, and the desired range of investigated wavelengths. 

A possible strategy to overcome the resolution issues induced by spatial averaging is to 

conduct multiple measurements where the gauge length is modified at each step (Bakku, 

2015). It is worth noting that interpreting DAS-recorded data, which provides a spatially 

averaged measure of the strain field, is slightly more complex compared to conventional 

acquisition devices. Nonetheless, DAS is increasingly being used for invasive geophysical 

tests (e.g., Mateeva et al., 2014; Kuvshinov, 2016), ambient noise vibrations (e.g., 

Hornman et al., 2013; Freifeld et al., 2016; Yavuz et al., 2016; Ajo-Franklin et al., 2017) 

and MASW testing (Galan-Comas, 2015; Lancelle, 2016; Costley et al., 2018; Song et al., 

2018 Vantassel et al. 2022). 

5.3 Innovative processing techniques and DAS 

5.3.1 Reference dataset: Hornsby Bend 

The Hornsby Bend site (HB, 30°13.918′N, 97°38.631′W – in the WGS84 Datum) is located 

on the outskirts of Austin, Texas, USA. This site has been the subject of extensive invasive 

and non-invasive site characterization studies in recent years. The non-invasive testing 

conducted at the site and utilized in this paper involved the deployment of two parallel 200-

meter-long fiber-optic cables (refer to Figure 5-2a), one manufactured by NanZee and the 

other by AFL. These cables were interconnected at the far end of the array by splicing the 

NanZee and AFL cables together, enabling simultaneous recording on both cables. On the 

near-side of the array, the NanZee cable was connected to an OptaSense ODH4 IU, while 

the AFL fiber was properly terminated to minimize end-reflections. The ODH4 IU was 

configured with the gauge length and channel separation set to 2.04 m and 1.02 m, 

respectively. These values represent the shortest gauge length and channel separation 
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allowed by the ODH4. Consequently, the DAS recorded waveforms represent an average 

response over the 2.04-m gauge length surrounding each channel location (i.e., every 1.02 

m). The IU sampling frequency, or ping rate, was set at 100 kHz. After acquiring the data, 

the raw measurements underwent down sampling to 1 kHz and high-pass filtering above 3 

Hz to remove low-frequency artifacts linked with laser drift and static strains. 

Two geophone arrays were also deployed in conjunction with the fiber-optic cables: a 

vertical geophone array and a horizontal geophone array oriented in line with the DAS 

fiber optic cables. Each array comprised 48 geophones, uniformly spaced at 2-m intervals, 

resulting in a total array length of 94 m as shown in Figure 5-2a. To capture the geophone 

signals, four interconnected 24-channel Geometrics Geode seismographs were utilized, 

enabling simultaneous recording from both the vertical and horizontal geophone arrays. 

All signals were acquired using a sampling rate of 1 kHz. The geophone array and DAS 

fiber-optic cables were employed to simultaneously record actively-generated surface 

waves from various sources. These sources encompassed highly-controlled vibroseis 

shaker trucks and more variable impact sources. The vibroseis sources comprised the three-

dimensional shaker, T-Rex, and the highly-mobile one-dimensional shaker, Thumper, both 

from the Natural Hazards Engineering Research Infrastructure at the University of Texas 

at Austin (NHERI@UTexas) experimental facility (Stokoe et al., 2020). Additionally, an 

instrumented 5.4 kg sledgehammer from PCB Piezotronics was used as an impact source. 

T-Rex was utilized for shaking in all three directions: vertically, horizontally in-line, and 

horizontally cross-line. It generated a 12-second chirp signal with frequencies linearly 

swept from 3 to 80 Hz, providing a maximum force output of approximately 270 kN in the 

vertical direction and 130 kN in the horizontal directions. Thumper was used to produce a 
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12-second chirp signal in the vertical direction with frequencies linearly swept from 5 to 

200 Hz, offering a maximum force output of approximately 270 kN in the vertical 

direction. For the vibroseis sources, three sweeps were conducted at each source location, 

whereas five impacts were performed using the sledgehammer. These sources were used 

at various locations around the site, however, for the purposes of this paper, only the source 

locations along the linear array alignment will be discussed. A significant portion of the 

non-invasive dataset from testing conducted at the Hornsby Bend site is accessible to the 

public through DesignSafe-CI (Vantassel et al., 2022c). 

 

 

Figure 5-2 a) Aerial view of the Hornsby Bend test site showing the locations of CPT tests 

and boreholes as well as the DAS fiber optic cable, the geophone array, and the vibroseis 

shot locations; b) Geological cross section. 
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In addition to the non-invasive testing, nine cone penetration tests (CPT) soundings were 

carried out at 25-m intervals along the fiber-optic cable, covering the range from 0 to 200 

m, as indicated in Figure 5-2a. These CPT soundings were performed on three different 

dates, spaced out over a span of approximately eight months. Yust et al. (2022) utilized the 

soil behavior type index value (Ic) method developed by Robertson (2009) to analyze the 

collected CPT data. Based on their analysis, they developed the subsurface cross section 

shown in Figure 5-2b down to the depths of CPT refusal. According to Yust et al. (2022), 

the site comprises three distinct layers above the depth of CPT refusal. These layers include 

a shallow granular layer (between depths of approximately 0 to 4 m) consisting of sand and 

sand mix, an intermediate cohesive layer (between depths of approximately 4 to 7 m) 

comprising clay and silt, and a deeper granular layer (between depths of approximately 7 

to 10 m) composed of sand and sand mix. The depth of CPT refusal along the cable varied 

between 7.96 and 10.56 m, with an average depth of 9.15 m. In this study, the original 

cross-section developed by Yust et al. (2022) has been further extended from its original 

depth of approximately ten meters down to 15 m, as shown in Figure 5-3b. This extension 

enables the depiction of the shale layer depth, which was determined using data acquired 

from two recently drilled boreholes at the Hornsby Bend site. Both the first borehole (B1) 

positioned 12.5 m from the starting point of the geophone array, and the second borehole 

(B2), located 137.5 m away (refer to Figure 5-2b), confirmed the existence of a shale layer 

at an approximate depth of 13.5 m beneath the ground surface. Furthermore, seismic 

downhole testing was conducted in borehole B1, reaching a depth of 24 m with a receiver 

interval of 1 m, which led to the identification of four distinct velocity layers in the 

subsurface (discussed later in the paper). 
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5.3.1.1 1D MASW processing for the joint estimation of S-wave velocity and damping ratio 

A promising technique for obtaining in-situ estimates of Vs and Ds relies on MASW (Nolet 

& Panza, 1976; McMechan & Yedlin, 1981; Gabriels et al., 1987; Park et al., 1999; Foti, 

2000). This technique relies on the measurement of propagation characteristics of surface 

waves (typically, Rayleigh waves) and the testing procedure can be divided into three main 

steps: 

• Data acquisition: a waveform generated by an artificial source is recorded along a 

linear array of sensors (typically, geophones) on the ground surface. 

• Data processing: based on variations of phase lag and amplitude of surface waves 

along the array, the corresponding propagation speed (i.e., the phase velocity VR) and 

spatial attenuation of the amplitude (i.e., the phase attenuation αR) are derived, as a 

function of the frequency. The frequency-dependence of VR and αR is a combined effect 

of geometric dispersion, which results from the variation of mechanical properties with 

depth, and intrinsic dispersion, due to the constitutive behavior of linear viscoelastic media. 

• Inversion: the Vs and the Ds profile with depth are obtained through an inversion 

scheme, where a theoretical soil model is calibrated to match the experimental VR and αR. 

In MASW testing, the main advantage of the DAS technology with respect to conventional 

acquisition devices is the enhanced spatial resolution using low-cost instrumentation. 

Indeed, DAS allows for dense spatial sampling of the wavefield, potentially along a broad 

array extent. Conversely, achieving the same spatial resolution with ordinary receiver 

arrays would require a large number of sensors, entailing severe economic and logistic 

issues. Furthermore, high quality measurements can be obtained from conventional fiber-

optic cables, that are not specifically designed for seismic investigation and already 



181 

deployed in the ground (e.g., the telecommunication infrastructure; Jousset et al., 2018). 

Therefore, the per-channel cost is moderately low. Applications of this technology to 

MASW surveys demonstrated that the dispersion estimates well match those obtained from 

geophone measurements (Galan-Comas, 2015; Vantassel et al., 2022a). Furthermore, the 

DAS acquisition tends to better identify higher propagation modes (Galan-Comas, 2015). 

However, fiber-optic systems are uniaxial devices, recording only perturbations acting in 

the longitudinal direction, and the correct location of measurement points may be uncertain 

in some cases (e.g., in the case of fiber overstuffing; Bakku, 2015). Also, the signal-to-

noise ratio of measured data is lower compared to geophones. The lower quality in recorded 

traces limits the repeatability of the survey (Costley et al., 2018) and the reliability of the 

estimated wave parameters in the presence of weak signals (Mestayer et al., 2012). Finally, 

as explained above, the measurement technique involved in this technology partially limits 

the minimum investigable wavelengths at greater values than the one defined by the 

Nyquist-Shannon theorem (Lancelle, 2016; Bakulin et al., 2020). Therefore, the 

characterization of high-frequency R-wave data might be challenging. 

Different acquisition layouts were investigated at the Hornsby Bend site to assess the 

influence of the DAQ type on the estimated dispersion and attenuation data, through the 

canonical 1D processing procedure. The first 94-m section of the fiber-optic cable, which 

is adjacent to the geophone array, is selected in this study to ensure a consistent comparison 

between results, as they sample a comparable volume of the soil deposit. This study refers 

to waveforms generated at shot points located at 5 m, 10 m, 20 m, and 40 m offset from 

the closest measurement point (i.e., 0m; refer to Figure 5-3a). Additionally, it only utilizes 

waveforms created by the Thumper truck, which generated a 12-s long chirp signal, with 
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frequency shifting from 5 Hz to 200 Hz. As an example, Figure 5-3 a-b reports the time 

histories of recorded data in the Hornsby Bend site using the geophone and the DAS arrays, 

with the active source located at an offset equal to 10 m. 

As noted above, Vantassel et al. (2022a) showed that it is possible to extract equivalent 

surface wave dispersion data from seismic measurements made using a traditional 

geophone array and DAS. Moreover, they demonstrated that frequency-dependent 

normalization of the dispersion image removes the effect of scaling, integration, and 

differentiation on the acquired waveforms, thereby mitigating the need to convert the 

measurements into consistent engineering units prior to comparing dispersion data. Thus, 

Vantassel et al. (2022a) rigorously demonstrated the potential for extracting high-

resolution, multi-mode surface wave dispersion data using DAS measurements and 

MASW-type processing. 

  

Figure 5-3 Recorded data at the Hornsby Bend site: a) Time histories of particle velocity 

recorded by the geophone array; b) Time histories of average radial strain recorded by 

DAS. Data refer to the wavefield generated from the active source located at an offset equal 

to 10 m. 

 

Aimar et al. (2023) extended the assessment of the potential of exploiting DAS data for the 

joint estimation of the phase velocity and phase attenuation data. These quantities were 
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obtained from the vertical geophone waveforms through application of the recently 

developed Cylindrical Frequency-Domain BeamForming – Attenuation algorithm with 

Modal Filtering (CFDBFaMF; Aimar, 2022). The extraction of the R-wave parameters 

from DAS data adopts a modified version of the CFDBFaMF, which implements an 

average strain-based beamforming (further details are available in Aimar, 2022). In this 

way, the procedure properly models the spatial variation of the amplitude and phase of the 

average radial strain. Figure 5-4 compares the estimated modal dispersion and attenuation 

data for the first two propagation modes (labeled as R0 and R1, respectively), obtained 

from the interpretation of the DAS and the geophone array data. In this case, the data 

distribution is represented by the interval around the median value, the width of which 

equals one logarithmic standard deviation. Data statistics are obtained by combining results 

from different source offsets, consist with the multi-offset approach (Cox and Wood, 

2011). 

In general, dispersion and attenuation data well match with each other, particularly for the 

R0 mode. For the R1 mode, the DAS data does not allow phase velocity and attenuation 

estimates to be made over as broad a frequency range, being more limited at lower 

frequencies. This partially limits the capability of the DAS system in characterizing deeper 

layers. However, the corresponding degree of variability in the phase velocity and 

attenuation data derived from DAS is generally less than or equal to the variability affecting 

the geophone-based parameters. This result is quite surprising, as the signal-to-noise ratio 

of DAS records has been reported in other studies to be slightly lower than geophone 

records, hence, higher variability in the DAS-derived attenuation was expected. A possible 

reason behind the low data scatter can be the remarkably larger number of measurement 
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points that the DAS system includes, that provides a more exhaustive dataset of wavefield 

values to better constrain the velocity and the attenuation estimates. 

Finally, experimental Rayleigh-wave data were mapped into profiles of Vs and Ds versus 

depth, by means of an inversion procedure. This operation was carried out through an 

improved Monte Carlo scheme, which implements a smart sampling technique of the 

model parameter space, by exploiting the scaling properties of the Rayleigh wave 

parameters in linear viscoelastic media. These properties allow a significant saving in 

computation time, preserving the quality of the resulting ground models at the same time. 

For simplicity, the model identification adopts a three-layer ground model, consistently 

with the stratigraphy inferred by cone penetration soundings carried out close to the DAS 

array (refer to Figure 5-2b). For each layer, an adequate range of layer thicknesses, S-wave 

velocities and damping ratios were investigated, whereas the mass density and Poisson’s 

ratios were fixed at realistic values. The inversion was run using 10,000 trial earth models. 

Forward dispersion and attenuation modeling was carried out through the EDT toolbox 

(Schevenels et al., 2009). Model selection was based on a proper misfit function, wherein 

fitting errors between theoretical curves and experimental data were weighted as a function 

of the uncertainties affecting VR(ω) and αR(ω). 

Figure 5-5 shows results for the best fitting 30 models. Inverted S-wave velocity and 

damping ratio profiles are relatively well constrained, and the velocity and dissipation 

structures are clearly identifiable in the near-surface layers. Specifically, the resulting Vs 

model exhibits a gradual increase in stiffness with depth. The depths of the identified layers 

interfaces are about 4 m and 12-13 m. This result is consistent with the main geological 

interfaces inferred at the site and with information from past geophysical surveys. The 



185 

estimated DS profiles are affected by greater variability, which increases with depth. 

Specifically, DS is about 5% in the near-surface layer, and increases to around 8% in the 

layer below. As for the half-space, the variability in both Vs and Ds dramatically increases 

with respect to shallow layers. Indeed, the small amount of experimental data at long 

wavelengths does not allow effective constraint of estimated profiles at greater depths. 

Thus, the Vs oscillates between 330 m/s and 400 m/s, whereas Ds spans over a much 

broader range, mostly between 0.5% and 5% (that is, the variation is about one order of 

magnitude). This is the combined effect of the large variability in low-frequency 

attenuation data, the relevant influence of Vs on phase velocity and attenuation data, and 

the moderately low sensitivity of theoretical attenuation curves to Ds at great depths (e.g., 

Verachtert, 2018), that does not allow a constraint on Ds as effective as in the stiffness 

modeling. On the other hand, it should be noted that, particularly in the near-surface layers, 

both the velocity and dissipation structures show well defined trends. 



186 

 

 

Figure 5-4 Comparison between the estimated dispersion and attenuation curves from the 

DAS and the geophone data at the Hornsby Bend site: a-b) Resulting dispersion (a) and 

attenuation (b) curves for the fundamental mode, R0; c-d) Resulting dispersion (c) and 

attenuation (d) curves for the first higher mode, R1. Estimated data are represented in terms 

of intervals given by one logarithmic standard deviation around the median value; after 

Aimar et al. (2023). 
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Figure 5-5 Best fitting inverted ground models to DAS experimental data from the Hornsby 

Bend site: a-b) Theoretical and experimental data for the phase velocity (a) and phase 

attenuation (b); c-d) Resulting S-wave velocity (c) and damping ratio (d) profiles; after 

Aimar et al. (2023). 

 

In summary, the DAS technology can be successfully used to jointly estimate the phase 

dispersion and attenuation data, obtaining the same level of reliability of the canonical 

geophone array. Furthermore, the potentially stronger influence of incoherent noise on 

DAS data is balanced by the significant increase in the number of measurement points, 

thus resulting in a reduction in data variability, entailing an improvement in the accuracy 

of this system. 

5.3.1.2 2D MASW using DAS 

Two-dimensional (2D) MASW (e.g., Park 2005) is a technique used to produce a pseudo-

2D Vs cross-section of the subsurface by expanding upon the 1D MASW approach. This 
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technique relies on spatially interpolating between numerous 1D MASW Vs profiles 

obtained from overlapping sub-arrays along a linear testing alignment. One of the main 

challenges when performing 2D MASW using conventional equipment, such as geophones 

and 24-channel seismographs, is that the geophone spacing, the length of the sub-arrays, 

the spatial interval between sub-arrays, and the positions of shots relative to the sub-arrays 

must be determined prior to/during data acquisition, making it difficult to adjust them 

during data processing (i.e., after data acquisition). This poses a challenge because the 

geophone spacing and sub-array length can have a significant impact on the lateral 

resolution, maximum characterization depth, and anomaly detection capabilities (Yust et 

al., 2022). Therefore, the ability to modify parameters such as the sub-array length after 

initial processing results have been investigated can be highly advantageous. According to 

a study by Yust et al. (2022), the use of DAS rather than traditional 2D MASW equipment 

can be highly advantageous in addressing these challenges. 

In their recent study, Yust et al. (2022) investigated the effects of 2D MASW sub-array 

length using the DAS data collected at the Hornsby-Bend site. Three sets of sub-arrays 

with varying lengths were used to develop pseudo-2D Vs cross-sections along a 200-m 

long DAS line (refer to Figure 5-2a). The sub-arrays investigated by Yust et al. (2022) 

consisted of: (a) 12-channel sub-arrays approximately 11-m long, (b) 24-channel sub-

arrays approximately 23-m long, and (c) 48-channel sub-arrays approximately 47-m long. 

They used an equivalent sub-array spatial interval of four channels (approximately 4 m) 

for all sub-arrays and performed 129 individual MASW analyses in total. The pseudo-2D 

Vs cross-sections obtained using the 12-, 24-, and 48-channel sub-arrays had lateral extents 

of 187.68 m, 175.44 m, and 150.96 m, respectively, while maintaining a consistent depth 
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of 15 m, as shown in Figures 5-6a, 5-6b, and 5-6c, respectively. These cross-sections are 

quite similar over the top 7-8 m, but show noticeable differences at greater depths, 

highlighting the sensitivity of 2D MASW results to the choice of sub-array length. 

Nonetheless, each cross-section obtained from the different sub-array lengths was found to 

correlate better with a different key feature of the subsurface, as verified by comparisons 

with invasive data collected along the array alignment. For instance, Yust et al. (2022) 

found that, for the Hornsby-Bend site, the most prominent impedance contrast in the Vs 

cross-section obtained using 12-channel sub-arrays corresponded to the depth of CPT 

refusal (see Figure 5-6a), while the Vs cross-section obtained using longer, 48-channel sub-

arrays corresponded to the deeper shale impedance contrast, as indicated by the boring 

lithology log superimposed on the Vs cross-section (see Figure 5-6c). It is worth noting 

that Yust et al. (2022) were able to investigate these different sub-array lengths post data 

acquisition, owing to the flexibility allowed by DAS technology. Unlike traditional seismic 

equipment, DAS records the wavefield generated at each of the considered shot locations 

simultaneously along the entire length of the array at a constant channel separation, 

eliminating the need to pre-determine sub-array length and spatial sampling interval during 

data acquisition. This feature enables the investigation of multiple sub-array geometries 

during the processing stage of the analysis, thereby providing greater flexibility and control 

over acquisition parameters. 

The study by Yust et al. (2022) shed light on the advantages of utilizing DAS in 2D 

MASW, and emphasized the significance of incorporating a priori information, such as 

invasive testing data, to fine-tune the 2D MASW analysis and achieve project-specific 

objectives, whenever feasible. In cases where there is insufficient conclusive information 
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to constrain subsurface layering, Yust et al. (2022) recommended examining multiple 2D 

MASW sub-array configurations to gain a comprehensive understanding of the subsurface 

conditions and accurately assess the uncertainty of the results. 

 

Figure 5-6 Pseudo-2D Vs cross-sections after Yust et al. (2022) from the: (a) 47, 12-

channel MASW sub-arrays, (b) 44, 24-channel MASW sub-arrays, and (c) 38, 48-channel 

MASW sub-arrays inverted using a 15-layer inversion parameterization. The depths of 

refusal for 9 CPT soundings along the array are shown on all plots with a solid black line.  

5.3.1.3 Machine learning 

In recent years, there has been a growing interest in utilizing deep learning/machine 

learning/artificial intelligence (DL/ML/AI) techniques for non-invasive subsurface 

imaging (Adler et al., 2021). For example, with a fully trained and adaptable neural 

network it would theoretically be possible to swiftly generate subsurface images directly 
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from wavefield measurements without the need to perform costly and complicated 

inversions. Furthermore, this type of imaging could be performed by an analyst without 

any significant understanding of machine learning. This would enable the reuse of fully 

trained neural networks to rapidly produce site-specific results, eliminating the need for 

specialized expertise, which is often required by conventional inversion methods. To train 

a neural network for subsurface imaging, a large dataset consisting of numerous input-

output image pairs is required. The input can be a representation of the raw data acquired 

from the field, or some post-processed version of it, while the output can be a subsurface 

image of the parameter of interest, such as a Vs cross-section. Due to the considerable 

number of image pairs needed to train a neural network, all research studies thus far have 

relied on numerically-developed image pairs, as in the case of the convolutional neural 

network (CNN) developed by Vantassel et al. (2022b), which takes a seismic wavefield 

input image and outputs a 2D Vs image. A significant challenge that has impeded the use 

of machine learning as an end-to-end imaging technique for real-field applications is the 

lack of generalizability (Li et al., 2020; Feng et al., 2022). In other words, these neural 

networks often struggle when presented with real-field data, particularly if the data was 

acquired using a different acquisition configuration than the one used during network 

training (e.g., Vantassel et al., 2022b). 

Abbas et al. (2023a) have recently introduced a CNN that shows promise for rapidly 

generating 2D Vs images of near-surface soil-over-bedrock geology using real-field data. 

To train and test their CNN, they utilized 100,000 synthetic near-surface models with 

varying soil-over-bedrock conditions. Their CNN takes a frequency-dependent normalized 

dispersion image as input (rather than a seismic wavefield image) and produces a 2D Vs 
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image as output, as illustrated schematically in Figure 5-7. Abbas et al. (2023a) 

demonstrated that while using different testing configurations in terms of source type, 

source offset, number of receivers, and receiver spacings leads to significantly different 

measured wavefields for the same subsurface structure, the normalized dispersion images 

processed from these different wavefields are quite similar, although not identical. Abbas 

et al. (2023a) leveraged this feature and demonstrated that a CNN trained on normalized 

dispersion images processed from wavefields acquired using a specific testing 

configuration can still perform well when presented with dispersion images processed from 

wavefields acquired using different testing configurations. This acquisition flexibility 

significantly improves the CNN's generalization capability, enabling it to be utilized as an 

end-to-end imaging method or as a tool to create rapid starting models for full-waveform 

inversion (FWI).  
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Figure 5-7 Frequency-velocity CNN framework proposed by Abbas et al. (2023a) for 2D 

Vs imaging of near-surface soil-over-bedrock geology.  
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Abbas et al. (2023a) demonstrated the practical capability of their CNN by applying it to 

experimental field data collected at the Hornsby Bend site. Their CNN generated a high-

resolution 48-m wide by 24-m deep Vs subsurface image, which agrees well with the actual 

subsurface structure determined through invasive tests conducted at the site, as shown in 

Figure 5-8, thereby establishing the CNN's promise in handling real-field data. While 

Abbas et al. (2023a) used geophone-derived dispersion images in their study, their 

approach is equally applicable to DAS-derived dispersion images, as geophone and DAS-

derived dispersion images are shown to be equivalent by Vantassel et al. (2022a). 

 

Figure 5-8 The frequency-velocity CNN output 2D Vs image for the Hornsby Bend site 

after Abbas et al. (2023a). For comparison with actual field conditions, a borehole log (i.e., 

B1) is superimposed on the predicted Vs image at 12.5 m, which is the location where the 

boring was conducted.  

 

5.3.1.4 Full wave form inversion using DAS 

Full-waveform inversion (FWI) is a robust imaging technique that produces 2D/3D images 

of the subsurface by matching a synthetic seismic wavefield, generated by numerically 

solving the wave equation, to an experimental seismic wavefield acquired in the field. The 
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process involves an iterative data-fitting procedure that requires modifying an initial model 

through which the synthetic waveforms propagate until the synthetic and experimental 

wavefields match, based on a selected inversion objective function. This is achieved by 

adjusting the material properties of the synthetic subsurface model, thereby reducing the 

misfit between the synthetic and recorded data. Unlike 2D MASW, which can only produce 

pseudo-2D images, FWI generates true 2D and 3D images by leveraging all available 

information in the seismic wavefield, including phase and amplitude. This sets FWI apart 

from other approaches, such as seismic refraction that relies only on wavefield first arrivals 

or surface wave testing that uses only Rayleigh dispersion. In addition to providing insights 

into material parameters like Vs and compression wave velocity (Vp), which are of high 

interest to engineers, FWI can also be used to assess any other material properties that 

impact seismic wave propagation, such as density and damping ratio. 

Despite its numerous advantages, FWI also encounters significant challenges. The 

computational costs associated with FWI are considerable, and the accuracy of its results 

can be heavily influenced by the initial model (Vantassel et al., 2022b; Yust et al., 2023), 

particularly in near-surface applications such as imaging the top 30 m. In the near surface, 

material properties tend to exhibit rapid variations over short distances, leading to a 

complex mixture of different wavefield components. This amalgamation includes 

compression, shear, and surface waves, which have not yet propagated far enough to 

separate from each other.  

Traditionally, FWI analysis has utilized data acquired through geophones, which capture 

particle velocity wavefields. However, the high spatial resolution provided by DAS has 

garnered interest for use in FWI studies. Nonetheless, there is a dearth of literature on the 
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use of FWI with DAS data for near-surface characterization, particularly in regards to 

directly inverting DAS strain data without first converting it to particle displacement or 

velocity.  

In a recent study conducted by Yust et al. (2023), a direct inversion of strain measurements 

obtained from DAS was performed at the Hornsby Bend site. The study aimed to image a 

cross-section measuring 200-m wide and 30-m deep. Four distinct 1D and 2D starting 

models specifically tailored to the site were utilized. The first model was based on a 1D Vs 

profile obtained through traditional MASW testing. The second starting model utilized a 

1D Vs profile derived from seismic down-hole invasive testing. The third starting model 

relied on the CNN 2D Vs subsurface model developed by Abbas et al. (2023a) and depicted 

in Figure 5-8. Lastly, the fourth model was constructed using the 2D MASW analysis with 

the 48-channel subarrays developed by Yust et al. (2022) and discussed in the 2D MASW 

section (refer to Figure 5-6). The four FWI starting models used by Yust et al. (2023) are 

visually depicted in Figure 5-9. Yust et al. (2023) inverted for Vs, Vp, and density, ρ, while 

assuming constant quality factors to characterize the attenuation of compression and shear 

waves in the model. Nonetheless, they noted that the attenuation parameters significantly 

impact the FWI results and noted that additional studies are required to help constrain these 

values. Yust et al. (2023) observed enhancements in each of the initial models through the 

implementation of FWI. This improvement was evident when comparing the misfit 

between synthetic and recorded waveforms for both the initial and updated models. For 

example, Figure 5-10 illustrates the misfit between the synthetic and experimental 

waveforms of the initial models, while Figure 5-11 displays the misfit for the FWI updated 

models following the first stage of a four-stage FWI. By comparing the waveform misfit 



197 

values in Figure 5-10 and Figure 5-11, which are based on a graph space optimal transport 

distance (GSOTD) algorithm, one can clearly see that the FWI iterations in the first stage 

resulted in better waveform matches (i.e., lower misfit values) for all four starting models. 

This reduction in misfit values continued through each stage of the FWI process, ultimately 

resulting GSOTD misfit values for the four final models that were very similar to one 

another and only varied between 1.91 to 1.46. Despite the similarities in the final waveform 

misfit values, the final subsurface models did not vary significantly from their respective 

starting models and exhibited noticeable visual differences from one another, as depicted 

in Figure 5-12. Within the upper 7 m, the final Vs images are quite similar. Yet, below this 

depth there are evident disparities in the magnitudes and rates at which Vs increase. This 

finding highlights the intrinsic non-uniqueness associated with the FWI process, 

underscoring the importance of incorporating multiple starting models. Assessing the 

sensitivity of results to the choice of starting model and attaining consistent outcomes 

across different models engenders confidence in the subsurface regions where the models 

yield congruent results. 
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Figure 5-9 The four smoothed 2D Vs starting models used by Yust et al. (2023) for FWI 

based on: (a) 1D MASW, (b) downhole testing, (c) CNN machine learning, and (d) pseudo‐

2D MASW.  

 

 

Figure 5-10 Normalized observed and simulated waveforms by Yust et al. (2023) from 

Shot 1 (−24 m) of Stage 1 (10 to 15 Hz) for the: (a) MASW, (b) DH, (c) CNN, and (d) 2D 

MASW starting models. GSOTD misfit values for each set of simulated waveforms are 

shown in the bottom left of each plot. Note that for clarity purposes, the waveforms are 

only shown for every fourth channel used for FWI. 
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Figure 5-11 Normalized observed and simulated waveforms by Yust et al. (2023) from 

Shot 1 (−24 m) for the updated models at the end of FWI Stage 1 (10 to 15 Hz) based on 

the: (a) MASW, (b) DH, (c) CNN, and (d) 2D MASW starting models. GSOTD misfit 

values for each set of simulated waveforms are shown in the bottom left of each plot. Note 

that for clarity purposes, the waveforms are only shown for every fourth channel used for 

FWI. 
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Figure 5-12 Borehole logs, downhole Vs results, and the depth to CPT refusal overlaid on 

the final, updated 2D Vs images at the end of FWI Stage 4 (10 to 30 Hz) for the: (a) MASW, 

(b) DH, (c) CNN, and (d) 2D MASW starting models after Yust et al. (2023).  

5.3.2 Discussion 

In the preceding sections, various subsurface imaging techniques have been reviewed. This 

section aims to provide an analysis of the advantages and disadvantages associated with 

each technique. The first method reviewed was 1D MASW, which is a well-established 

technique for Vs imaging using geophones. Extensive research supports this method, 

offering best practices and recommended workflows (Foti et al., 2018; Vantassel & Cox, 

2022). However, this study presents two advancements to the conventional 1D MASW 

workflow. The first involves using DAS instead of geophones for data acquisition, while 

the second is the joint inversion for damping and Vs. The utilization of DAS significantly 

enhances measurement scales and spatial resolution beyond the capabilities of traditional 

measurement technologies. Moreover, when appropriate precautions are taken, the 
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measurements obtained through DAS exhibit good agreement with those acquired using 

traditional methods like geophones (Daley et al., 2016; Hubbard et al., 2022; Vantassel et 

al., 2022a). It should be noted, though, that DAS provides deformation measurements only 

along the fiber optic cable direction, while geophones can capture particle motion point 

measurements in all three directions individually or simultaneously. 

The second advancement focuses on the joint inversion for damping and Vs using data 

acquired through a 1D MASW setup, which represents a significant breakthrough, 

particularly due to the crucial role of damping in various domains, including site response. 

Aimar et al. (2023) showed that their approach is applicable on both geophone and DAS 

acquired data. Furthermore, this paper illustrates the innovative application of DAS in 

jointly characterizing the stiffness and dissipative parameters of a soil deposit based on a 

fiber-optic array. Figure 5-4 illustrates the favorable agreement between attenuation 

estimates obtained using both DAS and geophones for the Hornsby Bend site, with DAS-

based measurements exhibiting lower uncertainty compared to geophone-based 

measurements. However, the uncertainty in attenuation estimates generally tends to be 

higher than that observed for dispersion estimates, as detailed by Aimar (2022). In addition, 

the results presented were obtained from a portion of a large experimental dataset. Future 

studies will thoroughly investigate these data to obtain a more comprehensive view of DAS 

performance compared to geophones and to seek for improved estimates of the phase 

attenuation, especially at low frequencies. It is worth noting that the 1D MASW technique 

generates a 1D subsurface profile by averaging the soil properties beneath the 

instrumentation array. To obtain a 2D representation of the subsurface, the 2D MASW 

technique was utilized. However, 2D MASW generates a pseudo 2D image rather than a 
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true one, as it involves interpolating between multiple 1D MASW-derived soil profiles. 

Yust et al. (2022) demonstrated that this method produced Vs images that aligned with 

significant features at the Hornsby-bend site. Nevertheless, it was also observed that the 

resulting Vs image is reliant on the specific parameters chosen for data acquisition.  

Another approach presented in this paper for 2D Vs imaging is the machine learning CNN 

proposed by Abbas et al. (2023a). This approach holds great promise as it can generate true 

2D images of the subsurface, in contrast to the pseudo 2D images obtained through 2D 

MASW. Additionally, the machine learning approach is notable for its remarkable speed, 

as a trained neural network can deliver imaging results within seconds. However, this 

technique is still in its early stages of development and requires extensive research and 

testing before it can be reliably employed for subsurface imaging purposes. 

The final imaging approach explored in this paper is 2D FWI. What sets FWI apart from 

the previously discussed methods is its utilization of the entire measured wavefield to 

generate true 2D and 3D subsurface images. Moreover, FWI differs from the machine 

learning approach by not operating as a black box method. As FWI continues to undergo 

further development, it is anticipated to become the preferred imaging technique. However, 

FWI currently faces several challenges, including notable computational costs and time-

consuming complexity of the analysis process. Furthermore, studies by Yust et al. (2023) 

and Vantassel et al. (2022b) have demonstrated that the imaging results obtained through 

FWI are significantly influenced by the starting model used. 

5.4 Reference dataset: Newberry site, Florida 

The preceding paragraphs have showcased the latest developments in stress wave-based 

non-invasive subsurface imaging, with a practical demonstration of their potential at the 
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Hornsby Bend site. However, it should be noted that the Hornsby Bend site is a relatively 

simple site with no documented underground anomalies. Furthermore, the seismic data 

from the Hornsby Bend site was collected using relatively short and linear DAS and 

geophone arrays. To provide researchers with a more comprehensive dataset at a more 

challenging site, Abbas et al. (2023b) conducted a field test in Newberry, Florida, at a site 

known for its spatial variability, karstic voids, and underground anomalies. The experiment 

utilized cutting-edge sensing technologies, including a two-kilometer DAS fiber optic 

cable, forming a dense 2D array of 1920 channels, and a 2D array of 144 SmartSolo three-

component nodal stations to sense active-source and passive-wavefields, as illustrated 

schematically in Figure 5-13. The active-source data was generated using a powerful three-

dimensional vibroseis shaker truck and impact sources, and it was simultaneously sensed 

by both the DAS and nodal stations. The vibroseis truck was used to vibrate the ground in 

the three directions (two horizontal and one vertical) at 260 locations inside and outside 

the instrumented array, while the impact sources were used at 268 locations within the 

array (refer to Figure 5-13). The passive wavefield data, recorded using the nodal stations, 

consisted of 48 hours of ambient noise collected over four days in four twelve-hour time 

blocks. The active-source and passive-wavefield DAS and nodal station data have been 

preprocessed and organized in an easy-to-navigate folder structure. The raw and processed 

data, along with detailed documentation of the experiment and Python tools to aid in 

visualizing the DAS dataset have been archived and made publicly available on DesignSafe 

(Abbas et al., 2023c). The Newberry dataset (Abbas et al., 2023b; Abbas et al., 2023c), 

featuring a powerful, triaxial vibroseis shaker and 3C sensors, in conjunction with the dense 
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DAS array, offers a valuable resource for researchers exploring novel non-invasive 

subsurface imaging approaches that utilize stress waves. 
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Figure 5-13 Newberry site testing configuration after Abbas et al. (2023b). 



206 

5.5 Conclusion 

The paper covers advancements in non-invasive subsurface imaging technologies that 

utilize stress waves for site characterization. These advancements span both innovative 

sensing technologies and advanced 1D and 2D imaging techniques for retrieving the small-

strain shear modulus and damping ratio. Regarding sensing innovations, a particular focus 

is placed on the use of DAS as the data acquisition system for stress wave sensing in near-

surface imaging applications. In terms of imaging techniques, the joint inversion of 

attenuation and dispersion data is presented, utilizing 1D MASW in conjunction with either 

DAS or traditional sensing techniques such as geophones. With this approach, 1D shear 

wave velocity and damping profiles can be obtained. The presented 2D imaging techniques 

comprise 2D MASW using DAS, machine learning for 2D subsurface imaging, and 2D 

FWI using DAS data. All of these advancements, whether in sensing technologies or 

analysis methods, were implemented at the well-characterized Hornsby Bend site in 

Austin, Texas, enabling a discussion of the advantages and disadvantages associated with 

each method. Finally, a comprehensive and open-access subsurface imaging experiment 

conducted in Newberry, Florida, has been presented, where state-of-the-art technologies 

for sensing stress waves and generating wavefields have been implemented. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

This dissertation presents multiple advancements in non-invasive subsurface imaging 

techniques using seismic waves. The dissertation encompasses four key studies: the first 

and second studies introduce novel analysis techniques for estimating the small-strain 

shear modulus (Gmax) and the small-strain damping ratio (D), respectively. The third 

study presents a unique dataset collected using state-of-the-art testing technologies. The 

fourth study provides an overview of current progress in non-invasive subsurface 

imaging using seismic waves. These studies are summarized in more detail below. 

The first study introduces a frequency-velocity Convolutional Neural Network (CNN) 

developed for rapid, non-invasive 2D shear wave velocity (Vs) near-surface imaging 

using seismic waves. This CNN uses a normalized dispersion image as input to output a 

2D-Vs image. The proposed framework offers significant flexibility in the linear-array, 

active-source experimental testing configuration used for generating the CNN input at a 

given site. The framework accommodates various source types, source offsets, numbers 

of receivers, and receiver spacings. Such acquisition flexibility allows for the use of the 

developed CNN as a comprehensive imaging technique or as a tool for rapidly generating 

starting models for full waveform inversion (FWI). The CNN was trained, validated, and 

tested using a total of 100,000 synthetic soil-over-rock models. The acquisition 

generalization ability of the proposed frequency-velocity CNN was initially demonstrated 

using sets of 5,000 synthetic near-surface models. For each set, the inputs to the CNN 

were dispersion images obtained using different testing configurations and near-surface 

models than those used for the CNN's training. The CNN exhibited remarkable 
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acquisition generalization ability with respect to the number of receivers, receiver 

spacings, source offset distances, and source forcing functions, as long as the testing 

configuration was not drastically different from the base case configuration on which the 

CNN was trained. Finally, the capability of the proposed CNN to handle field data was 

demonstrated using a field test conducted at the Hornsby Bend site in Austin, Texas, 

USA. The good agreement between the CNN's predicted 2D-Vs image and the actual 

subsurface structure determined through 1D surface wave inversions, Cone Penetration 

Test (CPT)-Vs correlations, and boring logs reinforces the capabilities of the proposed 

CNN for accurately retrieving 2D-Vs images using field data from testing configurations 

different from the one used during training. 

For the second study, a new methodology for estimating frequency-dependent attenuation 

coefficients through the analysis of ambient vibration wavefield data recorded by 2D 

arrays of surface seismic sensors is presented. This approach, termed the noise 

Frequency-Domain Beamforming attenuation (NFDBFa) method, relies on an 

attenuation-specific wavefield conversion and frequency-domain beamforming (FDBF). 

Unlike noise cross-correlation methods, NFDBFa enables the determination of the 

ambient vibration propagation direction for each noise window and frequency without 

requiring an equally partitioned ambient noise wavefield. Furthermore, using an FDBF 

approach enables the phase velocity and attenuation data generated from active-source 

testing like the Multichannel Analysis of Surface Waves (MASW) to be combined with 

phase velocity and attenuation data generated from ambient noise testing like the 

Microtremor Array Measurements (MAM) in order to span a broader frequency range. 

This integration allows for joint inversions of phase velocity and attenuation to extract Vs 
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and D profiles to significantly greater depths than previously possible using only active-

source data. Numerical simulations were conducted to deepen our understanding of the 

proposed NFDBFa method. These simulations aimed to evaluate how the proximity of 

the MAM array to the noise source, the presence of incoherent noise, and the size of the 

array affect the estimates of phase attenuation. The results demonstrated that near-field 

effects are more pronounced and extend over greater distances for phase attenuation 

estimates compared to those considered for phase velocity estimation. Furthermore, it 

was discovered that larger array sizes consistently provided more accurate phase 

attenuation estimates across all considered frequencies, contrary to the conventional 

MAM design criteria used for phase velocity dispersion estimation, where larger arrays 

are typically preferred for resolving lower frequencies while smaller arrays excel at 

resolving higher frequencies. This distinction emphasizes the need for unique design 

criteria when planning a MAM array for attenuation estimation. The proposed NFDBFa 

approach underwent validation through numerical wave propagation simulations, 

comparing predicted frequency-dependent phase attenuation values against theoretical 

phase attenuation curves for two synthetic models. Furthermore, the validation of the 

developed technique was reinforced using real MASW and MAM field data collected at 

the Drainage Farm site in Logan, Utah, USA. The phase velocity and attenuation data 

extracted from the MASW and MAM recordings agreed well over a common bandwidth, 

while the ambient noise MAM data allowed the phase velocity and attenuation estimates 

to be extracted at significantly lower frequencies. The joint inversion of the experimental 

Rayleigh-wave phase velocity and phase attenuation data obtained from both MASW and 

MAM testing facilitated the estimation of Vs and D profiles to significant depths (400 m) 
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at the Drainage Farm site. As noted herein and in other sources like Aimar et al. (2024a), 

attenuation data are significantly more variable and complex to understand (e.g., model 

curves that repeatedly cross one another) than phase velocity data. As such, there is a 

need for future studies to better understand attenuation data and how to invert it to 

retrieve reliable in-situ profiles of D. Future efforts should involve additional numerical 

and experimental testing under diverse subsurface conditions, coupled with comparisons 

to damping estimates from invasive tests. With the validity of this approach demonstrated 

on the vertical component, future research will also explore the utilization of the three 

components of the wavefield to enhance attenuation estimates beyond the current 

method's capabilities. 

In the third study, a comprehensive subsurface imaging experiment conducted in 

Newberry, Florida, USA, using seismic waves is presented. The site exhibits spatial 

variability and features karstic surface and underground voids and anomalies, as 

documented in the literature. The sensing technologies employed included a dense 2D 

array of 1920 horizontal-component distributed acoustic sensing (DAS) channels and a 

12 × 12 grid of 144 SmartSolo 3C nodal stations, covering an area of 75 m × 155 m. 

These technologies were used to record both active-source and passive-wavefield data. 

The active-source data were generated using various vibrational and impact sources, 

including a powerful triaxial vibroseis shaker truck, a 40-kg PEG-40 kg, and an eight-

pound sledgehammer. The vibroseis shaker truck was utilized to vibrate the ground in 

three directions at 260 locations both inside and outside the instrumented area, while the 

impact sources were employed at 268 locations within the instrumented area. 
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Additionally, four hours of ambient noise were recorded using DAS. The nodal stations 

captured 48 hours of ambient noise in four 12-hour increments over four days. 

Both the raw and processed datasets, along with comprehensive and detailed 

documentation of the experiment, have been archived and made publicly accessible. 

Examples of the data quality and potential use cases are provided to inspire current and 

future researchers who require a high-quality experimental dataset with known and 

potentially unknown anomaly locations for testing non-invasive imaging methods. 

The fourth and final study included in this dissertation provides a review of the recent 

advancements in non-invasive subsurface imaging technologies that utilize seismic waves 

for site characterization. These advancements encompass both innovative sensing 

technologies and advanced 1D and 2D imaging techniques for retrieving Gmax and D. In 

terms of sensing innovations, a special emphasis is given to the use of DAS as the data 

acquisition system for seismic wave sensing in near-surface imaging applications. As for 

imaging techniques, the joint inversion of attenuation and dispersion data is highlighted, 

employing 1D MASW in combination with either DAS or traditional sensing techniques 

such as geophones. This approach allows for the development of 1D Vs and damping 

profiles. The 2D imaging techniques presented include 2D MASW using DAS, machine 

learning for 2D subsurface imaging, and 2D full waveform inversion (FWI) using DAS 

data. All these advancements, whether in sensing technologies or analysis methods, were 

implemented at the well-characterized Hornsby Bend site in Austin, Texas, USA, 

facilitating a discussion on the advantages and disadvantages associated with each 

method. 
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SOFTWARE DEVELOPMENT PROJECTS 

CNN for 2D subsurface imaging:  

A frequency-velocity convolutional neural network (CNN) for rapid, non-invasive 2D shear 

wave velocity imaging of near-surface geo-materials. The CNN uses a normalized dispersion 

image from MASW testing as an input and outputs a 2D subsurface Vs image. This framework 

provides significant flexibility in the linear-array, active-source experimental testing 

configuration used in generating the CNN input at a given site, accommodating various source 

types, source offsets, numbers of receivers, and receiver spacings 

DASPy: 

A Python module for processing DAS collected waveforms (e.g., converting DAS raw data to 

engineering units, filtering, trimming, etc.) 

attPy: 

A Python module for estimating in-situ attenuation using frequency domain beam forming 

(FDBF) and microtremor array measurements (MAM) 

WBuzzPile:  

A proprietary software utilized exclusively by the Alabama DOT for the design of axially loaded 

piles and pile groups. WBuzzPile is developed using the Visual Basic programming language 

SWM (CGI-DFSAP): 

The SWM technique is referenced by the FHWA (2006, 2010, 2016) and employed by various 

DOTs, including the Washington DOT and Nevada DOT, for modeling the lateral response of 

piles and pile groups. I Incorporated the capability of modeling the lateral response of the pile-

group-cap system into the strain wedge model technique (SWM). The software engine is written 

in FORTRAN, while the interface is developed using a combination of C# Windows Forms 

application and Visual Basic 

AMR: 

The Axial Mobilized Response (AMR) is my personal pile modeling software, currently utilized 

in teaching the Deep Foundations course at USU. The software is developed using C#, and the 

interface is implemented using Windows Presentation Foundation (WPF)  

In-situ site characterization: 

A Python package that includes multiple modules for interpreting SPT, CPT, and DMT data. 

It also incorporates statistical analysis for generating soil cross-sections and facilitates the 

generation of plots to aid in subsurface interpretations 
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