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ABSTRACT

A POSITION ALLOCATION APPROACH TO THE BATTERY ELECTRIC BUS

CHARGING PROBLEM

by

Alexander Brown, Master of Science

Utah State University, 2024

Major Professor: Dr. Greg Droge, Ph.D.
Department: Electrical and Computer Engineering

With an increasing adoption of Battery Electric Bus (BEB) fleets, developing a reliable

charging schedule is vital to a successful migration from their fossil fuel counterparts. In

this work, a BEB charging scheduling framework that considers spatiotemporal schedule

constraints, fixed route schedules, fast and slow charging, and battery dynamics is modeled

as a Mixed Integer Linear Program (MILP). The MILP is modeled after the Berth Allocation

Problem (BAP) in a modified form known as the Position Allocation Problem (PAP). Linear

battery dynamics are included to model the charging of buses while at the station. To model

the BEB discharges over their respective routes, it is assumed each BEB has an average

kWh charge loss while on route. The optimization coordinates BEB charging to ensure that

each vehicle remains above a specified state-of-charge (SOC). The model also minimizes the

total number of chargers utilized and prioritizes slow charging for battery health. The model

validity is demonstrated with a set of routes and is compared to a heuristic algorithm based

on charge thresholds referred to as the Qin-Modified method.

The MILP approach is then further extended via a Simulated Annealing (SA) imple-

mentation. The framework maintains the same considerations and while further developing

a method to minimize the demand cost. Two generation mechanisms are implemented for
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the SA algorithm denoted as the “quick” and “heuristic” implementations, respectively.

Similarly, the model validity is demonstrated by utilizing a set of routes sampled form the

Utah Transit Authority (UTA) and comparing the results to the MILP which is utilized as

a baseline as it is formulated in a way that can guarantee optimality. The Qin-Modified

is again presented as another means of comparison. The results presented show that the

“heuristic” approach was able to generate a solution comparable to that of the MILP ap-

proach over similar execution times. The SA PAP framework is further extended to in-

corporate non-linear battery dynamics to further increase the accuracy of the SOC model

during a BEBs charging phase.

(109 pages)
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PUBLIC ABSTRACT

A POSITION ALLOCATION APPROACH TO THE BATTERY ELECTRIC BUS

CHARGING PROBLEM

Alexander Brown

With an increasing adoption of Battery Electric Bus (BEB) fleets, developing a reliable

charging schedule is vital to a successful migration from their fossil fuel counterparts. In this

work, a BEB charging scheduling framework that considers fixed route schedules, multiple

charger types, and battery dynamics is modeled as a Mixed Integer Linear Program (MILP).

The MILP is modeled after the Berth Allocation Problem (BAP) in a modified form known

as the Position Allocation Problem (PAP). The optimization coordinates BEB charging

to ensure that each vehicle remains above a specified charge percentage. The model also

minimizes the total number of chargers utilized and prioritizes slow charging for battery

health. The model validity is demonstrated with a set of routes and is compared to a

heuristic algorithm based on charge thresholds referred to as the Qin-Modified method.

The MILP approach is then further extended via a Simulated Annealing (SA) imple-

mentation. The framework maintains the same considerations and while further developing

a method to minimize the peak power use (demand cost). Two mechanisms are implemented

for the SA algorithm denoted as the “quick” and “heuristic” implementations, respectively.

The model validity is demonstrated by utilizing a set of routes sampled form the Utah

Transit Authority (UTA) and comparing the results two other models: the MILP approach

and the Qin-Modified. The MILP is utilized as a baseline as it is formulated in a way that

can guarantee optimality. The results presented show that the “heuristic” approach was

able to generate a solution comparable to that of the MILP over a similar execution times.

The SA PAP framework is further extended to incorporate non-linear battery dynamics to

further increase the accuracy of the SOC model during a BEBs charging phase.
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CHAPTER 1

INTRODUCTION

With an ever-increasing interest in the electrification of vehicles in the push for green

transportation, many organizations and companies have been looking to adopt a fleet of

electric vehicles [1]. This transition also stems into the electrification of public bus trans-

portation via battery electric buses (BEBs) [2, 3]. In particular, agencies such as the Utah

Transit Authority (UTA), have directed focus in replacing their fleets with BEBs. Alongside

all the benefits that are associated with BEBs come new challenges that must be addressed

prior to their integration into mainstream utilization. The energy storage capacity of BEBs

is typically significantly less than their combustion counterparts while also have significantly

longer refueling periods [2,4]. This is further complicated due to the care that must be taken

in prolonging the lifespan of the battery [5–7], and the fact that BEB refueling is no longer

a fixed cost (i.e. price per gallon multiplied by tank size). Utility companies, in addition

to charging for the total energy consumed over a pay period, often further introduce a

demand cost. The demand cost is based on the peak power drawn during the pay period

(i.e., charging multiple BEBs simultaneously), and can significantly impact the overall mon-

etary cost of maintaining the BEBs. Due to these factors, the charging schedules for the

BEBs significantly impacts the overall cost of utilizing the fleet. This work introduces a

scheduling framework for a fixed-schedule fleet of BEBs that utilizes linear and non-linear

battery dynamics models, accounts for multiple charger types, allows partial charging, and

attempts to minimize the monetary cost by considering the total energy consumed by the

schedule as well as peak power use.

BEBs have been in service for many major markets, North America, Europe, and

China, for more than a decade with expected growth in the near future [8]. The Asia

Pacific market is forecasted to dominate the sales and some major companies of the industry

have also begun to enter the global market such as Volvo, BYD, and Proterra by 2025
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[8]. Much focus has been placed on the engineering of individual BEBs such as battery

type, brake regenerative charging, optimal battery charging, and battery degradation [8–11].

The problems of route scheduling, charge scheduling, and optimizing the infrastructure

are problems of recent interest, and are therefore timely and an ever increasingly relevant

problems [12–14].

Literature shows an interest in solving the problem of assigning BEBs to charging

queues or optimizing their infrastructure [12–15]. In fact, many works attempt to solve

both problems simultaneously barring some simplification such as only allowing chargers of

a single type [16,17], or if multiple chargers are allowed, then one of each type is assigned at

separate locations. Others have also assumed that a BEB shall recieve full charge upon each

arrival [14,15,18,19]. Some works on the stochastic effects of energy consumption while on

route for a BEB as well as trip times [20, 21]. One other source, as far as the research for

this work has shown, describes a method of producing a BEB charge schedule wih a high

fidelity while accounting for multiple charger types as well as being able to minimize over

the total charger count [22].

The work described in this thesis is similar to the work in [22]; however provides an

alternate method of modeling the problem in what is known as the Position Allocation

Problem (PAP). The PAP is modeled after the Berth Allocation Problem (BAP), which

was designed to optimally schedule cargo vessels to be berthed and serviced [23–25]. The

PAP utilizes this notion to develop a model of assigning EVs to positions on a charger with

a predefined charge duration [26].

Because the PAP’s modeling is similar to that of the BAP, literature from the BAP

provides a foundation for the development of the PAP. The BAP has been studied in lit-

erature since the 1990s and provides a depth of work to derive from [27]. The work to

be introduced promises much potential for further research and development in regard to

scheduling BEBs. What follows is a Mixed Integer Linear Program (MILP) and Simulated

Annealing (SA) implementation of the PAP for BEB charge scheduling that consider rele-

vant constraints for BEB schedules, considers linear and non-linear battery dynamics, and
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minimizes monetary cost.

The work proceeds as follows: Chapter 2 provides the state of the art along with various

introductory material pertinent to this work. Chapter 3 constructs the MILP for BEB

scheduling, including modifications to the PAP queuing constraints and the development

of a dynamic charging model. An example is presented as a demonstration of the model’s

utility. The results are subsequently provided and discussed. In Chapter 4, the previously

derived BEB charging model is adapted for a Simulated Annealing (SA) implementation.

This method maintains the same considerations from the MILP implementation, but further

accounts for a peak power demand cost. An example is then provided with discussion on

the results. Chapter 5 further adapts the SA approach by deriving and incorporating non-

linear battery dynamics. The example from Chapter 4 is run again utilizing the non-linear

battery dynamics. The results are then presented and discussed.
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CHAPTER 2

BACKGROUND AND RELATED WORK

The BEB queue scheduling problem is one that has been of increasing interest and

relevancy in the EV/BEB industry. Thus, it is important to address the state of the art

by introducing relevant problems in BEB queue scheduling, which will be addressed first.

A detailed problem description shall then be presented to provide a basis of understand-

ing for the work described in this thesis. Relevant introductory theory will be presented

throughout.

2.1 State Of The Art of Battery Electric Bus Charging

Works concerning charge planning often use a version of the vehicle scheduling problem

[16, 17, 28–31], while others have based their implementation on alternative methods [22,

26]. [22] utilizes a network flow approach to model the scheduling while [26] utilizes what

is known as the Position Allocation Problem (PAP). Nearly all the literature reviewed

considered consumption costs [18, 20, 29, 30, 32–35], while fewer consider demand costs [16,

32–35]. Many of these works introduce simplifying assumptions for the sake of computation.

For example, some approaches only consider fast chargers during planing [13,14,19,20,31].

Approaches that consider more than one charger type typically isolate the specific charger

types at different locations [16,17].

Variants of this problem address infrastructure as well as determining existing buses

that should be replaced by a BEB [18, 20, 29, 30]. Other works introduce a directed graph

approach to model the flow of BEBs [22, 36], where this concept was expanded to simulta-

neously accounting for multiple charger types, partial charging, non-linear battery charge

profiles [22]. The directed graph approach provides an easy method of modeling the schedul-

ing by discretizing the time horizon to nQ sets of nodes. The nodes represent the chargers

availability and can have a maximum of one bus at a time. The buses can flow into a node



5

to be charged and then later can exit allowing a new bus to enter. Another method similar

to the directed graph that fits the modeling of the BEB charging scenario is the PAP [26].

The PAP is derived from the BAP which takes an input of vessel arrival times and outputs

the selection of the berthing quay. The PAP utilizes this model and redefines its inputs to

EV arrival times and outputs queues for the EVs to be charged. While the visits remain as

discrete events, the time that the BEB is on the charger is modeled in continuous time sim-

ilar to [20,25,26]. Due to the close relationship between the BAP and PAP, BAP literature

may be used for the PAP. The literature shows methods of handling multiple quays (sets

of chargers) to handle general berthing scenarios [25, 37]. Heuristic procedures for quicker

solve times have also been introduced [24]. Methods of defining static (full-time horizon)

and dynamic (rolling-time horizon) models have been created for daily and real-time solu-

tions, respectively, and even fuzzy set theory has been applied to allow for more flexible

schedules [38].

Others have assumed that BEBs always charge to full capacity [15, 18, 28, 29], partial

charging utilizing a linear battery dynamics model [14,16,35], or non-linear battery dynam-

ics with partial charging [22,28,32–34]. Works that assumed scheduled BEBs always charge

to full capacity significantly simplify the scheduling problem, but eliminates the key factor

in reducing the demand cost, partial charging [17, 20, 29, 30]. The approaches that utilized

non-linear charging profiles with partial charging are able to achieve a reduction in the

demand cost, with the added benefit of a higher fidelity at the expense of computation [28].

Exceptions to this are [16] that utilize a piecewise-linear charging profiles. This model has

the drawback of assuming that a charger is always available. A common way to model the

non-linear battery dynamics is utilizing Constant Voltage (CV), Constant Current (CC),

and Constant Current Constant Voltage (CCCV) [9, 10]. A novel method of modeling the

non-linear behavior present in [22] proposes a discrete linear time-invariant dynamic model

that results in an exponential decay non-linear charge profile.

The selected model for the battery charge dynamics, although pertinent to this work as

it directly affects the quality of the produced schedule, does not impact the considerations
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of battery health. Battery health begins to be of concern when over-charging, under-

charging, or forcing the battery to perform “deep” cycles [6, 7, 18]. Furthermore, other

works have suggested that charging a battery nearly to capacity is detrimental to the health

and can significantly reduce the total charge cycles a battery may undergo [6,7]. While the

charge profile for batteries are inherently non-linear, some works have assumed proportional

charging as linear battery dynamics remain a valid assumption when the battery SOC is

below 80% [36]. Thus, while linear dynamics may lack the fidelity of accuracy above 80%,

it is able to accurately estimate the SOC within a range that will guarantee battery health.

This work begins with an implementation of linear battery dynamics then incorporates a

non-linear model suggested by [22].

2.2 Problem Description

The work of this thesis builds upon the Position Allocation Problem (PAP) [26], a

modification of the well studied Berth Allocation Problem (BAP), as a means to schedule the

charging of electric vehicles (EVs) [23–25]. The goal of the PAP is to allocate incoming EVs

into queues to be charged as depicted in Figure 2.1. An example of a standard PAP/BAP

solution (their visual representations are interchangeable) is visualized in Figure 2.2, note

that the figure utilized BAP terminology. The x and y-axis represent time and queuing

space, respectively. The figure discretizes the queuing space, but it may be continuous if

desired. The shaded rectangles’ widths represent their respective allocated charge times,

and their heights represent the physical space taken by each EV.

V
eh

ic
le
s

C
h
ar
ge
rs

Fig. 2.1: Example of position allocation. Vehicles are placed in queues to be charged and
move in the direction indicated by the arrow.

To adapt the PAP model for BEBs, consider a fleet of BEBs scheduled to perform a set
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Fig. 2.2: The representation of the berth-time space. The x and y-axis represent time and
space, respectively. Along the y-axis, the dashed lines represent discrete berthing locations.
These locations may be chosen to be continuous. The shaded rectangles represent scheduled
vessels to be serviced. The height of each shaded rectangle represents the space taken on
the berth and the width being the time to service said vessel. The vertical dashed lines are
associated with vessel D and represent the arrival time, berthing time, serviced completion
time, and departure time. Note that the arrival time may be before the berthing time and
the completion time may before the departure time.

of prescribed routes on a given day. An individual BEB from said fleet begins and completes

an individual route at the same station from which it also receives its charge. During each

route, the BEB’s State of Charge (SOC) is depleted by a certain amount. The charge

supplied during its visit must be enough to sustain the BEB’s SOC at an appropriate level

so that it may complete its next route. The charge may be supplied from any single charger

given a set of chargers at the station. Let the term “arrival” describe the time at which a

BEB reaches the station. Furthermore, let the term “visit” denote a BEB having arrived,

awaited its predetermined time (whether it has received a charge or not), and departed from

the station. Each BEB may have multiple visits to the station throughout their working

day. This thesis describes a method to optimize the assignment of each visit to a charger

given a schedule for a fleet of BEBs that follow the behavior described above. The various

models presented in this work optimizes over peak power usage and energy consumption,

as well as attempts to optimize the amount of chargers utilized. Both linear and non-linear

battery dynamics are introduced and implemented.
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2.3 Mixed Integer Linear Programming

A mixed integer linear programming (MILP) problem is a class of constrained opti-

mization in which one seeks to find a set of continuous or integer values that maximizes or

minimizes an objective function while satisfying a set of constraints [39]. Given an objective

function J , decision variables (i.e. variables of optimization) xj ∈ R and yk ∈ Z+ (where

Z+ denotes the set of non-negative integers), and input parameters cj , dk, aij , gik, bi ∈ R, a

MILP has a mathematical structure [39]:

max J =
∑
j

cjxj +
∑
k

dkyk (2.1a)

subject to
∑
j

aijxj +
∑
k

gikyk ≤ bi (i = 1, 2, ...,m) (2.1b)

xj ≥ 0 (j = 1, 2, ..., n) (2.1c)

yk ∈ Z+ (k = 1, 2, ..., n). (2.1d)

The objective function in Equation 2.1a comprises two parts, the continuous part,∑
j cjxj , and integer part,

∑
k dkyk. The decision variable of the first part, xj , is continuous

whereas the decision variable of the second, yj , is integer. Their respective input parameters

may be integer or continuous, in the case of this example they are modeled as continuous.

The objective function’s utility is to provide a numerical score to a system (provided that

a set of decision variables and input parameters are defined). While an individual score

may not have any intrinsic meaning, it provides a method of ranking different solutions of

the same model. The constraint equations (Equation 2.1b - Equation 2.1d) must all be

satisfied for the output of an objective function to have any meaning. Thus, the constraint

equations limit the solution space of the decision variables. Equation 2.1b states that

the summation of the products of the respective continuous and integer decision variables

and input parameters must be less than or equal to some value bi. Equation 2.1c and

Equation 2.1d state that the decision variables xj and yk, must be greater than or equal to
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O

Y

O
X

Fig. 2.3: Example of rectangle packing problem. The large square represented byO indicates
the canstrained area that the set of shaded rectangles O must be placed within.

0, respectively.

2.4 Overview of the BAP

The BAP is a rectangle packing problem where a set of rectangles, O, are attempted to

be optimally placed in a larger rectangle, O, as shown in Figure 2.3. The rectangle packing

problem is an NP-hard problem that can be used to describe many real-life problems [40,41].

In some of these problems, the dimensions of O are held constant such as in the problem

of packing modules on a chip, where the widths and height of the rectangles represent the

physical width and heights of the modules [41]. Other problems, such as the one presented

in this work, allow either the horizontal or vertical edge of each rectangle in O to vary. As

an example, suppose the vessel lengths are predefined (vertical edges are static), but the

service time is allowed to vary (horizontal edges are dynamic). [23].

The BAP solves the problem of optimally assigning incoming vessels to berth positions

to be serviced as shown in Figure 2.4. To relate to the rectangle packing problem, the

width and height of O represent the time horizon T seconds and the berth length L meters,

respectively. Similarly, the widths and heights of each element in O represent the time spent

to service vessel i and the space taken by docking vessel i, respectively. In the BAP, the

vessel characteristics (length of the vessel, arrival time, handling time, desired departure
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time) are assumed to be known for all vessels. A representation of a BAP solution is shown

in Figure 2.2. The x and y-axis represent time horizon and berthing space, respectively.

The gray squares, labeled A, B, C, and D, represent berthed vessels. The width of the boxes

represents the time spent being serviced, and the height represents the amount of space the

vessel requires on the berth. The vertical line adjacent to “Arrival Time” represents the

actual time that the vessel arrives and is available to be berthed. “Berthing Time” is the

time the vessel is berthed and begins being serviced. “Completion time” represents the

time at which the berthing space becomes available again.

Berth

Vessels

Fig. 2.4: Example of berth allocation. Vessels are docked in berth locations (horizontal)
and are queued over time (vertical). The vertical arrow represents the movement direction
of queued vessels and the horizontal arrow represents the direction of departure.

2.5 Overview of the PAP

The BAP forms the basis of the PAP; however, there are some differences in the way

the variables are interpreted. The starting service time, ui seconds, is viewed as the initial

charge time, and the service time, total elapsed time spent on the charger. Similarly, for

the spatial term, vi ∈ [0, L], the berth location is instead interpreted as the initial position

on the charger. There are also a few clarifying concepts about how the system is modeled.

The PAP models the set of chargers as one continuous line; that is, the natural behavior

of the PAP model is to allow vehicles to be queued anywhere along [0, L]. Similarly, the

charge times are continuous and can be placed anywhere on the time horizon, [0, T ], as long

as the allocated times do not interfere with other scheduled charge times.
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The PAP formulation’s parameters can be divided into two categories: input param-

eters and decision variables. Each type will now be introduced in turn. The following

parameters are assumed to be known inputs for the MILP. L defines the length of the

charger in meters. As stated previously, it is modeled as a continuous bar meaning that a

vehicle can be placed anywhere in the range [0, L]. It is assumed that the time horizon, T

seconds, is known so that vehicles may be placed temporarily in the range [0, T ]. The total

number of visits to the station over the time horizon is represented by nV . The arrival time

for each visit is represented by ai seconds, and the required charge time is represented by

si seconds. The width of vehicle i is represented by li meters.

The decision variables provide the means by which the solver may optimize the problem.

The initial and final charge times for vehicle i are ui and di seconds, respectively. The

starting position on the charger is denoted as vi ∈ [0, L] meters. The temporal ordering of

vehicles i and j is determined by σij ∈ {0, 1}, where σij = 1 =⇒ i arrives before j for

all 1 ≤ i, j ≤ nV . Similarly, ψij ∈ {0, 1} determines the relative position of vehicles i and

j on the charger: ψij = 1 =⇒ vi < vj for all 1 ≤ i, j ≤ nV . A value of zero conveys

no information about the relative ordering. As an example, suppose ψij = 1 and σij = 0,

from this it is known that EV i in a queue of a lesser index than j; however, σij = 0 does

not state whether visit i is scheduled before, during, or after visit j temporally. Similarly,

suppose ψij = 0 and σij = 1, then it is known that visit i is scheduled before visit j, but it

is unknown as to which queue visit i is scheduled relative to visit j.

To determine the values for each of these decision variables, a MILP was formulated

in [26]. The formulation is shown in its entirety for completeness. The problem to be solved

is

min

nv∑
i=1

(di − ai) (2.2)
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Subject to:

uj − ui − si − (σij − 1)T ≥ 0 (2.3a)

vj − vi − li − (ψij − 1)L ≥ 0 (2.3b)

σij + σji + ψij + ψji ≥ 1 (2.3c)

σij + σji ≤ 1 (2.3d)

ψij + ψji ≤ 1 (2.3e)

si + ui = di (2.3f)

ai ≤ ui ≤ (T − si) (2.3g)

σij ∈ {0, 1}, ψij ∈ {0, 1} (2.3h)

vi ∈ [0, L] (2.3i)

i, j = 1..nV ; i ̸= j (2.3j)

The objective function, Equation 2.2, minimizes the idle and service time by summing over

the differences between the departure time, di, and arrival time, ai for all visits. In other

words, the objective function is searching for the schedule that removes each vehicle from

the service queue as quickly as possible.

Equation 2.3a-Equation 2.3e are used to ensure that individual rectangles do not over-

lap. In terms of the PAP, this implies that there are no conflicts in the schedule spatially or

temporally. Equation 2.3a establishes temporal ordering when active (σij = 1) in the man-

ner described previously by utilizing big-M notation. Similarly, Equation 2.3b establishes

spatial ordering when active (ψij = 1). Constraints Equation 2.3c-Equation 2.3e enforce

spatial and temporal ordering between each queue/vehicle pair. Constraint Equation 2.3c

ensures that there exists at least one spatial or temporal ordering between EVs i and j.

Constraints Equation 2.3d and Equation 2.3e enforce validity of the assignments. For ex-

ample, if Equation 2.3d resulted in a value of two, that would imply both vehicle i and j

are scheduled before and after each other temporally, which is impossible. In the case of

Equation 2.3e being equal to two, that would mean that vehicles i and j are scheduled both
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before and after one another on the charging strip, which is again impossible.

The last constraints force relationships between arrival time, initial charge time, and

departure time. Equation 2.3f states that the initial charge time, ui, plus the total charge

time for, si, must equal the departure time, di. Equation 2.3g enforces the arrival time, ai,

to be less than or equal to the service start time, ui, which in turn must be less than or

equal to the latest time the vehicle may begin charging and stay within the time horizon.

Equation 2.3h simply states that σij and ψij are binary terms. Equation 2.3i ensures that

the assigned value of vi is within the range, [0, L].
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CHAPTER 3

A MIXED INTEGER LINEAR PROGRAM APPROACH WITH LINEAR BATTERY

DYNAMICS

3.1 Introduction

The objective of this chapter is to utilize the PAP from Section 2.5 as a basis of

deriving the formulation for scheduling a fleet of BEBs. Because the PAP was designed

for a set of EVs with predefined arrival times, initial charge times, and final charge times,

the PAP must be modified to support the behavior that a fleet of buses exhibit. As such,

the contribution of this work is the extension of the PAP’s novel approach to BEB charger

scheduling. This incorporates a proportional charging model into the MILP framework,

includes consideration for multiple charger types, and consideration of each route in the

schedule. The last contribution is of importance because both the BAP and PAP consider

each arrival to be unique; thus, the tracking of battery charge from one visit to the next

must be considered. Furthermore, the input parameters for the model can be predefined

in such a manner as to minimize the number of fast and slow chargers utilized as well as

minimize the energy consumption. That is, the model will simultaneously minimize the

number of chargers as well as the total consumed energy. The result is a MILP formulation

that coordinates charging times and charger type for every visit while considering a dynamic

charge model with scheduling constraints.

The remainder of this chapter proceeds as follows: Section 3.2 constructs the MILP

for BEB scheduling, including modifications to the PAP queuing constraints and the devel-

opment of a dynamic charging model. Section 3.3 demonstrates an example of using the

formulation to coordinate 35 buses over 338 total visits to the station.

3.2 A Rectangle Packing Formulation for BEB Charging
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Applying the PAP to BEB charging requires four fundamental changes. The first is

that the time that a BEB spends charging must be allowed to vary. That is, ui, di, and

si become variables of optimization. This is done primarily because chargers of various

speeds are to be introduced. Allowing BEBs to have multiple visits that a charger decided

upon during the optimization requires that the start and stop times must be changeable to

respect the SOC constraints. Second, in the PAP each visit is assumed to be a different

vehicle. For the BEB charging problem, each bus may make multiple visits to the station

throughout the day. Thus, the resulting SOC for a bus at a given visit is dependent upon

each of the prior visits. The third fundamental change is related to the first two. The SOC

of each bus must be tracked to ensure that charging across multiple visits is sufficient to

allow each bus to execute its route throughout the day. Finally, as previously stated, the

PAP models the charger as one continuous bar. For the BEB, it will be assumed that a

discrete number of chargers exist. Moreover, it is assumed that these chargers may have

different charge rates.

A few assumptions are made in the derivation of the algorithm. As this work is not

focused on estimating the discharge of a BEB during its route, the discharge for each route

will be pre-calculated by assuming a fixed discharge rate kW multiplied by the route dura-

tion in hours. Secondly, it is assumed that the initial SOC of each BEB at the beginning of

the day, αbκb, is larger than the minimum required SOC at the end of the day, βbκb. There-

fore, it must be assumed that the difference in the SOC can reach αbκb by the beginning of

the next working day.

The discussion of the four changes is separated into two sections. Section 3.2.1 discusses

the changes in the spatial-temporal constraint formulation to form a queuing constraint.

Section 3.2.2 then discusses the addition of bus charge management. This section ends with

a brief discussion of a modified objective function and the statement of the full problem in

Section 3.2.3. The notation is explained throughout and summarized in Table 3.1.

3.2.1 Queuing Constraints

The queuing constraints ensure that the buses entering the charging queues are assigned
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feasibly. There are three sets to differentiate between different entities. B = {1, ..., nB}

is the set of bus indices with index b used to denote an individual bus, Q = {1, ..., nQ} is

the set of queues with index q used to denote an individual queue, and V = {1, ..., nV } is

a set of visits to the station with i and j used to refer to individual visits. The mapping

Γ : V → B is used to map a visit index, i, to a bus index, b. The notation Γi is used as a

shorthand to refer to the bus index b for visit i.

The actual physical dimensions of the BEB are ignored, and it is assumed that each

BEB will be assigned to charge at a particular charger. Because of this assumption, the

PAP spatial variable, li, may be removed and vi is made to be an integer corresponding to

which queue visit i will be using, vi ∈ Q. That is, the queue position is now discretized

over nQ queues where a BEB occupies single charge queue. Thus, when ψij = 1, vehicle j

is placed in a charging queue with a larger index than vehicle i, vj > vi. The charger length

L is likewise replaced with nQ. Note that nQ = nB + nC , where nB is the number of buses

and nC is the number of chargers. The rationale for adding additional idle queues is to

allow BEBs to be “set aside” if no additional charge is required. Adding one idle queue for

each BEB ensures that the constraints will be satisfied if multiple buses sharing overlapping

times at the station are placed in idle queues. This method will be applied when defining

the parameters in Section 3.3. The modified queuing constraints can be written as shown

in Equation 3.1.

vi − vj − (ψij − 1)nQ ≥ 1 (3.1a)

di ≤ τi (3.1b)

si ≥ 0 (3.1c)

vi ∈ Q (3.1d)

The constraint in Equation 3.1a is nearly identical to Equation 2.3b, but rather than

viewing the charger as a continuous strip of length L, it is discretized into nQ queues each
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with a width of unit length one. A BEB is also assigned a unit length of one which is reflected

in Equation 3.1a by · ≥ 1. Equation 3.1b ensures that the time the BEB is detached from

the charger, di, is before its departure time, τi seconds. Note the introduction of the new

variable τi exists to allow the final charge time to be independent a similar manner that the

inital charge time need not coincide with the arrival time, ai ≤ ui ≤ di ≤ τi. Equation 3.1d

defines the of integers that vi that represent the nQ chargers.

3.2.2 Battery Charge Dynamic Constraints

Battery dynamic constraints are now to be introduced. Two constraints are enforced

on the SOC for each BEB: the SOC must always remain above a specified percentage to

guarantee sufficient charge to execute their respective routes and each bus must end the

day with an SOC above a specified threshold, preparatory for the next day.

The SOC upon arrival for visit i is denoted as ηi kWh. Because the SOC for a visit i

is dependent on its previous visits, the mapping Υ : V → V
⋃{∅} is used to determine the

next visit that corresponds to the same bus, with Υi being shorthand notation. Thus, Γj

and ΓΥi , for Υi = j, would both map to the same bus index as long as Υi is not the null

element, ∅. The null element is reserved for BEBs that have no future visits.

To drive time spent on the charger, si, as well as define initial, final, and intermediate

bus charges for each visit i, the sets for initial and final visits must be defined. Let the

mapping of the first visit by each bus be denoted as Γ0 : B → V. The resulting value of

the mapping Γ0 represents the index for the first visit of bus b. Similarly, let Γf : B → V

maps the indices for the final visits for each bus b ∈ B. Let the storthand for each mapping

be denoted as Γ0
b and Γf

b , respectively. The initial and final bus charge percentages, α

and β, can then be represented by the constraint equations ηΓ0
b
= αbκb and η

Γf
b
= βbκb,

respectively. The intermediate charges must be determined during runtime.

It is assumed that the charge received is proportional to the time spent charging. The

rate for charger q is denoted as rq kW. Note that a value of rq = 0 corresponds to a queue

where no charging occurs. A bus in such a queue is simply waiting at the station for the

departure time. The queue indices are ordered such that the first nB queues have rq = 0
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to allow an arbitrary number of buses to sit idle at any given moment in time. The next

nC queues are reserved for the slow and fast chargers. The amount of discharge between

visits i and Υi, the next visit of the same bus, is denoted as ∆i kWh. If visit i occurred at

charger q, the SOC of the BEB’s next arrival, Υi, would be ηΥi = ηi + sirq −∆i.

The binary decision variable wiq ∈ {0, 1} is introduced to indicate the active charger

for visit i in vector form. The form of the SOC for the next visit, Υi, can be written using

the following constraints.

ηΥi = ηi +

nQ∑
q=1

siwiqrq −∆i (3.2a)

nQ∑
q=1

wiq = 1 (3.2b)

wiq ∈ {0, 1}. (3.2c)

The choice of queue for visit i, becomes a slack variable and is defined in terms of wiq

as

vi =

nQ∑
q=1

qwiq. (3.3)

Maximum and minimum values for the charges are included to ensure that the battery

is not overcharged and to guarantee sufficient charge for subsequent visits. The upper and

lower battery charge bounds for bus b are κb and νbκb, respectively , where κb is the battery

capacity and νb is a percent value. The upper and lower bounds for the current SOC are

written as follows.

ηi +

nQ∑
q=1

siwiqrq ≤ κΓi (3.4a)

ηi ≥ νΓiκΓi (3.4b)
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Equation 3.4a ensures that the BEB SOC does not exceed the battery capacity, and

Equation 3.4b enforces that the inital SOC for each visit is above the threshold of νΓiκΓi .

Note that the term siwiq is a bilinear term. A standard way of linearizing a bilinear

term that contains an integer variable is by introducing a slack variable with an either/or

constraint [39, 42]. Allowing the slack variable giq seconds to be equal to siwiq, giq can be

defined as

giq =


si wiq = 1

0 wiq = 0

. (3.5)

Equation 3.5 can be expressed as a mixed integer constraint using big-M notation with

the following four constraints.

si − (1− wiq)M ≤ giq (3.6a)

si ≥ giq (3.6b)

Mwiq ≥ giq (3.6c)

0 ≤ giq (3.6d)

where M is a large unitless value. If wiq = 1 then Equation 3.6a and Equation 3.6b become

si ≤ giq and si ≥ giq, forcing si = giq with Equation 3.6c being inactive. If wiq = 0,

Equation 3.6a is inactive and Equation 3.6c and Equation 3.6d force giq = 0.

3.2.3 The BEB Charging Problem

The goal of the MILP is to utilize chargers as little as possible to reduce energy costs

with fast charging being penalized more to avoid the adverse effects of fast charging on

battery health as well as the larger usage cost. Thus, an assignment cost mq and usage

cost ϵq are associated with each charger, q. These unitless weights can be adjusted based

on charger type or time of day that the visit occurs. The assignment term takes the form
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wiqmq, and the usage term takes the form giqϵq. The resulting BEB charging problem is

defined in Equation 3.7.

min

N∑
i=1

nQ∑
q=1

(
wiqmq + giqϵq

)
(3.7)

Subject to the constraints

uj − ui − si − (σij − 1)T ≥ 0 (3.8a)

vj − vi − (ψij − 1)nQ ≥ 1 (3.8b)

σij + σji + ψij + ψji ≥ 1 (3.8c)

σij + σji ≤ 1 (3.8d)

ψij + ψji ≤ 1 (3.8e)

si + ui = di (3.8f)

ηΓ0
b
= αΓiκΓi (3.8g)

ai ≤ ui ≤ (T − si) (3.8h)

di ≤ τi (3.8i)

ηi +

nQ∑
q=1

giqrq −∆i = ηγi (3.8j)

ηi +

nQ∑
q=1

giqrq −∆i ≥ νΓiκΓi (3.8k)

ηi +

nQ∑
q=1

giqrq ≤ κΓi (3.8l)

η
Γf
b
≥ βΓf

κΓf
(3.8m)

si − (1− wiq)M ≤ giq (3.8n)

si ≥ giq (3.8o)

Mwiq ≥ giq (3.8p)

0 ≤ giq (3.8q)

vi =

nQ∑
q=1

qwiq (3.8r)

nQ∑
q=1

wiq = 1 (3.8s)

wiq, σij , ψij ∈ {0, 1} (3.8t)

vi, qi ∈ Q (3.8u)

i ∈ V (3.8v)

Equation 3.8a-Equation 3.8i are reiterations of the queuing constraints in Equation 3.1.

Equation 3.8g-Equation 3.8m provide the battery charge constraints. Equation 3.8n-Equation 3.8q
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define the charge gain of every visit/queue pairing. The last constraints Equation 3.8t-

Equation 3.8v define the sets of valid values for each variable.

3.3 Example

An example will now be presented to demonstrate the utility of the developed MILP

charge scheduling technique. A description of the scenario is first presented followed by a

description of an alternative heuristic-based planning strategy called Qin-Modified which is

used as a comparison to the MILP PAP. Results are then presented, analyzed and discussed

for each of the planning strategies.

3.3.1 BEB Scenario

To display the capabilities of the model, an example scenario is presented. The scenario

was run over a time horizon of T = 24 hours, utilizing nB = 35 buses with nV = 338 visits

divided between the nB buses. As stated before, the route times are sampled from a set of

routes from the UTA. Each bus has a battery capacity of κb = 388 kWh that is required to

stay above an SOC of νb = 25% (97 kWh) ∀b ∈ B to ensure that each BEB can complete

its next route in addition to maintaining battery health. Each bus is assumed to begin

the working day with an SOC of αb = 90% ∀i ∈ V (349.2 kWh). Additionally, each

bus is required to end the day with a minimum SOC of βb = 70% (271.6 kWh) ∀i ∈ V.

This assumes that overnight charging can account for the deficient 20% SOC. Each bus is

assumed to discharge at a rate of ζb = 30 kW. Note that many factors play a role in the

rate of discharge; however, for the sake of simplicity since the discharge calculation is out

of the scope of this work, an average rate is used. A total of nC = 30 chargers are utilized

where 15 of the chargers are slow charging (30 kW) and 15 are fast charging (911 kW). The

technique to minimize the total charger count will now be employed.

To encourage the MILP PAP problem to utilize the fewest number of chargers, the

value of mq in the objective function, Equation 3.7, is ∀q ∈ {1, 2, ..., nB};mq = 0 and

∀q ∈ {nB + 1, nB + 2, ..., nB + nC};mq = 1000q. The charge duration scalar, ϵq, is defined

as ϵq = rq to create a consumption cost term, giqϵq kWh. By consumption cost, it is meant
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that the total energy consumed by the charge schedule will be accounted for in the objective

function. This method encourages the model to minimize active charger times, particularly

for the fast chargers.

Another heuristic-based optimization strategy, referred to as Qin-Modified, is also em-

ployed as a means of comparison with the results of the MILP PAP. The Qin-Modified

strategy is based on the threshold strategy of [34]. The strategy has been modified slightly

to accommodate the case of multiple charger types without an exhaustive search for the best

charger type. The heuristic is based on a set of rules that revolve around the initial SOC

of the bus visit i. There are three different thresholds, low (85%), medium (90%), and high

(95%). Buses below the low threshold (SOC ≤ 85%) are prioritized to fast chargers and

then are allowed to utilize slow chargers if no fast chargers are available. Buses between the

low and medium threshold (85% < SOC ≤ 90%) prioritize slow chargers first and utilizes

fast chargers only if no slow chargers are available. Buses above the medium threshold and

below the high (90% < SOC ≤ 95%) will only be assigned to slow chargers. Buses above

the high threshold (SOC > 95%) will not be placed in a charging queue. Once a bus has

been assigned to a charger, it remains on the charger for the duration of the time it is at

the station, or it reaches an SOC of 95% charge, whichever comes first.

The total number of constraints resulted in 7,511 continuous and 328,282 integer/binary

constraints. The optimization was performed using the Gurobi MILP solver [43] on a

machine equipped with an AMD Ryzen 9 5900X 12 - Processor (24 core) at 4.95GHz. The

solver was allowed to run for 4.2 seconds.

3.3.2 Results

The schedule generated by the Qin-Modified strategy and the MILP PAP is shown in

Figure 3.1a and Figure 3.1b, respectively. The x-axis represents the time in hours. The

y-axis represents the assigned charging queue. Rows between 0 and 14 are active times for

slow chargers, and rows in the range of 15 and 29 are active times for fast chargers. The

circle with an ’X’ represent the starting charge time for a bus b with the line to the vertical

tick signifying the region of time the charger is active. When a circle vertex contains what
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appears to be an asterisk, that indicates the previous BEB charge time ending and the next

BEB charge beginning.

The first observation is in the choice of preferred chargers between the Qin-Modified

and MILP scheduler. Looking at Figure 3.2b and Figure 3.2a, the Qin-Modified schedule

uses at most four fast chargers and three slow at the same time, whereas the MILP schedule

uses at most one fast charger and six slow at the same time. Both the Qin-Modified and

MILP schedule used the fast chargers in short bursts (˜0.2-0.5 hours). The main difference

lies in the utilization strategy of the slow chargers. The Qin-Modified, for the most part,

opted for shorter bursts for the slow chargers (˜0.3-0.7 hours), most heavily placed on

the first slow charger. The MILP utilized the slow chargers in short bursts; however, the

solver was able to recognize moments where a BEB being placed in a slow charging queue

for a longer duration was more cost-effective (with respect to the objective function) than

placing the BEB in a fast charging queue. Although one of the MILP’s objectives is to

minimize the amount of chargers used, the Qin-Modified schedule ended up using fewer

chargers than the MILP. Note the MILP schedule packed the first queue for the fast and

slow chargers more effectively than the Qin schedule. Although both schedules generated

are valid, no comparison of the quality of the schedule can be made directly from Figure 3.1b

and Figure 3.1a.

Figure 3.3a and Figure 3.3b depicts the SOC for every bus over the time horizon for

the Qin and MILP schedules, respectively. Every vehicle begins with an SOC of αb = 90%,

finishes with an SOC of βb = 70% in the MILP PAP schedule, and never goes below 25%

in the intermediate arrivals as stated in constraint Equation 3.8. There is no guarantee for

this in the Qin-Modified strategy which can be seen by some intermediate charges reaching

an SOC of 0% as well as the distribution of final charges, the minimum being 0% and

the maximum 94.845%. The only sense of guarantee that the Qin-Modified supplies is its

predictability within the intermediate visits due to its heuristic nature (i.e. if the BEB

charge is within the low threshold, a fast charger will be prioritized); whereas MILP places

a bus in the queue that “makes sense” in respect to the larger picture. The MILP PAP
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does not have an obvious sense of decision-making due to weighted objective function that

is affected by the accumulation of decisions made prior.

Another important measure for the chargers is to compare the amount of power and

energy consumed. Figure 3.4 depicts the power consumption throughout the time horizon.

It can be seen that the Qin-Modified power consumption is steadily less or the same as

the MILP schedule. This can be accounted for by the MILP’s constraints to keep the bus

SOC above 25% and to reach a final SOC of 70% at the end of the working day. Along a

similar vein, the accumulated energy consumed is shown in Figure 3.5. The MILP schedule

is more efficient up until about the eleventh hour. Again, this can be accounted for by the

fact the MILP is accommodating the extra constraints. Due to these constraints the MILP

PAP consumes about 0.1 · 104 kWh more than the Qin-Modified. The overlap of the MILP

PAP can be accounted for by referencing Figure 3.2a and Figure 3.2b. Between the fifth

and tenth hour, the MILP schedule heavily uses slow chargers increasing the rate at which

power is being consumed. Afterwards, the MILP schedule at a minimum continues to use

the same amount of chargers as the Qin Schedule. Again, due to the added constraints, the

MILP schedule must utilize more resources to keep within the specified bounds.
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Table 3.1: Notation used throughout Chapter 3.

Variable Description Variable Description

Constants Constants
nB Number of buses M An arbitrarily large number
nV Number of total visits nQ Number of queues
nC Number of chargers V Set of visit indices,

V = {1, ..., nV }
B Set of bus indices,

B = {1, ..., nB}
Q Set of queue indices,

Q = {1, ..., nQ}
i, j Indices used to refer to visits b Index used to refer to a bus
q Index used to refer to a queue

Input
Param-
eters

Input
Param-
eters

Γ Γ : V → B with Γi used as a
shorthand to denote the bus b
for visit i

αb Initial charge percentage time
for bus b

βb Final charge percentage for bus
b at the end of the time horizon

ϵq Cost of using charger q per unit
time

Υ Υ : V → V mapping a visit to
the next visit by the same bus
Υi being the shorthand.

κb Battery capacity for bus b ∆i Discharge of visit over route i
νb Minimum charge allowed for

bus b
τi Time visit i must depart the

station
ζb Discharge rate for bus b ai Arrival time of visit i
i0 Indices associated with the

initial arrival for every bus in B
if Indices associated with the final

arrival for every bus in B
mq Cost of a visit being assigned to

charger q
rq Charge rate of charger q per

unit time

Decision
Vari-
ables

Decision
Vari-
ables

ψij Binary variable determining
spatial ordering of vehicles i
and j

ηi Initial charge for visit i

σij Binary variable determining
temporal ordering of vehicles i
and j

di Ending charge time for visit i

giq Linearization term, represents
the multiplication of siwiq

si Amount of time spent on
charger for visit i

ui Starting charge time of visit i vi Assigned queue for visit i
wiq Binary assignment variable for

visit i to queue q
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(a) Charging schedule generated by Qin Modified algorithm.
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(b) Charging schedule generated by MILP PAP algorithm.
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(a) Bus charges for the Qin Modified charging schedule. The charging scheme of the Qin charger is
more predictable during the working day.
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(b) The bus charges for the MILP PAP charging schedule. The MILP model allows for guarantees
of minimum/maximum changes during the working day as well as charges at the end of the day.
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Fig. 3.4: Amount of power consumed by Qin-Modified and MILP schedule over the time
horizon.
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Fig. 3.5: Total accumulated energy consumed by the Qin-Modified and MILP schedule
throughout the time horizon.
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CHAPTER 4

A SIMULATED ANNEALING APPROACH WITH LINEAR BATTERY DYNAMICS

4.1 Introduction

In the previous chapter a MILP was derived to create an optimal charging schedule for

a fleet of BEBs. While MILPs are extensible via the modular nature of the constraints, they

are limited by the required linearity of the equations. If a non-linear equation is able to be

linearized, that often leads to an introduction of slack variables that can further increase

the complexity of the model, as was seen in Chapter 3. The chapter aims to expand on the

MILP approach by introducing a Simulated Annealing (SA) framework that utilizes linear

battery dynamics, accounts for partial charging, minimizes total charger count, allows for

multiple charger types, minimizes consumption cost, and minimizes demand cost. These

contributions are demonstrated via simulation and comparison to two other models: the

Mixed Integer Linear Program (MILP) implementation of the PAP and what is known as

the Qin-Modified technique.

The remainder of this chapter goes as follows. provides the problem statement associ-

ated with this work. provides a description of the input parameters and decision variables

then introduces the structure of the formulation. In , the concept and theory of SA is

introduced. In particular, the algorithms and methods utilized for the SA implementation

for this work are discussed. combines the previous sections to introduce the particular pseu-

docode for the SA PAP. In , an example problem is provided to demonstrate the capability

of the work provided in this paper. The results will be presented and discussed.

4.2 Problem Description

Consider a fleet of BEBs scheduled to perform a set of prescribed routes on a given

day. An individual BEB from said fleet begins and completes an individual route at the
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same station from which it also receives its charge. During each route, the BEB’s State of

Charge (SOC) is depleted by a certain amount. The charge supplied during its visit must

be enough to sustain the BEB’s SOC at an appropriate level so that it may complete its

next route. Provided there is a set of chargers at the station, the bus may be placed in

any single queue to receive its charge. Let the term “arrival” describe the time at which a

BEB reaches the station. Furthermore, let the term “visit” denote a BEB having arrived,

awaited its predetermined time (whether it has received a charge or not), and departed

from the station. Each BEB is allowed to have multiple visits throughout the working day.

Because each bus may visit the station more than once, let the previously considered

fleet contains nB BEBs that collectively visit a station nV times. At said station, let there

exist a pool of nQ charging queues from which a visiting BEB may be assigned. Upon

arrival to the station, a bus is admitted to one of the nQ queues for charging. Each queue

represents a charger that supplies the bus with a charge at a particular rate or allows the

bus to sit idle when no charging is required (i.e., a charge rate of zero). The set of possible

queue indices is denoted as Q ∈ {1, ..., nQ} ⊂ Z, where Z is the set of integers. It is assumed

that charger q ∈ Q has an associated charge rate, denoted as rq. Let the set of arrivals be

written as I = {1, ...nV } ⊂ Z, and let each BEB be prescribed an identification number

from the set B = {1, ..., nB} ⊂ Z. As such, each visit can be represented by the tuple:

(bi, ai, ei, ui, di, qi, ηi, ξi), in which the elements within the tuple denote the visit index,

i ∈ I, BEB identification number, b ∈ B, arrival time to the station, a ∈ R, departure time

from the station, e ∈ R, time at which the BEB begins charging, u ∈ R, time at which the

BEB ends charging, d ∈ R, the charger queue for the BEB to be placed into, q ∈ Q, the

SOC upon arrival, η ∈ R, and the index of the next visit for the currently visiting BEB,

ξ ∈ I ∪∅. The null element, ∅, is used to specify when a BEB has no future visits. Let the

set of visits be denoted as I where the ith visit is denoted is Ii. Furthermore, let a particular

item from the tuple for visit i to be written as ·i. For example, the arrival time for visit i

is written as ai.

The amount of time the BEB is allowed to charge during visit i is dictated by the
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scheduled arrival time and required departure time, [ai, ei]. Partial charging is allowed;

however, the SOC may not exceed the BEB battery capacity, κb, and the SOC is desired

to stay above some minimum percentage of the battery capacity, νb ∈ [0, 1]. The battery

dynamics in this work is modeled as linear, which remains accurate up to about an SOC

of 80% [36]. Note that excessively charging the BEBs is undesirable due to battery health

concerns as at higher SOCs overshoot become a concern and may also cause the battery to

undergo deep cycles may accelerate battery degradation [6,7].

Each BEB arrival, except for the last arrival for each BEB, has a paired “route” that

the BEB must perform after the visit. This route, as one would expect, causes the BEB to

discharge by some certain amount. Each bus route is assumed to have a fixed discharge.

Let the discharge of the route for visit i be denoted as ∆i ∈ R. Note that the last visit for

each BEB does not have an associated route, implying that there is no discharge after these

particular visits, i.e., ∆i = 0 for all i corresponding to a final visit.

4.3 Optimization Problem

The objective of this work is to present a framework that optimizes the assignment of

nV BEB visits to a set of nQ charging queues over the interval [0, T ] provided a fleet of

nA BEBs with fixed route schedules. Particularly, the framework aims to minimize over

peak power usage, energy consumption, encouraging battery health via slow charging, and

maintaining the SOC of each BEB above a minimum SOC threshold.

The optimization problem outlined in this work is presented in form of an objective

function with constraints. The constraints ensure that candidate solutions are operationally

feasible. The variables of optimization are to be introduced in Section 4.3.1 followed by a

discussion of the constraints in Section 4.3.3. The objective function is employed to allow

relative comparisons between candidate solutions and is introduced in Section 4.3.2.

4.3.1 Variable Definitions

This section defines the input and decision variables used in this work. The input

parameters are assumed to be fixed prior to optimizing, whereas the decision variables are



33

Table 4.1: Table of variables used Chapter 4.

Variable Description Variable Description

Constants Constants
T Time horizon nK Number of iterations in the

repetition schedule
nM Total number of steps created

by initial temperature, T0, and
cooling schedule

nQ Number of chargers

nV Total number of visits nh Number of discrete steps in
time horizon

nB Number of buses in use

Input
Vari-
ables

Input
Vari-
ables

∆i Discharge of visit over after
visit i

αb Initial charge percentage time
for bus b

ϵq Cost of using charger q κb Battery capacity for each BEB
ξi The next index bus b will arrive
ai Arrival time of visit i ei Time bus visit i must exit the

station
th Discrete step in time horizon dt Discrete time slice in time

horizon dth = th − th−1
rq Charge rate of charger q tm Element of the temperature

vector created by cooling
equation, tm ∈ t

νb Minimum charge percentage
allowed for each BEB

Direct
Deci-
sion
Vari-
ables

Direct
Deci-
sion
Vari-
ables

ui Initial charge time for visit i di Final charge time for charger
for visit i

qi Assigned queue for visit i
Slack
Vari-
ables

Slack
Vari-
ables

ηi Charge for the bus upon arrival
visit i

si Amount of time spent on
charger for visit i

σij Binary variable determining
temporal ordering of vehicles i
and j

ψij Binary variable determining
spatial ordering of vehicles i
and j

pd Demand cost of the schedule ϕi Penalty method for visit i
C Set of available charging times
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the values that the SA algorithm has the freedom to manipulate. The variables definitions

used in this work are summarized in .

Input Parameters

Parameters are used to indicate values that are assumed to be known prior to opti-

mization. They will be presented in two sections: packing and discretization parameters

then battery dynamic parameters. The spatiotemporal parameters are those that ensure

no scheduling overlap in either space or time. The discretization parameters describe the

parameters that discretize the time horizon, and the battery dynamic parameters are those

associated with the SOC of the BEB.

Spatiotemporal and Discretization Parameters As previously introduced, ξi represents the

next arrival index for bus bi. As an example of its use, suppose the ID of each BEB is

recorded in order of arrival as {2, 1, 3, 2}. Using a starting index of 1, ξ1 = 4 as that is

the next visit by bus 2. Each visit is prescribed arrival and departure times, ai and ei,

respectively. An associated cost is employed when a visit is assigned to a charging queue.

Let the assignment cost be represented by ϵq. Lastly, the time horizon is to be discretized

to assist in computing the peak demand cost, let th denote a discrete time step, and let dt

denote the discrete time step dt = th − th−1.

Battery Dynamic Parameters It is assumed that each bus begins the working day with an

initial SOC percentage of αb. Let the set of initial visits by each BEB be denoted as I0

where I0 ⊂ I and the cardinality of the set is |I0| = nB. The initial SOC for bus bi can be

represented as ηi = αbiκbi ;∀i ∈ I0 where κbi is the battery capacity for bus bi. After each

arrival, the BEB is assigned to a charging queue. Let rq represent the power supplied from

the charger in queue q ∈ Q. Each visit, except for the final visit of each BEB, is paired

with a subsequent route to be executed with a corresponding energy requirement, ∆i. As

alluded to earlier, there are no routes after the last visit for each BEB. Thus, similarly to
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Fig. 4.1: Examples of different methods of overlapping. Space overlap: qk1 > qi+1 ∴ ψik1 =
1. Time overlap uk2 < uj + sj ∴ σk2j = 0. Similarly, σk3i = 0.

the set of initial visits, let the set of final visits for all BEBs be denoted as If . The discharge

for the final visit of each BEB is then defined as ∆i = 0;∀i ∈ If .

Decision Variables

Decision variables are those chosen by the optimizer. There are three direct decision

variables for each visit: the initial and final charging times, ui and di, respectfully, and the

selected charging queue, qi ∈ Q.

The remaining variables are slack variables, which are introduced to track the vehicle

charge and queuing position based on the problem parameters and direct decision variables.

Recall the initial SOC for a visit is written as ηi, where i ∈ I \ I0. Further recall the set

of initial visits, I0, have an assumed known SOC (i.e., the initial SOC of each BEB at the

beginning of the working day is considered as an input parameter). The charge for bus i’s

next visit is equal to the initial charge for visit i plus the charge added to it by charger qi

over duration si = di − ui minus the discharge accumulated after visit i,

ηξi = ηi + rqisi −∆i. (4.1)

The variables σij and ψij are used to indicate whether a visit pair (i, j) overlap the
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same space, as show in Figure 4.1. These spatiotemporal variables uphold the following

relationships: for every visit, σij = 1 =⇒ the start charge time of visit j is greater than

the end charge time of visit i. Similarly, ψij = 1 =⇒ the queue for visit j is of a greater

index than visit i. A value of zero for either of these variables conveys no information.

The variable C is the set that describes the availability for all chargers. That is, C is

a set of nQ sets that contain available charger times for each queue q ∈ Q. Let a set of

available charge times for queue q be defined as Cq.

4.3.2 Objective Function

This work aims to minimize the total “cost” of utilizing a given charge schedule. Let

J(I) represent the objective function. The objective function for this problem has four main

considerations: an assignment cost, a penalty method for visits with insufficient SOCs,

consumption cost, and a demand cost. Each of which will be discussed in turn throughout

the subsequent sections.

Assignment Cost

The assignment cost represents the cost of assigning a bus to a queue. Particularly,

the cost consists of summing a prescribed weight for the selected charger, ϵqi , multiplied by

the charge rate, rq. Formally, the cost is written as follows:

nV∑
i=1

ϵqirqi . (4.2)

This is effectively the cost of selecting queue qi. While any set of weights may be

selected, uses a particular choice for the assignment cost to encourage the use of slow

chargers over fast for the sake of battery health. The charger queue indices are ordered such

that the first nB queues correspond to idle queues. This allows all BEBs to simultaneously

sit idle if needed. All nB idle queues have assignment costs of zero to denote that there

is no cost when not charging. The next group of chargers is assumed to be the slow

chargers subsequently followed by the fast. Letting P ∈ R, then the set of slow and
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fast charging queues be of the form [P, 2P, ..., nQP ]. Concatenating these vectors yields

ϵ = [0, 0, ..., P, 2P, 3P, ...], where ϵ describes the vector of assignment costs and the first nB

values are zero.

Penalty Method

A penalty method is to be implemented to provide a soft constraint on the lower bound

of the charge. Due to the uncertainty of the initial SOC for each visit, a soft constraint is

desired to increase the solution space while penalizing non-operationally feasible solutions.

If a hard constraint were to be implemented, the constraint would restrict the set of al-

lowable schedules to only operationally feasible schedules. Let the piecewise function that

enables/disables the penalty method be of the form

ϕ(x) =


0 x ≥ 0

x2 x < 0.

(4.3)

Letting x be defined by the difference of the initial SOC for visit i, ηi, and the minimum

charge threshold, νbiκbi , applies a penalty proportional to the difference of the SOC and

the threshold squared. That is, x = ηi − νbiκbi . A scalar, zp, is added which can be utilized

either as a monetary conversion or a simple gain. This method is employed as a means of

encouraging that the schedule has enough charge for each BEB to complete its next route.

Therefore, the penalty method is written as

nV∑
i=1

zpϕi(ηi − νbiκbi). (4.4)

Consumption Cost

In most cases, utility companies have a portion of the cost related to the total electricity

consumed over a billing period, referred to herein as the consumption cost. The consumption

cost is the summation of all the energy being used over all the active periods for each

charger in the time horizon. A scaling zc is applied as a weight on the summation (this
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could correspond to a monetary cost imposed by the utility). This is represented by the

summation

zc

nV∑
i=1

rqisi. (4.5)

Demand Cost

Utility companies often charge a “demand cost” in an effort to reduce peak power use.

A particular example of peak demand is the fifteen minute average energy usage employed

by Rocky Mountain Power Schedule 8 [44].

A method of calculating the demand charge is done by calculating the average power

consumption over a given period of time. Let the average power used over an arbitrary

interval, Tp, be represented by

pTp(t) =
1

Tp

∫ t

t−Tp

p(τ)dτ . (4.6)

The largest average power usage over Tp is used as the demand cost for the billing

period. Therefore, let the cost of the peak power consumption be dictated by the maximum

average power:

pmax(t) = max
τ∈[0,t]

pTp(τ). (4.7)

Furthermore, a fixed minimum average power is introduced that is intended to act as

a base threshold before the cost begins to increase. Let this fixed threshold be defined as

pfix, the demand cost is calculated using

pd(t) = max(pfix, pmax(t)). (4.8)

For the sake of implementation, the integral in Equation 4.6 is discretized. Let dt denote

the discretization time step and ph the power for the hth step, Equation 4.6 is approximated

as
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pTp,h =
1

Tp

h∑
k=h−Tp

dt
+1

pk dt. (4.9)

The discrete demand cost is expressed as

pd = max(pfix, pmax). (4.10)

Similarly to the consumption cost, a scaling zd is applied. Again, this may be a

monetary conversion or simply just a gain.

The objective function written in its entirety is

J(I) = zdpd +

nV∑
i=1

[
ϵqirqi + zpϕi(ηi − νbiκbi) + zcrqisi

]
. (4.11)

4.3.3 Constraints

While the objectives are used to compare solutions, constraints are introduced to ensure

that the solutions are operationally valid. Operationally validity requires that allocated

BEBs do not overlap spatially or temporally. Furthermore, the SOC of a bus at a particular

visit is related to the charge from its previous visit by the amount of charging and discharging

that has occurred. Finally, buses must leave the charger before their scheduled departure

time. These constraints are represented as follows:

uj − di − (σij − 1)T ≥ 0 (4.12a)

qj − qi − 1− (ψij − 1)Q ≥ 0 (4.12b)

σij + σji ≤ 1 (4.12c)

ψij + ψji ≤ 1 (4.12d)

σij + σji + ψij + ψji ≥ 1 (4.12e)

si = di − ui (4.12f)

ηξi = ηi + rqisi −∆i (4.12g)

κbi ≥ ηi + rqisi (4.12h)

ai ≤ ui ≤ di ≤ ei ≤ T (4.12i)
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Fig. 4.2: The representation of the queue-time space. The x and y-axis represent time and
space, respectively. Along the y-axis, the dashed lines represent discrete queuing locations.
The shaded rectangles represent schedules BEBs to be charged. The height of each shaded
rectangle represents the space taken on the queue and the width being the time to service
said BEB. The vertical dashed lines are associated with vessel D and represent the arrival
time, initial charge time, charge completion time, and departure time. Note that the arrival
time may be before the initial charge time and the completion time may before the departure
time.
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Equation 4.12a-Equation 4.12e are denoted as “queuing constraints”. They prevent

overlap both spatially and temporally as shown in Figure 4.2. The y-axis represents the

possible queues for a bus visit to be placed into, and the x-axis represents the time that can

be reserved for each visit. The shaded rectangles represent time that has been scheduled in

the horizontal direction, and the queue allocated for each bus visit in the vertical direction.

In other words, the set of constraints Equation 4.12a - Equation 4.12e aim to ensure that

these shaded rectangles never overlap.

Constraint Equation 4.12a states that the starting charge time for BEB uj must begin

after the previous BEB departs, di. A value of σij = 1 =⇒ bus i has detached from

the charger before bus j has begun charging. If σij = 0, then the constraint is of the

form T + di > uj rendering the constraint “inactive”. Similarly, for Equation 4.12b, ψij

determines spacial positioning of BEB i and j relative to one another. A value of ψij =

1 =⇒ BEB i is in a queue index that is less than BEB j. If ψij = 0 then the constraint

is deactivated. Constraints Equation 4.12c - Equation 4.12e enforce spatial and temporal

ordering between each queue/vehicle pair. Equation 4.12c and Equation 4.12d ensure that

BEB i is not placed before and after j spatially or temporally as that is not possible.

Equation 4.12e enforces at least one of the spatial or temporal relationships between each

visit is active. This ensures there are no scheduling conflicts (i.e. either charging sessions

are ordered temporally or are in different queues).

Equation 4.12f describes the service time of the bus. Equation 4.12g calculates the

initial charge for the next visit for bus bi. Equation 4.12h ensures that the bus is not being

over-charged. Equation 4.12i ensures the continuity of the times (i.e. the arrival time is

less than the initial charge which is less than the detach time which is less than the time

the bus exits the station and all must be less than the time horizon).

4.4 Simulated Annealing

SA is a well-studied local search metaheuristic used to solve various optimization prob-

lems [45,46]. The algorithm is often applied to problems that contain many local solutions

as it employs a stochastic approach that explores the solution space for an approximate
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global optimum. This model is named after its analogized process where a crystalline solid

is heated then allowed to cool at a slow rate until it achieves its most regular possible crystal

lattice configuration (i.e. lowest energy state) [46,47]. SA establishes a connection between

the thermodynamic process and the search for global optimum in optimization problems.

Within the SA process there are three key components: cooling equation, acceptance crite-

ria, and generation mechanisms [46,48].

The cooling equation describes the speed at which the figurative temperature is de-

creased in a controlled manner over time. Throughout the SA process, many “candidate”

solutions are generated and compared to an “active” solution. The method by which the

solutions are accepted is determined by the acceptance criteria. The acceptance criteria is a

function of the system temperature that makes the decision whether the system will accept

an inferior solution in favor of exploring the solution space. The means by which candidate

solutions are generated is via the generation mechanisms. These generators modify the

solution by some singular discrete change [45]. Each of these components are elaborated in

the subsequent sections.

4.4.1 Cooling Equation

The temperature function models a “rate of cooling” for the SA process. Initially,

when the temperature is high, SA encourages exploration. As the process begins to “cools

down” (in accordance to the cooling schedule), it begins to encourage local exploitation

of the solution (rather than exploration) [47, 49]. There are three common basic types of

cooling equations: linear, geometric, and exponential. Each schedule type is depicted in

Figure 4.3a [48]. Every plot begins with an initial temperature of T0 = 500◦ C and a final

temperature of Tf = 1◦ C. The different cooling schedules dictate the rate at which the

algorithm progressively disallows exploration. Let the vector of temperatures described by

a cooling schedule be defined as t. Furthermore, let an element of the vector be denoted as

tm ∈ t, where m ∈ [0, ...,M ] and M = |t|.

A linear cooling schedule is defined by tm = tm−1−β0. The terms utilized in Figure 4.3a

are t0 = T0 and β0 = 1/2 C◦. An exponential cooling schedule is defined by the difference
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(a) Geometric, linear, and exponential cooling
schedules.

(b) Geometric cooling schedule utilizing various
value of β.

equation tm = e−β2tm−1. The values utilized in Figure 4.3a are β2 = 0.01. A geometric

cooling schedules is as defined in Equation 4.13. This schedule type is most widely used in

practice [48]. As such, it will also be employed by this work.

tm = βtm−1 (4.13)

The gain variable, β, in Figure 4.3a evaluated at β = 0.995. The value of β may

vary anywhere between the range [0, 1). The further β is from 1, the quicker the function

converges to zero. Figure 4.3b demonstrates this principle by plotting the geometric schedule

using varying values of β.

4.4.2 Acceptance Criteria

In SA, the algorithm stores a solution that is continuously compared to newly generated

solutions. Let the stored solution be referred to as the “active solution”. During each

iteration, a new “candidate” solution is generated and compared to the active solution

to determine if the candidate solution should replace the active solution. The method

of determining whether the active solution should be replaced is defined by an acceptance

criteria. In an effort to encourage exploration, inferior candidate solutions have a probability

of being accepted. The probability of accepting an inferior candidate solution is determined
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by the objective functions of the active and candidate solutions, J(I) and J(Ī), respectively,

and the current temperature, tm. Let ∆E ≡ J(I) − J(Ī) and let f(·) be the function that

describes the probability of accepting a candidate solution Ī. The probability of accepting

a candidate solution is thus of the form [48]

f(I, Ī, tm) =


1 ∆E > 0

e−
∆E
tm otherwise

. (4.14)

4.4.3 Neighbor Generators and Wrappers

Generation mechanisms are used to create a neighboring candidate solution [45]. That

is, the generating function creates a solution that can be reached in a single iteration from

the active solution. In response to the problem statement made in , five primitive generation

mechanism are used: new visit, slide visit, new charger, wait, and new window. The purpose

of each of these generators is to assign new visits to a charger, adjust a bus visits initial

and final charge time within the same time frame/queue, move a BEB from one charger to

another with the same charge schedule, move a bus to its idle queue. Each generator will

be discussed in more detail in Section 4.4.3.

These primitive generation mechanisms will, in turn, be utilized by two wrapper func-

tions. The charge schedule generator is to used create an initial candidate solutions for SA

and the perturb schedule generator is used to take a candidate solution and alter it slightly

in an attempt to step toward a global or local minimum. The wrapper functions will be

discussed in Section 7. However, prior to discussing the primitives and wrapper generating

functions, their respective inputs and outputs must be defined.

Generator Input/Output

Each generator primitive accepts a tuple S ≡ (i, I,C) where i is the visit index being

manipulated, I is the set of visits, and C is the set that describes the availability for all

chargers q ∈ Q. The output of the generating functions is the same as the input, but with

changes applied to it by a generator. Let a modified variable be denoted with a bar, ·̄.
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Thus, the modified input tuple is written as S̄.

Generators

The mechanism by which candidate solutions are generated are now introduced. Recall

that to satisfy constraints, nB extra idle queues are added that provide no power to the

BEB. Because of this, the set of queues is fully defined where Q is the ordered set of idle

queues, slow queues, then fast queue. The use case for the idle queues are for when a bus is

not to be placed on a charger. Rather, it will be placed in the queue, q ∈ B, which satisfies

the previously defined spatial constraints while allowing the bus to be “set aside”. The

charge queues are denoted by q ∈ {1, ..., nB, nB + 1, ..., nQ}.

For the sake of ease in referring to the various variables associated with a visit, dot

notation is used. For example, suppose the arrival time is desired to be extracted from visit

i. Given I, the notation that describes extracting the initial charge time for visit i is written

as ui ≡ Ii.u.

New visit The new visit generator defined in Algorithm 0 describes the process of moving a

BEB, b ∈ B, from a waiting queue, q ∈ B, to a charging queue, qi ∈ {nB+1, ..., nQ}, within

its arrival/departure time [ai, ei]. Let U{·} indicate that an element is selected randomly

with a uniform distribution from the set {·}. For example, U[ai,ei] indicates that a value will

be selected between a and e with a uniform distribution. Algorithm 0 begins by extracting

variables. Lines 8 and 9 randomly select a charging queue and available time frame with

a uniform distribution, respectively. Line 10 attempts to assign the visit to the previously

select time slice, if it succeeds, the updated visit is returned. Otherwise, the null value is

returned.

The function FindFreeTime is the algorithm that determines whether a visit’s time

at the station [ai, ei] can be placed in the time availability of charger q. Let the available

time for charger q for visit i be denoted as C ≡ Ci.q. Furthermore, let the lower and upper

bound of C be denoted as CL and CU , respectively. The algorithm checks whether the BEB

time at the station, [ai, ei] fits within the charger availability [CL, CU ]. If it does, a random
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charging time frame is returned such that ai ≤ ui ≤ di ≤ ei. Otherwise the null value is

returned.

Algorithm 0: New visit algorithm
Algorithm: New Visit

Input: S

Output: S̄

1 begin

2 i← Si; /* Extract visit index */

3 I← SI; /* Extract visit tuple */

4 C← SC; /* Extract visit charger availability */

5 a← Ii.a; /* Extract the arrivial time for visit i */

6 e← Ii.e; /* Extract the departure time for visit i */

7 q ← Ii.q ; /* Extract the current charge queue for visit i */

8 q̄ ← UQ; /* Select a random charging queue with a uniform distribution */

9 C ← UCq̄ ; /* Select a random time slice from Cq̄ */

10 if (C̄, ū, d̄) ← FindFreeTime(C, i, q̄, a, e) ̸∈ ∅ then /* If there is time available in C */

11 Īi.q ← q̄; /* Update visit tuple with new charge queue */

12 Īi.u ← ū; /* Update visit tuple with new inital charge time */

13 Īi.d ← d̄; /* Update visit tuple with new final charge time */

14 return (i, Ī, C̄) /* Return visit */

15 end

16 return (∅); /* Return nothing */

17 end

Slide visit This primitive generator is used for visits that have already been scheduled.

Because of the constraint Equation 4.12i, there may be some slack to manipulate [ui, di]

within the window [ai, ei]. That is, two new values, ui and di are randomly selected with

a uniform distribution that satisfy the constraint ai ≤ ui ≤ di ≤ ei. Algorithm 1 begins

be extracting variables. Line 5 purges the visit from the charger availability schedule. The

Purge function simply removes an assigned charge time from the set C. Without altering

selected queue, the charge time randomly re-assigned with a uniform distribution. Upon

success, the updated tuple is returned, otherwise the null value is returned.
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Algorithm 1: Slide Visit Algorithm
Algorithm: Slide Visit

Input: S

Output: S̄

1 begin

2 i← Si; /* Extract visit index */

3 I← SI; /* Extract visit tuple */

4 C← SC; /* Extract visit charger availability */

5 (i, I, C̄)←Purge(S); /* Purge visit i from charger availibility matrix */

6 C ← C̄i.q ; /* Get the time availability of the purged visit */

/* If there is time available in C */

7 if (C̄, ū, d̄) ← FindFreeTime(C, i, Ii.q, Ii.a, Ii.e) ̸∈ ∅ then

8 Īi.u ← ū; /* Update visit tuple with new inital charge time */

9 Īi.d ← d̄; /* Update visit tuple with new final charge time */

10 return (i, Ī, C̄) /* Return updated visit */

11 end

12 return (∅); /* Return nothing */

13 end

New charger The new charger generator moves a visit Ii to a new charging queue while

maintaining the same charge time, [ui, di]. Algorithm 2 begins be extracting variables, and

then purges the visit from the charger availability set, a queue is selected at random with

a uniform distribution, then the new selection is checked whether the charge time [ui, di]

may be assigned to the new queue.
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Algorithm 2: New Charger Algorithm
Algorithm: New Charger

Input: S

Output: S̄

1 begin

2 i← Si; /* Extract visit index */

3 I← SI; /* Extract visit tuple */

4 C← SC; /* Extract visit charger availability */

5 (i, I, C̄)←Purge(S); /* Purge visit i from charger availibility matrix */

6 q̄ ← UQ; /* Select a random charging queue with a uniform distribution */

7 if (C̄, ū, d̄) ← FindFreeTime(C̄i.q, i, q̄, Ii.a, Ii.e) ̸∈ ∅ then /* If there is time available in

Cq */

/* Return visit, note u and d are the original inital/final charge times.

*/

8 Īi.q ← q̄; /* Update visit tuple with new charge queue */

9 return (i, Ī, C̄)

10 end

11 return (∅); /* Return nothing */

12 end

Wait The wait generator simply removes a bus from a charger queue and places it in its

idle queue, qi ∈ B. Algorithm 3 begins by purging the visit from the charger availability

set, the visit is then assigned to its idle queue for the duration of its time at the station.
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Algorithm 3: Wait algorithm
Algorithm: Wait

Input: S

Output: S̄

1 begin

2 (i, I, C̄)←Purge(S); /* Purge visit i from charger availibility matrix */

/* Update the charger availability matrix for wait queue C̄i.qi */

3 C̄′
Ii.Γi

← C′ ∪ {[Ii.a, Ii.e]};

4 Īi.q ← Ii.b; /* Reassign bus to idle queue */

5 Īi.u ← Ii.a; /* Set initial charge time to the arrival time */

6 Īi.d ← Ii.e; /* Set the final charge time to the departure time */

7 return (i, Ī, C̄) /* Return visit */

8 end

New Window New window, as shown in Algorithm 4, is a combination of Algorithm 0

(new visit) and Algorithm 3 (wait). By this it is meant that visit i is placed in its wait

queue then added back in as if it were a new visit. This implies that the BEB may be

assigned to a different queue with a new charging time frame. Upon success, the algorithm

returns the updated tuple, otherwise return the null value.

Algorithm 4: New window algorithm
Algorithm: New Window

Input: S

Output: S̄

1 begin

2 S̄←Wait(S); /* Assign visit to its respective idle queue */

3 if ¯̄S← NewVisit(S̄) ̸∈ ∅ then /* Add visit i back in randomly */

4 return ¯̄S /* Return visit */

5 end

6 return (∅); /* Return nothing */

7 end

Generator Wrappers

The generator wrappers provide the highest level of abstraction from which the SA

algorithm directly interacts. These wrapper functions utilize the primitive generators pre-
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viously described to either create a new charge schedule to initialize the SA algorithm, or

to modify an existing schedule.

Charge Schedule Generation The objective of Algorithm 5 is to introduce a method that

provides the SA algorithm with an initial charging schedule. The schedule generation is

chosen to initialize the algorithm in a greedy manner by looping through each visit and

executing Algorithm 0 to place visit i at random queue with a random charge time.

Algorithm 5: Charge schedule generation algorithm
Algorithm: Candidate Solution Generator

Input: (I,C)

Output: (̄I, C̄)

1 begin

/* Select an unscheduled BEB visit from a randomly indexed set of visits */

2 foreach Ii ∈ I do

3 (i, Ī, C̄) ← NewVisit((Ii, I, C)); /* Assign the bus to a charger */

4 end

5 return (̄I, C̄)

6 end

Perturb Schedule Algorithm 6 describes the method by which the SA algorithm decides

how to perturb a given charge schedule. The method that will be employed to generate

neighboring solutions is as follows: pick a visit, pick a primitive generator, and execute said

primitive generator once. Let Wy
[·] denote a random selection with a distribution specified

by a weight vector y ∈ R. Lines 2-12 of Algorithm 6 generate a vector of weights for the

visit index selection. The weights have a default value of one. Each visit is then indexed

in reverse order. If the SOC of the visit is less than νbκb, then the weight for the visit

is calculated as shown on Line 10. The route for BEB b is then set as a “priority” on

Line 9 to propagate the previously calculated weight to earlier visits of BEB b as shown on

Line 5. This is done in an attempt to encourage the SA algorithm to “fix” the current or

previous visits so that the SOC stays above the minimum threshold. The algorithm then

selects a visit index with weighted distribution yv and selects a primitive with a weighted

distribution, yp. Letting nG denote the number of primitive generating functions, line 15
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selects a primitive generating function with a weighted distribution, Wyv

[1,nG]. The primitive

is then executed, and the results are returned.

Algorithm 6: Perturb schedule algorithm
Algorithm: Perturb Schedule

Input: (I,C)
Output: (̄I, C̄)

1 begin

2 p← [false;nA]; /* Create vector of booleans to track priority status */

3 yv ← [1.0;nV ]; /* Create weight vector for index selection */

/* Loop through the visits in reverse order */

4 for i← |I| TO 1 do

/* Check whether the current visit is part of a priority route */

5 if pIi.b = true then

6 yvIi = yvIi.ξ
; /* Propagate the priority level to previous visit */

7 end

/* Prioritize if the current visit’s SOC falls below the allowed threshold

*/
8 else if Ii.η ≤ νIi.bκIi.b then

9 pIi.b = true; /* Indicate the current BEB’s routes are to be prioritized */

10 yvIi = κIi.b + κIi.b (νIi.bκIi.b − Ii.η); /* Calculate the weight of the current visit

*/
11 end

12 end

13 i← Wyv

I ; /* Select an index with a weighted distribution */

14 yp ← [yp1 , y
p
2 , ...]; /* Define the weight of each primitive generator */

/* Select a primitve generating function with weighted distribution */

15 PrimitiveGeneratingFunction ← Wyp

[1,nG]
;

16 (i, Ī, C̄)← PrimitiveGeneratingFunction((i, I, C)); /* Excecute the generator function */

17 return (̄I, C̄)
18 end

4.4.4 Alternative Heuristic Implementation

As suggested by the works in [50, 51], applying heuristics to the generating functions

can manipulate the searched neighborhoods in a way that may assist the SA algorithm

with convergence. As a test to assist in minimizing charger utilization, a simple heuristic

is applied to Algorithm 0 and Algorithm 2 in the method that they select new charging

queues. Rather than selecting a queue at random from q ∈ Q, the algorithms randomly

select whether to place a BEB in a slow or fast charging queue with a weighted distribution

favoring slow chargers. Once the charger type has been selected, the algorithm will then

begin incrementally attempting to place the BEB in a queue of that type beginning from the
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smallest index of that charger type. For example, if a BEB has been selected to be placed

in a queue with a slow charger, the algorithm begins by attempting to place the BEB in the

charger queue q = nB +1. If it is unable to be placed in that queue, it then attempts to be

placed in the next queue q = nB + 2. This is done incrementally until all the queues have

been exhausted. The objective of this alternative approach is to explore whether the added

up-front computation cost by including the heuristic will positively influence the output of

the results and to what degree.

4.5 Optimization Algorithm

This section combines the generation algorithms and the optimization problem into

a single algorithm (Algorithm 7). Generally, SA assumes that the generated candidate

solutions are within the solution space of the problem, S ∈ S where S is the solution space.

In other words, the initialization and perturbations of a schedule must be verified to ensure

that the generated schedule is in the solution space. Therefore, the objective function and

constraints introduced in Section 4.3.3 and Section 4.3.2, respectively, must be employed to

verify that the outputs of Algorithm 5 and Algorithm 6 are in the feasible space, S.

As previously stated, the generating functions directly influence the values of the as-

signed charge queue, charge initialization time, and charge completion time: qi, ui, and di,

respectively. Having generated those values, the rest of the decision variables may be de-

rived. Beginning with the packing constraints, Equation 4.12a-Equation 4.12b are employed

to enable and disable σij and ψij and Equation 4.12c-Equation 4.12e ensure the validity of

the values. Equation 4.12f can be directly calculated and Equation 4.12i is fully defined.

Changing the focus over to the dynamic constraints, similarly to what was seen with the

packing constraints, the battery dynamic constraints are also fully defined. Equation 4.12g is

sequentially calculated after a given schedule has been created. Equation 4.12h is evaluated

to ensure the BEB is not overcharged. The penalty method implemented in Section 4.3.2

is set in place to allow the SOC to go below the specified threshold, νbiκbi , but punish the

solution for doing so. Thus, over time, the candidate solutions will be encouraged toward a

solution that does not activate the penalty method (i.e., is solution is operationally feasible).
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The implementation of the SA PAP, outlined in Algorithm 7, will now be discussed. The

algorithm begins by creating a temperature schedule and creating an initial solution. The

algorithm then iterates through the temperature schedule (outer loop). For each iteration

of the outer loop, an inner loop is executed nK times. During this inner loop, the solution is

modified by a primitive generating function to create a candidate solution. The candidate is

solution is then compared with the active solution, and updated according to the acceptance

criteria. These actions are performed until the cooling equation is exhausted.

Algorithm 7: Simulated annealing approach to the position allocation problem
Algorithm: SA PAP

Input: (I , C)

Output: (̄I, C̄)

1 begin

/* Generate vector of temperatures given cooling equation T and initial

temperature T0 */

2 t← T(T0)

3 S←ChargeScheduleGenerator((I, C))/* Generate an initial solution */

/* For each item in the temperature vector */

4 foreach tk ∈ t do

/* For each step in the constant temperature repitition counter */

5 foreach k ∈ {0, 1, ..., nK} do

6 S̄← PerturbSchedule((I, C)) ; /* Generate a new solution */

7 ∆E = J(S̄I) - J(SI) ; /* Calculate the difference of fitness scores */

8 if Ī ∈ S and ∆E < 0 then

9 S← S̄

10 end

11 if Ī ∈ S and ∆E ≥ 0 then

12 S← S̄ with probability e
∆E
tk

13 end

14 end

15 end

16 return (I , C̄)

17 end

4.6 Example

An example is now provided to demonstrate the utility of the developed SA charge
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scheduling technique. In Section 4.6.1 a description of the example scenario is presented

followed by a brief introduction of the BEB implementation of the PAP (BPAP) and an al-

ternative threshold based strategy called the Qin-Modified technique. Section 4.6.2 presents

the results for each of planning strategies. The results are then analyzed and discussed.

4.6.1 BEB Scenario

The test scenario was run over a time horizon of T = 24 hours, with a total of nV = 338

visits to the station shared between nB = 35 buses. Each BEB is assumed to have a battery

capacity of κb = 388 kWh that is required to stay above an SOC of νb = 25% (97 kWh).

Each bus is assumed to begin the working day with α = 90% charge (349.2 kWh). A total of

30 chargers are utilized where 15 of the chargers are slow charging (30 kW) and 15 are fast

charging (911 kW). The gains of zp = 5,000, zc = 1, and zd = 10,000 are used. As previously

introduced, to encourage slow charging for battery health, the values of ϵ in the objective

function are ∀q ∈ {1, 2, ..., nB}; ϵq = 0 and ∀q ∈ {nB + 1, nB + 2, ..., nQ}; ϵq = 10q. The SA

algorithm utilizes the geometric cooling schedule with an initial temperature of T0 = 9,000

with β = 0.997, resulting in a total of nM = 9,101 steps. Rocky Mountain Power utilizes

fifteen-minute intervals to calculate the demand cost [44]. To match the method by which

Rocky Mountain Power determines its demand cost, this work employed an interval of Tp =

900 seconds in its demand cost calculation. A weight vector of [0.3333, 0.3333, 0.1667, 0.1667]

is used to influence the distribution of selecting the new charger, new window, wait, and slide

visit primitives, respectively. The algorithm also assumes a total of nK = 500 iterations for

the local search at a constant temperature. In total, that results in 4,550,500 configurations

being searched in a total runtime of 2,275.25 seconds.

introduced the idea of an alternative heuristic implementation for the SA algorithm.

To distinguish the heuristic implementation from the method derived in , let this imple-

mentation be referred to as “heuristic” implementation and the previous as the “quick”

implementation due to the fact that it is designed to execute more quickly. Using the same

weights for randomly selecting the primitive generators, the heuristic approach further im-

plemented a weighted distribution vector of [0.75, 0.25] to decide whether to select a slow
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or fast charger, respectively. The heuristic approach had a total runtime of 3,640.4 seconds.

The heuristic generators were expected to be slightly slower due to its iterative approach.

The Qin-Modified is a threshold-based strategy that is also employed as a means of

comparison with the results of the SA BPAP. The Qin-Modified algorithm is a based on

the threshold strategy of [34]. The algorithm has been modified slightly to accommodate

the case of multiple charger types without a heuristic search for the best charger type. The

heuristic is based on a set of rules that revolve around the initial charge of the bus at visit

i. There are three different thresholds, low (60%), medium (70%), and high (90%). Buses

below the low threshold are prioritized to fast chargers then are allowed to utilize slow

chargers if no fast chargers are available. Buses between the low and medium threshold

prioritize slow chargers first and utilize fast chargers only if no slow chargers are available.

Buses above the medium threshold and below high will only be assigned to slow chargers.

Buses above the high threshold will not be charged. Once a bus has been assigned to a

charger, it remains on the charger for the duration of the time it is at the station, or it

reaches 90% charge, whichever comes first.

Another method utilized to compare with against SA PAP is the BEB implementation

of the PAP [52]. The BPAP implementation is utilized in this work as a benchmark for the

other schedules as it is implemented utilizing a commercial solver. The inputs to the system

are the same as those discussed above. It is of note that the BPAP does not implement

the demand cost in its objective function. In an attempt to compare the solution of the

BPAP with the SA output more directly, a similar solve time of 1,900 seconds is utilized.

The BPAP was executed using the Gurobi MILP solver [43]. The previously described

simulations were run on a machine equipped with an AMD Ryzen 9 5900X 12 - Processor

(24 core) at 4.95GHz.

4.6.2 Results

The schedules generated by each of the methods is presented in Figure 4.4. For the sake

of conciseness of the schedule plots, the waiting queues are excluded. Therefore, rows 0-14

represent slow charging queues and rows 15-29 represent fast charging queues. The hollow



56

circles with an ’X’ represent the initial charge times, and the horizontal line with the vertical

tick signifies the region of time the charger is active. The Qin-Modified schedule utilized

two fast chargers and fourteen slow chargers as can be seen in Figure 4.4a. The BPAP

framework generated a schedule that utilizes three fast charges and four slow chargers as

shown in Figure 4.4b. The heuristic SA strategy created a schedule with nine slow charger

queues and one fast charging queue as shown in Figure 4.4c. The quick strategy for the

SA algorithm created a schedule utilizing seven slow chargers and two fast chargers as is

demonstrated in Figure 4.4d. That is to say, while each schedule emphasized the utilization

of slow chargers, the Qin-Modified required fast charging most frequently followed by the

BPAP, quick SA, and then heuristic SA. At the expense of incorporating more slow chargers

than the BPAP, the SA techniques chose to utilize fast chargers less frequently in their

respective schedules showing an emphasis on battery health.

Table 4.2 tabulates the mean, minimum, and maximum SOC upon arrival for each

visit. The BPAP requires each BEB to stay above an SOC of 25% while the quick and

heuristic SA approaches heavily penalize a schedule for allowing a BEB to go below the

25% SOC threshold. The BPAP was able to successfully keep the SOC above the threshold

while both SA approaches were a few kWh below the threshold. The SOC of the quick SA

approach dropped to a minimum of 94.760 kWh and the heuristic had a minimum SOC

of 91.265 kWh, as shown in Table 4.2. Due to the threshold constraint being soft, the

SA objective function may find it better to allow a small deficit in the threshold penalty

function in favor of another action. As a remedy to ensure the SA schedules stays above the

threshold, a safety factor could be introduced to artificially increase the threshold, Sfνbiκbi

where Sf > 1; Sf ∈ R.

The Qin-Modified schedule allowed the SOC for one of the BEBs to reach 0% as shown

in Table 4.2. The Qin-Modified strategy, being a purely reactive model, does not have

foresight to determine whether a set of routes has a particularly taxing route later in the

time horizon. As such, and in the case of the example scenario, the BEB that reached a

charge of 0% began with a sequence of short routes, much like the other BEBs. However,
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rather than continuing this trend, these sets of routes had one or two longer routes which

the Qin-Modified algorithm was unable to account for. Interestingly, despite having a bus

drop to zero charge, the Qin-Modified strategy had the highest mean SOC, followed by the

quick SA, heuristic SA, and then the BPAP.

Table 4.2: Table of mean, min, and max SOC (kWh) for each charging schedule.

BPAP Qin-Modifid Heuristic Quick

Mean 181.327 248.864 182.004 188.327
Min 97.000 0.000 91.265 94.760
Max 382.930 349.200 387.829 388.000

Figure 4.7 depicts the power utilized over the time horizon for each model. Referencing

Figure 4.7a, the Qin maintained long periods of steady slow and fast charger use. This is

again a symptom of the Qin-Modified strategy placing BEBs on chargers based solely on

the SOC upon arrival. The BPAP and SA techniques, having demand peaks in the first half

of the time horizon, were able to effectively maintain lower demand profiles during slower

moments throughout the day (the SA techniques more so than the BPAP). Figure 4.7 is

also of interest as it shows the peak power demand over the time horizon. The peaks for

each schedule shown in Table 4.3. Both the quick and heuristic SA techniques were able

to maintain peak power use below 1,130 kW whereas the BPAP and Qin had peaks above

1,900 kW demonstrating significant demand cost reduction.

Table 4.3: Table of mean and max power demand for each charging schedule.

BPAP Qin-Modified Heuristic Quick

Mean 176.550 394.130 180.858 186.858
Max 1,910.000 2,000.000 1,150.950 1,120.950

The total energy consumed by each schedule is shown in Figure 4.8. The ordering

of most energy consumed to least is as follows: Qin-Modified, quick SA, heuristic SA,

and the BPAP. The respective energy consumption for each technique is: 9,459.120 kWh,

4,428.670 kWh, 4,295.660 kWh, and 4,237.200 kWh with the heuristic SA consuming about
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58.5 kWh more than the BPAP. While the quick and heuristic SA techniques were slightly

above the BPAP in energy consumption, it is expected that the BPAP would have the

lowest consumed energy as it only considers consumption cost. Despite considering peak

demand, the SA methods had nearly the same consumption as the BPAP. Referencing

Table 4.2 and Table 4.3 for the mean SOC and mean demand, respectively, the descending

order of consumed energy is correlated to the descending order of the mean SOC and the

descending order of the mean power demand. This makes sense as a higher mean SOC

implies the chargers being active more often; similarly for the mean demand.

Table 4.4: Table of objective function scores for each of the schedules.

Schedule Score

BPAP 18,500,000
Qin-Modified 34,578,526
Heuristic 11,673,937
Quick 11,234,577

As a final comparison, the scores for the Qin-Modified, quick SA, BPAP, and heuristic

SA are shown in Table 4.4. The Qin-Modified strategy naturally has the highest score as it

performed the worst in each metric of the objective function. Although the BPAP was able

to maintain the SOC of each BEB above the minimum charge threshold, due to large peaks

in the power demand in the BPAP schedule, both SA techniques were able to achieve lower

scores. In other words, although the SA techniques allowed small breaches in the minimum

SOC, the objective function found the quick and heuristic SA schedule configurations to be

more desirable than that of the BPAP. The quick SA was able to successfully obtain the

lowest score due to its substantial reduction in the demand cost and its smaller breach of

the minimum SOC threshold.



59

4 6 8 10 12 14 16 18 20 22

0

5

10

15

Time [hr]

C
h
a
rg
in
g
Q
u
eu

e

Qin Schedule

Figure 4.4(a)

4 6 8 10 12 14 16 18 20 22

0

5

10

15

Time [hr]

C
h
ar
gi
n
g
Q
u
eu
e

BPAP Schedule

Figure 4.4(b)



60

4 6 8 10 12 14 16 18 20 22

0

5

10

15

Time [hr]

C
h
ar
gi
n
g
Q
u
eu
e

SA Heuristic Schedule

Figure 4.4(c)
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Fig. 4.4: Various schedules generated by the different frameworks. Figure 4.4a is the Qin-
Modified schedule, Figure 4.4b is the BPAP schedule, Figure 4.4c is the heuristic SA sched-
ule, and Figure 4.4d is the quick SA schedule. The horizonontal line stemming from the
nodes ending with a vertical tick indicate the charge duration for that particular visit.
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Fig. 4.6: Number of fast chargers utilized in parallel over the time horizon. Figure 4.5a
plots the fast charger count for the BPAP and Qin schedules and Figure 4.5b plots the fast
charger count for the quick and heuristic SA schedules.
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Fig. 4.7: Power demand for each schedule over the time horizon. Figure 4.7a plots the
power demand for the Qin and BPAP schedules and Figure 4.7b plots the power demand
for the quick and heuristic SA schedules.
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Fig. 4.8: Total accumulated energy consumed by the Qin-Modified, MILP, quick and heuris-
tic SA schedules throughout the time horizon.
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CHAPTER 5

A SIMULATED ANNEALING APPROACH WITH NON-LINEAR BATTERY

DYNAMICS

The models presented up to this point have employed linear battery dynamic models

to estimate the SOC of the BEB during its charging phase. While linear battery dynamics

are accurate up to about an 80% SOC [36], fidelity is lost after this point due to the non-

linearity of the charge profile. This chapter introduces a method of replacing the linear

battery dynamics throughout this work with a non-linear dynamics model. The non-linear

model will be employed in the SA algorithm from Chapter 4. The chapter proceeds as

follows: an introduction to the non-linear battery dynamics model is shown in Section 5.1

along with a proof and description of how the model is incorporated. Section 5.2 presents

and discusses the results.

5.1 Non-linear Battery Dynamics Model

Modeling the charging dynamics is imperative to the model’s accuracy as it is one of the

main factors in terms of the decision variables. If the SOC is improperly modeled, that will

produce an erroneous depiction of the state of BEB charges and could result in over or under

charging. Thus, care must be taken into considering the BEB’s charging model. There are

various methods of modeling the SOC of a battery and can vary in complexity based on

the attempt to incorporate temperature, battery degradation, and current [9, 28,53].

Some of the conventional methods to charge batteries are: Constant Voltage (CV),

Constant Current (CC), and Constant Current Constant Voltage (CCCV) [54]. In CCCV,

a constant current is applied to a battery until it reaches terminal voltage. Once this point

has been reached, a constant voltage is applied as the charge current decreases and the

battery reaches full charge [9]. Thus, by extension, CV merely applies a constant voltage

and CC a constant current [54].
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Fig. 5.1: Illustration of non-linear charging
profile.

Fig. 5.2: Charging profiles for various conver-
gence rates.

As previously stated, the SOC can be accurately modeled until the battery reaches a

charge of about 80% [36]. At this point the SOC becomes non-linear. Naturally, it has been

suggested by [28] that the SOC can be broken down into a linear and non-linear component.

A plot of the SOC for a battery is shown in to demonstrate these components [28].

While some leverage the linear and non-linear components to derive their SOC model

[10], others have derived a first order equation to model this behavior [22]. Assume that

a charge will occur over dt seconds. The SOC on the time step h + 1 for bus i can be

determined by the simple discrete first order equation

ηξi = āqηi − b̄qκΞi , (5.1)

where

āq = eaqdt b̄q = eaqdt − 1. (5.2)

The equation is developed by using exact discretization [55], and is proved in [22]. The

lemma and proof are subsequently shown for completeness.

Lemma. Assume that the charge will occur over intervals over ∆ seconds, the charge at

time step k + 1 for visit i can be related to the charge at time step k using charger q as
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ηi,k+1 = āqiηi,k − b̄qiMi, (5.3)

where ηi,k represents the SOC for bus i at step k and

āqi = eaqi∆, b̄qi = eaqi∆ − 1. (5.4)

Proof. A first-order, continuous model converging to Mj at an exponential rate of aqi can

be expressed as

ṡi = aqiηi(t)− aqiMi. (5.5)

The resulting discrete model in Equation 5.4 is obtained by using the exact discretation

of an LTI system as is [55]. Assuming u(t) is held constant over the discrete step ∆, the

exact discretation of a general LTI system, represented as in ẋ(t) = Ax(t) +Bu(t), is given

by

xk+1 = Āxk + B̄uk

Ā = eA∆

B̄ =
∫ ∆
0 eA−τdτB.

(5.6)

In Equation 5.5, both aqi andMi are constants with no actual control input. To utilize

this general discretization formula, Equation 5.5 is rewritten as ṡi = aqiηi(t)− bqiu(t) where

bqi = aqi and u(t) = −Mi. Viewing this new equation in reference to Equation 5.6, the

state x(t) is replaced with ηi(t) and the matrices, A and B, are replaced with aqi and bqi ,

respectively. Performing these substitutions the discretized forms of aqi and bqi become

āqi = eaqi∆

b̄qi = aqi
∫ ∆
0 eaqi (∆−τ)dτ .

(5.7)

The integral in b̄qi can be solved analytically by taking the antiderivative as
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b̄qi = aqi

(
− 1

aqi
eaqi (∆−τ)

∣∣∣∣τ=∆

τ=0

)
= eaqi∆ − 1. (5.8)

Thus, a visit may leverage this model by taking the initial SOC, ηi, substituting ∆

for the charge duration, si, and letting qi represent the convergence rate, the accumulated

charge over visit i can be directly calculated using the exact discretization defined above.

Figure 5.2 depicts the charge profile estimation utilizing different convergence rates. Note

from the figure, the values for the rate of convergence are negative.

5.2 Results

The following results are generated utilizing the same parameters and problem setup as

Section 4.6. To approximate the linear charge speeds, the convergence rate for each charger

type was adjusted such that the non-linear charge curve intersected the respective linear

charge profile at the 80% SOCmark (i.e. the linear portion of the SOC charge profile). It was

found that convergence rates of 0.002 and 0.000045 for fast and slow chargers, respectively,

intersected their linear counterparts at 80% SOC as shown in Figure 5.3. Furthermore,

the heuristic technique was executed utilizing the non-linear battery dynamics. The BPAP

and linear heuristic SA plots are included as comparisons against the presented non-linear

SA technique. Note that the BPAP and heuristic schedules are generated utilizing linear

battery dynamics.

Figure 5.4a depicts the charge schedule generated utilizing non-linear battery dynamics.

Similarly to before, the symbol represents the point at which a BEB begins charging. The

horizontal line with vertical tic indicate the time over which said BEB receives its charge.

Idle chargers were removed for the sake of legibility and space, therefore rows 0-14 of

Figure 5.4 represent the slow charging queues and rows 15-29 represent the fast charging

queues. The non-linear schedule utilized a total of nine slow charging queues and one fast

charger. It is of note that schedules generated are of a similar structure. However, the charge

times for the fast chargers are of longer durations due to the non-linear charge profile. That
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Fig. 5.3: Plot of the linear and non-linear charge profiles. Note the intersections at the 80%
SOC line indicated by the horizontal red dashed line.
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is, the rate at which the non-linear battery dynamics model accepts additional charge at

SOCs above 80% is much lower than that of the linear battery dynamics, causing longer

charge times.

Table 5.1: Table of mean, min, and max SOC (kWh) for each charging schedule.

BPAP Non-Linear Linear

Mean 181.327 180.601 182.004
Min 97.000 83.092 91.265

Table 5.1 tabulates the mean and max demand SOC for each. The mean SOC for

both the linear and non-linear heuristic SA techniques were approximately the same, but

the minimum SOC for the non-linear heuristic SA is lower than that of the linear. This is

again due to the non-linear charge profile and the fact that the minimum SOC constraint

is soft. This issue may be remedied by including a safety factor term to artificially elevate

the minimum SOC threshold, Sfνiκi where Sf > 1; Sf ∈ R.

Table 5.2: Table of mean and max power demand for each charging schedule.

BPAP Non-Linear Linear

Mean 177.550 246.621 180.858
Max 1910.000 1180.950 1150.950

Figure 5.6 plots the power usage over the time horizon and Table 5.2 tabulates the

mean and max demand for each. The BPAP and linear SA techniques maintain the lowest

mean power demand. This is expected due to the longer charge durations required by the

non-linear battery dynamics to reach the same SOC as the linear. However, it is vital to

note that even with the non-linear charge profile, the peak demand was still below that of

the BPAP and only 30 kW more than the linear SA. That is, even due to the longer charge

durations, the schedule was still able to successfully minimize the power demand.

The consumed energy by each schedule is shown in Figure 5.7. The ordering of most

energy consumed to least is as follows: non-linear SA, linear SA, and the BPAP with the
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(a) Charge schedule generated by the non-linear SA algorithm.

respective energy consumption for each being 5,919.230 kWh, 4,295.660 kWh, and 4,237.200

kWh. The non-linear SA consumed about 1,163.07 kWh more than the BPAP. The energy

consumed is considerably higher again due to the non-linear charge profile.
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(b) Charging schedule generated by the MILP PAP algorithm.
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(c) Charging schedule generated by the SA PAP algorithm using the heuristic strategy.

Fig. 5.4: Charge schedules generated by the Non-linear SA, MILP, and Heuristic SA algo-
rithms.
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(a) Number of fast chargers for the heuristic SA schedule with non-linear battery dynamics.
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(b) Number of slow chargers for the heuristic SA schedule with non-linear battery dynamics.

Fig. 5.5: Number of slow and fast chargers for each of the schedules.
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Fig. 5.6: Amount of power consumed by heuristic SA with non-linear battery dynimacs
schedule over the time horizon.
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Fig. 5.7: Total accumulated energy consumed by the heuristic SA with non-linear battery
dynamics schedule throughout the time horizon.
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CHAPTER 6

CONCLUSION

This work presented a novel approach to the BEB charge scheduling problem. Chap-

ter 3 introduced the concept of the Berth Allocation Problem (BAP) which solves the

problem of optimally assigning vessels to be serviced. From the BAP, the Position Alloca-

tion Problem (PAP) was derived and introduced as the basis from which the work revolved.

A Mixed Integer Linear Program (MILP) was developed and from the PAP model that min-

imized the total charger count, energy consumption, and was able to maintain a minimum

State of Charge (SOC) throughout the working day. While MILP models maintain a level

of in the form of the objective function and constraints, certain limitations to mathematical

modeling are made in order to maintain linearity of the model. Chapter 4 introduced a Sim-

ulated Annealing implementation of the MILP PAP the same considerations in the objective

function while included an additional cost known as the demand cost. Chapter 5 further

introduces an implementation of non-linear battery dynamics that were implemented in the

SA PAP model.

Chapter 3 demonstrated an example of the MILP PAP formulation and compared its

results to a heuristic-based schedule, referred to as Qin-Modified. The Qin-Modified and

MILP schedule utilized a similar amount of fast chargers; however, the MILP schedule more

readily used the slow chargers to its advantage when the objective function saw fit. More

importantly, the MILP PAP schedule utilized approximately 0.1 · 104 kWh more than the

Qin-Modified; however, the charges for the MILP schedule remained above the constrained

minimum SOC of 25% , and charged all the buses to 70% at the end of the working day.

The Qin-Modified schedule, on the other hand, allowed the SOC of certain BEBs to drop

to 0%.

In Chapter 4 an example of the SA PAP algorithm was presented and compared against

the MILP PAP and Qin-Modified techniques. The MILP PAP was introduced as a baseline
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from which to compare the other models due to the fact that it utilizes is modeled is such a

way which guarantees optimality (unlike the SA approach). The SA PAP was run utilizing

two different neighborhood searching techniques named the quick and heuristic techniques,

respectively. The quick SA’s objective was to randomly search a wide neighborhood while

the heuristic technique was designed to incrementally search a neighborhood by randomly

selecting a fast or slow charging queue and then stepping through the queues one at a

time. The quick and heuristic have comparable run times at 2275.25 seconds and 3640.4

seconds, respectively, but yielded vastly different results. The Qin-Modified utilized the

fewest amount of chargers followed by the MILP, heuristic SA, then the quick SA. The

assignment cost applied to the objective function had no effect on the results of the quick

SA; however, the heuristic SA was more effective in minimizing the total chargers required.

Furthermore, the heuristic SA technique generated a solution approximating that of the

MILP, but was unable to minimize the charger count as efficiently. The quick SA utilized

all the chargers available (i.e. was unable to minimize the charger count).

Both of the SA techniques were unable to keep the SOC above the 25% SOC threshold

with SOC falling to 6.34 kWh for the heuristic SA and 29.8 kWh. The Qin-Modified had the

SOC of two BEBs fall to 0% SOC. The schedule that consumed the least amount of energy

is the MILP PAP (4256.16 kW) with the heuristic SA coming in second (4797.75 kW).

The difference between the two being about 541.586 kWh. The peak demands between the

heuristic SA, quick SA, and the MILP were very similar. The MILP had a peak demand

of 1910 kW and the quick and heuristic SA had demand peaks of 1911.9 kW. Overall, the

heuristic SA was able to generate a schedule that was “in the ballpark” of that of the MILP

while further taking the demand cost into consideration.

In Chapter 5, non-linear battery dynamics were derived and introduced in the SA

PAP model. The behavior of different convergence rates were demonstrated, and then an

example was presented. Convergence rates of 0.1 and 0.002 were utilized for the fast and

slow chargers, respectively. Overall, the non-linear SA performed better than the heuristic

technique except in terms of packing the schedule. This, however, is taken to be a factor
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of the SA algorithm only being able to estimate optimality. Similarly to the results of

Chapter 4, the non-linear SA was able to approximate MILP PAP schedule well enough

while further taking peak demand into consideration the non-linear battery dynamics model.

Further fields of interest are to investigate the performance of the quick and heuristic

SA approaches utilizing a denser set of routes to schedule as compared to the MILP. Non-

linear dynamics would be of interest to incorporate into the MILP model to further explore

comparisons to the SA implementation. Another area of interest would be initializing a

MILP solver with a solution generated from an SA algorithm in an attempt to increase

performance. Furthermore, an interest in creating a robust strategy by accounting for

uncertain arrival times by “fuzzifying” the arrival times. An introduction into this method

is provided in Appendix A.
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APPENDIX A

The Fully Fuzzy Linear Program Model

This section introduces an area of interest for future work. As far as the research

for this thesis has shown, no other work has provided robustness in their resulting charge

schedule. This section outlines a mathematical method to introduce robustness into the

MILP constraints by allowing uncertainty in the arrival times of the BEBs via “fuzzification”

[38, 56]. The process fuzzifying the model introduces fuzzy variables that contain bounds

for which the model can provide solutions for. The mathematics to be introduced promises

much potential for further research and development in regard to scheduling BEBs. What

follows is an outline and extension of the MILP PAP utilizing Fully Fuzzy Mixed Integer

Linear Programming (FFMILP) constraints.

In a realistic scenario, multiple factors such as technical problems, weather conditions,

road detours, and various others factor may arise causing buses to arrive earlier or later

than anticipated to the station/depot. For crisp models (a traditional MILP), there is no

sense of lateness or earliness, thus a model’s solution loses validity at the moment any bus

does not adhere to the route timing. Fuzzifying the model in turn produces a fuzzy solution

that encodes ranges of times that buses may arrive while still remaining a valid solution.

The appendix proceeds as follows. Section A.1 introduces some of the basic concepts

of Mixed Integer Linear Programming (MILP), fuzzy set theory, and Fully Fuzzy Linear

Programming (FFLP). Section A.4 introduces and derives a Fuzzy BAP (FBAP) model.

Section A.5 then adapts the PAP into the FPAP by utilizing the results from the previous

sections.

A.1 Preliminaries

This section introduces the concept of fuzzy set theory by providing some basic defi-

nitions. The theory is then built on to discuss Fully Fuzzy Linear Programming (FFLP).
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FFLP is a branch of Linear Programming where some of the parameters are allowed to have

uncertainty which will be further elaborated on. In this section a method of constructing

FFLP is introduced. Once the FFLP model has been introduced, a derivation of the Fuzzy

BAP (FBAP) is introduced and discussed.

A.2 Fuzzy Sets Theory

This section introduces the notion of fuzzy numbers and some basic definitions. Con-

cepts from this section are referenced from [38,56–59].

Fuzzy Sets

A sensible method of introducing fuzzy sets is to begin by describing the familiar classic

set. A classical (crisp) set is defined as a collection of elements x ∈ X. Crisp sets are binary,

either an element belongs in the set, or it does not [57]. For a fuzzy set, what is known

as the characteristic function applies various degrees of membership for elements of a given

set [57]. The membership of a value in a fuzzy set may differ among other characteristic

functions, but their intended purpose remains the same. The membership function is said to

be normalized if supxµÃ(x) = 1. As an example, Figure A.1a demonstrates a membership

function of an LR flat fuzzy number. For a formal definition, consider the Definition A.0.1:

y

x
a

b c

d

Fig. A.1a: Example of a characteristic function for an LR flat fuzzy number. The line
segments [a, b) and (c, d] may be any function that satisfies Definition A.0.2.
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Fig. A.1b: Example plot of a characteristic function for a triangular fuzzy number.

Definition A.0.1. Let X be a collection of objects (often called the universe of discourse

[38]). If X is denoted generically by x, then a fuzzy set Ã in X is a set of ordered pairs as

shown in Equation A.1.

Ã = {(x, µÃ(x))|x ∈ X} (A.1)

µÃ is called the membership function where µÃ is the mapping µÃ : X → [0, 1]; which assigns

a real number to the interval [0, 1]. The value of µÃ represents the degree of membership of

x in Ã.

The shape of a fuzzy number type is defined by membership function. The general

definition of fuzzy numbers is known as LR fuzzy numbers [56,57]. Definition A.0.2 describes

the property that an L and R functions must have. The L function describes the properties

that the left portion of the fuzzy number has, and the R function describes the properties

of the right.

Definition A.0.2. A function L : [0,∞) → [0, 1] (or R : [0,∞) → [0, 1]) is said to be a

reference function of the fuzzy number if and only if

1. L(0) = 1 (or R(0) = 1)

2. L (or R) is non-increasing on [0,∞)

The definition of an LR fuzzy number may now be developed given the basis of what

properties an L (or R) function must have. Consider Definition A.0.3-Definition A.0.4.
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Definition A.0.3. A fuzzy number Ã defined on the set of real numbers, R, denoted as the

tuple (m,n, α, β)LR, is said to be an LR flat fuzzy number if its membership function µÃ(x)

is defined as shown in Equation A.2. Note that the underscore in the tuple, (·)LR is used to

indicate that the tuple is for an LR fuzzy number.

µÃ(x) =


L(m−xα ) x ≤ m,α > 0

R(m−nβ ) x ≥ m,β > 0

1 m ≤ x ≤ n

(A.2)

Definition A.0.4. An LR flat fuzzy number Ã = (m,n, α, β)LR is said to be a non-negative

LR flat fuzzy number if and only if m− α ≥ 0 and is said to be non-positive LR flat fuzzy

number if and only if m− α ≤ 0 is a real number.

A simplification to the LR flat fuzzy number is the triangular fuzzy number, which is

what will be utilized in this work (Figure A.1b). The triangular fuzzy numbers shall also

be defined over the set of real numbers R. Consider Definition A.0.5 - Definition A.0.8

Definition A.0.5. A fuzzy number that is represented by Ã = (a, b, c) is said to be trian-

gular if its membership function is defined as Equation A.3. Figure A.1b depicts a visual

representation of a triangular fuzzy number.

µÃ(x) =



(x−a)
(b−a) a ≤ x ≤ b

(c−x)
(c−b) c ≤ x ≤ d

0 otherwise

(A.3)

Definition A.0.6. A fuzzy set Ã in R is convex if and only if the membership function of

Ã satisfies the inequality

µÃ[βx1 + (1− β)x2] ≥ min[µÃ(x1), µÃ(x2)] ∀x1, x2 ∈ R β ∈ [0, 1]

Definition A.0.7. A fuzzy number is a normal and convex fuzzy set in R.
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Definition A.0.8. The triangular fuzzy number Ã is nonnegative ⇐⇒ a ≥ 0.

Fuzzy Arithmetic

If two triangular fuzzy numbers ã1 = (a1, a2, a3) and b̃1 = (b1, b2, b3) are nonnegative

then the following operations are defined in Equation A.4.

ã⊕ b̃ = (a1 + b1, a2 + b2, a3 + b3)

ã⊖ b̃ = (a1 + b3, a2 + b2, a3 + b1)

ã⊗ b̃ = (a1b1, a2b2, a3b3)

(A.4)

Comparing Fuzzy Numbers

Fuzzy numbers do not directly provide a method of ordering nor do they always pro-

vide an ordered set like real numbers [38]. There are multiple methods for ordering fuzzy

numbers, each coming with advantages and disadvantages [60]. Different properties have

been applied to justify comparison of fuzzy numbers, such as: preference, rationality, and

robustness [38,56,61]. These methods are commonly known as ranking functions or order-

ing functions [38,56,58]. Commonly, including in this work, the First index of Yager [62] is

used. Let a fuzzy number be represented as Ã = (a1, a2, ...), then the First index of Yager

is defined as Equation A.5

R(Ã) =

∑
i ai

|Ã|
(A.5)

where | · | represents the cardinality of the fuzzy number. In words, Equation A.5 is merely

the average of the values in the fuzzy number. As a result, A ≤ B when R(Ã) ≤ R(B̃) [38].

A.3 Fully Fuzzy Linear Programming

Much like the Linear Programs (LP), Fully Fuzzy Linear Programs (FFLP), it is a class

of constrained optimization in which one seeks to find a set of continuous variables that

either maximizes or minimizes an objective function, J , while satisfying a set of constraints.

The key difference in FFLP is that it is designed to accommodate imprecise information
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[38, 56]. In FFLP, the parameters and decision variables are fuzzy and linear. A general

FFLP is represented as shown in Equation A.6. The subscripts ·e, ·l, and ·g indicate to

equality, less than, and greater than constraints, respectively. As an example, the notation

ãej is read as the eth equality constraint for the jth value in the fuzzy number tuple for the

fuzzy number ã. All variables besides X̃ = (x1, x2, ...) are input variables.

max
x̃

J =
∑

j C̃j ⊗ X̃j

subject to
∑

j ãej ⊗ x̃j = b̃e ∀e = 1, 2, 3, ...∑
j ãlj ⊗ x̃j ≤ b̃l ∀l = 1, 2, 3, ...∑
j ãgj ⊗ x̃j ≥ b̃l ∀g = 1, 2, 3, ...

(A.6)

There are many methods of solving FFLP [38,56,63,64]; however, a common strategy

is to convert the fuzzy model into a crisp model that can be solved using traditional meth-

ods [38]. In [38, 64], the method of converting the FFLP into a crisp MILP is simply done

by applying the ranking function to the objective function and breaking the constraints

down into a set of crisp constraints as shown in Equation A.7. The constraints are sepa-

rated according to the definition of fuzzy set multiplication defined in Equation A.4. The

fuzzy number index is represented in the exponent rather than the subscript to clearly

distinguish between the indexed value in the fuzzy number and the constraint index (i.e.

Ã = (a1, a2, a3)). Furthermore, it is assumed that the fuzzy numbers are nonnegative.

Although the following equation can be written in terms of general nonnegative LR fuzzy

numbers, the parameters and decision variables are written in terms of nonnegative trian-

gular fuzzy numbers. Consider the equality constraint in Equation A.6. For each equality

constraint there will be a lower, middle, and upper bound to the constraint. That consti-

tutes three equality constraints. Equation A.7 expands each constraint.
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max
x̃

J = R
(∑

j(c
1
j , c

2
j , c

3
j )(x

1
j , x

2
j , x

3
j )
)

subject to
∑

j a
1
ejx

1
j = b1e ∀e = 1, 2, 3, ...∑

j a
1
ljx

1
j ≤ b1l ∀l = 1, 2, 3, ...∑

j a
1
gjx

1
j ≥ b1g ∀g = 1, 2, 3, ...∑

j a
2
ejx

2
j = b2e ∀e = 1, 2, 3, ...∑

j a
2
ljx

2
j ≤ b2l ∀l = 1, 2, 3, ...∑

j a
2
gjx

2
j ≥ b2g ∀g = 1, 2, 3, ...∑

j a
3
ejx

3
j = b3e ∀e = 1, 2, 3, ...∑

j a
3
ljx

3
j ≤ b3l ∀l = 1, 2, 3, ...∑

j a
3
gjx

3
j ≥ b3g ∀g = 1, 2, 3, ...

x2j − x1j ≥ 0 x3j − x2j ≥ 0

(A.7)

Note the last constraint is defined to ensure the ordering of the triangular fuzzy number,

x1j ≤ x2j ≤ x3j . To be more succinct, the FFLP can also equivalently be written as Equa-

tion A.8.

max
x̃

J = R
(∑

j(c
1
j , c

2
j , c

3
j )⊗ (x1j , x

2
j , x

3
j )
)

subject to
∑

j a
k
ejx

k
j = bke ∀e = 1, 2, 3, ...∑

j a
k
ljx

k
j ≤ bkl ∀l = 1, 2, 3, ...∑

j a
k
gjx

k
j ≥ bkg ∀g = 1, 2, 3, ...

x2j − x1j ≥ 0 x3j − x2j ≥ 0

∀k ∈ {1, 2, ...}

(A.8)

Where k has a max value equal to the cardinality to the type of fuzzy number being

utilized. This can be further elaborated on by rewriting the inequality constraints as equality

constraints by introducing slack variables. This is useful as it represents the formulation in

a standard form [39,65].

The given method is called the Kumar and Kaurs method [56] which is similar in
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presentation of the Nassiri method presented in [38]. Generally speaking, it is designed to

solve FFLP problems with inequality constraints having LR flat fuzzy numbers. Given the

FFLP Equation A.6 and assuming that x̃j is an LR flat fuzzy number, the problem can be

reformulated as Equation A.9 [56].

max
x̃

J =
∑

j C̃j ⊗ X̃j

subject to
∑

j ãej ⊗ x̃j = b̃e ∀e = 1, 2, 3, ...∑
j ãlj ⊗ x̃j ⊕ S̃l = b̃l ⊕ S̃′l ∀l = 1, 2, 3, ...∑
j ãgj ⊗ x̃j ⊕ S̃g = b̃g ⊕ S̃′g ∀g = 1, 2, 3, ...

R(S̃l)−R(S̃′l) ≥ 0 ∀l = 1, 2, 3, ...

R(S̃g)−R(S̃′g) ≤ 0 ∀g = 1, 2, 3, ...

(A.9)

Expanding the set of equations and using the condensed notation in Equation A.8 we

find Equation A.10 [56].

max
x̃

J = R
(∑

j(c
1
j , c

2
j , c

3
j )⊗ (x1j , x

2
j , x

3
j )
)

subject to
∑

j a
k
ejx

k
j = bke ∀e = 1, 2, 3, ...∑

j a
k
ljx

k
j + skl = s

′k
l + bkl ∀l = 1, 2, 3, ...∑

j a
k
gjx

k
j + skg = s

′k
l + bkl ∀g = 1, 2, 3, ...

R(S̃l)−R(S̃′l) ≥ 0 ∀l = 1, 2, 3, ...

R(S̃g)−R(S̃′g) ≤ 0 ∀g = 1, 2, 3, ...

x2j − x1j ≥ 0 x3j − x2j ≥ 0

∀k ∈ {1, 2, ...}

(A.10)

Example

To demonstrate the process of decomposing an FFLP into its crisp counterpart, a

simple example is to be provided. Consider the following convex non-negative triangular

fuzzy FFLP show in Equation A.11. The example is pulled from [64].
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max
x̃

(1, 2, 3)⊗ x̃1 ⊕ (2, 3, 4)⊗ x̃2

subject to (0, 1, 2)⊗ x̃1 ⊕ (1, 2, 3)⊗ x̃2 ≤ (1, 10, 27)

(1, 2, 3)⊗ x̃1 ⊕ (0, 1, 2)⊗ x̃2 ≤ (2, 11, 28)

(A.11)

Using the method described in , the FFLP can be expanded into the following form de-

scribed in Equation A.12. The objective function is expanded using the First Index of Yager.

Each constraint is then decomposed into three constraints with slack variables appended

to the left-hand side and right-hand side of their respective equation. The constraints for

the slack variables are then included to ensure values of the triangular fuzzy numbers for

the slack variables are valid. Equation A.12 is now said to be a crisp representation of

Equation A.11 in standard form. Solving the FFLP utilizing the Octave LP module (using

both the Nasseri and Kumar methods to verify the results), the example problem has a

solution as displayed in Table A.1.

max
x

J = (1+2+3
3 )(

x1
1+x2

1+x3
1

3 ) + (2,3,43 )(
x1
2+x2

2+x3
2

3 )

subject to 0x11 + 1x12 + s11 = 1 + s1
′

1

1x21 + 2x22 + s21 = 10 + s2
′

1

2x31 + 3x32 + s31 = 27 + s3
′

1

1x11 + 0x12 + s11 = 2 + s1
′

1

2x21 + 1x22 + s21 = 11 + s2
′

1

3x31 + 2x32 + s31 = 28 + s3
′

1

R(S̃1)−R(S̃′1) ≥ 0

R(S̃2)−R(S̃′2) ≥ 0

x2j − x1j ≥ 0

x3j − x2j ≥ 0

(A.12)

Table A.1: Solution to the crisp representation of the FFLP.

x11 x21 x31 x12 x22 x32 s11 s21 s31 s1
′

1 s2
′

1 s3
′

1

2 4 6 1 3 5 0 0 0 0 0 0
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A.4 The Fuzzy BAP

The following is a FFLP model to the continuous dynamical BAP that is able to allocate

a quay to an incoming vessel [38]. The model assumes that the arrival time, ã, berthing

time, ũ, and handling time, s̃, are assumed to be known, but imprecise. The objective of

the model is to allocate all the vessels to different quays, according to several constraints

minimizing the total waiting time for all the vessels. The model in its entirety is presented

in Equation A.13. Note that a few modifications are made to the notation to accommodate

the notation of [38] while attempting to remain as consistent as possible with the notation

presented in this paper. In this section, Q refers to the set of quays. Furthermore, the model

is defined over multiple quays, thus indexing for position shall be written as viq. Similarly,

because of the added degree of freedom, the spatiotemporal binary decision variables are

represented as σqij and ψq
ij . The ·q term represents the quay of interest.

min
∑

q∈Q
∑

i∈I(ũiq − ãi)

Subject to: ∑
q∈Q viq = 1 ∀i ∈ I; ∀q ∈ Q

ũiq ≥ ãi ∀i ∈ I; ∀q ∈ Q

viq + li ≤ Lq ∀i ∈ I; ∀q ∈ Q

viq + li ≤ vjq +M(1− σqij) ∀i, j ∈ I; i ̸= j; ∀q ∈ Q

ũiq + s̃i ≤ T ∀i ∈ I; ∀q ∈ Q

ũiq + s̃i ≤ ũiq +M(1− ψq
ij) ∀i, j ∈ I; i ̸= j; ∀q ∈ Q

(A.13)

One may note the similarities to the previously presented BAB and PAP models in

Equation A.13. It has yet been defined in a way useful for the purposes for this work. The

adaptation of the Fuzzy BAP (FBAP) to the Fuzzy PAP (FPAP) is discussed next in . An

example solution of Equation A.13 for 2 quays, provided by [38], is shown in Figure A.2.

The figure represents the robustness of the fuzzy berthing plan.

The lines below the small triangle represent the possible early berthing time. Similarly,
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the lines above the triangle represent the possible late berthing of the vessel. The point

where the small point resides is the optimum berthing time. In Figure A.2 it appears

that there are conflicts between some of the departures and arrivals of the vessels due to

the overlapping lines (e.g. V8 and V2). These overlapping arrivals and departures merely

represent the relationship of the fuzzy departure/arrival times of the vessels. For example,

if V8 were to depart late, V2 has slack to allow a late berthing and servicing. On the graph,

that would represent a berthing time located somewhere above the small triangle.

Fig. A.2: Example solution of a fuzzy BAP model over multiple quays. The parallelograms
represent the fuzzy solution visually by depicting the lower and upper bounds for the arrival
and departure times with the vertial sloped lines. The yellow filled squares represent the
average crisp solution.

A.5 Objective Function

This section derives the Fuzzy PAP (FPAP). It is separated into three parts to con-

struct each component individually: objective function, queuing constraints, and charging

constraints. Before deriving the FPAP, it is prudent to define the set of fuzzy variables.

Similarly to the Fuzzy BAP, the arrival times, ãi, berthing time ũi, and detach time from

the charger d̃i are assumed to be imprecise. Thus, indirectly, the service time, s̃i, the

linearization constraint in Equation 3.6, g̃iq, and the initial charge for visit i, η̃i will also

become fuzzy values. Note for the sake of brevity, constraints and objective functions shall
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be written in their fuzzy form; however, in practice, the equations will be expanded as

described in .

Objective Function

Begin by rewriting the crisp objective function with the fuzzy linearization term as

shown in Equation A.14.

min

nI∑
i=1

nQ∑
q=1

(
wiqmq + g̃iqϵq

)
(A.14)

As shown in , the method of handling the fuzzy values in the objective function is to

simply apply a ranking function. Let R be defined as the First Index of Yager as shown in

Equation A.5. The resulting objective function is shown in Equation A.15.

min

nI∑
i=1

nQ∑
q=1

(
wiqmq +R(giq)ϵq

)
(A.15)

Queueing Constraints

To derive the queuing constraints, the set of crisp constraints that are of interest are

rewritten in terms of the fuzzy variables that have been identified prior as shown in Equa-

tion A.16. Equation A.16a fuzzifies all the temporal terms. Equation A.16b and Equa-

tion A.16c duplicate the constraints |ũi| times. Using triangular fuzzy numbers, that would

imply constraints for the lower, middle, and upper bounds of the temporal impreciseness.

Similarly, Equation A.16d-Equation A.16f are equivalent to their crisp counterparts, but

with fuzzified terms. Equation A.16g simply updates the binary decision term.

ũi − ũj − s̃j − (σij − 1)T ≥ 0 (A.16a)

σij + σji + ψij + ψji ≥ 1 (A.16b)

σij + σji ≤ 1 (A.16c)

s̃i + ũi = d̃i (A.16d)

ãi ≤ ũi ≤ (T − s̃i) (A.16e)

d̃i ≤ τi (A.16f)

σij , ψij ∈ {0, 1} (A.16g)
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Charging Constraints

Similarly to the other derivations, the crisp constraints are rewritten with their equiv-

alent fuzzy terms. Equation A.17a-Equation A.17e are equivalent to their crisp counterpart

with the added lower and upper bounds for the battery charge for visit i. Note that the

discharge amount, ∆i, is not fuzzy. It is assumed that the bus traveled the same distance

during the route, thus the same amount of discharge. This is done as a simplification to the

estimation of the discharge of a BEB over its given route. Equation A.17f-Equation A.17i

fuzzify the linearization terms in a similar manner, but the crisp spatial term, wiq is included.

The inclusion of the crisp terms with the fuzzy values are allowed because although the time

may be allowed to fluctuate, the specified queue, discharge amounts, or initial/final charge

times are the same for each element of the fuzzy temporal values. Thus, when the fuzzy

constraints are converted into crisp constraints, the constraint validity is maintained [66].

η̃Γ0
i
= ακΓ0

i
(A.17a)

η̃i +

nQ∑
q=1

g̃iqrq −∆i = η̃γi (A.17b)

η̃i +

nQ∑
q=1

g̃iqrq −∆i ≥ νκΓi (A.17c)

η̃i +

nQ∑
q=1

g̃iqrq ≤ κΓi (A.17d)

η̃
Γf
i
≥ βκ

Γf
i

(A.17e)

s̃i − (1− wiq)M ≤ g̃iq (A.17f)

s̃i ≥ g̃iq (A.17g)

Mwiq ≥ g̃iq (A.17h)

0 ≤ g̃iq (A.17i)
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[38] M. Bello, G. Nápoles, I. Fuentes, I. Grau, R. Falcon, R. Bello, and K. Vanhoof, Fuzzy
Activation of Rough Cognitive Ensembles Using OWA Operators, ser. Uncertainty
Management with Fuzzy and Rough Sets. Springer International Publishing, 2019,
pp. 317–335. [Online]. Available: http://dx.doi.org/10.1007/978-3-030-10463-4 16

[39] D.-S. Chen, R. G. Batson, and Y. Dang, Applied integer programming. Wiley, 2010.

[40] F. de Bruin, “Rectangle packing,” Master’s thesis, University of Amsterdam, 2013.

[41] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “Rectangle-packing-based mod-
ule placement,” in Proceedings of IEEE International Conference on Computer Aided
Design (ICCAD), 1995, pp. 472–479.

[42] M. A. Rodriguez and A. Vecchietti, “A comparative assessment of linearization
methods for bilinear models,” Computers and Chemical Engineering, vol. 48, pp.
218–233, 2013. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S009813541200289X

[43] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2021. [Online].
Available: https://www.gurobi.com

[44] R. M. Power, “Large general service,” https://www.rockymountainpower.net/
content/dam/pcorp/documents/en/rockymountainpower/rates-regulation/utah/
rates/008 Large General Service 1 000 kW and Over Distribution Voltage.pdf, 2021,
[Accessed 03-04-2024].

http://dx.doi.org/10.1109/ISGTEurope.2019.8905633
http://dx.doi.org/10.1109/TII.2020.3038144
https://www.sciencedirect.com/science/article/pii/S096585641630444X
http://dx.doi.org/10.3390/wevj14120351
https://www.sciencedirect.com/science/article/pii/S0968090X19304061
https://www.sciencedirect.com/science/article/pii/S0968090X19304061
http://dx.doi.org/10.1007/978-3-030-10463-4_16
https://www.sciencedirect.com/science/article/pii/S009813541200289X
https://www.sciencedirect.com/science/article/pii/S009813541200289X
https://www.gurobi.com
https://www.rockymountainpower.net/content/dam/pcorp/documents/en/rockymountainpower/rates-regulation/utah/rates/008_Large_General_Service_1_000_kW_and_Over_Distribution_Voltage.pdf
https://www.rockymountainpower.net/content/dam/pcorp/documents/en/rockymountainpower/rates-regulation/utah/rates/008_Large_General_Service_1_000_kW_and_Over_Distribution_Voltage.pdf
https://www.rockymountainpower.net/content/dam/pcorp/documents/en/rockymountainpower/rates-regulation/utah/rates/008_Large_General_Service_1_000_kW_and_Over_Distribution_Voltage.pdf


96

[45] M. Gendreau and J.-Y. Potvin, Eds., Handbook of Metaheuristics, 3rd ed., ser. Inter-
nationalseries in operation research & management science. Springer International
Publishing, oct 2018.

[46] William H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical
Recipes in C book set: Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.
Cambridge, England: Cambridge University Press, Oct. 1992.

[47] D. Henderson, S. H. Jacobson, and A. W. Johnson, “The theory and practice of
simulated annealing,” in International Series in Operations Research and Management
Science. Kluwer Academic Publishers, 1989, pp. 287–319. [Online]. Available:
https://doi.org/10.1007%2F0-306-48056-5 10

[48] A. A. Keller, Multi-Objective Optimization In Theory and Practice II: Metaheuristic
Algorithms. BENTHAM SCIENCE PUBLISHERS, mar 2019. [Online]. Available:
https://doi.org/10.2174%2F97816810870541190101

[49] R. Rutenbar, “Simulated annealing algorithms: an overview,” IEEE Circuits
and Devices Magazine, vol. 5, no. 1, pp. 19–26, jan 1989. [Online]. Available:
https://doi.org/10.1109%2F101.17235

[50] D. Zhang, Y. Liu, R. M’Hallah, and S. C. Leung, “A simulated annealing with a
new neighborhood structure based algorithm for high school timetabling problems,”
European Journal of Operational Research, vol. 203, no. 3, p. 550–558, Jun. 2010.
[Online]. Available: http://dx.doi.org/10.1016/j.ejor.2009.09.014

[51] Z. Xinchao, “Simulated annealing algorithm with adaptive neighborhood,” Applied
Soft Computing, vol. 11, no. 2, p. 1827–1836, Mar. 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.asoc.2010.05.029

[52] A. Brown, G. Droge, and J. Gunther, “A position allocation approach to the scheduling
of battery-electric bus charging,” 2024.

[53] N. Watrin, R. Roche, H. Ostermann, B. Blunier, and A. Miraoui, “Multiphysical
lithium-based battery model for use in state-of-charge determination,” IEEE Transac-
tions on Vehicular Technology, vol. 61, no. 8, pp. 3420–3429, 2012.

[54] B. Arabsalmanabadi, N. Tashakor, A. Javadi, and K. Al-Haddad, “Charging
techniques in lithium-ion battery charger: Review and new solution,” IECON 2018 -
44th Annual Conference of the IEEE Industrial Electronics Society, Oct 2018. [Online].
Available: http://dx.doi.org/10.1109/IECON.2018.8591173

[55] W. L. Brogan, Modern Control Theory, 3rd ed. Upper Saddle River, NJ: Pearson,
Oct. 1990.

[56] J. Kaur and A. Kumar, An Introduction to Fuzzy Linear Programming Problems, ser.
Studies in Fuzziness and Soft Computing. Springer International Publishing, 2016.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-31274-3

[57] H.-J. Zimmermann, Fuzzy Set Theory-and Its Applications, ser. []. Springer
Netherlands, 2001. [Online]. Available: http://dx.doi.org/10.1007/978-94-010-0646-0

https://doi.org/10.1007%2F0-306-48056-5_10
https://doi.org/10.2174%2F9781681 0870541190101
https://doi.org/10.1109%2F101.17235
http://dx.doi.org/10.1016/j.ejor.2009.09.014
http://dx.doi.org/10.1016/j.asoc.2010.05.029
http://dx.doi.org/10.1109/IECON.2018.8591173
http://dx.doi.org/10.1007/978-3-319-31274-3
http://dx.doi.org/10.1007/978-94-010-0646-0


97

[58] S. K. Das, T. Mandal, and S. A. Edalatpanah, “A mathematical model for
solving fully fuzzy linear programming problem with trapezoidal fuzzy numbers,”
Applied Intelligence, vol. 46, no. 3, pp. 509–519, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s10489-016-0779-x

[59] M. Yaghobi, M. Rabbani, M. A. Firozja, and J. Vahidi, “Comparison of
fuzzy numbers with ranking fuzzy and real number,” Journal of Mathematics
and Computer Science, vol. 12, no. 01, pp. 65–72, 2014. [Online]. Available:
http://dx.doi.org/10.22436/jmcs.012.01.06

[60] C. S. McCahon and E. Stanley Lee, “Comparing fuzzy numbers: The
proportion of the optimum method,” International Journal of Approximate
Reasoning, vol. 4, no. 3, p. 159–181, May 1990. [Online]. Available: http:
//dx.doi.org/10.1016/0888-613X(90)90019-X
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