Scanning Electron Microscopy: Tissue Characteristics and Starch Granule Variations of Potatoes After Microwave and Conductive Heating

J. Huang
W. M. Hess
D. J. Weber
A. E. Purcell
C. S. Huber

Follow this and additional works at: https://digitalcommons.usu.edu/foodmicrostructure

Part of the Food Science Commons

Recommended Citation

This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Food Structure by an authorized administrator of DigitalCommons@USU. For more information, please contact rebecca.nelson@usu.edu.
In order to determine cytological effects of microwave heating compared to conductive heating, whole potatoes were heated in a microwave oven in plastic bags for 0.5, 1 and 2 minutes and in boiling water for 5, 10 and 20 minutes. Both heating treatments caused swelling and partial disruption of starch granules. However, as observed with scanning electron microscopy, swelling patterns of starch granules were different in potatoes using the two heating processes. In conductive heating potatoes were heated from the outside to the inside. Microwave heated potatoes were heated fairly uniformly in different regions of tubers. The weight loss of potatoes was insignificant with both heat treatments. The softening of potatoes heated in boiling water corresponded with conductive heating patterns. With both conventional heating and microwave heating potatoes were softer outside than inside, although this pattern did not correspond with heating patterns with microwave heating.
were at more advanced stages of gelatinization than the comparable microwave-heated samples.

Chen et al. (1971) studied textural changes of the potato tissue caused by heat. When the temperature of a potato is raised above 50°C, starch granules start to swell and begin to gelatinize at 64-71°C. This process results in cells becoming less angular and in cell separation. Sogginess of the tissue may also occur (Roberts and Proctor, 1955). Reeves (1954) reported that upon prolonged heating, the hemicellulose and cellulose components undergo some breakdown. Collins and McCarty (1969) observed that microwave energy produced comparable softening in about one-third the time required by boiling water. They also reported that a sensory panel was unable to distinguish significant differences in texture between potatoes cooked in water and by microwaves. Preliminary observations indicated that the microwave-cooked potatoes might possess a more mealy texture.

Different heating patterns with microwave heating have been reported by several researchers. Chen et al. (1971) conducted heating studies on whole white potatoes with microwave energy (1 kW at 2450 MHz) and boiling water, using white potatoes with a mean radius of 1.95 cm and a mean weight of 29 g. When temperature measurements were made after various treatment durations, a temperature gradient from core to periphery was observed with microwave heating which was opposite to the gradient for heating in boiling water. Later Ohlsson and Risman (1978) carefully studied temperature distribution in spheres and cylinders of potatoes heated with microwave energy. They found more pronounced core heating at 2450 MHz in spheres with diameters in the 2- to 6-cm range. However, earlier work by Collins and McCarty (1969), in which microwave energy was compared with boiling water, indicated a temperature gradient from the surface to the core instead of the core to the surface shown by Chen et al. (1971) and Ohlsson and Risman (1978). It is difficult to generalize across a number of studies in which heating conditions are different.

Physical properties of foods are very often correlated with their microscopic structure. The purpose of this study was to determine swelling patterns of starch granules and heating patterns of potatoes during microwave and conductive heating. Scanning electron microscopy (SEM) was used to characterize changes in potato starch granules during microwave heating and conductive heating.

Materials and Methods

Raw Potatoes

Russet potatoes were selected from a commercial supplier. Whole potatoes with uniform size, mean radius (5.8-6.1 cm) and mean weight (117-162 g), were used.

Conductive Heating Process

Whole potatoes were heated in boiling water according to the stages listed in Table 1. Temperatures at the center, side, and end regions of potatoes were measured with a DM 302 series thermocouple. Iron constantin thermocouples were inserted so that one was at the mass center of the potato, one at 2-3 mm deep at one end and another at 2-3 mm on the side. Heating experiments were replicated four times. Temperatures were recorded every minute during the heating process. After heating, samples were cooled immediately with running tap water. Tissues from the center, side, and end regions of each conductive-heated potato were chosen as representative regions of potatoes for SEM studies.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Center temp. °C</th>
<th>Heating time minutes</th>
<th>Center temp. °C</th>
<th>Heating time minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>46</td>
<td>5</td>
<td>38</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>65</td>
<td>10</td>
<td>66</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>90</td>
<td>20</td>
<td>80</td>
<td>2</td>
</tr>
</tbody>
</table>

1Stages:
1. Center of potatoes heated to temperatures which are below their starch gelatinization.
2. Center of potatoes heated to temperatures where starch gelatinizes.
3. Center of potatoes heated to temperatures which are above starch gelatinization.

Fig. 1. Starch granules in raw potatoes. Bar = 100 μm.

Fig. 2. Center region of boiled potato sample heated to 46°C. Fig. 3. Side region of boiled potato sample heated to 46°C. Fig. 4. End region of boiled potato sample heated to 46°C. Fig. 5. Center region of boiled potato sample heated to 65°C. Fig. 6. Side region of boiled potato sample heated to 65°C. Fig. 7. End region of boiled potato sample heated to 65°C. Bar = 100 μm.
Potato starch granules
Sampling and Microwave Heating Process

Whole potatoes were placed in plastic bags and heated in the center of a microwave oven according to the stages listed in Table 1. The microwave oven was operated at 2450 MHz frequency. Immediately after heating, thermocouples were inserted as in conventional heated potatoes. Temperatures at the center, side, and end regions of each sample were measured at 30 second intervals until the temperatures at the center began to decrease. Samples were then quickly cooled with running tap water. Tissues from the center, side, and end regions of microwave heated potatoes were chosen as representative regions of potatoes for SEM studies. Heating experiments were replicated four times.

Preparation For SEM

After processing, samples from representative regions of potatoes, including the unheated control, were frozen in liquid Freon followed by liquid nitrogen before being fractured with razor blades. Fractured samples were then freeze-dried 12-24 hours. The temperature of the condensing plate was -65°C. The dry samples were mounted on aluminum stubs and a modified Polaron E5300 freeze-drier was used to gold sputter samples. The fractured surfaces of samples were examined with a JEOL 840A SEM.

Water Loss and Hardness Measurement

Potato samples were weighed before and after heat treatments so that water loss could be measured. Firmness of the heated potatoes was measured by use of a Voland-Stevens-LFRA Texture Analyzer using a 1.6 mm diameter stainless steel plunger. The plunger was positioned to penetrate to the center of potatoes at a right angle to the surface. Force (kg/cm²) required to penetrate into the center of each potato was recorded as hardness. Travel speed of the plunger was 0.5 mm/sec.

Results

Unheated Control Samples

Starch granules in unheated potatoes were smooth and small and were not fused (Fig 1). Individual granules were distinct.

Swelling Pattern of Conventional Heated Samples

Representative regions from each stage are shown in Figures 2-10 and the characteristics of each region at every stage are summarized in Table 2. In Stage 1 (Figures 2-4) starch granules progressively clumped and were swollen at the edges of potatoes. Figures 5-7 show that at Stage 2 coalescence occurred only in outer regions of boiled samples while a considerable number of unswollen starch granules was still present in the inner region. Figures 8-10 show that for Stage 3 all the starch granules were swelled. In the center region the starch was coarsely reticulated (Fig. 8). In the side region, where temperatures were higher, the reticulation was finer (Fig. 9). In the end region, where temperatures were near boiling temperatures, the cell contents were homogenous (Fig. 10). In summary, gelatinization first occurred in end regions of stage 1, and advanced until it reached stage 3 where most of the starch appeared to be gelatinized. Separation of adjacent cell walls did not occur even after boiling the potatoes for twenty minutes in stage 3.

Table 2. Characteristics of Progressive Gelatinization of Boiling Potatoes

<table>
<thead>
<tr>
<th>Stage</th>
<th>Center Region</th>
<th>Side Region</th>
<th>End Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>mostly individual small grains</td>
<td>clumped small granules</td>
<td>large clustered granules filled whole cell</td>
</tr>
<tr>
<td>2</td>
<td>small to medium clumped granules</td>
<td>large swollen granules</td>
<td>large swollen granules</td>
</tr>
<tr>
<td>3</td>
<td>swollen granules with reticulated structure</td>
<td>swollen granules with reticulated structure</td>
<td>swollen granules with reticulated structure</td>
</tr>
</tbody>
</table>

Table 3. Characteristics of Granulation of Microwave and Treated Potatoes

<table>
<thead>
<tr>
<th>Stage</th>
<th>Center Region</th>
<th>Side Region</th>
<th>End Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>small individual granules</td>
<td>small clumped granules</td>
<td>small clumped granules</td>
</tr>
<tr>
<td>2</td>
<td>clustered large granules filled whole cell</td>
<td>large swollen starch granules, individual granule no longer visible</td>
<td>large swollen starch granules</td>
</tr>
<tr>
<td>3</td>
<td>large swollen starch granules</td>
<td>large swollen starch granules</td>
<td>large swollen starch granules</td>
</tr>
</tbody>
</table>

Fig. 8. Center region of boiled potato sample heated to 90°C. Fig. 9. Side region of boiled potato sample heated to 90°C. Fig. 10. End region of boiled potato sample heated to 90°C. Fig. 11. Center region of microwaved potato sample heated to 38°C. Fig. 12. Side region of microwaved potato sample heated to 38°C. Fig. 13. End region of microwaved potato sample heated to 38°C. Bar = 100 μm.
Potato starch granules
Table 4: Weight Losses of Treated Potatoes

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Weight (g) Before Treatment</th>
<th>Weight (g) After Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conventional Treated</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>179</td>
<td>179</td>
</tr>
<tr>
<td>62</td>
<td>185</td>
<td>185</td>
</tr>
<tr>
<td>90</td>
<td>178</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>Microwave Treated</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>192</td>
<td>191</td>
</tr>
<tr>
<td>62</td>
<td>199</td>
<td>192</td>
</tr>
<tr>
<td>82</td>
<td>200</td>
<td>191</td>
</tr>
</tbody>
</table>

Swelling Patterns of Microwave Heated Samples

Representative regions of microwave treated samples from each stage are shown in figures 11-19. The characteristics of each region at each stage are summarized in Table 3. No granulation occurred in stage 1 (Figs. 11-13). However, the small unswelled granules appeared to be different from the original unheated sample. The granules in this stage started to clump.

In stages 2 and 3 (Figures 14-19) coalescence of starch grains occurred in both inner and outer regions of the microwave samples. The whole potato appeared to be evenly gelatinized at these stages and irregular shaped granules filled the whole cells in both the outer and inner regions of potatoes. In addition there were large intercellular spaces in the samples.

Heating Patterns

The time-temperature profiles for the boiling water and microwave treated samples are shown in Figs. 20-23. With microwave heating, shorter times (approximately ten times shorter) were required for the potato starch to reach gelatinization temperatures in the center of potatoes.

There was a significant difference in time-temperature profiles between microwave and conductive heating. During conductive heating the temperature of boiled samples was higher in peripheral potato tissues. The temperature of peripheral regions of potatoes reached about 90°C within one to two minutes when put into boiling water and remained at this temperature throughout the heating, while the temperature in the center regions of potatoes increased slowly to 90°C (Figs. 20-22). On the other hand, microwave heating temperatures were fairly uniform in different regions of tubers (Fig. 23).

Weight Loss and Texture of Treated Potatoes (Microwave versus Boiling Water)

The weight loss (Table 4) of potatoes, for the most part, was insignificant with both treatments. However, the weight loss of microwave treated potatoes was more evident than with the boiling water treated potatoes (Figs. 24-25).

The hardness of raw potatoes and treated potatoes is shown in Figs. 26-28. The hardness of boiling water heated potatoes increased from the outside layer to the inside layer. The hardness of the center part did not decrease until the center part was heated to gelatinization temperatures (Fig. 27). With raw potatoes (Fig. 26), boiling water heated potatoes (Fig. 27), and microwave heated potatoes (Fig. 28) the skin offered resistance to penetration. Once the skin was penetrated, stress depended upon the hardness of the tissue. The softest point of the tissue was evident by the minimum values on the stress/depth curves (Figs. 26-28).

The hardness of microwave heated potatoes stayed at about the same level at stage 1 while the hardness at stages 2 and 3 increased from the outside to the inside as was observed with the boiling water treated samples (Fig. 28).
Fig. 22. Penetration of heat into potato treated by boiling water during stage 3.

Fig. 23. Penetration of heat into potato treated by microwave during stage 1, 2, and 3.

Fig. 24. Weight loss of potatoes during boiling water heating.

Fig. 25. Weight loss of potatoes during microwave heating.

Fig. 26. Hardness of raw potatoes.

Fig. 27. Hardness of potato treated by boiling water at stage 1, 2 and 3.
Potato starch granules

Fig. 28. Hardness of potato treated by microwave at stage 1, 2 and 3.

hardness of the center regions generally did not change much until the center regions were heated to gelatinization temperatures.

Discussion

Goebel et al. (1984) studied the distribution of gelled, chalky and paste areas of wheat starch-water dispersions heated in beakers with microwave ovens and conventional ovens. They indicated that the gelled regions where granulation first occurred were the inner regions of the microwave samples and the outer regions of the convection samples. Contrary to this report, we found that the coalescence of starch grains occurred in both inner and outer regions of the microwave samples. Nevertheless, the gelatinization did first occur in the outer region of the conventional samples. During normal cooking in boiling water the heated potatoes at stage 1 primarily consisted of unswellend starch granules. Only some outer regions contained swelled starch granules (Figs. 2-4). However, in microwave heated samples, the starch granules in both outer and inner regions had a similar appearance when they were heated to 40°C (stage 1) (See Figs 11-13). At temperatures which caused gelatinization (stage 2), gelatinization occurred in both inner and outer regions with microwave heated potatoes (Figs. 14-16). No apparent structural differences were found between outer regions and center regions at stages 2 and 3 with microwave heating (Figs. 14-19).

There appears to be no consistent temperature gradient between the core and the surface of potatoes with microwave heating (Fig. 23). This suggests that the difference in starch granule swelling patterns could be closely related to different heating patterns between conductive heating and microwave heating. There are a number of reports on microwave heating patterns of potatoes. However, the conclusions were different. For example, Chen et al. (1971) demonstrated a temperature gradient from potato cores to peripheral regions with microwave heating and the opposite gradient for heating in boiling water. Conversely, Collins and McCarty (1969) reported a temperature gradient from the surfaces of potatoes to the cores instead of the core to the surface gradient shown by Chen et al. (1971). Therefore, further research needs to be conducted to clarify the issues of microwave heating patterns.

Turpin (1989) suggested that although conventional and microwave heating methods have the same objective, conduction heating has very different thermodynamic effects. With conduction heating, energy is added to the food molecules in the form of heat. With microwave heating, energy is added in the form of electromagnetic radiation, at a frequency of 2450 MHz and converts to heat at the target. Microwave heating of these samples took about one-tenth as much time as conduction heating to reach pre-determined temperatures (Table 1). It also explains the different starch swelling patterns and heating patterns between microwave and conductive heating.

Large intercellular spaces were evident with samples heated by both methods (Figs. 8-10, 14-19). However, the cell walls remained intact. The possible reasons for the prominent intercellular spaces are: 1) Granule shrinkage may have been due to increased packing density caused by gelatinization and retrogradation of the starch. 2) The intercellular spaces may have been created by partial solubilization of pectin in middle lamellas of cells which lead to easy separation of cells. Sefaddesh and Stanley (1979) reported that the greatest structural change of legumes during cooking was the breakdown of the middle lamella leading to the easy separation of intact cells. Nevertheless, they also stated that there was less evidence for the breakdown of the middle lamella in soybeans.

On the other hand, there was a marked difference in the appearance of starch granules between conventionally heated samples and microwave heated samples at stage 3. The starch granules from conventionally heated samples appeared to be more reticulated (Figs. 8-9) while the starch granules from microwave treated products tended to be more compact and dense (Figs. 17-19). This implies that conduction heating may hydrate more starch causing partial disruption of starch granules. Langton and Hermansson (1989) suggested that heat treatment of wheat starch dispersions gave rise to two stages of swelling and solubilization. Solubilization was observed in the center of granules during the first stage of swelling. Further swelling caused granule deformation and caused amylose release. Using an electron microscope, Buttrose (1963) concluded that acid caused corrosion of starch granules. Apparently, the heating treatment used in this study also caused the starch granule disruption (Figs. 8-9, 17-19). Nevertheless different heating methods resulted in different degrees of disruption. The microwave heated samples (Figs. 17-19) appeared to be less hydrated than the conventionally heated samples (Figs. 8-10). The microwave heated samples were less reticulated (Figs. 17-19).

Buttrose (1963) pointed out that starch...
granules had a layered structure when they were heated to gelatinization temperatures (Figs. 7, 14-16). However, the layered structures were invisible when the temperature was above the gelatinization temperature (Figs. 8-9, 17-19).

The softening trends of conduction heated potatoes corresponded with heating patterns. In other words, softness increased following the increase of temperature (Figs. 20-22, 27). On the other hand, the softening trends of microwave treated potatoes at stages 2 and 3 could not be explained by their heating patterns while softening trends of microwave treated potatoes at stage 1 corresponded with the heating pattern (Figs. 23 and 28). This implies that softness does not solely rely upon temperature with microwave heating. Further investigations are necessary to elucidate the understanding of the relationship between softness, temperature of potatoes, and time exposed to microwave energy. Compared to conventionally heated potatoes, microwave treating did result in a little more moisture loss (Figs. 24-25). However, the relationship between hardness of heated potatoes and their moisture losses seems to be indistinct.

The findings in this study suggest that microwave heating may be more desirable for commercial products than conventional heating because of density. Moledina et al. (1978) suggested that round and dense granules were desirable when economy packaging and shipping is used. In addition, he pointed out that round and dense granules also lend themselves well to automatic mashed potato machines which are becoming popular in restaurants and institutions.

Acknowledgements

This research was supported in part by the American Potato Division of Basic American Foods. We also thank Connie Swensen and James V. Allen for technical assistance.

References


Discussion with Reviewers

Reviewer I: Were the boiled samples placed in plastic bags to prevent the introduction of additional water into the cells?

Authors: No. We purposely heated the samples with boiling water so that water in the samples would not evaporate. In this way we were able to study the impact of moisture loss on potato structure and softness between conventionally and microwave heated samples. Moisture loss was not evident with conventionally heated samples, but was evident with microwave heated samples.

Reviewer I: Why does Figure 14 look so different from the other micrographs?

Authors: No. We purposely heated the samples with boiling water so that water in the samples would not evaporate. In this way we were able to study the impact of moisture loss on potato structure and softness between conventionally and microwave heated samples. Moisture loss was not evident with conventionally heated samples, but was evident with microwave heated samples.

Reviewer I: J. Grider