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Abstract: In the preliminary design of aircraft lifting surfaces, accurate mass and inertia properties can
be difficult to obtain. Typically, such methods as computer-aided design or statistical processes are
used to determine these properties. These methods require significant time and effort to implement.
The present paper presents an exact analytic method for calculating the volume, mass, center of
gravity, and inertia properties of wing segments and rotors of constant density. The influence of
taper, spanwise thickness distribution, airfoil geometry, and sweep are included. The utility of the
method is presented, and the accuracy is evaluated with various test cases via percent difference
with a corresponding computer-aided design model. These case studies demonstrate the present
method to be accurate to within about 1% for typical wing geometries and within about 1.3% for
typical propeller geometries.

Keywords: aircraft mass properties; aircraft design; parametric design

1. Introduction

A primary facet of aircraft design is the determination of aircraft volume, mass,
center of gravity (CG), and inertia properties. This is because each of these properties
can significantly affect the evaluation metrics of the aircraft design. For example, the
wing volume can be used to inform the design of internal structures such as fuel tanks
and actuators. The mass and CG location can be used to evaluate aircraft performance
and stability properties. The inertias can be used to determine aircraft dynamics and
overall performance.

Once a design has sufficiently matured, these mass and inertia properties can quite
accurately be evaluated using computer-aided design (CAD) software [1–4] or measured
using various experimental techniques such as bifilar pendulums [5–9], trifilar pendu-
lums [10], compound pendulums [8,11,12], suspension systems [13–15], knife-edge ful-
crums [16,17], torque frames [18], and flight test data [19].

However, volume, mass, CG location, and inertia properties can be difficult to deter-
mine during early design phases. This is because they depend on wing external shape
and internal mass distribution, which can change frequently in the initial stages of design.
Several methods have been suggested for use in early design phases by previous authors,
such as the lumped masses method [1,20–22], statistical methods [1], or approximate meth-
ods [23]. Each of these methods may not be ideal during the early phases of design due to
the time required to obtain a solution, as is typically the case for CAD renderings, or due to
inaccuracies arising from over-simplistic assumptions.

The present paper presents an analytic closed-form solution developed by the au-
thors for calculating the exact volume, mass, CG location, and inertia properties of wing
segments and rotors of constant density. The influence of geometric properties such as
airfoil geometry, spanwise maximum thickness distribution, sweep, and taper are included.
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The present work fills a gap in the preliminary stages of the lifting surface design of some
aircraft since it can be used to analytically obtain exact solutions for the volume, mass, CG
location, and inertia properties of wing segments and rotors with minimal time and effort.
Although the constraint of constant density in the present analysis may seem extremely
limiting, a section has been included in this paper to discuss the application of this analytic
solution to wings with complex internal structure or systems. For many unmanned air
vehicles (UAVs), a foam core is used within the wings, making the assumptions used here
very accurate for many UAV applications.

The following analysis requires solving several volume integrals. The steps for solving
these integrals analytically are quite lengthy and, for brevity, have not been included
here. These steps can be found in the original conference paper [24]. In the present
paper, we include only the solutions to the volume integrals. The solutions included here
are sufficient to employ the methods in a software environment to predict the volume,
mass, CG location, and inertia properties of wings and rotors of constant density. An
implementation of these methods in Python is publicly available in an online Github
repository (https://github.com/benjaminmoulton/MMoIpy (accessed on 1 April 2024))
and in a graphical aerodynamic design tool (http://aerotools.usu.edu/mu6 (accessed on 1
April 2024)).

The present paper is outlined as follows: in Section 2 are described the analytic
equations for the volume, mass, CG location, and inertia properties of a wing segment
and rotor. In each case, the geometry is described, as well as the general integral equation
that must be solved. These equations are then applied in Section 3 for comparison of the
present exact method with an approximate method presented by Lanham [23]. In Section 4
the present method is applied to two simple examples of a wing segment and a rotor
to evaluate some of the limitations of the method. In Section 5, an example application
is presented for how this method could be used with respect to more complicated wing
geometries, for which the density may not be constant. Conclusions are drawn in Section 6
regarding the use of the presented method.

2. Analytic Solutions
2.1. Wing Segment

A wing segment can be wholly defined by the semispan b, root chord cr, tip chord
ct, root airfoil percent maximum thickness τr, tip airfoil percent maximum thickness τt,
airfoil thickness distribution µ, quarter-chord sweep angle Λ, dihedral angle Γ, and airfoil
thickness distribution µ(xa/c). A drawing of a wing segment is shown in Figure 1. In the
present method, sweep and dihedral angles are assumed to be constant, and chord and
airfoil thickness are allowed to vary linearly from root to tip. In this development, the
influences of the wing twist and airfoil camber are neglected, as these generally have a
minor effect on the mass properties of the wing relative to the other parameters listed.

x

z

y

Λ

CG

cr

ct

τt ct

b

τr cr

Figure 1. Wing-segment geometry definitions.

Here, the quarter-chord location at the wing root is selected as the origin for the wing
coordinate frame. The x-axis is aligned with the chord-line and points out the leading edge,
the y-axis is specified as positive from the root to tip of a right wing, and the z-axis points

https://github.com/benjaminmoulton/MMoIpy
http://aerotools.usu.edu/mu6
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out the bottom of the wing, completing the right-handed coordinate system. Wing sweep
is defined as a chordwise shearing of the wing in the xy plane, whereas dihedral is defined
as a rotation of the wing coordinate frame about an aircraft body-fixed x-axis. Therefore,
the present analysis includes the effects of sweep on the inertia properties of the wing in
the wing coordinate system. However, since dihedral is a solid-body rotation of the wing,
the effects of dihedral are not included in the wing coordinate system but can be easily
accounted for in the aircraft coordinate system by rotating the results obtained from this
analysis [24]. Note, semispan length b is defined parallel to the y-axis.

The airfoil used for the wing segment can have a significant effect on the mass prop-
erties of the wing. The mass properties of the airfoil are calculated to include effects due
to airfoil thickness distribution, and neglect effects due to camber. For the purposes of
this analysis, it is helpful to define an airfoil coordinate system. The traditional coordinate
frame for an airfoil is used here, with the origin at the airfoil leading-edge, the x-axis
pointing along the chord-line out the trailing edge, and the y-axis pointing up normal to
the x-axis. The ordinates are subscripted as xa and ya for clarity.

The thickness distribution of an airfoil as a function of percent chord τ(xa/c) can be
defined as the product of the maximum thickness τm and thickness distribution function
µ(xa/c)

τ
( xa

c

)
= τmµ

( xa

c

)
(1)

In the present analysis, the thickness distribution function µ(xa/c) is held constant
across the wing segment, although the maximum thickness τm is allowed to vary linearly as
shown in Equation (5). The method presented here can be used to account for any arbitrary
thickness distribution µ(xa/c). Results for two thickness distributions are included as
examples. The two thickness distributions that are considered here are the NACA 4-digit
series distribution, and a diamond airfoil distribution. The thickness distribution of the
NACA 4-digit series [25] is

µ
( xa

c

)
= a0

√
xa

c
+ a1

( xa

c

)
+ a2

( xa

c

)2
+ a3

( xa

c

)3
+ a4

( xa

c

)4
(2)

This thickness distribution is quite versatile and can be used to fit a wide range of
airfoils outside of the NACA 4-digit series. Any values for these coefficients can be used
without a loss of the generality of the model. Table 1 shows values for each of these
coefficients that can be used to match the thickness distribution for a number of airfoils,
even those that do not use a NACA 4-digit thickness distribution.

Table 1. NACA 4-digit series coefficients for various airfoil thickness distributions.

Airfoil a0 a1 a2 a3 a4

Traditional NACA 4-Digit Series 2.969 −1.260 −3.516 2.843 −1.015
NACA 4-Digit, closed trailing edge [26] 2.980 −1.320 −3.286 2.441 −0.815

Clark Y (with τm = 0.117) 2.947 −1.102 −3.975 3.533 −1.399
Selig S1010 0.0001 9.998 0.087 −1.922 14.381

Diamond with τm at x/c = 0.5 0.479 −0.948 14.248 −26.970 13.234

The general thickness distribution for a diamond airfoil is also demonstrated. This
thickness distribution can be written as

µ
( xa

c

)
=

{
xa/c
xm/c , 0 ≤ xa

c ≤ xm
c

1−xa/c
1−xm/c , xm

c ≤ xa
c ≤ 1

(3)

where xm/c is the chordwise location of max thickness in percent chord.
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For the wing segment, the chord c and airfoil maximum thickness in percent chord τm
vary linearly from the root to tip of the wing segment as

c(y) = (ct − cr)
y
b
+ cr (4)

τm(y) = (τt − τr)
y
b
+ τr (5)

The maximum wing thickness at any spanwise location depends on both the local
airfoil maximum thickness and the local chord according to

tm(y) = τm(y)c(y) (6)

Note, as τm(y) and c(y) vary linearly, tm(y) may be nonlinear.

2.1.1. Volume and Center of Gravity

The volume, mass, center of gravity, and inertia properties of the wing require solving
the general volume integrals given in detail in [24]. Each of these integrals are volume
integrals with terms of the form xiyjzk where i, j, and k are each whole numbers. For brevity,
detailed solutions to those integrals are not included here but are included in [24] and have
the general form

Si,j,k =
∫ b

0

∫ 1
4 c(y)

− 3
4 c(y)

∫ 1
2 τm(y)µ(x)c(y)

− 1
2 τm(y)µ(x)c(y)

xiyjzk dz dx dy (7)

The solutions to Equation (7) will be referenced here as Si,j,k. Integrals related to the
airfoil thickness distribution are also included in [24].

The boundary of a wing-segment in the wing segment coordinate frame is defined by
the region

0 ≤ x̂ ≤ 1, 0 ≤ ŷ ≤ 1, 0 ≤ ẑ ≤ 1 (8)

where the following change in variables has been applied:

x̂ =
1
4
− x

c(ŷ)
, ŷ =

y
b

, ẑ =
1
2
− z

τm(ŷ)µ(x̂)c(ŷ)
(9)

This change in variables results in the following derivatives:

dx̂ = − dx
c(ŷ)

, dŷ =
dy
b

, dẑ = − dz
τm(ŷ)µ(x̂)c(ŷ)

(10)

Note, the negative signs in the derivatives for x and z, when applied in the integral
derivations, flip the integrand direction from 1 through 0 to 0 through 1.

The local chord and maximum airfoil thickness given in Equations (4) and (5) can be
written using this change in variables as follows:

c(ŷ) = (ct − cr)ŷ + cr (11)

τm(ŷ) = (τt − τr)ŷ + τr (12)

Because the dimensional x and c(ŷ) values for the x̂ change in variables in Equation (9)
are in the wing segment coordinate system, the symbol x̂ is equivalent to the local airfoil
chordwise ratio xa/c. Therefore, because we are fixing µ(xa/c) to be constant along the
wing, the general thickness distribution given in Equation (1) can be written as a function
of both spanwise location and chordwise coordinate.

τ(x̂, ŷ) = τm(ŷ)µ(x̂) (13)
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For the NACA 4-digit thickness distribution,

µ(x̂) = a0
√

x̂ + a1 x̂ + a2 x̂2 + a3 x̂3 + a4 x̂4 (14)

and for the diamond airfoil thickness distribution,

µ(x̂) =

{
x̂

x̂m
, 0 ≤ x̂ ≤ x̂m

1−x̂
1−x̂m

, x̂m ≤ x̂ ≤ 1
(15)

Due to the definition of thickness distribution in the chordwise direction, the z bounds
depend on the chordwise coordinate x. Also, due to the definition of linear changes in
chord and airfoil thickness, the x and z bounds depend on the spanwise coordinate y. The
change in variables and corresponding bounds are applied to the Si,j,k volume integral in
Equation (7) as

Si,j,k = Υnbj+1
∫ 1

0
τm(ŷ)k+1c(ŷ)i+k+2ŷj

∫ 1

0

(
1
4
− x̂

)i ∫ 1

0

(
1
2
− ẑ

)k
dẑ dx̂ dŷ (16)

where

Υn =

∫ 1
0 µ(x̂)k+1

(
1
4 − x̂

)i
dx̂∫ 1

0

(
1
4 − x̂

)i
dx̂

(17)

Applying the change in variables and integrating gives the volume of the wing segment

V ≡
∫∫∫

V
dV = S0,0,0 =

b
12

κaυ0 (18)

where
κa = τr

(
3c2

r + 2crct + c2
t

)
+ τt

(
c2

r + 2crct + 3c2
t

)
(19)

The parameter υ0 depends on the integral shown in Equation (17), which is a function
of the thickness distribution (solved as shown in [24]). For a wing using the NACA 4-digit
thickness distribution,

υ0 =
1
60

(40a0 + 30a1 + 20a2 + 15a3 + 12a4) (20)

and for a wing using the diamond airfoil thickness distribution,

υ0 =
1
2

(21)

Detailed derivations of the integrals resulting in the expressions for κa and υ0 are
included in Moulton and Hunsaker [24]. The wing mass is related to the density ρ through

m = ρV (22)

The center of gravity of the wing segment is related to the mass-moment about each
axis. Because sweep affects the x coordinate of the mass of the wing, the sweep angle must
be accounted for when computing the x-coordinate of the CG location. The shift due to
sweep, −y tan Λ, can be applied to the x-coordinate, which gives

x̄ =
ρ

m

∫∫∫
V
(x − y tan Λ) dV =

ρ

m

∫∫∫
V

x dV − ρ

m
tan Λ

∫∫∫
V

y dV (23)

It should be noted that sweep does not need to be applied to the integrations for ȳ
or z̄ because these integrals do not contain an x term, and sweep does not affect the y
or z coordinates of mass within the wing segment. Because sweep affects a right wing
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differently than a left wing, the difference in solution between left and right wings will be
accounted for by defining

δ ≡
{

1, right wing
−1, left wing

(24)

The integrals required to find x̄, ȳ, and z̄ about the wing root quarter-chord are given
in Moulton and Hunsaker [24]and result in

x̄ =
ρ

m

∫∫∫
V
(x − y tan Λ) dV =

ρ

m
[S1,0,0 − tan ΛS0,1,0] = − ρ

m
b

240
[3κbυ1 + 4bκcυ0 tan Λ] (25)

ȳ =
ρ

m

∫∫∫
V

y dV =
ρ

m
δS0,1,0 =

ρ

m
δ

b2

60
κcυ0 (26)

z̄ =
ρ

m

∫∫∫
V

z dV =
ρ

m
S0,0,1 = 0 (27)

where

κb = τr

(
4c3

r + 3c2
r ct + 2crc2

t + c3
t

)
+ τt

(
c3

r + 2c2
r ct + 3crc2

t + 4c3
t

)
(28)

κc = τr

(
3c2

r + 4crct + 3c2
t

)
+ 2τt

(
c2

r + 3crct + 6c2
t

)
(29)

For a wing using the NACA 4-digit thickness distribution [24],

υ1 =
1
60

(56a0 + 50a1 + 40a2 + 33a3 + 28a4) (30)

and for a wing using the diamond airfoil thickness distribution [24],

υ1 =
4x̂m + 1

6
(31)

Using Equation (18) and applying the result along with Equations (25)–(27) gives the
location of the CG relative to the wing origin:

x̄ = −3κbυ1 + 4bκcυ0 tan Λ

20κaυ0
(32)

ȳ = δb
κc

5κa
(33)

z̄ = 0 (34)

Because twist and camber are neglected, the z coordinate of the CG location, z̄, is zero.
Note, sweep only affects the x coordinate of the CG location, x̄.

2.1.2. Inertia Tensor

The inertia tensor for the wing segment can be computed about the origin of the wing
segment coordinate system. Applying the shift due to sweep results in the inertia tensor
about the wing segment origin

[I]o = ρ
∫∫∫

V

y2 + z2 −(xy) −(xz)
−(xy) x2 + z2 −(yz)
−(xz) −(yz) x2 + y2

 dV

+ ρ
∫∫∫

V

 0 −(−y2 tan Λ) −(−yz tan Λ)
−(−y2 tan Λ) y2 tan2 Λ − 2xy tan Λ 0
−(−yz tan Λ) 0 y2 tan2 Λ − 2xy tan Λ

 dV (35)



Aerospace 2024, 11, 492 7 of 22

The volume integrals required in Equation (35) can be expressed as [24]

[I]o ≡

 Ixxo −Ixyo −Ixzo

−Iyxo Iyyo −Iyzo

−Izxo −Izyo Izzo

 (36)

where

Ixxo = ρ(S0,2,0 + S0,0,2) = ρ
b

3360

(
56b2κ f υ0 + κgυ3

)
(37)

Iyyo = ρ(S2,0,0 + S0,0,2 + S0,2,0 tan2 Λ − 2S1,1,0 tan Λ)

= ρ
b

10080

[
84b

(
2bκ f υ0 tan2 Λ + κdυ1 tan Λ

)
+ 49κeυ2 + 3κgυ3

]
(38)

Izzo = ρ
[
S2,0,0 +

(
tan2 Λ + 1

)
S0,2,0 − 2S1,1,0 tan Λ

]
= ρ

b
1440

[
12b

{
2b

(
tan2 Λ + 1

)
κ f υ0 + κdυ1 tan Λ

}
+ 7κeυ2

]
(39)

Ixyo = Iyxo = ρδ(S1,1,0 − S0,2,0 tan Λ) = −ρδ
b2

240

[
4bκ f υ0 tan Λ + κdυ1

]
(40)

Ixzo = Izxo = ρ(S1,0,1 − S0,1,1 tan Λ) = 0 (41)

Iyzo = Izyo = ρδS0,1,1 = 0 (42)

and

κd = τr(cr + ct)
(

2c2
r + crct + 2c2

t

)
+ τt

(
c3

r + 3c2
r ct + 6crc2

t + 10c3
t

)
(43)

κe = τr

(
5c4

r + 4c3
r ct + 3c2

r c2
t + 2crc3

t + c4
t

)
+ τt

(
c4

r + 2c3
r ct + 3c2

r c2
t + 4crc3

t + 5c4
t

)
(44)

κ f = τr

(
c2

r + 2crct + 2c2
t

)
+ τt

(
c2

r + 4crct + 10c2
t

)
(45)

κg = τ3
r

(
35c4

r + 20c3
r ct + 10c2

r c2
t + 4crc3

t + c4
t

)
+ τ2

r τt

(
15c4

r + 20c3
r ct + 18c2

r c2
t + 12crc3

t + 5c4
t

)
+ τrτ2

t

(
5c4

r + 12c3
r ct + 18c2

r c2
t + 20crc3

t + 15c4
t

)
+ τ3

t

(
c4

r + 4c3
r ct + 10c2

r c2
t + 20crc3

t + 35c4
t

)
(46)

For a wing using the NACA 4-digit thickness distribution [24],

υ2 =
1

980
(856a0 + 770a1 + 644a2 + 553a3 + 484a4) (47)

υ3 =
2
5

a3
0 + a2

0a1 +
3
4

a2
0a2 +

3
5

a2
0a3 +

1
2

a2
0a4 +

6
7

a0a2
1 +

4
3

a0a1a2 +
12
11

a0a1a3 +
12
13

a0a1a4

+
6

11
a0a2

2 +
12
13

a0a2a3 +
4
5

a0a2a4 +
2
5

a0a2
3 +

12
17

a0a3a4 +
6
19

a0a2
4 +

1
4

a3
1

+
3
5

a2
1a2 +

1
2

a2
1a3 +

3
7

a2
1a4 +

1
2

a1a2
2 +

6
7

a1a2a3 +
3
4

a1a2a4 +
3
8

a1a2
3

+
2
3

a1a3a4 +
3
10

a1a2
4 +

1
7

a3
2 +

3
8

a2
2a3 +

1
3

a2
2a4 +

1
3

a2a2
3 +

3
5

a2a3a4

+
3

11
a2a2

4 +
1

10
a3

3 +
3
11

a2
3a4 +

1
4

a3a2
4 +

1
13

a3
4 (48)



Aerospace 2024, 11, 492 8 of 22

and for a wing using the diamond airfoil thickness distribution [24],

υ2 =
8x̂2

m + 3
14

(49)

υ3 =
1
4

(50)

Because mass is directly related to volume and density, the tensor components can
also be expressed as

Ixxo = m

[
56b2κ f υ0 + κgυ3

280κaυ0

]
(51)

Iyyo = m

84b
(

2bκ f υ0 tan2 Λ + κdυ1 tan Λ
)
+ 49κeυ2 + 3κgυ3

840κaυ0

 (52)

Izzo = m

12b
{

2b
(
tan2 Λ + 1

)
κ f υ0 + κdυ1 tan Λ

}
+ 7κeυ2

120κaυ0

 (53)

Ixyo = Iyxo = −δbm
[4bκ f υ0 tan Λ + κdυ1

20κaυ0

]
(54)

Ixzo = Izxo = Iyzo = Izyo = 0 (55)

The inertia components given in Equations (37)–(42) and (51)–(55) can be used in
Equation (36) to compute the inertia tensor about the origin of the wing segment coordinate
frame. However, in order to include the inertia components of the wing segment in the
computation of the inertia of an entire aircraft, it is helpful to know the inertia components
of the wing segment about the CG of the wing segment. From the parallel axis theorem,
the inertia tensor about an arbitrary point [I]1 is related to the inertia tensor about the CG
[I] according to

[I]1 = [I] + m
[
(s · s)[E]− ssT

]
(56)

where s is the vector from the CG to the point of interest and [E] is a 3 × 3 identity matrix.
This relationship can be rearranged to yield the inertia about the wing segment CG given
the inertia about the origin of the wing segment coordinate system

[I] = [I]o − m
[
(s · s)[E]− ssT

]
(57)

where s is the vector from the wing segment CG to the wing segment origin

s = −

x̄
ȳ
z̄

 (58)

Using Equation (58) in Equation (57) and simplifying gives the inertia tensor of the
wing segment about the wing segment CG

[I] = [I]o − m

ȳ2 + z̄2 −x̄ȳ −x̄z̄
−x̄ȳ x̄2 + z̄2 −ȳz̄
−x̄z̄ −ȳz̄ x̄2 + ȳ2

 (59)

2.2. Rotor

To estimate the volume, mass, and inertia properties of a rotor, the rotor will be defined
by the number of blades Nb, rotor diameter dr, hub diameter dh, hub height hh, blade root
chord cr, blade tip chord ct, blade root airfoil percent maximum thickness τr, and blade tip
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airfoil percent maximum thickness τt. Just as wing twist and airfoil camber were neglected
in the analysis of a wing segment, the influence of blade pitch and airfoil camber will be
neglected in the analysis of a rotor. Figure 2 shows a rotor and the associated local Cartesian
coordinates. Note that because camber and pitch are neglected, the coordinate system of
the origin coincides with the rotor CG.

y
x

z

dr

dh
cr 

τr cr 

τt ct 

ct 

hh

Figure 2. Rotor geometry definitions.

In the present analysis, the chord and maximum airfoil thickness ratio are allowed to
vary linearly as a function of radius r according to

c(r) = (ct − cr)
(r − rr)

(rt − rr)
+ cr (60)

τm(r) = (τt − τr)
(r − rr)

(rt − rr)
+ τr (61)

where rr = dh/2 and rt = dr/2 denote the radius at the blade root and tip, respectively.
The dimensional maximum airfoil thickness at any radius is

t(r) = τm(r)c(r) (62)

2.2.1. Volume

The volume of this time-averaged rotor can be calculated by summing the volume of
each blade and the volume of the hub. The volume of the hub can be determined from the
volume of a cylinder with a diameter equal to the hub diameter and a height equal to the
hub height. Hence, the volume of the hub can be computed from

Vh = πhhr2
r (63)

The volume of an individual rotor blade is simply the volume of a single wing segment.
Replacing the semispan in Equation (18) with the difference in rotor radius and hub
radius gives

Vb =
rt − rr

12
κaυ0 (64)

The total volume of the rotor is the sum of the volume of the hub and the volume of
the blades

V = Vh + NbVb (65)

Given a total weight or mass of the rotor, the density of the rotor can be found by
applying the total volume determined from Equation (65). Once the density is known,
the mass and weight of the hub and blades can be found individually from the known
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individual volumes given in Equations (63) and (64). This information will be useful in the
computation of the inertia tensor.

2.2.2. Inertia Tensor

The inertia tensor of a rotor can be determined by summing the inertia tensor of the
hub and blades as

[I] = [I]h + [I]b (66)

The inertia tensor of the hub can be determined from that of a cylinder with the outer
diameter equal to the diameter of the hub R2 = rr and using a cylinder height equal to the
hub height h = hh. This gives

[I]h =

mh
2 r2

r 0 0
0 mh

12
(
3r2

r + h2
h
)

0
0 0 mh

12
(
3r2

r + h2
h
)
 (67)

where mh is the mass of the hub.
The inertia tensor of the rotor blades at any point in time depends on the orientation

of the blades about the axis of the rotor. Since rotors are commonly spinning during flight,
the inertia tensor is a function of time. However, an approximate static inertia tensor for
the rotor can be developed by distributing the mass of the rotor blades within a circular
disk of the same diameter as the rotor. At each radial distance, the differential area of the
disk is equal to the differential area from all the rotor blades at the same radial location.
This fact can be applied by setting the area of a thin cylinder equal to the area of the rotor
blades at any given radial distance. The area A of a thin cylinder of radius r and height h is

A(r) = 2πrh (68)

The total area of the rotor blades passing through a given radius is

A(r) = Nbτm(r)c(r)2υ0 (69)

where τm(r)υ0 accounts for the airfoil area nondimensionalized by c2. Setting Equation (68)
equal to Equation (69) and solving for the disk height gives the height of the disk as a
function of radial position

h(r) =
Nbτm(r)c(r)2υ0

2πr
(70)

In order to compute the inertia components, it is helpful to convert this system to
polar coordinates (to align the axes as defined for the rotor) where

x = x, y = r cos φ, z = r sin φ (71)

The angle φ is the angle about the x-axis, with a counter clockwise angle being positive.
The inertia tensor can be written as

[I]b = ρ
∫∫∫

V


r2 −(xr cos φ) −(xr sin φ)

−(xr cos φ) x2 + r2 sin2 φ −
[

1
2 r2 sin(2φ)

]
−(xr sin φ) −

[
1
2 r2 sin(2φ)

]
x2 + r2 cos2 φ

 dx rdr dφ (72)

This form of the inertia tensor can be defined using volume integrals Ti,j,k defined as

Ti,j,k =
∫ 2π

0
cosj φ sink φ

∫ rt

rr
rj+k+1

∫ 1
2 h(r)

− 1
2 h(r)

xidxdrdφ (73)
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Solutions for these integrals are included in [24] and can be used to compute the inertia
tensor of the blades

[I]b =

 Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

 (74)

where

Ixx = mb
T0,2,0 + T0,0,2

T0,0,0
= mb

[
r3

r γl + r2
r rtγm + rrr2

t γn + r3
t γo

5(rt − rr)κa

]
(75)

Iyy = mb
T2,0,0 + T0,0,2

T0,0,0
= Izz = mb

T2,0,0 + T0,2,0

T0,0,0
(76)

Ixy = Iyx = Ixz = Izx = Iyz = Izy = 0 (77)

with
mb = ρbT0,0,0 = ρbNbVb (78)

and

T0,0,0 =
1

12
Nbκaυ0(rt − rr) (79)

T1,0,0 = T0,1,0 = T0,0,1 = T1,1,0 = T1,0,1 = T0,1,1 = 0 (80)

T2,0,0 = N3
b υ3

0

[
γar10

r + γbr9
r rt + γcr8

r r2
t + γdr7

r r3
t + γer6

r r4
t + γ f r5

r r5
t + γgr4

r r6
t

+ γhr3
r r7

t + γir2
r r8

t + γjrrr9
t + γkr10

t

]/[
13440π2rrrt(rr − rt)

9
]

(81)

T0,2,0 = T0,0,2 =
1

120
Nbυ0

(
r3

r γl + r2
r rtγm + rrr2

t γn + r3
t γo

)
(82)

The coefficients γa through γo can be computed from [24]

γa = −280c6
t τ3

t (83)

γb = −(dbco)T





35 15 5 1
5 5 3 1
5 9 9 5
1 3 5 5
1 5 15 35
5 45 315 −3123
5 105 −3123 4329


+ 840 ln

(
rr

rt

)


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 −3




τo (84)

γc = 4(dcco)T





90 40 14 3
40 42 27 10
14 27 30 20
3 10 20 30

10 60 270 −1089
20 270 −3267 996
10 −363 332 840


+ 420 ln

(
rr

rt

)


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1
0 0 3 −4
0 1

3 − 4
3 0




τo (85)

γd = −14(ddco)T





120 56 21 5
56 63 45 20
7 15 20 20
5 20 60 −117

20 180 −1053 −21
20 −351 −21 280
−39 −7 280 280


+ 60 ln

(
rr

rt

)


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1
0 0 9 −7
0 3 −7 0
1
3 − 7

3 0 0




τo (86)



Aerospace 2024, 11, 492 12 of 22

γe = 28(deco)T





168 84 35 10
28 35 30 20
35 90 180 −174
10 60 −174 −33
20 −174 −99 70

−174 −297 630 280
−33 210 280 420


+ 60 ln

(
rr

rt

)


0 0 0 0
0 0 0 0
0 0 0 2
0 0 2 −1
0 2 −3 0
2 −9 0 0
−1 0 0 0




τo (87)

γ f = −70
(

d f co
)T





126 70 35 15
14 21 27 −12
7 27 −36 −12
1 −4 −4 1

−12 −36 27 7
−12 27 21 14
15 35 70 126


+ 60 ln

(
rr

rt

)


0 0 0 0
0 0 0 1

5
0 0 3

5 − 1
5

0 1
15 − 1

15 0
1
5 − 3

5 0 0
− 1

5 0 0 0
0 0 0 0




τo (88)

γg = 28
(
dgco)T





420 280 210 −33
280 630 −297 −174
70 −99 −174 20
−33 −174 60 10
−174 180 90 35

20 30 35 28
10 35 84 168


− 60 ln

(
rr

rt

)


0 0 0 −1
0 0 −9 2
0 −3 2 0
−1 2 0 0
2 0 0 0
0 0 0 0
0 0 0 0




τo (89)

γh = −14(dhco)T





280 280 −7 −39
280 −21 −351 20
−21 −1053 180 20
−117 60 20 5

20 20 15 7
20 45 63 56
5 21 56 120


− 60 ln

(
rr

rt

)


0 0 − 7
3

1
3

0 −7 3 0
−7 9 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




τo (90)

γi = 4(dico)T





840 332 −363 10
996 −3267 270 20

−1089 270 60 10
30 20 10 3
20 30 27 14
10 27 42 40
3 14 40 90


− 420 ln

(
rr

rt

)


0 − 4
3

1
3 0

−4 3 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




τo (91)

γj = −
(
djco)T





4329 −3123 105 5
−3123 315 45 5

35 15 5 1
5 5 3 1
5 9 9 5
1 3 5 5
1 5 15 35


− 840 ln

(
rr

rt

)


−3 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




τo (92)

γk = −280c6
r τ3

r (93)
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γl = −τr

(
10c2

r + 4crct + c2
t

)
− τt

(
2c2

r + 2crct + c2
t

)
(94)

γm = τr

(
6c2

r − c2
t

)
− τt

(
2crct + 3c2

t

)
(95)

γn = τr

(
3c2

r + 2crct

)
+ τt

(
c2

r − 6c2
t

)
(96)

γo = τr

(
c2

r + 2crct + 2c2
t

)
+ τt

(
c2

r + 4crct + 10c2
t

)
(97)

where

co =
[
c6

r c5
r ct c4

r c2
t c3

r c3
t c2

r c4
t crc5

t c6
t
]T (98)

τ0 =
[
τ3

r τ2
r τt τrτ2

t τ3
t
]T (99)

db = diag
([

1 6 5 20 15 2 1
]T

)
(100)

dc = diag
([

1 2 5 20 5 2 3
]T

)
(101)

dd = diag
([

1 2 15 20 5 6 3
]T

)
(102)

de = diag
([

1 6 5 20 15 2 1
]T

)
(103)

d f = diag
([

1 10 25 300 25 10 1
]T

)
(104)

dg = diag
([

1 2 15 20 5 6 1
]T

)
(105)

dh = diag
([

3 6 5 20 15 2 1
]T

)
(106)

di = diag
([

3 2 5 20 5 2 1
]T

)
(107)

dj = diag
([

1 2 15 20 5 6 1
]T

)
(108)

The derivation of the integral coefficients given in Equations (79)–(82) is given in
Moulton and Hunsaker [24]. The calculations for the CG location are not presented because
the integrations in [24] show that x̄ = ȳ = z̄ = 0.

The authors note that the matrices with purely numeric components shown in
Equations (83)–(93) have an element of symmetry. Each equation for the γ values γa
through γk have the form

γ = k1(dco)T
(

B + k2 ln
(

rr

rt

)
D
)

τo

where k1 and k2 are numeric coefficients, co and τo are, respectively, vectors of chord and
max thickness percentage variables, and d, B, and D are purely numeric matrices. This
pseudo-symmetry can be seen, for example, in γb and γj as

γb = k1, b
(
db co)T

(
Bb + k2, b ln

(
rr

rt

)
Db

)
τo

γj = k1, b
(
d⟳b co)T

(
B⟳

b − k2, b ln
(

rr

rt

)
D⟳

b

)
τo

where for an n × n matrix, M⟳ = MT T . The symbol T is used to denote the anti-transpose

defined by MT = JMT J and Ji j =

{
1, i + j = n + 1
0, otherwise

1 ≤ i, j < n, or

J =

0 · · · 1
... . . . ...
1 · · · 0
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i.e., J is an “anti-identity” matrix. The symbol ⟳ is used because the matrix M⟳ could
be seen as a 180◦ “rotation” of the M matrix. This pseudo-symmetry pairing can be seen
between γa and γk, γb and γj, γc and γi, γd and γj, and γe and γg. The matrices for
γ f are also peculiar in that the first two numeric matrices (d f , B f ) are equivalent after
a ⟳ manipulation, and the third matrix (D f ) is equivalent after the same manipulation,
multiplied by negative one.

The number of blades Nb and blade length (rr − rt) will have exponential and opposite
effects on the T2,0,0 term in Equation (76). Thus, the Iyy and Izz properties of propellers
with greater diameter and fewer blades could be approximated by dropping the T2,0,0 term.
However, for propellers with smaller length and more blades, the magnitude of term T2,0,0
is much larger relative to the term T0,0,2, and cannot be neglected.

The total inertia of the rotor about the origin of the rotor can be computed by summing
the inertia of the hub with the inertia of the blades as shown in Equation (66).

3. Method Evaluation

Lanham’s method [23] was developed on similar principles as the present method but
with severely limiting assumptions. In the following analysis, the properties of a wing are
determined using the present method (titled “Exact” on plots), Lanham’s (“Lanham”), and
the CAD package Solid Works 2022 (“CAD”). In each case, the analysis is performed on a
wing with the geometry given in Table 2.

Table 2. Wing properties in method evaluation study.

Property Value

side right
wing root location [ft]

[
2 3 −1

]T

cr [ft] 1
τr 0.08
τt 0.10

b [ft] 4
m [slugs] 3
Λ [deg] 10
Γ [deg] 0

root airfoil NACA 0008
tip airfoil NACA 0010

There are minute differences between the “CAD” and “Exact” results at low taper
ratios, primarily due to two reasons. First, the CAD model was built assuming the thickness
to vary linearly along the span, where the present method implements a slight nonlinearity
in thickness due to linearity in maximum thickness percentage and chord distribution, as
shown in Equation (6). Second, the lofting feature in the CAD method was implemented
with guide curves only at the leading and trailing edges, thus not explicitly constraining the
wing upper and lower surfaces over the span and causing minute differences in numerical
results. Therefore, as will be shown in the following plots, the CAD results typically deviate
from the exact result as the taper ratio decreases. At a taper ratio of 1, the CAD and exact
solutions are nearly indistinguishable on the plots.

Three property evaluations are performed for the wing. These include the volume, CG
location, and inertias, with mass held constant for all evaluations. The compared volumes
are shown in Figure 3. The volume difference between Lanham’s method and the present
method is due to Lanham’s method assuming the wing to be a prismoid. Note that a more
accurate volume calculation can be used to better estimate fuel capacity, actuator sizing, etc.
The effect of the minute differences due to thickness distribution linearity can be seen at
low taper ratios.
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Figure 3. Comparison of volumes computed from each method.

The evaluation results for the CG locations are shown in Figure 4. Note the slight
differences in ȳ and z̄ at low taper ratios between the CAD model properties and the present
method. This is due to the slight non-linearities in the wing thickness along the span. Note
Lanham’s method predicts the opposite trend in x̄ as a function of taper ratio.

1.5

1.6

1.7

x 
[f

t]

Exact
Lanham
CAD
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5.0
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[f

t]

0.0 0.2 0.4 0.6 0.8 1.0
Taper Ratio, ct/cr

1.000

0.995

0.990

z 
[f

t]

Figure 4. Comparison of CG location computed from each method.

The evaluation results for the moments of inertia are shown in Figure 5. The Lanham
results are not shown in Figure 5 because they are off by an order of magnitude for each
moment of inertia and make the corresponding relationships difficult to see. Note the
offset values at small taper ratios (particularly ct/cr = 0.0) are due to the nonlinearities
mentioned previously.

The evaluation results for the products of inertia are shown in Figure 6. Lanham’s
method defines the products of inertia to be zero for a wing with no dihedral. Similar to
the present method, Lanham’s method evaluates the inertia tensor about the origin, which
can be shifted to the CG. For this reason, the products of inertia are non-zero in Figure 6.
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Figure 5. Comparison of moments of inertia about the CG computed from each method.
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Figure 6. Comparison of products of inertia about the CG computed from each method.

The forgoing analysis and plots demonstrate the exactness of the method. Differences
in the plots above are due to assumptions in method (such as Lanham) or imperfections
in implementation (such as the model in the CAD tool). The analytic solutions given
in Section 2 are exact for the case of a wing segment with linear taper, linear spanwise
maximum thickness changes, no camber, constant airfoil thickness distribution, constant
sweep, and constant dihedral.

4. Case Studies

The foregoing analysis is exact for any component that matches the component ge-
ometric constraints described. However, not all wing segments satisfy these limitations,
which invites the question: how does application of the method perform in situations
where the wing has camber, twist, or thickness distributions other than those that can be fit
to Equations (2) or (3)? To answer this question, several validation cases were performed
to evaluate the accuracy that might be expected when using the present method to rep-
resent wing and rotor geometries that include properties not considered in the analytic
development such as camber and twist.
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4.1. Case Study : Accuracy for a Typical Wing Segment

The first study is used to examine the effects of camber, twist, and airfoil thickness
distribution on a simple constant-density wing like that shown in Figure 1. Within this
case study, a rectangular wing having a symmetric airfoil is examined as the base case.
Perturbations in the following properties are then examined: linear taper (taper), linear
thickness (thickness), sweep, airfoil thickness distribution (Clark Y and diamond), constant
camber (camber), linear twist (twist), and a combination of all of the perturbations (all). To
reflect the combination of all perturbations, airfoils are chosen from the same NACA 4-digit
family but with changes in thickness and camber properties. Table 3 shows the properties
for each of the perturbation studies performed. For the diamond airfoil, the parameters
τm = 12% and x̂m = 0.5 are used.

Table 3. Wing properties.

Wing Name cr [ft] ct [ft] Ω [deg] Root Airfoil Tip Airfoil Λ [deg]

rectangular 1 1 0 NACA 0012 NACA 0012 0
taper 1.5 0.5 0 NACA 0012 NACA 0012 0

thickness 1 1 0 NACA 0016 NACA 0008 0
sweep 1 1 0 NACA 0012 NACA 0012 14

Clark Y 1 1 0 Clark Y Clark Y 0
diamond 1 1 0 Diamond Diamond 0
camber 1 1 0 NACA 4812 NACA 4812 0

twist 1 1 −2 −→ −7 NACA 0012 NACA 0012 0
all 1.5 0.5 −2 −→ −7 NACA 4816 NACA 4808 14

A right wing was created for each of these cases in a CAD package with a wingspan of
8 ft and assigned a density of 0.25 slugs/ft3. Results were truncated to two digits following
the decimal point (Calculated using “Higher” accuracy). The percent difference between
the mass and inertia results computed from CAD and those computed from the analytic
method presented in the previous section are given in Tables 4 and 5, respectively.

Table 4. Percent difference in solutions as predicted by CAD and the analytic solution.

Name m x̄ ȳ z̄

rectangular 0.00% 0.00% 0.00% 0.00%
taper 0.00% −0.05% 0.00% 0.00%

thickness −0.12% 0.29% −0.02% 0.00%
sweep 0.00% 0.00% 0.00% 0.00%

Clark Y 0.00% −0.35% 0.00% 100.00%
diamond 0.00% 0.00% 0.00% 0.00%
camber 0.30% 0.12% 0.00% 100.00%

twist 0.00% −0.29% 0.00% 100.00%
all 0.61% −0.17% 0.17% 100.00%

Table 5. Percent difference in solutions as predicted by CAD and the analytic solution.

Name Ixx Iyy Izz Ixy Ixz Iyz

rectangular 0.01% 0.00% 0.00% 0.00% 0.00% 0.00%
taper 0.01% 0.00% 0.00% 0.00% 0.00% 0.00%

thickness −0.08% 0.00% −0.08% 0.00% 0.00% 0.00%
sweep 0.01% 0.00% 0.00% 0.00% 0.00% 0.00%

Clark Y 0.00% 0.00% −0.01% 0.00% 0.00% 0.00%
diamond 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
camber 0.27% 1.08% 0.27% 0.00% 100.00% 0.00%

twist 0.01% 0.00% −0.01% 100.00% 100.00% 100.00%
all 0.71% 0.74% 0.67% 0.55% 100.00% 100.00%
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Results in these tables show that the analytic method presented above is accurate to
within less than 1% for typical wing geometries including twist, camber, and arbitrary
airfoil thickness distributions. The cases for which 100% error is shown result from the
present method predicting a value of zero for a given property and the CAD model having
a finite small value. The very small errors (<0.1%) in many of the other terms is likely due
to a difference in how linear taper and thickness distributions are handled in the present
method compared to the splines used by Solid Works, as mentioned in Section 3. In general,
the results presented here show that the analytic method presented above is accurate for
individual wing sections with geometric properties in the ranges of parameters commonly
used on aircraft.

4.2. Case Study : Accuracy for a Typical Rotor

A five-bladed propeller similar to that used on the Supermarine Spitfire Mark XIV
was studied to test the expected accuracy of the analytic solution for rotors with non-zero
pitch. The buildup of error across the last three limitations utilized in the development of
this method was studied, namely neglecting camber, neglecting twist, and approximating
propeller blades using a disk with radially changing thickness. The propeller in this study
had the following properties.

The first mass study was performed on a CAD model of constant density of the outer
mold line (OML) of the propeller and hub described in Table 6. The density for this model
was set as that of Hydulignum laminate wood, having a density of 2.54864 slugs/ft3, this
material being that from which the Spitfire Mark XIV propellers were constructed [27]. The
drawing for this CAD model is shown in Figure 7a. This CAD model was created using the
parameters given in Table 6 and had a traditional airfoil section-shape, linear taper, linear
airfoil changes, and non-linear twist [28] as determined from

βc(r) = tan−1
[

λc − 2πr tan αL0

2πr + λc tan αL0

]
− αL0 (109)

where βc is the propeller pitch angle relative to the chord-line, with a propeller chord-line
pitch of λc = 16.8681 ft and a zero-lift angle of attack of αL0 = −2.0741◦.

Table 6. Rotor properties in propeller case study.

Property Value

Nb 5
cr [ft] 0.87333
ct [ft] 0.29111
τr [%] 0.16
τt [%] 0.06
dh [ft] 1.0
dr [ft] 10.5
hh [ft] 0.85774

mb [slugs] 1.91211
ρh [slugs/ft3] 2.54864

root airfoil NACA 2416
tip airfoil NACA 2406

The second mass study was performed on the CAD model shown in Figure 7b which
is identical to the model in Figure 7a but without any camber. The density for this model
was determined using an equivalent mass to the propeller OML model.

The third mass study was performed on the CAD model shown in Figure 7c which is
identical to the model in Figure 7b but without any twist. The density for this model was
determined using an equivalent mass to the propeller OML model.

The fourth mass study was performed on a CAD model of constant density of a disk
and the hub, where the disk was modeled to have a differential area equal to that of the
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propeller, as defined in Equation (69). The density for this model was determined using an
equivalent mass to the propeller CAD model. The drawing for this OML model is shown
in Figure 7d.

(a) OML (b) uncambered (c) untwisted (d) radial-area
Figure 7. Validation CAD models of the 5-bladed propeller.

Below in Tables 7–9 are the percent differences between the analysis in each column
with respect to that in each row. Each of the above mass studies are compared with each
other and with results found using the equations developed in the presented method.
Results which are between two zero values or are uninformative are not presented. Note,
the corresponding percent differences in Tables 7–9 are not time averaged (due to propeller
rotation) but rather at the individual orientations shown in Figure 7 (where one blade is
aligned with the negative y-axis). This is because the time-averaged change in the products
of inertia are negligible, and the percent change in any of the moments of inertia due to
rotating orientation is less than 0.0001%.

Table 7. Percent difference between analyses of Ixx about the CG of the 5-bladed propeller.

Analysis Uncambered Untwisted Radial-Area Present Method

OML 0.02% −0.97% 0.22% 0.21%
uncambered −0.99% 0.20% 0.19%

untwisted 1.18% 1.16%
radial-area −0.01%

Table 8. Percent difference between analyses of Iyy about the CG of the 5-bladed propeller.

Analysis Uncambered Untwisted Radial-Area Present Method

OML 0.00% 0.12% 1.28% 1.27%
uncambered 0.11% 1.28% 1.27%

untwisted 1.17% 1.15%
radial-area −0.01%

Table 9. Percent difference between analyses of Izz about the CG of the 5-bladed propeller.

Analysis Uncambered Untwisted Radial-Area Present Method

OML 0.00% 0.12% 1.28% 1.27%
uncambered 0.11% 1.28% 1.27%

untwisted 1.17% 1.15%
radial-area −0.01%

The percent differences in moments of inertia of the presented method are less than
1.3% compared to that of the constant density OML model. This study demonstrates the
effectiveness of the present method for analyzing rotor inertia properties. The very small
difference between the radial-area model and the present method values are due to the
resolution of the CAD model radial thickness distribution. The increased resolution (and
clustering of the imported radial-shape geometry points) gives a smaller difference between
the two models.
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5. Example Application

A wing does not always have properties which satisfy the limitations of the present
method. In these instances, the present method can be applied by discretizing the geometry
of both the airframe and the internal mass distribution. See Moulton and Hunsaker [24] for
some examples. In the above analysis, the wing is treated as a single object of constant den-
sity; the additional internal complexity of the wing can be modeled by adding or subtracting
other simple shapes. Because the method is developed from exact analytic equations, it can
readily be incorporated in parametric design using various component geometries.

Simple shapes can be used to represent much more complex internal structures and
mass distributions than may first appear obvious. The moments and products of inertia
of an aircraft can be estimated using a series of components including wing segments
and rotors or other shapes for which mass and volume properties can be analytically
computed including cuboids, cylinders, spheres, etc. Indeed, several contemporary groups
have utilized this method of summing components [22,29–31] using Lanham’s estimated
equations for wing inertia [23] in approximating the inertia of full-size aircraft.

An example application for a wing segment is shown in Figure 8. In Figure 8, the
complicated internal geometry of an aircraft wing segment is approximated to include such
geometries as ribs, spars, fuel tanks, and actuators. Each component in Figure 8 can be
modeled using the present method in conjunction with simple geometric shapes:

• Ribs can be modeled as wing segments with very small span.
• The wing skin can be modeled by using two collocated wings, one with a slightly

smaller root and tip chord. The outer wing is given the density of the skin, and the
inner wing is given the negative density of the skin.

• Fuel tanks can be modeled as wing segments with constant thickness distribution (i.e.,
µ
( xa

c
)
= 1).

• A control surface can be modeled as a wing segment of given span, thickness distribu-
tion, and prescribed airfoil.

• An actuator can be modeled as a cylinder.
• Spars can be modeled as a combination of cuboids for which inertia properties are

analytically known.

Figure 8. Example application of the present method with various wing segment structural components.

Summing the inertial properties of each of the simple geometric components gives a
very reasonable estimate for the actual inertial properties of the complex wing. The fidelity
of the application can be increased by including additional considerations. For example,
with respect to the ribs, negative density cylinders can be added to create lightening holes.



Aerospace 2024, 11, 492 21 of 22

6. Conclusions

Typical methods for determining the mass and inertia characteristics of lifting surfaces
during initial design phases can be difficult and time-consuming. A simple method has
been developed and presented here for calculating the exact volume, mass, CG location,
and inertia properties of a wing segment and a rotor. These closed-form solutions neglect
camber and twist but can account for arbitrary airfoil thickness distributions. Validation
cases demonstrate the utility and accuracy of the methods presented. Evaluation cases
demonstrate the method to be exact for wings with linear taper, linear spanwise maximum
thickness, constant symmetric airfoil thickness distribution, constant sweep, and constant
dihedral. Case studies demonstrate that the present method is accurate to within about 1%
for common wing geometries and within about 1.3% for common propeller geometries,
which include typical amounts of camber and twist or pitch. These methods can be used in
the preliminary design phase of aircraft development for rapidly estimating the inertial
properties of lifting surfaces and rotors.
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