The Nemo Bus: A Third Generation Nanosatellite Bus for Earth Monitoring and Observation

FREDDY M. PRANAJAYA
Manager, Advanced Systems Group
SPACE FLIGHT LABORATORY

University of Toronto Institute for Aerospace Studies
4925 Dufferin Street, Toronto, Ontario, Canada, M3H 5T6

24th Conference on Small Satellites, 9-12 August 2010
Presentation Outline

- UTIAS Space Flight Laboratory
- Generic Nanosatellite Bus
- NEMO Bus
- Bus Comparison
- NEMO-AM
- AM Instrument
- Conclusion
Space Flight Laboratory

- End-to-end capability: mission analysis \Rightarrow hardware design and manufacturing \Rightarrow assembly and verification \Rightarrow launch and on-orbit operations

- Develops high-performance missions using nanosatellite (up to 20 kg) and microsatellite (up to 100 kg) using *microspace approach*

- Self-managed launch procurement and launch campaign to ensure responsive, cost-effective access to space

- Full-time professionals with microspace systems expertise
 Graduate students as part of University of Toronto M.Sc. Program

- Four operational spacecraft:
Generic Nanosatellite Bus

- **Architecture:**
 - Common technology and components
 - Scalable system: add or subtract subsystem as needed
 - Redundant connections and cross-strapping

- **Computer:** up to three computer in each spacecraft (HKC, ACC, Payload)
 - 60 MHz ARM7TDMI, 512+ MB flash, 2MB EDAC RAM

- **Power:** TJ cells, Li-ion battery
 - 9+W power generation, 3.6-4V bus, peak power tracking, battery charge/discharge regulator

- **Communication:** UHF uplink and S-band downlink
 - 4 kbps uplink, 1 Mbps downlink, omni-directional coverage

- **Attitude Determination and Control:** Passive to Full 3 axis:
 - Magnetometer, coarse and fine sun sensors, rate sensors, star tracker
 - Permanent magnet, hysteresis rods, magnetorquer, reaction wheel
 - Extended Kalman Filter, pointing accuracy is \(\sim 2 \text{ deg with FSS, } \sim 1 \text{ arc min with ST} \)
Generic Nanosatellite Bus

- **Propulsion:** Cold gas, SF$_6$
 - Up to 30 m/s cold gas, directly scalable to higher performance chemical

- **Structure:** Al or Mg alloys
 - Up to 17 x 13 x 8 cm, 2 kg payload in a 20 x 20 x 20 cm, 7.5 kg bus

- **Thermal Control**
 - Mostly passive, active control as required

- **XPOD Separation System**
 - Scalable separation system, up to 20x20x40 cm, 15 kg spacecraft mass

- **Current GNB Missions**
 - **AI SSat-1** A1S Monitoring Mission (July 2010)
 - **CanX-3A/ B/ C/ D/ E/ F** Bright Star Photometry (2011/2012/2013)
 - **CanX-4 & CanX-5** Formation Flying Demonstrator (2011)
 - **CanX-7** Technology Demonstrator (2013)
The Next Generation?

- **Look at past, present, future mission requirements, trend in technology**
- Advanced payloads requirements:
 - Power for high data throughput (high power transmitter in higher bands)
 - Volume
 - Aperture (exterior surface)
 - More system resources (three-axes stabilization)
- Improved system efficiency
 - Payload mass fraction
 - Power density ratio
- **SFL Philosophy**
 - Microspace Approach
 - Cost effective, fast-response
NEMO: Nanosatellite for Earth Monitoring and Observation

- **Architecture:**
 - Innovative connectivity for high-throughput, scalable system
 - Maintain heritage to GNB components
 - 15 kg, 20 by 20 by 40 cm bus

- **Power:**
 - 80 W power generation (based on 27% TJ cells)
 - 15V bus, peak power tracking, battery charge/discharge regulator
 - 100 Wh Lithium-ion battery

- **Communication:**
 - Omni-directional coverage
 - 4 kbps UHF uplink (TT&C)
 - 2 Mbps S-band downlink (TT&C, Data)

NEMO has sufficient resources to support a dedicated 30+ Mbps X-band TX as part of the payload
NEMO

- **Attitude Determination and Control:**
 - Passive to Full 3-axis
 - Magnetometer, Rate Sensor, Fine Sun Sensor, Star Tracker
 - Magnetorquers, Reaction Wheels

- **Instrument Computer:**
 - 100+ Mbps I/O
 - 512+ MB storage

- **Structure:**
 - Aluminum
 - Magnesium
 - Titanium
 - Carbon Fibre

- **Separation System:**
 - XPOD Duo
 - Compatibility across multiple LV
NEMO vs. Others

<table>
<thead>
<tr>
<th></th>
<th>CanX-2</th>
<th>NTS</th>
<th>GNB</th>
<th>NEMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spacecraft Mass</td>
<td>3.5 kg</td>
<td>6.5 kg</td>
<td>7.5 kg</td>
<td>15 kg</td>
</tr>
<tr>
<td>Spacecraft Volume</td>
<td>10 x 10 x 34 cm</td>
<td>20 x 20 x 20 cm</td>
<td>20 x 20 x 20 cm</td>
<td>20 x 20 x 40 cm</td>
</tr>
<tr>
<td>Peak Power @ 25 °C, BOL</td>
<td>2-7 W</td>
<td>4-7 W</td>
<td>7-9 W</td>
<td>80 W</td>
</tr>
<tr>
<td>Payload Mass</td>
<td>1 kg</td>
<td>2 kg</td>
<td>2 kg</td>
<td>9 kg (4)</td>
</tr>
<tr>
<td>Payload Volume</td>
<td>1000 cm³</td>
<td>1700 cm³</td>
<td>1700 cm³</td>
<td>8000 cm³</td>
</tr>
<tr>
<td>Payload Power @ % duty cycle</td>
<td>1-2 W @100%</td>
<td>2 W @20-30%</td>
<td>3-4 W @100%</td>
<td>45 W @20% min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 W max</td>
<td>60 W max</td>
</tr>
<tr>
<td>ACS stability</td>
<td>~ 2 degrees (1)</td>
<td>Passive</td>
<td>~ 2 degrees (2)</td>
<td>~ 2 degrees (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>~ 60 arc-sec (3)</td>
<td>~ 60 arc-sec (3)</td>
</tr>
<tr>
<td>Downlink</td>
<td>32 k – 1 Mbps</td>
<td>32 k – 1 Mbps</td>
<td>32 k – 2 Mbps</td>
<td>32 k – 2 Mbps (5)</td>
</tr>
<tr>
<td>Service</td>
<td>Operational (April 2008)</td>
<td>Operational (April 2008)</td>
<td>Operational (July 2010, AlSSat-1)</td>
<td>2011-</td>
</tr>
</tbody>
</table>

1. Nadir pointing with magnetometer, sun sensor and one reaction wheel
2. With magnetometer, fine sun sensor and three reaction wheels
3. With star-tracker
4. Including payload-specific equipment
5. Using existing SFL transmitter; NEMO has sufficient power for a 30 Mbps X-band transmitter at 20% duty cycle

10 Aug 2010

Pranajaya - The NEMO Bus – 24th Conference on Small Satellite
• Mission Objective
 - Aerosol Monitoring over India
 - High AOT has been reported

• Collaboration with
 Indian Space Research Organization (ISRO)
 - SFL-designed bus and instrument
 - ISRO science team
 - Funded by ISRO

• Instrument
 - Baseline instrument: three-band, multi-angle, dual-polarization instrument
 - Enhanced instrument: Addition of NIR and SWIR bands under consideration
 Instrument is SWIR capable, but not implemented in the baseline design
 - Scalable GSD, 40-200m
 - 120 km ground swath
 - 80,000 square km daily
NEMO-AM details:
- NEMO bus
- 15 kg, 20 by 20 by 40 cm main bus
- 100+ Mbps data generation rate
- Three-axes magnetometer and fine sun sensors.
 - 1.9 degrees pointing accuracy (ground tracking).
- Magnetic torquers and nano reaction wheels.
- 401-403 MHz uplink
- 2.2 GHz downlink.
- Ground stations in India (primary) and Canada (secondary)
 - As part of SFL ground station network.
- Polar Satellite Launch Vehicle
AM Observation

- Multi-spectral observation
 - Visible bands: 400-500 nm, 500-610 nm, and 610-780 nm (baseline)
 - NIR+ SWIR (enhanced)

- Polarization observation:
 - 0 degrees
 - 90 degrees

- Multi-angle observation
 - Adjustable observation angles:
 - observation angles can be adjusted along-track and cross-track
 - Ground target tracking mode

- Observation is downlink limited
 - Select Target → Select GSD → Select GS → Determine Coverage
 - Observation Planning → Perform Observation → Download Data
AM Observation

- Band choice:
 - Detection of different aerosol types
 - Similarity with current/upcoming missions

- Baseline Observation bands:
 - 480-500 nm – high scattering
 - 545-565 nm
 - 605-625 nm – aerosol detection aided by chlorophyll absorption

- Enhanced Observation bands under consideration
 - 860-880 nm – aerosol detection over oceans
 - 1580-1620 nm – detection of larger aerosol specimen
AM Observation

Source: Kurien, NEMO-AM Spectral Band Selection, ISRO-SAC, 2010
AM Observation

<table>
<thead>
<tr>
<th>POLDER</th>
<th>PARASOL</th>
<th>APS</th>
<th>CALI PSO</th>
<th>EOSP</th>
<th>MODIS</th>
<th>NEMO-AM</th>
</tr>
</thead>
<tbody>
<tr>
<td>480-500</td>
<td>480-500 P</td>
<td>402-422 P</td>
<td>395-425 P</td>
<td>405-420</td>
<td>438-448</td>
<td></td>
</tr>
<tr>
<td>555-575</td>
<td>555-575</td>
<td>545-565 P</td>
<td>532</td>
<td>546-556</td>
<td>545-565 P</td>
<td></td>
</tr>
<tr>
<td>758-768</td>
<td>758-768</td>
<td>742.4-757.5</td>
<td></td>
<td>673-683</td>
<td></td>
<td></td>
</tr>
<tr>
<td>745-785</td>
<td>745-785</td>
<td>742.4-757.5</td>
<td></td>
<td>673-683</td>
<td></td>
<td></td>
</tr>
<tr>
<td>845-885 P</td>
<td>845-885 P</td>
<td>845.5-884.5 P</td>
<td>870-890</td>
<td>841-876</td>
<td>860-880 P *</td>
<td></td>
</tr>
<tr>
<td>900-920</td>
<td>900-920</td>
<td>900-920 930-950</td>
<td>950</td>
<td>915-865</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1020 L</td>
<td>1064 L</td>
<td>1020 L</td>
<td>1064 L</td>
<td>1220-1280 P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1360.5-1395.5 P</td>
</tr>
<tr>
<td>1580-1640 P</td>
</tr>
<tr>
<td>2212.5-2287.5 P</td>
</tr>
</tbody>
</table>

Source: Kurien, NEMO-AM Spectral Band Selection, ISRO-SAC, 2010
Conclusion

• NEMO-AM design feasibility has been established
 – Preliminary Design Review held on 8 Jul 2010 at ISRO Satellite Application Centre
 – Proceeding with characterization of the prototype instrument
 – Investigation into NIR and SWIR response
 – Instrument Qualification Test in Q3 2010
 – Target delivery in Q3 2011

• Third-generation bus that redefines the state-of-the-art of nanosatellites
 – Large payload capacity
 – High peak power generation
 – Resource for high-power payloads and support components

• Innovative architecture that builds upon the heritage of GNB design
 – Make use of many GNB components