The CubeSat Multispectral Observation System (CUMULOS)

David Ardila (PI), Dee Pack (PS)

With advice and support from Richard Rudy, Ray Russell, Mike Owens, and Darren Rowen

August 23, 2016
The CubeSat Multispectral Observation System (CUMULOS)

CUMULOS: 3 COTS cameras in a CubeSat

- **Visible camera** – 0.4 - 1.0 µm; φ=1.3 cm
- **SWIR camera** – 0.9 - 1.7 µm; φ=1.8 cm
- **LWIR camera** – 7.5 - 15.5 µm; φ=2.3 cm

• Primary Requirement:
 – To develop **optimal methods for the operation** of passively cooled COTS sensors and cameras and determine their **suitability to perform weather/environmental monitoring** missions

• No requirements on calibration accuracy or precision

• Orbit:
 • 450 x 720 km
 • 98° inclination
 • 10:30 local time descending node.
 • 20 day revisit
Activities: 3-mo. nominal mission, possible 3-mo. extension.

- Perform vicarious calibration of COTS payload. Compare performance to other Earth-observation assets.
- Study camera degradation as a function of time
- Observe human activity day and night: Urban heat islands and lights, land cover, river channels, ports, industrial operations, flares, fires. Characterize airglow illumination patterns

Data taking mode: Track-and-shoot
Actual FOV Alignment

Picosat lab test image 5/8/16
Primary Payload: The Integrated Solar Array and Reflectarray Antenna (ISARA)

- Goal: To demonstrate downlink data rates for CubeSats to >100 Mbps.
- NASA’s ISARA will transmit a Ka tone to ground station. Experiment consists on measuring antenna pattern.
- 3 Month-long mission – Launch 11/16
- NASA payload, Aerospace bus
- CUMULOS and ISARA
 - CUMULOS will be turned off while ISARA operates
 - CUMULOS does not impose any requirement on ISARA’s mission
 - Extensive tests to ensure “do no harm” to ISARA

http://www.nasa.gov/directorates/spacetech/small_spacecraft/isara_project.html
CUMULOS performance

Visible
0.60 μm
(AΩ=14 μm² sr)

<table>
<thead>
<tr>
<th>10^{-5}</th>
<th>10^{-4}</th>
<th>10^{-3}</th>
<th>10^{-2}</th>
<th>10^{-1}</th>
<th>10^0</th>
<th>10^1</th>
<th>10^2</th>
<th>10^3 W/m²/sr/um</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 ms</td>
<td>0.11 ms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S/N=10</td>
<td>S/N=160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SWIR
1.3 μm
(AΩ=319 μm² sr)

<table>
<thead>
<tr>
<th>10^{-5}</th>
<th>10^{-4}</th>
<th>10^{-3}</th>
<th>10^{-2}</th>
<th>10^{-1}</th>
<th>10^0</th>
<th>10^1</th>
<th>10^2</th>
<th>10^3 W/m²/sr/um</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 ms</td>
<td>0.18 ms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S/N=10</td>
<td>S/N=430</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LWIR
11 μm
(AΩ=239 μm² sr)

Antarctica	Cloud	Ice	Ocean	Cold Fire	Gas flare	No Atmos
-60 | -40 | 0 | 20 | 40 | 450 | 1600 (C)
±14 C | ±4 C | ±3 C | ±1 C | S/N=87 |
S/N=3 | S/N=13 | S/N=30 | S/N=500 | (5 m² source) |
(Saturation limit)
What did we do?

Will the cameras function in space?
What are the instrumental characteristics?
What level of radiometric precision/accuracy can we expect?

<table>
<thead>
<tr>
<th>Priority</th>
<th>Task</th>
<th>Vis</th>
<th>SWIR</th>
<th>LWIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Learn to use cameras</td>
<td>1/28/16</td>
<td>1/28/16</td>
<td>N/A</td>
</tr>
<tr>
<td>1</td>
<td>Focus the cameras</td>
<td>2/8/16</td>
<td>1/28/16</td>
<td>N/A</td>
</tr>
<tr>
<td>1</td>
<td>MTF changes with TVC</td>
<td>N/A</td>
<td>11/10/15</td>
<td>8/26/15</td>
</tr>
<tr>
<td>1</td>
<td>Measure gain</td>
<td>2/12/16</td>
<td>11/16/15</td>
<td>10/15/15</td>
</tr>
<tr>
<td>1</td>
<td>Obtain Flats</td>
<td>2/12/16</td>
<td>10/22/15, 10/27/15</td>
<td>10/15/15</td>
</tr>
<tr>
<td>1</td>
<td>Measure Dark Current</td>
<td>2/10/16, 2/11/16</td>
<td>10/5/15, 11/2/15</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>Measure Read Noise</td>
<td>2/10/16</td>
<td>10/5/15</td>
<td>10/15/15</td>
</tr>
<tr>
<td>2</td>
<td>Obtain Radiom. coeffs</td>
<td>2/12/16</td>
<td>11/2/15</td>
<td>12/9/15</td>
</tr>
<tr>
<td>2</td>
<td>Derive Bad pixel mask</td>
<td>2/10/16</td>
<td>10/22/15, 10/27/15</td>
<td>8/6/15</td>
</tr>
<tr>
<td>2</td>
<td>Determine command rate</td>
<td>8/15/16</td>
<td>TBD</td>
<td>8/15/16</td>
</tr>
<tr>
<td>2</td>
<td>Derive signal model</td>
<td>3/10/16</td>
<td>3/15/16</td>
<td>5/2/15</td>
</tr>
<tr>
<td>2</td>
<td>Alignment Flight PostVibe</td>
<td>2/9/16</td>
<td>2/9/16</td>
<td>2/9/16</td>
</tr>
<tr>
<td>2</td>
<td>Alignment Flight PreVibe</td>
<td>2/3/16</td>
<td>2/3/16</td>
<td>2/3/16</td>
</tr>
<tr>
<td>3</td>
<td>Measure Field Distortion</td>
<td>2/16/16</td>
<td>2/16/16</td>
<td>10/20/15</td>
</tr>
<tr>
<td>3</td>
<td>Measure PSF</td>
<td>2/18/16</td>
<td>2/18/16</td>
<td>2/17/16</td>
</tr>
<tr>
<td>3</td>
<td>Alignment Qual PreVibe</td>
<td>2/4/16</td>
<td>2/4/16</td>
<td>2/4/16</td>
</tr>
<tr>
<td>3</td>
<td>Alignment Qual PostVibe</td>
<td>2/10/16</td>
<td>2/10/16</td>
<td>2/10/16</td>
</tr>
<tr>
<td>3</td>
<td>Alignment Flight Integrated PostVibe</td>
<td>5/18/16</td>
<td>5/18/16</td>
<td>5/18/16</td>
</tr>
</tbody>
</table>
Visible Camera

• **Characteristics**
 – CMOS chip (Aptina MT9M001C12STM) – Similar chips flown
 • 1280 x 1024 pixels
 • 5.2-µm pixels = 180 m at 600 km
 • 10-bit monochrome - 40 e/DN - Saturation at 725 DN
 • RN: 27 e/pix (25 C)
 • Dark Current: 13 e/sec/pix (25 C)

• **Optics**
 – f/1.4 17.6 mm, 6-element lens (Schneider Xenoplan 27-1991417 – Flown in space).
 – Point Spread Function:
 • Documentation: Q=FWHM/pix=1.3 \(\rightarrow\) 230 m (If diffraction limited at 650 nm, \(\lambda/D=27 \mu\text{rad}\); \(Q=0.175\))

• **Spectral Range**: 0.4-0.8 µm
Visible Camera, cont.

• **Operational Characteristics**
 – Exposure times from 0.11 ms to 900 ms
 – Changeable multiplicative gains to ADC: 1 -15
 – Controllable Image Corrections
 • Black subtraction: Temperature dependent bias subtraction

• **Pixel Response Non-Uniformities (PRNU or ‘Flat errors’)**
 – Integrating sphere observations, average of 6 illuminations with 64 images each.
 – ~40% gain variation along image field (σ=12%)
 – Per pixel uncertainty in the PRNU is 0.1%

Flat field observations
Visible Camera, cont.

• Preliminary radiometric calibration on the ground, using a 660 C BB observed at 26’10” with a 1” diameter aperture.

• Aperture photometry of irradiance source transformed to a radiance value.

• Radiometric coefficient (W cm\(^{-2}\) \(\mu\text{m}^{-1}\) sr\(^{-1}\) per ct sec\(^{-1}\)) error: ±3%
SWIR Camera

• Characteristics
 – FLIR Tau SWIR 25 - 43-00039-22-A5
 • InGaAs chip
 • 640 x 512 pixels
 • 25-µm pixels = 600 m at 600 km
 • 14-bit monochrome

• Optics:
 – StingRay SR2145-A01 – Space qualified
 • f/1.4 25 mm
 – Point Spread Function:
 • Documentation: Q=0.52 -> 312 m (If diffraction limited at 1.3 µm, λ/D=72.8 µrad ; Q=0.07)

• Spectral Range: 0.9-1.7 µm

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>124.4 e/DN</td>
<td>1.7 e/DN</td>
</tr>
<tr>
<td>RN (25 C)</td>
<td>1,000 e/pix</td>
<td>70 e/pix</td>
</tr>
<tr>
<td>DC (T=0 sec; 25 C)</td>
<td>6,100 DN/pix</td>
<td>1,100 DN/pix</td>
</tr>
<tr>
<td>Well-Depth</td>
<td>1.3 Me</td>
<td>18 Ke</td>
</tr>
<tr>
<td>Saturation</td>
<td>~4,000 DN</td>
<td>~9,000 DN</td>
</tr>
<tr>
<td>(after DC subtraction)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Far-field focus test image
SWIR Camera, cont.

- **Operational Characteristics**
 - *Exposure times from 0.2 ms to 32 ms*
 - *High and Low gains*
 - *Controllable Image corrections*
 - PRNU gain
 - Pixel offset
 - Exposure dependent dark current correction
 - Bad pixel replacement
 - *Pixel Response Non-Uniformities:*

 - **Non-Uniformity Correction (NUC)**
 - **Flat field observations, with factory corrections**
 - **Flat field observations, without factory corrections**
SWIR Camera, cont.

- Radiometric measurements
 - **Target:**
 - Irradiance source 200 C BB
 - Observed at 26' with a 0.185” diameter aperture.
 - *High gain response is not linear with time.*
LWIR Camera

- **Characteristics**
 - *FLIR Tau 640 46640025H-FPNLX*
 - VOx Bolometer
 - 640 x 512 pixels
 - 17-µm pixels
 - 14-bit monochrome
 - **Optics:**
 - *f/1.1 25 mm*
 - **Point Spread Function:**
 - Documentation: $Q=0.92 \rightarrow 374 \text{ m}$ (If diffraction limited at 10 µm, $\lambda/D=440 \mu\text{rad}$; $Q=0.6$)
 - **Spectral Range:** 7.5 - 15.5 µm

Graphic: FLIR Tau 2 Product Specification
• Operational Characteristics
 – Fixed frame rates: 40 ms or 33 ms
 – Time constant: 10 ms.
 – High and Low gains
 – Controllable Image corrections
 • Mechanical shutter provides blank image to perform PRNU correction
 • “Temperature stabilization, column correction”
 • 1/f Noise correction
 • Bad pixel replacement
 – Pixel Response Non-Uniformities

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain @ 30 C</td>
<td>7.1 DN/K</td>
<td>52.2 DN/K</td>
</tr>
<tr>
<td>Saturation</td>
<td>12,000 DN</td>
<td>14,000 DN</td>
</tr>
<tr>
<td>415 C</td>
<td>125 C</td>
<td></td>
</tr>
<tr>
<td>NEAT @ 30 C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Documentation</td>
<td>181.5 mK</td>
<td>60.5 mK</td>
</tr>
<tr>
<td>Measured within frame</td>
<td>271 mK</td>
<td>88 mK</td>
</tr>
<tr>
<td>Measured F2F</td>
<td>3 K</td>
<td>4 K</td>
</tr>
</tbody>
</table>

Multiple observations of -3.5C flat source in vacuum.
Procedure:
• Take shutter calibration
• Take multiple images within < 1 second
Measuring the camera response:
• Observations in a thermal-vac chamber.
• Multiple observations at a given flat source.
• Procedure:
 • Turn camera on
 • Take shutter calibration
 • Take 3 images within < 1 second
 • Turn camera off
 • Change target temperature

Target Temperatures

Derived count-temperature relationship

Default count-temperature relationship

LWIR—Low

LWIR—High

Pixel error
Calibration

Note: Ground-based radiometric calibration is inadequate.

For the reflective bands (Vis and SWIR):

- The final output is a radiance flux density ($W \text{ cm}^{-2} \mu\text{m}^{-1} \text{sr}^{-1}$).
- But we measure integrated flux ($W \text{ cm}^{-2} \text{sr}^{-1}$).
- The error in the determined radiance flux density depends on the target spectrum, calibrator spectrum, and errors in the filter band.
- Target spectra are ~5500 K “blackbodies”, but calibration spectra are much colder.

<table>
<thead>
<tr>
<th>Vis</th>
<th>Default</th>
<th>Custom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat</td>
<td>12%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Radiometry (Random)</td>
<td>3%</td>
<td>3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SWIR</th>
<th>High Gain/Default</th>
<th>Low Gain/Default</th>
<th>High Gain/Custom</th>
<th>Low Gain/Custom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat</td>
<td>6%</td>
<td>8%</td>
<td>0.2%</td>
<td><0.1%</td>
</tr>
<tr>
<td>Radiometry (Random)</td>
<td>3%</td>
<td>5%</td>
<td>2%</td>
<td>5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LWIR</th>
<th>High Gain/Default (30 C)</th>
<th>Low Gain/Default (30 C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame to Frame</td>
<td>7%</td>
<td>2%</td>
</tr>
<tr>
<td>Radiometry</td>
<td>±4°C</td>
<td>±3°C</td>
</tr>
</tbody>
</table>
Summary

- S/C to launch 11/2016
- CUMULOS mission will begin after ISARA ends (L+3 months).
- CUMULOS will demonstrate the capabilities and limits of different COTS detector architectures
- On-board vicarious calibration will be needed. Anchored to other instruments such as VIIRS and AIRS
- Preliminary Lessons:
 - *Quoted specs are NEVER specific for the device at hand.*
 - *Most early work involves re-writing the software to read the cameras*
 - *The discovery of undocumented features is the rule. Little to no help from manufacturers*
 - *Significant performance improvements are gained by measuring PRNU on the ground.*

The authors wish to acknowledge the U.S. Air Force Space and Missile Systems Center Advanced Development Directorate (SMC/AD), and The Aerospace Corporation Multi-Program Acquisition Capability Enhancement Program (MPACE), for their support of the CUMULOS payload.