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Abstract— An overview of the purpose and operation of the
SeaWinds Calibration Ground Station is presented. Several
possible signal measurement techniques are analyzed in order
to create a feasible signal metrology for the NASA SeaWinds
instrument. This analysis helps to advance the level to which
future scatterometer instruments may be calibrated, providing
the potential for a more accurate scatterometer data product.

I. I NTRODUCTION: ESTIMATION OF SCATTEROMETER

SIGNAL PARAMETERS AND ITS APPLICATION

A scatterometer is an orbiting radar that allows scientists
to study the Earth’s environment on a global scale. It can be
used to measure properties of both the atmosphere and the
Earth’s surface. For example, it can measure wind velocity
to understand weather patterns and detect climatic changes,
observe polar sea ice (track icebergs), and estimate surface
moisture or vegetation to detect drought or deforestation. In
order to produce accurate estimates of these environmental
factors, the scatterometer must be precisely calibrated.

The SeaWinds Calibration Ground Station (CGS) was de-
veloped by NASA Jet Propulsion Laboratory (JPL) to receive
SeaWinds transmissions, allowing passive measurement of the
signal characteristics in post processing. Independent charac-
terization of these transmissions has allowed JPL to verify
correct operation of the SeaWinds scatterometer, increasing the
validity of their environmental measurements. In this paper,
the SeaWinds Calibration Ground Station is presented and
parametric estimation methods are introduced as possible ways
to precisely measure key characteristics of the scatterometer
transmissions.

II. T HE SEAWINDS SCATTEROMETER(TRANSMITTER)

The SeaWinds scatterometer is located onboard the
QuikSCAT satellite in an 803-km sun-synchronous low earth
orbit. The scatterometer transmits electromagnetic pulses to
the Earth’s surface, from which the backscatter is received and
observed in order to indirectly obtain environmental measure-
ments. QuikSCAT’s orbit allows SeaWinds to illuminate more
than 90% of the Earth’s surface in 24 hours, usually passing
over the BYU Microwave Earth Remote Sensing Laboratory
(Provo, Utah) twice daily.

SeaWinds transmits pulses at a chirped carrier frequency
centered atf0 = 13.402 GHz. This frequency was also used in
the NSCAT project and was chosen because it has been found
that frequencies near 13.4 GHz are “sensitive to capillary
waves on the ocean surface induced by local winds” [1].

Linear FM chirped pulses are transmitted from two alter-
nating antenna beams. The transmitted pulses, the analysis of
which is the main focus of this paper, are linear FM chirped.
The outer antenna is elevated 46◦ from nadir and transmits
vertically polarized pulses; the inner antenna is elevated at
40◦ and transmits pulses that are horizontally polarized [1].
The pulse widthτ = 1.5 ms and nominal pulse repetition
interval (PRI) of 5.4 ms were based on “spacecraft altitude and
antenna scanning geometry” and were chosen to “produce a
beam pattern which covers the scan swath without gaps” [1].
Note that since the transmitted pulses successively alternate
between the inner and outer beams, the effective PRI of each
beam is approximately 10.8 ms.

..

nadir track

cross track

802 km

orbit track

outer
beam

inner
beam 700 km

900 km

18 rp
m

7 km/sec

SeaWinds

Fig. 1. SeaWinds ground track [2].

The antenna rotates at 18 rpm, tracing out a helical pattern
on the Earth’s surface (Fig. 1). As the antenna rotates, the
two-way Doppler shift observed by SeaWinds from echoed
pulses varies as a cosine of amplitude 480 kHz (430 kHz)
for the outer beam (inner beam) [1]. Commanded Doppler
compensation is used to precompensate the carrier frequency
f0 for the anticipated Doppler effect expected in echoed
pulses, so that no net Doppler shift results (within 10 kHz)
[3]. This allows the SeaWinds receiver to operate with a fixed
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TABLE I

SEAWINDS KEY PARAMETERS [1] [3]

Parameter Value

Instrument frequency 13.402±0.0005 GHz

Chirp rate -250.73 kHz/ms

Transmit pulse width 1.5 ms

Nominal PRI 5.4 ms

Doppler tracking range ±600 kHz

Antenna spin rate 18 rpm

Antenna peak sidelobe ≤ -15 dB

Outer beam

Look angle 46◦ from nadir

3-dB beamwidth 1.4◦(el) x 1.7◦(az)

Range Delay 8.3 ms

Inner Beam

Look angle 40◦ from nadir

3-dB beamwidth 1.6◦(el) x 1.8◦(az)

Range Delay 7.3 ms

frequency response intended for the echo returns [1]. In order
to account for orbital geometry, the commanded Doppler is
parameterized by a lookup table as QuikSCAT traverses its
orbit. The commanded Doppler consists of a cosine function
with phase, amplitude, and bias parameters for 256 equally-
spaced temporal orbit steps [1].

III. T HE CALIBRATION GROUND STATION (RECEIVER)

The CGS (Fig. 2) was previously located in White Sands,
New Mexico, in order to calibrate the scatterometer onboard
the QuikSCAT satellite (launched in June 1999). It was ac-
quired by the BYU Microwave Earth Remote Sensing (MERS)
Laboratory in March 2002 in order to continue monitoring
SeaWinds on QuikSCAT and to observe transmissions from
the SeaWinds scatterometer onboard the ADEOS-II satellite,
launched in December 2002. However, the ADEOS-II satellite
suddenly lost power in October 2003 so that only SeaWinds
on QuikSCAT is currently observed by the CGS.

The CGS, positioned on the roof of the Clyde Building on
BYU campus, regularly receives SeaWinds transmissions. In
order to successfully receive a signal, the computer-controlled
pedestal is programmed to point the receiving antenna at
SeaWinds during each flyby. The CGS antenna is held fixed
during each beam capture to reduce jitter. This is possible due
to the fact that the CGS antenna has a wide main lobe. During
each flyby, the CGS is illuminated for several brief intervals
called sweeps (Fig. 3). Pulses with adequate SNR within these
sweeps are detected, from which key signal parameters are
extracted during post processing.

A. Operation and Maintenance

Usually, only ten seconds of SeaWinds transmissions (cor-
responding to three beam sweeps) are sampled for the pass
of each beam over the CGS, for a total of 40 s of received
signal. These 10-s captures are stored in successive 100-ms
“.raw” files for offline processing. Each “.raw” file contains a
1024-byte header which reveals basic sampling information,

Fig. 2. Receiver of the SeaWinds Calibration Ground Station. Tubes pump
cool air into the radome and protect sensitive cables connected to computers
below.
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Fig. 3. The outer beam of SeaWinds sweeps across the main lobe of the
CGS receiver during a flyby over Provo, Utah.

including start time, beam description, and first and second-
order signal statistics. Depending on computer hardware re-
strictions, these files can be linked together to form one large
data capture.

Meticulous hardware and software maintenance of the CGS
has been required to sustain the CGS and archive its data for
post processing. Over the course of the project, the following
tasks have been completed:

1) Converted the CGS to receive SeaWinds transmissions
from QuikSCAT after the failure of SeaWinds on
ADEOS-II.

2) Maintained CGS hardware and software to correctly
capture SeaWinds transmissions.

3) Archived captured data on a daily basis; backed up these
archives to CD-R.

4) Researched and developed parameter estimation meth-
ods to characterize received transmissions by extracting
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the following parameters:

• Signal power
• Pulse duration
• Pulse repetition interval (PRI)
• Pulse bandwidth
• Chirprate
• Doppler shift
• Doppler compensation
• Phase consistency (coherency)

B. Sampling Scheme

The receiving antenna is a circularly polarized corrugated
horn antenna. The CGS receiver is a double conversion super-
heterodyne that consists of two parts: the front end is located
in an insulated metal box mounted on the pedestal within
the radome, while the rest is cascaded via coaxial cable to
a component on the computer racks. The signal is folded
to 35 MHz, sampled, and decimated to yield an effective
5.1875 MHz sample rate. The undersampling in this process
leads to aliasing which results in a reversal in the frequency
spectrum (Fig. 4), where the SeaWinds linear FM downchirp
is perceived as an upchirp.
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Fig. 4. CGS downmixing scheme.

IV. PULSE DETECTION

SeaWinds pulses are linear frequency-modulated (LFM) at
µ = −250.73 kHz/ms. The pulses have durationτ ≈ 1.5
ms, yielding a pulse bandwidth ofB ≈ 375 kHz. The CGS
receives pulses at various SNR depending on the alignment of
the SeaWinds and CGS antenna beams. Parameter estimation
of these pulses requires that the pulses be found under both
high- and low-SNR conditions. A brief explanation of linear
FM waveforms is given, followed by techniques to find their
location in noise.

A. Linear FM Waveforms

LFM waveforms are a subclass of polynomial-phase signals
of the form

x(t) = Re
{

Aejφ(t)
}

(1)

where the instantaneous phase of orderp is defined asφ(t) =∑p
i=0 ait

i. The instantaneous frequency of the waveform may
be obtained by applying a time derivative to the instantaneous
phase and converting from radians to Hz, yielding

f(t) =
1
2π

d

dt
φ(t). (2)

For an LFM waveform,

φ(t) = 2π
(µ

2
t2 + f0t

)
+ φ0 (3)

with chirp rateµ (Hz), frequencyf0 (Hz), and phaseφ0 (rad).
Notice that the instantaneous frequencyf(t) = µt + f0 of the
LFM waveform is swept linearly in time.

B. Determination of Temporal Pulse Location

In order to extract pulse parameters, pulses must be located
in time. Ambient noise complicates this process to the point
of making the problem nontrivial. However, once one pulse is
located, the temporal locations of many other pulses within its
vicinity may be estimated by knowing the approximate PRI
a priori. A high-SNR pulse may be chosen as a reference
point from which the temporal regions of other pulses may
be initially predicted (assuming the actual PRI deviates only
slightly from thea priori PRI) and then accurately located.

Recall that “.raw” files are equipped with headers that
contain statistical information about the data samples. To
quickly locate a pulse with relatively high SNR within a
SeaWinds pass, the “.raw” file with maximum signal variance
is selected since variance may be used as a metric of average
power [4]. Next, the sample of maximum amplitude within
this interval is identified, which is assumed to lie within the
pulse of maximum power within the file under consideration.
Since we know the approximate duration of each pulse, a time
interval may be derived where the boundaries of the pulse must
lie in relation to the lone sample.

1) Definition of Temporal Pulse Boundary:Determining
the boundaries of chirped pulses is somewhat arbitrary since
there is no precise definition of the pulse boundary in the time
or frequency domain. Therefore, we must pick a definition
to be consistent. It may be simple to identify the boundaries
of a pulse in a plot of signal power; in other cases, noise
may render a pulse undetectable. Thus, defining the temporal
boundary of a pulse is complicated by the existence of the
noise floor in the received signal. Since the noise floor always
exists, simply defining the pulse to start wherever the signal
begins to have nonzero amplitude is impossible. Thus, the edge
of the noisy pulse must be defined in some other way.

Possible definitions of the pulse boundary may be made
with respect to signal power or frequency. For example, the
pulse may be defined to start corresponding to the interval over
which the average power per sample is maximized, or where
the zero-crossings of the waveform start to be evenly spaced
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in time. Since the resolution of defining the pulse boundary
with respect to power is not limited by the wavelength of the
received signal, it is a more logical choice.

2) Incoherent Matched Filtering:If the duration of the
pulse is known but its location in a temporal region is
unknown, it may be found by convolving the signal power
with a boxcar (rectangle of unity height) of the same length
as the pulse. The resulting apex (Fig. 5) reveals the sample
corresponding to the trailing edge of the pulse. Although easy
to implement, this method requiresa priori knowledge of
the pulse length, which may vary slightly from what it is
assumed to be. However, the duration may be estimated by
observing boundaries of pulses with high SNR near the pulse
under consideration. Obviously, this could lead to inaccurate
estimates of the locations of the leading and trailing edges of
the pulse.
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Fig. 5. Computation of pulse boundaries using incoherent matched filtering.

3) Integrated Signal Power:Alternatively, if the duration
of a pulse is unknown, the pulse may be found by observing
the average power per sample as a function of the proposed
leading and trailing edges of the pulse. Notice how the average
power per sample is maximized (Fig. 6) as the proposed
leading edgeτ crosses the true leading edge of the pulse.
If the area of integration encompasses the entire pulse, the
start of the pulse is indicated by maximizing the function of
average power per sample with respect to the placement of the
leading edge of the pulse. However, in low-SNR cases it may
be difficult to resolve this point.

V. M ATCHED FILTER BANK

A matched filter correlates a received signal with a signal
we wish to detect (Fig. 7), providing the maximum possible
output SNR when the received signal contains white Gaussian
noise [5]. This inherently requiresa priori knowledge of
signal parameters such as chirprate and initial frequency;
otherwise, the matched filter will not provide an optimal output
SNR. Hence, its purpose is not intended to measure signal
parameters, but to detect known signals. However, estimation
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Fig. 6. Computation of pulse boundaries using integrated power per sample.

may be implemented by using a bank of matched filters over
a range of signal parameters.
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Fig. 7. Output of matched filter: cross correlation of filter with received
signal.

VI. REGRESSION ONUNWRAPPEDSIGNAL PHASE

Under high-SNR conditions, several signal parameters may
be estimated by applying a least-squares approximation to the
unwrapped signal phase [6]. First, the instantaneous phase
φ(t) of the signalejφ(t) is unwrapped. In this case, quadratic
regression is applied toφ(t) = 2π

(
µ
2 t2 + f0t

)
+φ0, revealing

the signal parameters: chirp rateµ, frequencyf0, and phase
φ0. However, this technique is complicated by the fact that
it is difficult to perform phase unwrapping at low SNR, due
to noise. An equivalent technique is to apply a least-squares
approximation to the zero-crossing times of the signal. Notice
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that the coefficients oft in the argument of the cosine may
easily be found by setting the argument equal to odd multiples
of π

2 , which correspond to the zero-crossings of a cosine:

φ(t) = n
π

2
, (4)

wheren is odd. A linear system may then be solved for the
coefficients of the quadratic phase.

To obtain the zero-crossing times, coupled samples that
are opposite in sign must be found (since a zero-crossing
must occur somewhere between these two samples). Linear
interpolation may be justified by observing the linear portion
of the cosine function near the zero-crossings of the waveform.
Using y = mt + b = 0, wherey is the waveform amplitude,
m is the linearly interpolated slope,t is the time, andb is
the amplitude of the sample we are referencing from, the
linearly interpolated zero-crossing of the waveform occurs at
t = −b/m.

Accuracy may be increased by upsampling the waveform
to a higher sampling rate. This allows the estimation of zero
crossings to be more accurate by linearly interpolating between
samples that are closer to the linear portion of the sinusoidal
waveform.

VII. JOINT TIME-FREQUENCYTRANSFORMS

Time-frequency distributions (TFDs) are joint density func-
tions of time and frequency that allow the observation of a
time-changing signal spectrum.

A. Spectrogram

The Short-Time Fourier Transform (STFT) is one of the
most widely known time-frequency transforms. It is simply
the result of the Fourier transform on successive windowed
portions of data. The moving window limits the interval over
which the Fourier transforms are taken, effectively dividing
the signal into time segments so that frequency change may
be observed over time. The window functionw(t) thus em-
phasizes a specific time interval of the signal, suppressing the
signal outside of this interval. The STFT is defined as

Sx(t, f) =
1
2π

∫
x(τ)w(τ − t)e−j2πfτdτ (5)

By sliding the window over timet, a plot of signal energy is
created over the time-frequency plane. It can be interpreted as
the projection of the signal onto a set of bases parameterized
by time and frequency. Since the bases are of finite time
duration, the varying signal spectrum may be observed as a
function of time [5].

The squared STFT results in the spectrogram, a time-
varying analysis of the signal spectrum. Disadvantages of the
spectrogram include lack of finite support and localization
tradeoff between time and frequency [7].

B. Wigner Distribution (WD)

The Wigner Distribution (WD), also known as the Wigner-
Ville Distribution (WVD) when using the analytic signal, is a
popular TFD (Fig. 8) well-known for its high resolution and

convenient properties. Since a window is not used in the WD,
its resolution is not impeded by the limitations introduced by
a window function [8]. The WD is defined as

Wx(t, f) =
∫

x(t +
τ

2
)x∗(t− τ

2
)e−j2πfτdτ. (6)

which is the Fourier transform of the instantaneous autocor-
relation functionRx(t, τ) = x(t + τ

2 )x∗(t − τ
2 ) [9]. Just

as the Fourier transform is a projection of a signal onto a
basis of complex exponentials equally spaced in frequency, the
Wigner distribution is a signal projection onto autocorrelation
functions of the signal.
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Fig. 8. Extended Discrete-Time Wigner Distribution (EDTWD) of a linear
FM chirp.

Attempts to create a discrete-time version of the Wigner
Distribution have resulted in implementations that suffer from
inherent aliasing problems. To overcome aliasing, the signal
must be sampled at twice the Nyquist rate or the analytic
signal (which eliminates the existence of negative frequencies
in the frequency domain) must be used. A popular discrete-
time implementation is known as the Discrete-Time Wigner
Distribution (DTWD):

Wx(n, f) = 2
∑

k

x(n + k)x∗(n− k)e−j4πfk. (7)

C. Radon Transform of the WD

Maximum likelihood (ML) detection of a linear FM signal
in white noise is accomplished by integrating along all lines of
the WD [10], [11]. Detection of a linear FM signal is declared
if the maximum value of integration exceeds a specified
threshold. This line integration is also known as the Radon
transform, an advantage of which is the restriction of the line
integration to specific regions of the time-frequency plane,
easing the computational burden of detection [11].

The Radon Transform of a two-dimensional function
w(x, y) is

R {w(x, y)} =
∫

w(r cos(φ)−s sin(φ), r sin(φ)+s cos(φ))ds

(8)
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wherer ands are thex andy axes rotated counterclockwise
by φ radians [10]. A convenient property of the Radon
Transform of the WD is that it can be efficiently implemented
via a dechirping algorithm that does not require the direct
calculation of the WD.

D. Radon-Wigner Transform

The Radon Transform of the WD may be written as

RWx(r, φ) = R {Wx(t, f)} (9)

=
∫

Wx(t, f0 + µt)dt
∣∣∣µ=− cot(φ)/2π

f0=r/2π sin(φ)
. (10)

and may be equated to dechirping in discrete-time as [10]:

∑
n

W e
x(n, f0 + µn) =

∣∣∣∣∣ 1√
N

N−1∑
n=0

x(n)e−j2π( µ
2 n2+f0n)

∣∣∣∣∣
2

(11)
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E. SNR Considerations

Since a low SNR leads to less accurate calculations (due
to high levels of noise), we discriminate high-SNR pulses
from those of low SNR. Before calculating SNR, the level of
observed ambient noise must be computed. First, an interval
of the CGS capture must be selected that does not contain any
pulses. The mean signal power in this interval is computed to
estimate the average power of the noise floor. To obtain the
SNR for each pulse, the noise floor is subtracted from the
average power of the noisy signal to obtain an estimate of the
actual signal power in each pulse, from which the noise power
is divided to obtain the SNR.

F. Doppler Analysis

After obtaining the parameter estimates of several succes-
sive pulses as SeaWinds approaches and recedes from the
CGS, the Doppler shift may be observed by locating pulses in

time, obtaining frequency estimates, and interpolating Doppler
shift where low-SNR pulses or an absence of pulses occur.

Recall that the Doppler compensation cancels the two-
way Doppler effect in the RCS backscatter. Hence, the CGS
observes the sum of a one-way Doppler shift (caused by the
QuikSCAT satellite approaching or receding from the CGS)
and SeaWinds’ two-way Doppler compensation. This causes
an apparent sinusoidal oscillation in the observed frequencies
of consecutive pulses (Fig. 10).
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VIII. F UTURE RESEARCH

This work is still in progress. Although several methods
exist to estimate parameters of linear FM waveforms, the
accuracy of such methods needs to be evaluated. Once this
is done, decision regions may be created which choose algo-
rithms according to appropriate SNR. Additionally, the effects
of nonconstant signal amplitude, which occcurs during sweeps
of the SeaWinds scatterometers will be considered.

IX. CONCLUSION

The SeaWinds Calibration Ground Station is essential to
verify correct operation of the SeaWinds scatterometer. This
verification helps NASA JPL to improve the accuracy of their
data products, advancing the quality of their environmental
estimates, thereby furthering the ability to understand the
Earth’s environment.
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