
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations, Fall
2023 to Present Graduate Studies

8-2024

Ensemble Machine Learning at the Edge Using the Codec Ensemble Machine Learning at the Edge Using the Codec

Classifier Structure and Weak Learners Guided by Mutual Classifier Structure and Weak Learners Guided by Mutual

Information Information

AJ Beckwith
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd2023

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Beckwith, AJ, "Ensemble Machine Learning at the Edge Using the Codec Classifier Structure and Weak
Learners Guided by Mutual Information" (2024). All Graduate Theses and Dissertations, Fall 2023 to
Present. 227.
https://digitalcommons.usu.edu/etd2023/227

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations, Fall 2023 to Present by an authorized
administrator of DigitalCommons@USU. For more
information, please contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd2023
https://digitalcommons.usu.edu/etd2023
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd2023?utm_source=digitalcommons.usu.edu%2Fetd2023%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.usu.edu%2Fetd2023%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd2023/227?utm_source=digitalcommons.usu.edu%2Fetd2023%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

ENSEMBLE MACHINE LEARNING AT THE EDGE USING THE CODEC

CLASSIFIER STRUCTURE AND WEAK LEARNERS GUIDED BY

MUTUAL INFORMATION

by

AJ Beckwith

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Electrical Engineering

Approved:

Jacob Gunther, Ph.D. Todd K. Moon, Ph.D.
Major Professor Committee Member

Kevin Moon, Ph.D. D. Richard Cutler, Ph.D.
Committee Member Vice Provost of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2024

ii

Copyright © AJ Beckwith 2024

All Rights Reserved

iii

ABSTRACT

Ensemble Machine Learning At The Edge Using The Codec

Classifier Structure And Weak Learners Guided By

Mutual Information

by

AJ Beckwith, Master of Science

Utah State University, 2024

Major Professor: Jacob Gunther, Ph.D.
Department: Electrical and Computer Engineering

The Codec Classifier is a low-computation, low-memory tree ensemble method that dra-

matically improves feasibility of image classification on resource-constrained edge devices.

It achieves advantages over other tree ensemble methods due the separation of encoder and

decoder tasks in the classifier. The encoder partitions feature space, and the decoder la-

bels the regions in the partition. This functional separation of tasks enables the encoder

design (partitioning) to be guided by maximizing the mutual information (MI) between

class labels and the features (i.e. the encoded representation of the data) without regard

to the error performance of the classifier. Experiments show maximizing MI leads to se-

quential partitioning of feature space that is more efficient than additive classifier models

such as AdaBoost. The design results in gray-coded partitions in which adjacent regions

are addressed by codewords that differ in only one bit. This novelty affords classification

insights not available with other methods. The method is applied to binary classification

(face detection) and multiclass classification (MNIST digits) problems.

(44 pages)

iv

PUBLIC ABSTRACT

Ensemble Machine Learning At The Edge Using The Codec

Classifier Structure And Weak Learners Guided By

Mutual Information

AJ Beckwith

The Codec Classifier is a low-computation, low-memory tree ensemble method that dra-

matically improves feasibility of image classification on resource-constrained edge devices.

It achieves advantages over other tree ensemble methods due the separation of encoder and

decoder tasks in the classifier. The encoder partitions feature space, and the decoder la-

bels the regions in the partition. This functional separation of tasks enables the encoder

design (partitioning) to be guided by maximizing the mutual information (MI) between

class labels and the features (i.e. the encoded representation of the data) without regard

to the error performance of the classifier. Experiments show maximizing MI leads to se-

quential partitioning of feature space that is more efficient than additive classifier models

such as AdaBoost. The design results in gray-coded partitions in which adjacent regions

are addressed by codewords that differ in only one bit. This novelty affords classification

insights not available with other methods. The method is applied to binary classification

(face detection) and multiclass classification (MNIST digits) problems.

v

To my father.

vi

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . iv

LIST OF FIGURES . vii

ACRONYMS . xi

1 INTRODUCTION . 1
1.1 Classification at the Edge . 1
1.2 Tree Ensemble . 2
1.3 Adaboost . 2
1.4 Mutual Information . 4

2 The Codec Classifier . 7
2.1 Architecture . 7

2.1.1 Encoder . 7
2.1.2 Decoder . 8

2.2 Mutual Information . 11
2.3 Efficient Training Implementation . 12

3 Results . 16
3.1 MNIST . 16
3.2 Face Detection . 17

4 Conclusions and Future Work . 23
4.1 Conclusions . 23
4.2 Future Work . 23

REFERENCES . 25

APPENDICES . 26
A Mutual Information Images . 27

CURRICULUM VITAE . 33

vii

LIST OF FIGURES

Figure Page

1.1 Depth 2 Tree and its Space Partition . 3

1.2 3 Stumps and their Space Partition . 3

1.3 Tree Threshold and Dimension Comparison 5

2.1 Codec Classifier Structure . 7

2.2 2 Dimensional Space partition of three trees 8

2.3 Decoding a Point in a Labeled Region . 9

2.4 Decoding a Point in an Unlabeled Region using Hamming Distance 10

2.5 Dependency Graph with 3 Classes and 6 Codewords 12

2.6 Image Storage Structure to Compute Mutual Information 13

2.7 Loop Complexity Comparison . 15

3.1 Training Set Performance for MNIST . 16

3.2 Test Set Performance and Contributing Factors for MNIST 17

3.3 Hamming Classification Performance for MNIST 18

3.4 Face Detection Dataset Image Samples . 19

3.5 Color Face Detection Classifications Performance 20

3.6 First 7 Trees for Color Face Dataset . 20

3.7 All Trees for Color Face Dataset . 20

3.8 Grayscale Face Detection Classifications Performance 21

3.9 First 7 Trees for Grayscale Dataset . 21

3.10 All Trees for Grayscale Dataset . 21

3.11 Mutual Information Images for First 8 Trees 22

viii

4.1 Point Classification Using Linked Decoding 24

A.1 Mutual Information Image For Tree 1 . 27

A.2 Mutual Information Image For Tree 2 . 27

A.3 Mutual Information Image For Tree 3 . 27

A.4 Mutual Information Image For Tree 4 . 27

A.5 Mutual Information Image For Tree 5 . 27

A.6 Mutual Information Image For Tree 6 . 27

A.7 Mutual Information Image For Tree 7 . 27

A.8 Mutual Information Image For Tree 8 . 27

A.9 Mutual Information Image For Tree 9 . 27

A.10 Mutual Information Image For Tree 10 . 28

A.11 Mutual Information Image For Tree 11 . 28

A.12 Mutual Information Image For Tree 12 . 28

A.13 Mutual Information Image For Tree 13 . 28

A.14 Mutual Information Image For Tree 14 . 28

A.15 Mutual Information Image For Tree 15 . 28

A.16 Mutual Information Image For Tree 16 . 28

A.17 Mutual Information Image For Tree 17 . 28

A.18 Mutual Information Image For Tree 18 . 28

A.19 Mutual Information Image For Tree 19 . 28

A.20 Mutual Information Image For Tree 20 . 28

A.21 Mutual Information Image For Tree 21 . 28

A.22 Mutual Information Image For Tree 22 . 29

A.23 Mutual Information Image For Tree 23 . 29

A.24 Mutual Information Image For Tree 24 . 29

ix

A.25 Mutual Information Image For Tree 25 . 29

A.26 Mutual Information Image For Tree 26 . 29

A.27 Mutual Information Image For Tree 27 . 29

A.28 Mutual Information Image For Tree 28 . 29

A.29 Mutual Information Image For Tree 29 . 29

A.30 Mutual Information Image For Tree 30 . 29

A.31 Mutual Information Image For Tree 31 . 29

A.32 Mutual Information Image For Tree 32 . 29

A.33 Mutual Information Image For Tree 33 . 29

A.34 Mutual Information Image For Tree 34 . 30

A.35 Mutual Information Image For Tree 35 . 30

A.36 Mutual Information Image For Tree 36 . 30

A.37 Mutual Information Image For Tree 37 . 30

A.38 Mutual Information Image For Tree 38 . 30

A.39 Mutual Information Image For Tree 39 . 30

A.40 Mutual Information Image For Tree 40 . 30

A.41 Mutual Information Image For Tree 41 . 30

A.42 Mutual Information Image For Tree 42 . 30

A.43 Mutual Information Image For Tree 43 . 30

A.44 Mutual Information Image For Tree 44 . 30

A.45 Mutual Information Image For Tree 45 . 30

A.46 Mutual Information Image For Tree 46 . 31

A.47 Mutual Information Image For Tree 47 . 31

A.48 Mutual Information Image For Tree 48 . 31

A.49 Mutual Information Image For Tree 49 . 31

x

A.50 Mutual Information Image For Tree 50 . 31

A.51 Mutual Information Image For Tree 51 . 31

A.52 Mutual Information Image For Tree 52 . 31

A.53 Mutual Information Image For Tree 53 . 31

A.54 Mutual Information Image For Tree 54 . 31

A.55 Mutual Information Image For Tree 55 . 31

A.56 Mutual Information Image For Tree 56 . 31

A.57 Mutual Information Image For Tree 57 . 31

A.58 Mutual Information Image For Tree 58 . 32

A.59 Mutual Information Image For Tree 59 . 32

A.60 Mutual Information Image For Tree 60 . 32

A.61 Mutual Information Image For Tree 61 . 32

A.62 Mutual Information Image For Tree 62 . 32

A.63 Mutual Information Image For Tree 63 . 32

xi

ACRONYMS

MI Mutual Information

MNIST Modified National Institute of Standards and Technology database

FFT Fast Fourier Transform

KDE Kernel Density Estimation

MSE Mean Squared Error

KSG Kraskov–Stögbauer–Grassberger

RGB Red Green Blue

PASS Pictures without humAns for Self-Supervised Pretraining

FPGA Field Programmable Gate Arrays

GPU Graphics Processing Unit

CPU Central Processing Unit

CHAPTER 1

INTRODUCTION

The efficiency of accurate, flexible machine learning methods are increasingly important

as applications of machine learning are rising. Edge devices like satellites, drones, and

hand-helds can benefit from local machine learning. Machine learning at the edge enables

classification without the need for large bandwidths or memory. The data collected from

sensors and cameras can, in real-time, be used for training and inference. Requiring only

the storage of low-memory outputs and their transmission on low-capacity communication

channels.

Neural networks [1] are by far the most popular structure for classification because of

their accuracy and adaptability. But what they gain in classification ability they lose in

computation time and model complexity.

1.1 Classification at the Edge

The resources necessary to deploy a software-based classifier include electric power,

computer memory, computational hardware, and data communication. When considering

applications on the edge, such as classification on a satellite, a drone, and hand-held devices,

all of these resources are severely limited. Neural networks generally require millions or

billions of arithmetic operations per inference, which consumes considerable amounts of

all resources previously enumerated. Every node in every layer of a deep fully-connected

neural network must store a n-element vector where n is equal to the number of inputs

for that layer. Convolutional neural networks gain efficiency through the use of kernels,

but they also use many kernels per layer and require convolution operations which are

expensive, even when exploiting frequency domain processing using the FFT. The layered

structure of a neural network also limits the number of parallel computations that can be

performed. In contrast to the heavy computational and memory burden of neural networks,

2

tree ensembles are simple classification methods that require little computation and memory

when compared to similarly capable neural networks [2]. Tree ensembles may be limited

in their classification ability. The ideal tree ensemble has a minimum number of trees

to describe the data distribution in feature space so that all regions in the feature space

contain training data from only one class. This ideal places an upper limit on the number

of computations necessary for classification since the computation time is proportional to

the number of trees. Common methods for aggregating ensemble outputs is majority vote

or weighted sum. Both of these methods suffer from classification error even when a region

is pure due to aggregation of the tree outputs. The codec classifier aims to alleviate the

drawbacks of traditional tree ensemble methods. It finds a minimal tree description of a

feature space and can independently reference the regions in the description.

1.2 Tree Ensemble

Ensemble methods aggregate the outputs of multiple weak learners into a compre-

hensive prediction. Among ensemble methods, the type of weak learner, the method for

training, and the method for aggregation vary significantly [3]. The type of weak learner

used in this thesis is a tree. Fig. 1.1 shows the general structure of a tree with depth 2.

Decisions in the tree require the computation of an inequality where hi is the ith threshold

and xi is the input in the dimension di. The outputs of the tree correspond to regions

in the feature space. Some tree ensembles exclusively use trees of depth 1, called stumps.

Fig. 1.2 shows how space is partitioned using three stumps. The thresholds of stumps don’t

terminate at other thresholds as with the depth 2 tree. The trees used in this thesis are

stumps.

1.3 Adaboost

Two common training methods for tree ensembles are boosting [4] and bagging [5].

Adaboost [6] is a boosting method that sequentially trains trees. As trees are trained

the weights of points to be classified are adjusted to emphasize misclassified points. This

3

h1 > x1

h2 > x2

a b

h3 > x2

c d

(a) Tree with Depth 2

h1

h3

h2

a

b

c

d

d2

d1

(b) Space Partition of Tree in (a)

Fig. 1.1: Depth 2 Tree and its Space Partition

h1 > x1

a b

h2 > x2

a b

h3 > x2

a b

(a) 3 Stumps

h1

h3

h2

aaa

aba

abb

baa

bba

bbb

d2

d1

(b) Space Partition of Trees in (a)

Fig. 1.2: 3 Stumps and their Space Partition

4

method is an additive model [7] and can be described by

f(x) =

N∑
i=0

wihi(x), (1.1)

where N is the number of weak learners, wi is the weight, and hi(x) is a weak learner.

Fig. 1.3 shows three simple classification problems and the tree threshold positions

chosen by Adaboost and the method developed in this thesis, the codec classifier. The order

that the trees were learned in is also indicated next to each partition. The codec classifier

trained trees until 0% classification error on the training data. The Adaboost classifier was

allowed to train an equal number of trees. The classification accuracy for the Adaboost eye,

spiral, and cube data are 99.2%, 97.6%, and 55.2%, respectively. The Adaboost classifier

performed only slightly worse than the codec classifier on the eye and spiral data. On the

cube data it performed significantly worse. Even with several more trees the Adaboost

classifier still performs badly on the cube dataset. It is also important to note that the

Adaboost classifier duplicates tree positions on the spiral and cube datasets. Duplicated

trees cannot improve the partition of the feature space but still increase the complexity and

computation time of the classifier.

1.4 Mutual Information

Mutual information is defined as the amount of information one random variable con-

tains about another random variable [8] and is defined by,

I(X;Y) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
. (1.2)

As this definition shows, the probability density function of the random variables must be

known for calculation of mutual information. Several methods exist for estimating mutual

information on non-parametric data [9]. Moon et al. [10] propose a Kernel Density Esti-

mation method for probability density estimation. KDE generally features superiority over

traditional histogram-bin methods. Some included advantages are better MSE convergence

5

(a) Codec Classifier (b) AdaBoost Classifier

Fig. 1.3: Tree Threshold and Dimension Comparison

6

rate, origin insensitivity, and options for varied window shapes. Other methods include

KSG [11], Parzen Window Density Estimation [12], and K-Nearest Neighbor [13]. While

some of these methods can approach parametric mean square error rate of convergence

given the appropriate conditions, most of them require significant computational overhead.

Noshad et al. [9] proposes a reduced complexity mutual information estimator. This

estimator, called the ensemble dependency graph estimator, features desirable structure

that works well for approximating mutual information between the data labels and the

codeword representation of the data for the codec classifier. This is the method used for

training the encoder in the codec classifier presented in the next chapter.

7

CHAPTER 2

The Codec Classifier

2.1 Architecture

The codec classifier is inspired by a simple digital communication system. It consists of

two processing stages: (1) an encoder, and (2) a decoder. The encoder inputs an image and

assigns a binary codeword. This codeword is then decoded to a class label by the decoder.

Encoder Decoder
codeword classimage

Fig. 2.1: Codec Classifier Structure

2.1.1 Encoder

The encoded representation of an image, i.e. a codeword, is determined by concate-

nating the outputs of the tree ensemble, where every tree outputs either a 1 or 0. All trees

are decision stumps, and each tree output populates one position in the codeword bit string

so that all codewords have equal length. Fig. 2.2 shows the resultant codewords when a

2-dimensional space is partitioned by the trees t1, t2, and t3. A tree ti has an output oi,

threshold hi, and operates in a dimension di of the input, i.e. di is a pixel index. The

codewords are formed as o1o2o3. oi is 1 if the input value in dimension di is greater than hi

and 0 otherwise. An ensemble of trees partitions the input feature space into rectangular

regions, and it is worth noting that the regions of feature space are gray-coded so that there

is a relationship between the Hamming distance of two codewords and the Euclidean dis-

tance between the centroids of the rectangles that those codewords represent. There exist

codewords that have no associated rectangle in the feature space. However, the encoder

8

can only produce codewords that address regions in the partition.

h1

h2

h3

000 100

001 101

011 111

Fig. 2.2: 2 Dimensional Space partition of three trees

Encoding can be accomplished very efficiently allowing real-time implementation on

low-cost or low-power hardware. The computation required per tree is evaluating a single

inequality making the total computation required for an ensemble with N trees N inequal-

ities. For serial data streams the order in which trees are evaluated can be made to match

the order in which data is received.

2.1.2 Decoder

The decoder converts a codeword into a class label. Every codeword represents or

addresses a unique rectangle in the feature space. The label associated with a region is

learned from training data. The training set is encoded to codewords or rectangles. The

label for a rectangle is the most frequently occurring label of training data falling in that

rectangle. Alternatively, if a soft output is desired, then relative frequency counts can be

saved in each rectangle. The association between codewords and labels is stored by the

decoder as (codeword, label) pairs using a data structure such as an array, dictionary, or

unordered map. To classify an image, it is first encoded to a codeword. Then the codeword

is matched to a (codeword, label) pair. Fig. 2.3 demonstrates the process of classifying a

9

d2

d1

(a) 2 Classes in 2 Dimensions

h1

h2

h3

d2

d1

(b) 2 Dimensional Space Parti-
tion of 3 Trees

h1

h2

h3

000 100

001 101

011 111

d2

d1

(c) Space Partition Codewords

Encoder
t1t2t3

Decoder
000 → b
001 → r
011 → r
100 → r
101 → b
111 → r

011 rpoint

(d) Codec Classifier Structure with Codeword-Label Pairs in Decoder

Fig. 2.3: Decoding a Point in a Labeled Region

point that falls above both h2 and h3 and to the left of h1. The spaces are assigned the

classes r and b as described by the decoder.

The training data are not guaranteed to populate all the rectangles constructed during

the process of training trees for the encoder. Therefore, it is likely that during inference

images may be mapped to a codeword corresponding to a rectangle that has not been labeled

by the training dataset. In this case, other decoding rules must be used. One such decoding

rule is to take the label of the stored codeword with the smallest Hamming distance from

the test codeword, or the most frequent label occurring among stored codewords with the

minimal Hamming distance from the test codeword. This process is described in Fig. 2.4.

The decoder only contains (codeword, label) pairs from the training set.

10

d2

d1

(a) 2 Classes in 2 Dimensions

h1

h2

h3

d2

d1

(b) 2 Dimensional Space Parti-
tion of 3 Trees

h1

h2

h3

000 100

001 101

011 111

d2

d1

(c) Space Partition Codewords

Encoder
t1t2t3

Decoder
000 → b
011 → r
100 → r
101 → b
111 → r

011 rpoint

(d) Codec Classifier Structure with Codeword-Label Pairs in Decoder

Fig. 2.4: Decoding a Point in an Unlabeled Region using Hamming Distance

11

2.2 Mutual Information

Each tree (or stump) ti is made up by a dimension it operates in di and a threshold hi

where it splits the feature space in that dimension. Selecting the dimension and threshold

is crucial for an ensemble that yields good predictions on the training data. Ensemble

learning methods train trees in parallel, where order does not matter, or they train trees

sequentially, where order does matter. Parallel examples include all forms of bagging.

Boosting is sequential because the selection of a tree’s threshold and dimension affect the

selection of all subsequent trees’ thresholds and dimensions.

To design the encoder, a sequential method that seeks to maximize the mutual in-

formation between the set of codewords and the class labels in the partition is proposed.

The process of adding trees to the ensemble is continued until all regions in the partition

become pure. A pure partition contains no more than one class. A set of equations that

approximates the calculation of mutual information using data [9] are,

wi =
Ni

N
, (2.1)

wj =
Mj

N
, (2.2)

wij =
NijN

NiMj
, (2.3)

g(x) = x log(x), (2.4)

MI =

I∑
i=1

J∑
j=1

wiwjg(wij), (2.5)

where I and J are the number of rectangles populated by data and the number of classes,

respectively, N is the total number of training data used in the calculation, Mj is a count

of the images with the jth class, Ni is a count of the images falling in the ith rectangle,

and Nij is the number of images with the jth class in the ith rectangle. This method may

be applied in both binary and multi-class classification problems. Fig. 2.5 illustrates the

relationship between Ni, Mj , and Nij as a graph.

12

NiMj Nij

M1

M2

M3

N1

N2

N3

N4

N5

N6

Fig. 2.5: Dependency Graph with 3 Classes and 6 Codewords

2.3 Efficient Training Implementation

For each tree, every (dimension, threshold) combination has to be tried to find the

best mutual information score. This calculation has significant computation requirements

especially for large data sets, data sets with images containing many pixels, or data sets

whose images have pixel values that vary significantly. To compute MI efficiently a C++

program has been developed.

The MI equation is first simplified to

MI =

I∑
i=1

J∑
j=1

Nij

N
log

NNij

NiMj
, (2.6)

to remove unnecessary operations.

The MI calculation requires that for each image, its class and current codeword be

stored. To facilitate efficient use of memory and to optimize the computation algorithm

each image is stored in the C++ struct pointNode. pointNode contains the image, its label,

and a pointer to type pointNode.

A codewords array of type pointNode∗ and with size equal to the number of images is

created. At the start of the program all images are contained in a linked list with the head

13

in the first position of codewords. Fig. 2.6 illustrates the initial structure.

Image 1 Image 2 Image 3

NULL

NULL

NULL

NULL

codewords array

Fig. 2.6: Image Storage Structure to Compute Mutual Information

Each position in the codewords array represents a different codeword. Initially, before

any trees are trained, every image has the same codeword. Hence, they are all linked to the

first position. The number of populated positions in codewords is equal to the number of

codewords.

At each populated position of codewords the algorithm moves down the linked list

keeping track of how the images with that codeword would be segregated given the proposed

threshold and pixel. The equation used to find the MI for the linked images of a specific

codeword is given as

MI =

J∑
j=1

N1j

N
log

NN1j

N1Mj
+

N2j

N
log

NN2j

N2Mj
, (2.7)

where N and Mj are constant, N1 and N2 are a count of the images that fall below

and above the threshold respectively, and N1j and N2j are counts of the images that fall

below and above the threshold with the label j.

This process is repeated for every codeword and the MI values are accumulated. Once

the total MI is found it is compared to the MI found for other thresholds and pixels. The

14

threshold and pixel with the greatest MI is accepted as the best placement and a new tree

is trained.

When a tree is trained each linked list in the codewords array is segregated based on

this new tree. For each group of linked images, the images that fall below the threshold of

the new trees threshold keep their position in the codewords array. Images that fall above

the threshold are moved to the next empty position in the array. In this way images with

the same codeword are grouped together.

Previous implementations required significantly more computation and memory. In a

two-step procedure data structures were first populated with the correct edge and node

information for a given threshold and dimension. This required two nested loops with both

loops having an upper limit equal to the number of data. Then using the information

computed in the first step, the second step would compute the mutual information. This

step also has two nested loops. One with an upper limit equal to the number of codewords

and the other with an upper limit equal to the number of classes. For N equal to the

number of data, W equal to the number of codewords, and C equal to the number of

classes the number of loops necessary for each threshold, dimension pair is NW
2 + WC.

The upper limit on the number of codewords is W ≤ min(N, 2i) where i is the number of

trees. The efficient implementations loop complexity, N + WC, is far more robust to the

exponentially increasing number of codewords. Additionally, the efficient implementation

requires significantly less computation and variable copies in each loop. Fig. 2.7 shows the

reduction in loop complexity as a function of tree number for the three datasets used in

this thesis.

15

0 10 20 30 40 50 60

0

0.5

1

1.5
·104

Tree Number

L
oo
p
C
om

p
le
x
it
y
R
ed
u
ct
io
n

MNIST
Face Dataset Grayscale
Face Dataset Color

Fig. 2.7: Loop Complexity Comparison

CHAPTER 3

Results

3.1 MNIST

The MNIST dataset contains images of handwritten grayscale digits and is commonly

used for machine learning training and testing. It has 60,000 images in the training set

and 10,000 images in the test set. Each image has 784 pixels. Using mutual information

trees were trained on the MNIST dataset until all regions were pure. With 34 trees the

classification error of the training set was driven to 0. Fig. 3.1 shows the classification error

as a function of the number of trees used in the encoder part of the classifier.

0 10 20 30

0

0.2

0.4

0.6

0.8

Number of Trees

E
rr
or

Training Set

Fig. 3.1: Training Set Performance for MNIST

Fig. 3.2 includes the test set error as well as the miss and fault rates. A miss occurs

when there is no matching codeword in the training set. A fault means a matching codeword

was found but that the class was incorrect.

While the model was well suited for classifying the training set it did not perform

17

0 10 20 30

0

0.2

0.4

0.6

0.8

Number of Trees

E
rr
or

Test Set Total
Test Set Miss
Test Set Fault

Fig. 3.2: Test Set Performance and Contributing Factors for MNIST

well on the test set. For high tree counts the majority of error occurs because there is no

matching codeword. The images in the test set fell into rectangles that the images in the

training set did not fall into.

This problem has been mitigated using Hamming distance. If an image doesn’t fall

into a labeled partition, it is given the label of the closest partition according to Hamming

distance. Fig. 3.3 shows the results of using Hamming distance to label unlabeled partitions.

It is remarkable that a classifier with 34 decision stumps achieves about 10% error rate on

a ten class classification problem.

3.2 Face Detection

Images of faces were collected from the facescrub dataset. These images are 50 × 50

pixels and RGB color. 530 individuals are represented with a total of 45762 face images.

41427 images are in the training set and 4335 images are in the test set. Non-face images

were sourced from the PASS dataset which contains 1, 439, 589 non-human images. The

first 48329 images from the PASS dataset were scaled to 50× 50 pixels and then randomly

assigned to the training and test sets. Non-face images were added to the training set with

a probability of 0.9053 to match the distribution of face images. Samples from both the

18

0 10 20 30

0

0.2

0.4

0.6

0.8

Number of Trees

E
rr
or

Training Set
Test Set Hamming
Test Set Total
Test Set Miss
Test Set Fault

Fig. 3.3: Hamming Classification Performance for MNIST

face and non-face images are included in Fig. 3.4.

Training until classification error was 0 took 53 trees. Fig. 3.5 shows the classification

performance for the face detection dataset. Unlike the MNIST dataset the Hamming method

keeps the error constant. This is to say the codec classifier performs the same with 12 trees

as it would with 53 trees.

To help visualize trees the threshold and pixel of each tree is superimposed onto an

image from the training set. If a tree operated on a pixel, then the color it operated on

was given the value of the threshold while the other two colors were set to 0. This creates

a colored pixel at the tree’s location and with an intensity equal to that trees threshold.

Fig. 3.6 shows the location and threshold of the first 7 pixels. Fig. 3.7 includes all trees.

Fig. 3.6 indicates that the first 7 trees’ pixels are in proximity of the forehead, chin, nose,

both cheeks, and both eyes. Furthermore, the trees are splitting on red in the forehead,

cheeks, nose, and chin while the trees operating on pixels in the left and right eyes are

splitting on blue and green respectively.

The training was also run on grayscale images. Each image in the training and test sets

were converted to grayscale. Fig. 3.8 shows the classification error. 63 trees were necessary

to drive the training error to 0.

19

(a) Face Image Samples (b) Non-face Image Samples

Fig. 3.4: Face Detection Dataset Image Samples

The resultant pixel location for the trained trees is shown in Fig. 3.9 and Fig. 3.10.

The first 7 trees’ pixels were again in the areas of the forehead, nose, chin, cheeks, and eyes.

To further help understand how the codec classifier was selecting trees mutual informa-

tion images were developed. For every tree the mutual information is found for every pixel

threshold combination. To generate the images the maximum mutual information value for

each pixel is stored. Then the values are scaled to fill the range 0− 255 and displayed using

a heat map. Brighter colors correspond to higher mutual information values. The first 8

images are included in Fig. 3.11. All 63 images are included in Appendix A.

The image associated with the first tree shows that the cheeks have a high mutual

information value. Indicating that this would be a good operating pixel for the first tree.

Subsequent images show the effect of previous trees. The second image has a dark spot

on the left cheek where the first tree operates. Adding another tree with that pixel would

contribute little to the ensemble’s classification ability. Additionally, the addition of the

first tree has reduced the mutual information value for several pixels in proximity to the

first tree’s pixel.

20

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Number of Trees

E
rr
or

Training Set
Test Set Hamming
Test Set Total
Test Set Miss
Test Set Fault

Fig. 3.5: Color Face Detection Classifications Performance

Fig. 3.6: First 7 Trees for Color Face Dataset Fig. 3.7: All Trees for Color Face Dataset

21

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

Number of Trees

E
rr
or

Training Set
Test Set Hamming
Test Set Total
Test Set Miss
Test Set Fault

Fig. 3.8: Grayscale Face Detection Classifications Performance

Fig. 3.9: First 7 Trees for Grayscale Dataset Fig. 3.10: All Trees for Grayscale Dataset

22

(a) Tree 1 (b) Tree 2

(c) Tree 3 (d) Tree 4

(e) Tree 5 (f) Tree 6

(g) Tree 7 (h) Tree 8

Fig. 3.11: Mutual Information Images for First 8 Trees

CHAPTER 4

Conclusions and Future Work

4.1 Conclusions

The results in this thesis show that the Codec Classifier is capable of classifying complex

datasets with two or more classes. The reduced training complexity of the encoder using the

ensemble dependency graph estimator of mutual information allows for fast local training or

training on the edge. On MNIST the codec classifier with 34 trees and using the Hamming

distance performs with an error of 10.44%. Adaboost with an equivalent number of trees has

an error of 39.18%. While the Hamming distance decoding rule doesn’t improve the error

for the face dataset, the error for the grayscale data is still impressive at 7.19%. The pixels

and thresholds of the first 7 trees align with what is intuitively characteristic of human

faces. The mutual information images, which show the highest mutual information for each

pixel, further confirm that the encoder in our method extracts informative features.

4.2 Future Work

Several changes to the encoder and decoder are possible. Some changes may improve

the accuracy or efficiency of the classifier. It has been proposed that in the encoder a

tree’s output should be the result of all pixels weighted according the maximum mutual

information of that pixel. So that for any tree ti the output would be described by

ti = u(−0.5 +
N∑
j=0

wj [pj < hj]), (4.1)

where ti is the ith tree, N is the number of pixels, pj is the value of the jth pixel, hj is

the threshold of the jth pixel, wj is the weight for the jth pixel, and u(·) is the unit step

function. Variants of this idea include taking a percentage of pixels with the highest mutual

24

information scores or taking all pixels whose mutual information falls within a range of the

maximum mutual information.

Currently a codeword is decoded by comparing codewords from the training data using

Hamming distance. For paralleled architectures like FPGAs and GPUs this process is very

fast because it can be split among several processing units. For CPUs or processors with

limited cores a linked list has been proposed for decoding. The depth of the linked list

would be equal to the length of the codewords. Each node in the list would contain two

references to other nodes. If a codeword is decoded that exist in the training set, then each

bit would determine the path through the linked list until the last node is reached. This

node contains class information. If a codeword is not contained in the training set, then at

some point the path called for by a bit will not exist. In this case the codeword can take

on the most common label of all children of that node. This information can be stored in

the node to remove unnecessary searching. Fig. 4.1 demonstrates this approach when the

codewords 000, 001, and 100 are used to create the list and 101 is decoded.

Encoder
t1t2t3

o1

o2

o3

a

0

b

1

0

0

o2

o3

b

0 1

0

1

101 bpoint

Fig. 4.1: Point Classification Using Linked Decoding

25

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org.

[2] J. Treboux, D. Genoud, and R. Ingold, “Decision tree ensemble vs. n.n. deep learning:
Efficiency comparison for a small image dataset,” in 2018 International Workshop on
Big Data and Information Security (IWBIS), 2018, pp. 25–30.

[3] L. Breiman, J. Friedman, C. J. Stone, and R. Olshen, Classification and Regression
Trees. Chapman and Hall/CRC, 1984.

[4] Y. Freund and R. E. Schapire, “A desicion-theoretic generalization of on-line learning
and an application to boosting,” in Computational Learning Theory, P. Vitányi, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 23–37.

[5] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, pp. 123–140, 1996.
[Online]. Available: https://api.semanticscholar.org/CorpusID:47328136

[6] Y. Freund and R. E. Schapire, “A short introduction to boosting,” in Computer Science,
Mathematics, 1999. [Online]. Available: https://api.semanticscholar.org/CorpusID:
9621074

[7] M. Kawakita, M. Minami, S. Eguchi, and C. Lennert-Cody, “An introduction
to the predictive technique adaboost with a comparison to generalized additive
models,” Fisheries Research, vol. 76, no. 3, pp. 328–343, 2005. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S016578360500216X

[8] T. M. Cover and J. A. Thomas, Elements of Information Theory 2nd Edition (Wiley
Series in Telecommunications and Signal Processing). Wiley-Interscience, July 2006.

[9] M. Noshad, Y. Zeng, and A. O. Hero, “Scalable mutual information estimation us-
ing dependence graphs,” in ICASSP 2019 - 2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 2962–2966.

[10] Y.-I. Moon, B. Rajagopalan, and U. Lall, “Estimation of mutual information using
kernel density estimators,” Phys. Rev. E, vol. 52, pp. 2318–2321, Sep 1995. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevE.52.2318

[11] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual information,”
Physical Review E, vol. 69, no. 6, Jun. 2004. [Online]. Available: http:
//dx.doi.org/10.1103/PhysRevE.69.066138

[12] N. Kwak and C.-H. Choi, “Input feature selection by mutual information based on
parzen window,” Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 24, pp. 1667– 1671, 01 2003.

[13] W. Gao, S. Kannan, S. Oh, and P. Viswanath, “Estimating mutual information for
discrete-continuous mixtures,” 2018.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://api.semanticscholar.org/CorpusID:47328136
https://api.semanticscholar.org/CorpusID:9621074
https://api.semanticscholar.org/CorpusID:9621074
https://www.sciencedirect.com/science/article/pii/S016578360500216X
https://link.aps.org/doi/10.1103/PhysRevE.52.2318
http://dx.doi.org/10.1103/PhysRevE.69.066138
http://dx.doi.org/10.1103/PhysRevE.69.066138

26

APPENDICES

27

APPENDIX A

Mutual Information Images

Fig. A.1: Mutual Informa-
tion Image For Tree 1

Fig. A.2: Mutual Informa-
tion Image For Tree 2

Fig. A.3: Mutual Informa-
tion Image For Tree 3

Fig. A.4: Mutual Informa-
tion Image For Tree 4

Fig. A.5: Mutual Informa-
tion Image For Tree 5

Fig. A.6: Mutual Informa-
tion Image For Tree 6

Fig. A.7: Mutual Informa-
tion Image For Tree 7

Fig. A.8: Mutual Informa-
tion Image For Tree 8

Fig. A.9: Mutual Informa-
tion Image For Tree 9

28

Fig. A.10: Mutual Informa-
tion Image For Tree 10

Fig. A.11: Mutual Informa-
tion Image For Tree 11

Fig. A.12: Mutual Informa-
tion Image For Tree 12

Fig. A.13: Mutual Informa-
tion Image For Tree 13

Fig. A.14: Mutual Informa-
tion Image For Tree 14

Fig. A.15: Mutual Informa-
tion Image For Tree 15

Fig. A.16: Mutual Informa-
tion Image For Tree 16

Fig. A.17: Mutual Informa-
tion Image For Tree 17

Fig. A.18: Mutual Informa-
tion Image For Tree 18

Fig. A.19: Mutual Informa-
tion Image For Tree 19

Fig. A.20: Mutual Informa-
tion Image For Tree 20

Fig. A.21: Mutual Informa-
tion Image For Tree 21

29

Fig. A.22: Mutual Informa-
tion Image For Tree 22

Fig. A.23: Mutual Informa-
tion Image For Tree 23

Fig. A.24: Mutual Informa-
tion Image For Tree 24

Fig. A.25: Mutual Informa-
tion Image For Tree 25

Fig. A.26: Mutual Informa-
tion Image For Tree 26

Fig. A.27: Mutual Informa-
tion Image For Tree 27

Fig. A.28: Mutual Informa-
tion Image For Tree 28

Fig. A.29: Mutual Informa-
tion Image For Tree 29

Fig. A.30: Mutual Informa-
tion Image For Tree 30

Fig. A.31: Mutual Informa-
tion Image For Tree 31

Fig. A.32: Mutual Informa-
tion Image For Tree 32

Fig. A.33: Mutual Informa-
tion Image For Tree 33

30

Fig. A.34: Mutual Informa-
tion Image For Tree 34

Fig. A.35: Mutual Informa-
tion Image For Tree 35

Fig. A.36: Mutual Informa-
tion Image For Tree 36

Fig. A.37: Mutual Informa-
tion Image For Tree 37

Fig. A.38: Mutual Informa-
tion Image For Tree 38

Fig. A.39: Mutual Informa-
tion Image For Tree 39

Fig. A.40: Mutual Informa-
tion Image For Tree 40

Fig. A.41: Mutual Informa-
tion Image For Tree 41

Fig. A.42: Mutual Informa-
tion Image For Tree 42

Fig. A.43: Mutual Informa-
tion Image For Tree 43

Fig. A.44: Mutual Informa-
tion Image For Tree 44

Fig. A.45: Mutual Informa-
tion Image For Tree 45

31

Fig. A.46: Mutual Informa-
tion Image For Tree 46

Fig. A.47: Mutual Informa-
tion Image For Tree 47

Fig. A.48: Mutual Informa-
tion Image For Tree 48

Fig. A.49: Mutual Informa-
tion Image For Tree 49

Fig. A.50: Mutual Informa-
tion Image For Tree 50

Fig. A.51: Mutual Informa-
tion Image For Tree 51

Fig. A.52: Mutual Informa-
tion Image For Tree 52

Fig. A.53: Mutual Informa-
tion Image For Tree 53

Fig. A.54: Mutual Informa-
tion Image For Tree 54

Fig. A.55: Mutual Informa-
tion Image For Tree 55

Fig. A.56: Mutual Informa-
tion Image For Tree 56

Fig. A.57: Mutual Informa-
tion Image For Tree 57

32

Fig. A.58: Mutual Informa-
tion Image For Tree 58

Fig. A.59: Mutual Informa-
tion Image For Tree 59

Fig. A.60: Mutual Informa-
tion Image For Tree 60

Fig. A.61: Mutual Informa-
tion Image For Tree 61

Fig. A.62: Mutual Informa-
tion Image For Tree 62

Fig. A.63: Mutual Informa-
tion Image For Tree 63

33

CURRICULUM VITAE

Arle S. Beckwith

Published Journal Articles

• Residential water meters as edge computing nodes: Disaggregating end uses and cre-

ating actionable information at the edge, Attallah, N. A., Horsburgh, J. S., Beckwith,

A. S., Tracy, R. J., Sensors, 2021.

• Impact of Data Temporal Resolution Quantifying Residential End Uses of Water,

Bastidas Pacheco, C.J.; Horsburgh, J.S.; Beckwith, A.S., Jr., Water, 2022.

	Ensemble Machine Learning at the Edge Using the Codec Classifier Structure and Weak Learners Guided by Mutual Information
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	LIST OF FIGURES
	ACRONYMS
	INTRODUCTION
	Classification at the Edge
	Tree Ensemble
	Adaboost
	Mutual Information

	The Codec Classifier
	Architecture
	Encoder
	Decoder

	Mutual Information
	Efficient Training Implementation

	Results
	MNIST
	Face Detection

	Conclusions and Future Work
	Conclusions
	Future Work

	REFERENCES
	APPENDICES
	A Mutual Information Images

	CURRICULUM VITAE

