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Abstract

Background: Over the last two decades, various measures of entropy have been used to examine the complexity of human
postural control. In general, entropy measures provide information regarding the health, stability and adaptability of the
postural system that is not captured when using more traditional analytical techniques. The purpose of this study was to
examine how noise, sampling frequency and time series length influence various measures of entropy when applied to
human center of pressure (CoP) data, as well as in synthetic signals with known properties. Such a comparison is necessary
to interpret data between and within studies that use different entropy measures, equipment, sampling frequencies or data
collection durations.

Methods and Findings: The complexity of synthetic signals with known properties and standing CoP data was calculated
using Approximate Entropy (ApEn), Sample Entropy (SampEn) and Recurrence Quantification Analysis Entropy (RQAEn). All
signals were examined at varying sampling frequencies and with varying amounts of added noise. Additionally, an
increment time series of the original CoP data was examined to remove long-range correlations. Of the three measures
examined, ApEn was the least robust to sampling frequency and noise manipulations. Additionally, increased noise led to an
increase in SampEn, but a decrease in RQAEn. Thus, noise can yield inconsistent results between the various entropy
measures. Finally, the differences between the entropy measures were minimized in the increment CoP data, suggesting
that long-range correlations should be removed from CoP data prior to calculating entropy.

Conclusions: The various algorithms typically used to quantify the complexity (entropy) of CoP may yield very different
results, particularly when sampling frequency and noise are different. The results of this study are discussed within the
context of the neural noise and loss of complexity hypotheses.

Citation: Rhea CK, Silver TA, Hong SL, Ryu JH, Studenka BE, et al. (2011) Noise and Complexity in Human Postural Control: Interpreting the Different Estimations
of Entropy. PLoS ONE 6(3): e17696. doi:10.1371/journal.pone.0017696

Editor: Matjaz Perc, University of Maribor, Slovenia

Received November 17, 2010; Accepted February 9, 2011; Published March 17, 2011

Copyright: � 2011 Rhea et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding for this project was provided by Department of Veterans Affairs Center for Restorative and Regenerative Medicine (RR&D A3772C) and the
Purdue University College of Liberal Arts Research Incentive Grant in the form of salary support. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ckrhea@uncg.edu

Introduction

Complex dynamic patterns, present in virtually all physiological

processes, arise from the interaction between the organism and its

environment, both of which fluctuate constantly [1–2]. Examining

the degree of chaos or complexity in a system has proven to be a

valuable and increasingly useful tool in the study of human health

[3–6]. The loss of complexity in aging was first demonstrated by

lower values of Approximate Entropy (ApEn) [3] in the dynamics of

heartbeat intervals in frail elderly compared to young participants

[4]. Since then, numerous studies using a variety of different entropy

measures have demonstrated that complexity is lost in various

biophysical signals (e.g., hormonal patterns, blood pressure, human

postural control) as a result of aging, disease and/or disorder.

Complex and chaotic patterns are different from random noise

because they can be modeled using completely deterministic

equations. However, it is often difficult to determine if fluctuations

in human physiological data are chaotic or the result of random

neuromuscular noise [1]. Effectively, determining ‘‘what is

random?’’ in biological data remains a widely debated topic [7,8].

Human postural control provides a unique opportunity to test

how determinism and noise influence a physiological signal. This is

because the control of upright posture requires the integration of a

variety of sensory signals and the coordinated contraction of

numerous muscles. Postural control is typically studied by

examining the dynamic patterns in center of pressure (CoP)

trajectories while standing on a force platform. Internal neuromus-

cular noise and external noise from the force platform will both be

inherent in the signal. Physiologically, it has been suggested that

neural noise is the mechanism that leads to variability in
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behavioral performance [9–11] and that age-related increases in

neural noise leads to deficits in performance [12]. Mechanically,

the degree of external noise can vary depending on the type of

force platform used (e.g., strain gauge vs. piezoelectric vs. Hall

effect) and the data collection environment. Regardless of whether

noise originates from physiological or mechanical factors, it is

unknown how different levels of noise affect various measures of

entropy. Thus, it is often difficult to interpret complexity changes

in a biological system.

Direct measures of entropy, such as Kolmogorov-Sinai entropy,

can only be used on time series data that contain a very large

number of noise free data points [3]. CoP data is never noise free

and typically relatively short to minimize the effects of fatigue and

inattention. Therefore, direct measures of entropy cannot be used.

As a result, a variety of indirect measures that estimate entropy

and are more robust to time series length and noise have been

developed. For example, ApEn has been showed to accurately

discriminate between clinically distinct cohorts with short time

series with as few data points as N = 144 [13]. These indirect

measures are all termed ‘entropy,’ but each uses a different

algorithm to estimate the complexity of a time series. ApEn [3]

and Sample Entropy (SampEn) [5] are approximations of

Kolmogorov-Sinai entropy and calculate the likelihood that a

template pattern repeats in the time series. Alternatively,

Recurrence Quantification Analysis Entropy (RQAEn) is derived

from Shannon entropy and is calculated by examining the number

of line segments of varying length in a recurrence plot [6].

Although these measures are named ‘‘entropy’’, fundamental

differences in their algorithms make their similarities mostly

semantic. Thus, comparisons and interpretations across studies are

difficult. Understanding the properties of each analysis method is

critical in deciding whether the interpretation of pathological

movements observed in a given disorder should be inferred based

on the neural noise or loss of complexity hypothesis.

Another potential confound in the estimation of entropy in a

postural sway signal is the frequency at which the data are sampled.

It has been suggested that the fastest voluntary movement a human

can produce is 8–10 Hz [14]. Based on the Nyquist theorem, a

sampling frequency greater than 20 Hz would be sufficient to

provide an alias-free signal of postural sway and there would be no

further advantage of increasing the sampling frequency when

examining the dynamics of the behavior. However, postural control

occurs at a variety of time scales [15], so lower sampling frequencies

may not provide an accurate record of the system’s dynamics.

Conversely, oversampling could lead to co-linearities in the signal

[16], thus artificially affecting the dynamics.

Additionally, the length of a time series (number of data points

used in the calculation) has been shown to influence measures of

entropy [5]. The length of a time series can obviously vary between

studies if different sampling frequencies are used. In this case,

entropy measures may vary because more data points were used in

the entropy calculation or because (as discussed above) shorter time

scale dynamics were captured. Time series length can also vary when

data is collected over different intervals of time. Collecting for a

longer interval of time (at a set sampling frequency) will increase the

number of data points used in the entropy calculation and also

increase the likelihood that transient movement dynamics, not

related to a steady state, are captured. For example, when collecting

CoP data, if a participant shifts their body weight during a trial, it will

change the dynamics of the signal. Since these types of movements

are often the result of fatigue or a loss of attention, they are most

likely to occur at the end of a trial. Therefore, studies that collect for a

long duration of time may capture different dynamics compared to

studies utilizing trials that occur over shorter time intervals. Hence,

different sampling frequencies or different time series lengths, a

seemingly small difference from one study to the next, could have a

significant influence on the calculation of entropy and subsequent

interpretation of the data. Thus, when comparing data between

studies, both data collection time and sampling frequency should be

carefully considered. Within a study, these issues are not as

problematic since sampling frequency and data collection time are

typically constant. One exception is in studies where CoP is captured

during a transient movement (e.g. while reaching for an object). In

these types of studies, data is often analyzed from the start to the end

of the reach. Since reach duration can change from one trial and

condition to the next, data collection time can also vary.

The influence of noise and sampling frequency on three

estimates of entropy (ApEn, SampEn and RQAEn) was examined

by comparing synthetic signals against CoP data. Specifically, the

influence of noise was examined using three deterministic signals

with known noise properties and by adding white noise to CoP

signals. The influence of sampling frequency was examined by

downsampling the original CoP signal that was collected at

1000 Hz. The sampling frequency manipulation was also used to

yield insight regarding how time series length influences the

various entropy calculations. We hypothesized that an increase in

noise and sampling frequency would independently lead to higher

entropy values (i.e., increased complexity).

Methods

Participants and experimental procedure
Six participants (three males and three females; M age:

25.664.8 yrs; M mass 73.7618.0 kg) gave written informed

consent prior to data collection. The methodology and consent

form for this study were approved by the Purdue University

Institutional Review Board. All participants were free of any

neurological conditions that would influence balance. Each

participant stood on a force platform with eyes open, feet shoulder

width apart and arms comfortably at their side for 30 seconds.

CoP data were collected at 1000 Hz using one AMTI force

platform (Watertown, MA, USA).

General data processing
In typical quiet standing, the majority of CoP displacement occurs

in the anterior-posterior (AP) direction. Thus, only data in the AP

direction were analyzed. To ensure the analyzed data were recorded

when the participants were in a steady postural state, only the middle

eight seconds (8000 data points) of the time series was used in the

subsequent analysis. It has recently been suggested that examining

the dynamics of CoP is inappropriate due to the presence of long-

range correlations [17], which have been shown to potentially mask

the complexity of a time series [18]. To correct for this issue, an

increment (or difference) time series created from the original signal

was used to remove long-range correlations [18]. The increment

time series was created by calculating the difference between each

data point (i.e., [x(t+1) – x(t)]) in the original time series [17]. Roerdink

et al. [19] found differences in SampEn between the original and

increment CoP data in sitting and standing posture. However, it is

unknown how ApEn and RQAEn change due to the increment

transformation. Therefore, the original and increment CoP data

were examined in all entropy analyses (further described below).

Influence of noise on synthetic signals
The influence of noise on entropy was examined using

synthetic signals with known properties that are theoretically

related to postural control. There is disagreement in the literature

as to the type of noise found in a CoP signal. Some have
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suggested that postural control is a chaotic process [20] while

others have suggested that the process is stochastic [21,22]. To

account for these possibilities, three signals (chaotic [completely

deterministic], semi-deterministic and stochastic [non-determin-

istic]) were created (Figure 1). The alpha value in detrended

fluctuation analysis (DFA) [23] was used to quantify the long-

range correlations in each synthetic signal, which relates to

amount of noise. The first signal (chaotic; DFA a= 1.28)

consisted of the first 2000 points in the time series from the x-

value of the Lorenz attractor with a one point time step, which is

specified by the three following equations:

dx~s(y{x)

dy~x(r{z){y

dz~xy{bz

Parameters were set to s= 10, r= 28 and b= 8/3. The second

signal (semi-deterministic) was created by adding white noise to

the chaotic signal using the Jitter function in Matlab, which

multiplies all data points by the smallest distance between any

two points in the time series (scaling factor m). Using a m = 5000

units, the chaotic signal was transformed into a semi-deterministic

signal (DFA a= 1.02). Lastly, m = 15,000 units of white noise were

added to the chaotic signal to create a stochastic signal (DFA

a= 0.73).

Influence of noise and sampling frequency on CoP
signals

The influence of noise and sampling frequency on CoP entropy

was examined by adding m = 40–200 units of white noise (in 40

unit increments) to AP CoP signals at each of the sampling

frequencies. The 1000 Hz time series was downsampled to create

five new time series with the effective sampling rates of 500, 333,

250, 200 and 166 Hz in both the original and increment data,

yielding 25 new signals (5 noise levels by 5 sampling frequencies).

By altering sampling frequency and maintaining a constant

recording duration, the length of the time series was also

manipulated. A two-way repeated measures ANOVA was used

for each entropy estimate to determine whether entropy changed

with increased noise at the different sample frequencies. Follow-up

protected t-tests were used when appropriate. Significance was set

at p#0.05 for the ANOVA, while a more conservative value of

p#0.01 was used for the follow-up tests to control for multiple

pair-wise comparisons.

Influence of sampling frequency independent of noise
To determine the influence of sampling frequency independent

of artificial noise, the original and increment CoP data with no

added noise (m = 0) were independently examined at each of the

sampling frequencies. A repeated measures within-subjects

ANOVA was used to determine differences between each entropy

estimate as a function of sampling frequency. Follow-up protected

t-tests were used when appropriate. Significance was again set at

p#0.05 for the ANOVA, with a more conservative value of

p#0.01 used in the follow-up tests.

Entropy calculations
ApEn, SampEn and RQAEn were calculated in Matlab for

each of the signals using the algorithms published by Pincus [3],

Richman and Moorman [5] and Weber and Zbilut [6],

respectively. Computing ApEn, SampEn and RQAEn requires

the selection of m, r and t as input parameters. These are

commonly referred to as ‘‘embedding dimension’’, ‘‘radius’’ and

‘‘time delay’’, respectively. Although the input parameters share

the same terminology, their meaning within each entropy

estimation algorithm is different. ApEn and SampEn measure

the likelihood that a template pattern whose length (m) and

criterion of similarity (r) at time delay (t) will repeat in the time

series. Conversely, RQAEn attempts to unfold the attractor

landscape by looking for data points that recur within a radius (r)

in multiple dimensions (m) separated by a time delay (t).

Although the entropy estimates require the ‘‘same’’ input

parameters, their meaning is quite different since attractor

reconstruction is part of RQAEn and not part of ApEn and

SampEn.

For ApEn and SampEn, the template pattern’s length and

criterion of similarity were defined as m = 3 and r = 0.2 of the time

series standard deviation, respectively. These values are consistent

with previous studies that have examined the ApEn or SampEn

Figure 1. The Lorenz attractor with additive noise. The first 2000
points of the x-value of the Lorenz attractor using parameters of s= 10,
b= 8/3 and r= 28 for the deterministic (A), semi-deterministic (B) and
stochastic (C) synthetic signals.
doi:10.1371/journal.pone.0017696.g001
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of center of pressure [17,24–27]. Measures of complexity

exhibiting long-range correlations require the use of a time delay

(t) to accurately identify the dynamics of the system [18]. The

strength of the long-range correlations varied between the

synthetic signals, therefore entropy estimations were explored

with a t of 15 (appropriate for correlated signals) and 1

(appropriate for uncorrelated signals). A t of 15 was used for

the original CoP data. Long-range correlations should be

removed by calculating the difference from point-to-point (which

can be confirmed by DFA); therefore a t of 1 was used with the

increment CoP data.

To calculate RQAEn, the original CoP time series was

reconstructed into a multidimensional state space using a t of

15 data points and m of 3 as defined by the average

displacement [28] and false nearest neighbors [29] techniques,

respectively. A data point was counted as recurrent if it was

within an r of 20% of the mean distance separating points in

the reconstructed state space. Diagonal line structures in the

recurrence plots were identified when two or more consecutive

points were recurrent. RQAEn increases as more diagonal line

structures of varying length are observed within the recurrence

plot. RQAEn of the increment data was examined using the

same parameters, with the exception of the t parameter, which

was set to 1.

Although different input parameters could have been used in

each of the time series (especially the extremely noisy signals), it

would have been impossible to determine if a change in the

estimate of entropy was due to the signal’s dynamics or to the

change in the input parameters used in the calculation.

Therefore, a consistent set of entropy parameters was used for

the original and increment data sets in order to eliminate this

issue.

Results

Long-range correlations were present in the original CoP data

at all sampling frequencies and were successfully removed by the

increment method (Table 1). The results for both the original and

increment CoP time series (Figure 2) as a function of noise and

sampling frequency are presented below.

Influence of noise when calculating entropy using the
synthetic signals

ApEn, with a time delay of both 1 and 15, exhibited an

inverted-U function with increased noise. SampEn increased as

noise increased with both time delays. The opposite was observed

for RQAEn, where, entropy decreased with increasing noise

(Table 2).

Influence of noise and sampling frequency when
calculating entropy using the CoP signals

A noise by sampling frequency interaction was not observed in

any of the entropy measures assessed using the original CoP data

(all p.0.01). A main effect of noise was however observed for

ApEn (F4,20 = 29.75, p,0.01), SampEn (F4,20 = 23.69, p,0.01)

and RQAEn (F4,20 = 29.79, p,0.01) (Figure 3). A main effect of

sampling frequency was also observed for ApEn (F4,20 = 8.08,

p = 0.03), SampEn (F4,20 = 158.11, p,0.01) and RQAEn

(F4,20 = 11.25, p,0.01). Follow-up tests for the noise main effect

revealed the following: 1) ApEn systemically increased as noise

increased (p#0.01); 2) SampEn did not differ between signals with

40 and 80 units of noise (p = 0.012) or between signals with 160

and 200 units of noise (p = 0.013), but increased systemically as

noise increased in all other signals (p#0.01); and 3) RQA

systematically decreased as noise increased (p#0.01). Follow-up

tests of the sampling frequency main effect revealed the following:

1) lower ApEn was observed in the 500 Hz signal compared to the

333 Hz and 250 Hz signals (both p,0.01), no other changes in

ApEn were observed (p.0.01); 2) SampEn did not differ between

the 250 Hz and 200 Hz signals (p = 0.02) or between the 200 Hz

Figure 2. Example CoP plots. Example plot of the original center of
pressure (CoP) time series from one subject with a sampling rate of
166 Hz (A), the corresponding increment CoP time series (B) and a
zoomed in view of the increment CoP time series (C).
doi:10.1371/journal.pone.0017696.g002

Table 1. Detrended fluctuation analysis (DFA) alpha value for
the original and increment center of pressure (CoP) data as a
function of sampling frequency.

Sampling frequency Original CoP Increment CoP

500 Hz 1.6560.08 0.5860.17

333 Hz 1.6360.06 0.6460.15

250 Hz 1.6060.08 0.6560.14

200 Hz 1.5760.09 0.6660.13

166 Hz 1.5460.11 0.6560.12

doi:10.1371/journal.pone.0017696.t001
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and 166 Hz signals (p = 0.03), but increased as sampling frequency

decreased in all other signals (p,0.01); and 3) higher RQAEn was

observed in the 500 Hz signal compared to the 250 Hz and

200 Hz signals (both p,0.01); no other changes in RQAEn were

observed (p.0.01).

A noise by sampling frequency interaction was not observed

when assessing ApEn, SampEn or RQAEn using the increment

CoP data (all p.0.01). However, a main effect of noise was

observed in ApEn (F4,20 = 8.81, p = 0.01), SampEn (F4,20 = 13.09,

p,0.01) and RQAEn (F4,20 = 15.38, p,0.01) (Figure 3). A main

effect of sampling frequency was also observed in ApEn

(F4,20 = 2740.75, p,0.01), SampEn (F4,20 = 5.54, p = 0.03) and

RQAEn (F4,20 = 11.18, p,0.01). Follow-up tests of the noise

main effect revealed the following: 1) ApEn did not change as a

function of noise level (p.0.01); 2) higher SampEn was observed

in the signal with 40 units of noise compared to the signals with

80, 160 and 200 units of noise (p,0.01), no other changes in

SampEn were observed (p.0.01); and 3) lower RQAEn was

observed in the signal with 40 units of noise compared to the

signals with 120, 160 and 200 units of noise (p,0.01), no other

changes in RQAEn were observed (p.0.01). Follow-up tests for

the main effect of sampling frequency revealed the following: 1)

ApEn systematically decreased as sampling frequency decreased

(p,0.01); 2) SampEn was not affected by sampling frequency

(p.0.01); and 3) higher RQAEn was observed in the 500 Hz

signal compared to the 250, 200 and 166 Hz signals and a

higher RQAEn for the 333 Hz signal compared to the 200 Hz

signal (all p.0.01); no other RQAEn differences were observed

(p,0.01).

Influence of sampling frequency independent of noise
A significant effect of sampling frequency was found for ApEn

(F4,20 = 18.59, p,0.01), SampEn (F4,20 = 192.22, p,0.01) and

RQAEn (F4,20 = 6.65, p = 0.03) in the original CoP data with no

noise added. Follow-up tests revealed: 1) lower ApEn was observed

in the 500 Hz signal compared to all other signals (p,0.01), no

other differences in ApEn were observed (p.0.01); 2) SampEn did

not differ between the 250 Hz and 200 Hz signal (p = 0.077) or the

200 Hz and 166 Hz signal (p = 0.014), but increased as sampling

frequency decreased in all other signals (p,0.01); and 3) higher

RQAEn was observed for the 500 Hz signal compared to the

250 Hz signal (p,0.01) with no further observed differences in

RQAEn (p.0.01).

A significant effect of sampling frequency was also observed in

the increment CoP data when calculating ApEn (F4,20 = 267.72,

p,0.01). However, no effect was observed when calculating either

SampEn (p = 0.70) or RQAEn (p = 0.64). The follow up test

revealed that ApEn systematically decreased as sampling frequen-

cy decreased (p,0.01). Entropy estimations of the original and

increment CoP data at all sampling frequencies are found in

Table 3.

Table 2. Detrended fluctuation analysis alpha (DFA a),
Approximate Entropy (ApEn), Sample Entropy (SampEn) and
Recurrence Quantification Analysis Entropy (RQAEn) values for
each synthetic signal with a time delay (t) of 15 and 1.

Chaotic
signal

Semi-deterministic
signal

Stochastic
signal

DFA a 1.28 1.02 0.73

ApEn (t= 15) 0.58 0.97 0.89

ApEn (t= 1) 0.22 1.13 0.91

SampEn (t= 15) 0.80 2.06 2.21

SampEn (t= 1) 0.24 1.86 2.19

RQAEn (t= 15) 3.93 0.11 0.00

RQAEn (t= 1) 3.80 1.11 0.89

doi:10.1371/journal.pone.0017696.t002

Figure 3. Influence of noise on CoP. Approximate Entropy (ApEn), Sample Entropy (SampEn) and Recurrence Quantification Analysis Entropy
(RQAEn) as a function of added Gaussian noise for the original center of pressure (CoP) data (A, B and C) and the corresponding increment CoP data
(D, E and F).
doi:10.1371/journal.pone.0017696.g003
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Discussion

Three main findings were observed. First, increased noise in the

synthetic signals and original CoP data caused an increase in

SampEn, but a decrease in RQAEn. Second, the degree to which

sampling frequency (and time series length) influenced entropy in

the original CoP data varied between techniques. Third, the

increment CoP data was less influenced by both noise and

sampling frequency. Each of these main findings is further

discussed below.

Effects of Added Noise
All three entropy measures were differently influenced by noise.

This is a particularly important finding as noise is inherent in all

biophysical signals, of which the origin may be mechanical (due to

the properties of the recording equipment) or physiological (due to

various levels of neural noise). For example, different labs use

different force platforms when collecting CoP data [30] while

others compare populations with potentially different neural noise

levels [31]. Therefore, it is important to understand how different

levels of noise, sampling frequency, and time series length

influence various estimates of entropy.

We found that adding noise to the synthetic signals resulted in

distinct results for each entropy calculation. First, ApEn exhibited

an inverted-U pattern as the synthetic signal was shifted from

chaotic to stochastic, which leads to the interpretation that the

signal moderately contaminated by noise was the most complex.

SampEn was more robust to additive noise, as previously reported

in a study examining cardiac signals [5]. Specifically, SampEn

linearly increased as stochastic noise was added to the signal.

Unlike the ApEn results, these findings are intuitive as a SampEn

value of 0 is indicative of a regular pattern (e.g., a sine wave) and

values close to 2 indicate a more irregular, complex pattern.

Interestingly, RQAEn patterns were very different from both

ApEn and SampEn. Specifically, RQAEn decreased as stochastic

noise in the signal was increased. This finding is not intuitive since

a decrease in entropy is typically believed to occur as a signal

becomes more regular or sinusoidal. This finding is consistent with

previous research that has shown RQAEn fluctuates and produces

non-intuitive results when noise is added to a signal. Specifically,

Pellechia and Shockley [32] reported that RQAEn decreased

when comparing a complex signal (Lorenz attractor: 4.8 bits/bin)

to a regular signal (sine wave: 1.9 bits/bin) and further decreased

when noise was added to a sine wave (0.3 bits/bin). The current

study extends past research by showing that added noise results in

decreased RQAEn in both a physiological and synthetic signals.

The reason RQAEn produces these counterintuitive results

arises from the manner in which it is calculated from the

recurrence plot. To illustrate, the recurrence plots of two sine

waves are presented in Figure 4; one without noise and one with

200 units of noise. The sine wave with no noise forms long

diagonal line segments that contain many points (Figure 4A). The

result is a recurrence plot that does not contain many line

segments, but the few line segments it does contain vary in length

(Figure 4B). Since RQAEn is based on the number of different

diagonal line lengths, the sine wave produced a relatively high

RQAEn. However, when white noise was added, the long line

segments were broken up (Figure 4C). The recurrence plot for the

noisy sine wave contained many more line segments that were, for

the most part, only two points long (Figure 4D). As a result,

RQAEn was reduced simply because of the high consistency in the

length of the line segments. These results suggest that caution

should be taken when using RQAEn to measure the complexity of

a signal, as changes in entropy may be due to noise or signal

regularity factors. Also, it should be noted that unlike ApEn and

SampEn, RQAEn assesses the complexity of the recurrence plot

rather than the complexity of the original signal. Thus, extending

RQAEn results back to the original signal can result in erroneous

interpretations.

The effects of noise on the CoP data were similar to those of the

synthetic signals. In general, ApEn and SampEn tended to

increase as noise was added to the signal. For RQAEn, an inverse

relationship was again observed, with increased noise leading to

lower RQAEn. Yet, these estimates and effects can be confounded

by differences in sampling frequency, which varies widely between

studies of postural control and other physiological systems.

Sampling Frequency Effects
Changes in sampling frequency can influence entropy calcula-

tions in two ways. Firstly, as sampling frequency increases,

movement dynamics over smaller time scales are captured.

Secondly, with increases in sampling frequency, more data points

are included in the final data sample. The influence of sampling

frequency when calculating ApEn, SampEn and RQAEn was

examined by downsampling the original 1000 Hz CoP signal,

producing five new signals with different effective sampling rates.

With the exception of the signal with the highest sampling

frequency (500 Hz), both ApEn and RQAEn were robust across

all sampling frequencies. SampEn, however, showed significant

differences across all sampling frequencies in both the noise free

CoP signal and in the CoP signal with added noise. This was

surprising since SampEn has been reported to be unaffected by

time series length in cardiac signals [5]. Care should therefore be

taken when comparing SampEn between studies where the CoP

time series length and sampling frequencies are different.

The observed decrease in SampEn at higher frequencies

suggests SampEn is more sensitive to the co-linearities that are

present in an oversampled signal. Co-linearities occur when a high

sampling rate (well above the Nyquist) is used to capture a low

frequency movement (e.g., CoP). These co-linearities ultimately

lead to a decrease in entropy because the signal appears overly

regular due to an increase in the number of matches to the

template pattern. In this case, the decrease in entropy is an artifact

of the sampling rate and does not reflect the underlying control

process. Interestingly, ApEn and RQAEn were not affected by an

Table 3. Approximate Entropy (ApEn), Sample Entropy
(SampEn) and Recurrence Quantification Analysis Entropy
(RQAEn) values for the original and increment center of
pressure (CoP) data as a function of sampling frequency.

Sampling
frequency ApEn SampEn RQAEn

Original CoP 500 Hz 0.3760.11 0.4060.13 4.6960.76

333 Hz 0.4360.11 0.5160.13 4.6060.79

250 Hz 0.4660.10 0.6060.15 4.5760.74

200 Hz 0.4560.10 0.6360.13 4.5160.73

166 Hz 0.4360.10 0.6860.14 4.4660.75

Increment CoP 500 Hz 1.2860.02 2.0560.04 0.9660.03

333 Hz 1.0960.02 2.0860.04 0.9660.05

250 Hz 0.9660.03 2.0660.05 0.9760.05

200 Hz 0.8360.04 2.0860.07 0.9860.06

166 Hz 0.7660.05 2.0960.11 0.9460.10

doi:10.1371/journal.pone.0017696.t003
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increase in sampling frequency until the 500 Hz threshold,

suggesting that co-linearities do not affect these measures at lower

sampling frequencies. As previously mentioned, this finding is

counter to other papers in the literature that have suggested

SampEn is less sensitive to time series length than ApEn

(comparisons between SampEn and RQAEn have not been

reported in previous literature). The discrepancies between this

study and previous studies likely resulted from the way time series

length was manipulated. In the previous studies, data was collected

for a longer period of time to increase the length of the data series.

This suggests that SampEn may be more robust to shorter time

series when co-linearities are not an issue. However, when the

length of the time series is determined by altering the sampling

rate, SampEn may produce artifacts in the final entropy measure.

This is an interesting finding given that different labs routinely

collect CoP data at different frequencies. When comparing results

between studies researchers should therefore consider the

sampling frequency that was used.

Thus, it appears that sampling frequency rather than number of

data points is the primary concern when calculating entropy from

CoP data. This fact is important since previous research has

indicated that trials with a small amount of data points can produce

erroneous entropy results. Thus, it would be tempting for researchers

to sample data at excessively high frequencies to obtain a sufficiently

Figure 4. Recurrence plots of sine waves. Recurrence plot (A) and entropy histogram (B) of a sine wave collected at 166 Hz with no noise added.
Recurrence plot (C) and entropy histogram (D) of a sine wave collected at 166 Hz with noise added (scaling factor (m) = 200).
doi:10.1371/journal.pone.0017696.g004
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large number of data points, as opposed to collecting data for a

prolonged period of time. While the above is true, there is the caveat

in the study of nonlinear biological systems. Extending the sampling

period could in itself introduce different dynamics arising from the

system entering into a new state, so it is imperative that an

appropriate sample duration be utilized so that a large enough

window is used to analyze the system’s dynamics. The results

presented above can, however, be used as a guide to help researchers

determine the maximum sampling rate for entropy calculations.

Effects of Long-Range Correlations
A further potential confound when assessing the entropy of

biological signals is the presence of long-range correlations in the

time series. The validity of complexity estimates in such signals has

been called into question, as the presence of long-range

correlations may mask the underlying dynamics of the system

[18]. To remove the long-range correlations found in the CoP

time series, an increment method has been employed [17,18].

Using DFA, our data show that the increment method was

successful at removing the long-range correlations. This resulted in

a decreased effect of sampling frequency when calculating

SampEn and RQAEn in the increment CoP data in comparison

to the original CoP data. Similarly, the effect of added noise was

minimized in all measures of entropy when increment CoP data

was used. These results suggest that long-range correlations should

be removed from CoP data prior to calculating entropy as they

can confound the interpretation of the entropy results.

Theoretical and practical reflections on entropy
comparisons

The data presented in this paper is not intended to suggest that

measures of entropy are impractical or too difficult to correctly

employ. Rather, it has often been shown that these techniques

provide information about the health, stability, flexibility and

adaptability of the postural system that is not captured using

traditional techniques. It should also be noted that many of the

issues raised in this paper relate to making between-study

comparisons. However, employing a within-study comparison

allows researchers to compare the dynamics of behavior across

different subject groups and/or experimental conditions and is less

susceptible to the aforementioned issues. Within a study, sampling

rate, data collection length and mechanical noise are typically held

constant and therefore cancel out across conditions. Thus, relative

comparisons can be confidently made.

While making relative comparisons may resolve many of the issues

raised in this paper and allow for the identification of how an

experimental condition influences the dynamics of behavior, such

comparisons are not necessarily beneficial to a clinician or

practitioner. For example, it has been shown that the ApEn of a

knee angle trajectory time series during treadmill locomotion

decreases following an ACL injury [33]. However, the significance

of this data is derived from a between-subjects comparison (i.e.,

healthy controls vs. ACL-injured subjects) rather than from a relative

comparison using a within-subjects design (i.e., pre/post injury).

Since the range of ‘‘healthy’’ gait dynamics vary from individual to

individual, even within an uninjured population, it is impossible to

know exactly how an injury affects a specific individual’s behavior

without having baseline measures (i.e., pre-injury behavior). Similar

issues are present when comparing patients with a neurological

disorder relative to non-afflicted individuals. In both cases, biological

noise inherent to the disorder could be present, resulting in

differences between subject populations. When these types of studies

are conducted, the results from this study could be used as a guideline

to help researchers appropriately calculate entropy. As the field

moves forward, especially in the rehabilitation and medical domains,

it will become imperative that boundaries in the metrics that describe

‘‘healthy’’ and ‘‘unhealthy’’ behavior are identified. Furthermore, the

development of consistent measurement and analysis techniques will

be essential to the creation of normative data sets.

Aside from practical issues, theoretical implications should also be

taken into consideration. Our findings demonstrate that while

comparisons across groups and experimental conditions can be

made, much still remains to be understood regarding the properties

of biological signals. Understanding the underlying source of

dynamic complexity and noise (both internal and external) within

biological signals, such as postural sway, remain essential to gaining

insight into the underlying connections between physiological

systems and the pathophysiology of disease and disorder.

Summary
A major driving force in the literature has been the view that a

decrease in entropy supports the loss-of-complexity hypothesis [4]

which states that a frail or diseased system exhibits a less complex

pattern. Evidence for this hypothesis has been observed in heart

rate [34], blood pressure [4] and stride-to-stride intervals during

gait [33]. However, it has also been proposed that increased neural

noise underlies behavioral differences [9–11] and age-related

deficits in performance [12]. The findings in the current study

illustrate the difficulty in separating complexity from randomness

in a physiological signal that can be contaminated by internal and

external sources of noise.

Factors such as noise level and sampling frequency can affect the

estimation of entropy and caution should be exhibited when

interpreting different entropy estimates. For this reason, an increase

in entropy cannot generally be interpreted as a reflection of the

same physiological changes across all studies. Estimations of entropy

can be useful clinical tools to identify levels of adaptability during an

assessment and/or rehabilitation program [35]. It is especially

important to understand how the estimate of entropy can change

within a specific population, as it can potentially lead to insight into

the mechanisms of a disorder or lead to novel clinical interventions.
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