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ABSTRACT

Enhancing Monthly Streamflow Prediction Using Meteorological Factors and Machine

Learning Models in the Upper Colorado River Basin

by

Saichand Thota, Master of Science

Utah State University, 2024

Major Professor: Soukaina Filali Boubrahimi, Ph.D.
Department: Computer Science

Streamflow prediction is crucial for planning future developments and safety measures

along river basins, especially with climate change challenges. In this study, we utilized

monthly streamflow data from the United States Bureau of Reclamation and meteorological

data (snow water equivalent, temperature, and precipitation) from the various weather

monitoring stations of the Snow Telemetry Network within the Upper Colorado River Basin

to forecast monthly streamflow at Lees Ferry, a specific location along the Colorado River

in the basin. Four machine learning models— Random Forest Regression, Long short-term

memory, Gated Recurrent Unit, and Seasonal Auto-Regressive Integrated Moving Average

— were trained using 30 years of monthly data (1991-2020), split into 80% for training

(1991-2014) and 20% for testing (2015-2020). Initially, only historical streamflow data were

used for predictions, followed by including meteorological factors to assess their impact

on streamflow. Subsequently, sequence analysis was conducted to explore various input-

output sequence window combinations. We then evaluated the influence of each factor on

streamflow by testing all possible combinations to identify the optimal feature combination

for prediction. Our results indicate that the Random Forest Regression model consistently

outperformed others, especially after integrating all meteorological factors with historical
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streamflow data. The best performance was achieved with a 24-month look-back period to

predict 12 months of streamflow, yielding a Root Mean Square Error of 2.25 and R-squared

(R2) of 0.80. Finally, to assess model generalizability, we tested the best model at other

locations - Greenwood Springs (Colorado River), Maybell (Yampa River), and Archuleta

(San Juan) in the basin.

(61 pages)
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PUBLIC ABSTRACT

Enhancing Monthly Streamflow Prediction Using Meteorological Factors and Machine

Learning Models in the Upper Colorado River Basin

Saichand Thota

Understanding and predicting streamflow along river basins is vital for planning fu-

ture developments and ensuring safety, especially with climate change challenges. Our

study focused on forecasting streamflow at Lees Ferry, a key location along the Colorado

River in the Upper Colorado River Basin. We employed four machine learning models -

Random Forest Regression, Long short-term memory, Gated Recurrent Unit, and Seasonal

Auto-Regressive Integrated Moving Average; and combined historical streamflow data with

meteorological factors such as snow water equivalent, temperature, and precipitation. Our

analysis spanned 30 years of data from 1991 to 2020.

Our findings revealed that the Random Forest Regression model consistently out-

performed others, particularly when integrating all meteorological factors with historical

streamflow data. Using a 24-month historical data window, our model successfully pre-

dicted 12 months of streamflow with a Root Mean Square Error (RMSE) of 2.25 and an

R-squared value of 0.80, demonstrating high accuracy. Furthermore, to assess the general-

izability of our model, we tested it at other locations within the basin, including Greenwood

Springs (Colorado River), Maybell (Yampa River), and Archuleta (San Juan).

By enhancing our understanding of streamflow dynamics and leveraging machine learn-

ing techniques, our research aims to provide valuable insights for water resource management

and decision-making in the face of climate variability.
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To the tales shared, the lessons learned, and the quiet shadows who will not read this.
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CHAPTER 1

INTRODUCTION

Rivers are complex, multi-attribute, and multi-functional systems [1]. Their circu-

lation, development, and uses are comprehensively influenced by human activities and cli-

matic changes [2]. The water management community has long been interested in improving

streamflow forecasts, especially for long-term planning. They also seek to refine the under-

standing of streamflow forecast accuracy and how to interpret and utilize these forecasts

effectively in reservoir operations. Ultimately, their goal is to develop operating policies

that optimize the use of hydrological forecasts [3]. Accurate forecasts substantially im-

proved reservoir operations in reservoirs that operate to meet a target water elevation [4].

This prediction plays a crucial role in various water resources applications such as opti-

mizing hydropower generation, managing reservoirs efficiently, allocating water resources

effectively, protecting the environment [5], and flood warning [6]. Hydrologic time series

forecasting holds significant importance in operational hydrology and has garnered consid-

erable attention from researchers over the last few decades.

In recent years, Machine learning (ML) models have gained popularity in stream-

flow forecasting due to their ability to capture complex relationships within hydrological

data [7, 8]. ML models, such as the gated recurrent unit (GRU) [9], and long short-term

memory network (LSTM) [10], are well-suited for handling highly volatile and nonlinear

data, such as monthly runoff [11]. ML models typically involve mapping multiple input

features to output targets [12]. These data-driven techniques typically demand compara-

ble data as the aforementioned models but necessitate significantly less development time.

They are particularly beneficial for real-time applications and demonstrate proficiency in

accurately predicting streamflow [7, 13]. A significant hurdle in streamflow forecasting is

determining an effective approach for predicting streamflow over timeframes, which is cru-

cial for aiding water resource managers and decision-makers in understanding the system
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and planning for future management strategies. Forecasting streamflow at various inter-

vals, such as hourly, daily, monthly, and yearly, holds great importance in optimizing water

usage across different applications. Nagar et al. [14] emphasize the significance of hourly

streamflow predictions over monthly data, highlighting its importance for evacuation and

flood planning. In contrast, Hosseinzadeh et al. [15] prioritize monthly predictions for their

utility in river construction and development projects. Furthermore, monthly streamflow

prediction tends to yield better results in wet regions compared to dry regions [16]. Deter-

mining the optimal timeframe for streamflow prediction is crucial and largely depends on

the available data and the specific objectives of the forecasting task. Typically, the time-

frame for streamflow prediction should balance between the need for timely information

and the desire for accurate forecasts.

Different ML methods have been used for predicting streamflow, one of which is Ar-

tificial Neural Networks [17, 18]. These models are flexible and can understand complex

connections between input factors and streamflow, making them successful for short-term

predictions [19]. Support Vector Machines (SVMs) [20] are effective for handling high-

dimensional data and can provide accurate streamflow predictions, especially with small

datasets [21]. Random Forests Regression (RFR), an ensemble robust learning method, can

capture complex interactions among predictors, making it suitable for streamflow forecast-

ing tasks [22]. Recurrent Neural Networks, including LSTM and GRU networks, excel in

capturing temporal dependencies in sequential data, making them well-suited for streamflow

time series prediction [23]. SARIMA (Seasonal AutorRgressive Integrated Moving Average)

model [24] is a time series forecasting method that extends the ARIMA (AutoRegressive In-

tegrated Moving Average) model [24], by including seasonal patterns in the data. SARIMA

models are useful for capturing and predicting complex temporal patterns in data with

seasonality, making them commonly applied in various fields, including economics, finance,

and hydrology, for forecasting time series data with recurring seasonal patterns [25,26].

Data needs to be reshaped for time series forecasting to utilize standard linear and

nonlinear ML algorithms. This reshaping process commonly employs the sliding window
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method, where a sequence of time series data is transformed [27–30]. Here, the input

variables consist of values from previous time steps, while the output variable corresponds

to the value at the next time step [31–35]. Thus, time series forecasting is reformulated

as an ML problem, leveraging the value at the previous time step to predict the value

at the next time step. Overall, ML models offer promising opportunities for improving

streamflow forecasting accuracy and can complement traditional hydrological models in

capturing the complex dynamics of hydrological systems. However, careful model selection,

feature engineering, and validation are crucial to ensure robust and reliable predictions.

Streamflow prediction has evolved significantly with the integration of ML models such

as RFR, LSTM, and GRU networks, alongside traditional methods like SARIMA. These

advancements are crucial for hydrologists to select the most effective models for forecasting

streamflow. Research by Gao et al. [7] highlighted the superiority of LSTM and GRU models

over ANN for short-term (hourly) runoff predictions at the Yutan station control catchment

in Fujian Province, Southeast China. Hosseinzadeh et al. [15] found in their study of the

Upper Colorado River Basin that the performance order of ML models for monthly stream-

flow prediction was RFR, SARIMA, and LSTM. These models utilize historical streamflow

data to forecast future streamflow values, which helps in understanding the streamflow

variability under different climatic conditions. The time series analysis method, SARIMA,

while widely used, struggles to capture nonlinear relationships among hydrological variables

and requires stable hydrological series, limiting its practical applicability [36]. Therefore,

there’s a growing interest in comparing the performance of SARIMA with other models

to understand their differences in capturing seasonality. In related research, multivariate

analysis, such as snow flow prediction using hybrid models trained with meteorological data,

has proven to yield better results compared to models that don’t include such data. [37].

Furthermore, studies have demonstrated improvements in streamflow predictions by incor-

porating atmospheric circulations and considering Pacific sea surface temperature in the

Upper Colorado River Basin [38]. These findings highlight the importance of integrat-

ing various environmental factors and leveraging advanced modeling techniques to enhance
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streamflow prediction accuracy. The Colorado River catchment is currently experiencing

significant challenges, notably a shortage of water, which has become a contentious issue

in recent years. Dry conditions over the past two decades, compounded by global climate

change, are impacting this huge catchment, which spans several states in the United States.

Studies indicate that the Colorado River basin may experience a reduction in runoff of

around 19% by the middle of the 21st century [39–41]. Moreover, prolonged rainfall events

in certain seasons can lead to flooding in the area [42]. Given these circumstances, timely

decision-making and proactive measures have become crucial. Streamflow prediction in this

region would be instrumental in helping water resource managers and basin stakeholders

mitigate the risks of disasters and effectively manage water resources.

These findings highlight the importance of integrating various environmental factors

and leveraging advanced modeling techniques to enhance streamflow prediction accuracy.

Therefore, in our study, we focused on predicting monthly streamflow by considering both

flow and meteorological factors using ML models such as RFR, LSTM, GRU, and SARIMA.

Among various factors such as temperature, precipitation, snow water equivalent, snow

depth, snow density, and soil moisture level, we found that temperature, precipitation,

and snow water equivalent are the primary contributors to streamflow, as illustrated in

Figure 1.1. These factors play a significant role in influencing groundwater levels and runoff,

which directly impact streamflow. We aim to advance streamflow forecasting techniques

and offer insights into the intricate relationships between climatic variables and streamflow

dynamics. We will achieve this by addressing the following three topics:

1. Developing a robust machine learning (ML) model for forecasting monthly streamflow

data,

2. Examining the impact of climatic variables on monthly streamflow prediction, and

3. Assessing the effects of input and output sequences on prediction accuracies.
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Fig. 1.1: Visual Representation of Analyzed Factors (Temperature, Snow Water Equivalent,
Precipitation, and Streamflow) in Streamflow Prediction



CHAPTER 2

STUDY SITE

The Colorado River is the most overallocated river in the world [43]. It provides water

for nearly 40 million people in the southwestern United States and northern Mexico. It is

projected to be greater than supply by approximately 4 × 109 m3 in the year 2060 [44].

High water demand, decades of national and international treaties, and over 40 major

dams make the Colorado River Basin (CRB) perhaps the most regulated watershed on

Earth [40]. Historically, management of water resources in the Colorado River Basin focused

largely on surface water [45]. It is a lifeline for the population and agricultural economy of

parts of seven U.S. states (Wyoming(WY), Utah(UT), Colorado(CO), New Mexico(NM),

Nevada(NV), Arizona(AZ), and California(CA)) and the Mexican states of Sonora and

Baja California [46]. The river basin is divided into Upper and Lower Basin, with Lees

Ferry as the dividing point. The Upper Basin serves the states of WY, CO, UT, and NM.

The Lower Basin serves the states of NV, AZ, and CA within the United States as well

as Mexico. High-elevation snowpack in the Rocky Mountains contributes about 70% of

the annual runoff, and the seasonal runoff pattern throughout most of the basin is heavily

dominated by winter snow accumulation and spring melt [43]. Roughly 90% of the river’s

flow is derived from snowmelt from precipitation in three upper basin states, Colorado,

Utah, and Wyoming. However, most of the demand and use of the flows are in the lower

basin states, Arizona, California, and Nevada [47].

In this study, we focused only on the Upper Colorado River Basin (UCRB), Figure 2.1.

UCRB is a snow-melt-dominated hydrologic system that covers about 280,000 km2. It ex-

tends from headwaters in the Rockies in Colorado and Wyoming to Lee’s Ferry in Northern

Arizona with elevation ranging between 3300 m and 900 m. During the winter season, from

October to the end of April, the snow cover area for the UCRB ranges from 50,000 km2

to 280,000 km2 which plays a crucial role in energy [48] and hydrological [49] cycles. The
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primary stream in the UCRB is the Upper Colorado River, with major tributaries including

Williams Fork, Blue River, Muddy Creek, Eagle River, Roaring Fork River, Rifle Creek,

Gunnison River, Plateau Creek, and Fraser River [15].

Despite little change in precipitation in the Upper Colorado River Basin (UCRB) be-

tween 1896 and 2019, temperatures have risen [50] and water supplies in the basin have

suffered [51]. The warmer air temperatures are connected to decreases in streamflow and

shifts in snowmelt-runoff timing to earlier in the Spring, thereby depleting streamflow dur-

ing the Summer season at the peak of water demands [52–55]. Climate variables such as

regional precipitation (rainfall and snowfall) and snowpack have large impacts on stream-

flow. These variables have been applied to short-lead seasonal predictions of streamflow and

water supply for the Colorado River, including those from the Natural Resources Conser-

vation Service and Colorado Basin River Forecast Center. Although snow water equivalent

in April has the dominant influence on peak flow of the UCRB in April–July, precipitation

in spring can significantly influence snow melting and runoff of the UCRB, and so influence

the year-to-year variation of the UCRB streamflow [56–58].
2/13/24, 3:40 PM coloradoriverbasinviausgs_0.png (678×864)

https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/thumbnails/image/coloradoriverbasinviausgs_0.png 1/1Fig. 2.1: Colorado River Basin by United States Geological Survey (USGS) (https://www.
usgs.gov/media/images/colorado-river-basin-map (accessed on 10 February 2024) ).

https://www.usgs.gov/media/images/colorado-river-basin-map
https://www.usgs.gov/media/images/colorado-river-basin-map


CHAPTER 3

DATA

Our research hinged on two key datasets: historical streamflow records for the Colorado

River and environmental data derived from the network of Snow Telemetry (SNOTEL)

stations. Our investigation was particularly confined to the Upper Colorado River Basin

(UCRB), and our primary objective was to analyze the SNOTEL data comprehensively and

employ it in the prediction of streamflow within this specific region.

The streamflow dataset was meticulously compiled from the United States Bureau of

Reclamation (USBR) website, accessible at (https://www.usbr.gov/lc/region/g4000/

NaturalFlow/current.html, accessed on 19 September 2023). This dataset spanned a

considerable time frame, encompassing 115 years, starting from 1905 and concluding in

2020. Monthly measurements of river discharge were recorded at a total of 29 distinct mon-

itoring locations. These stations included well-known sites such as the Colorado River

At Lees Ferry, AZ, the Yampa River Near Maybell, CO, and the Colorado River Be-

low Parker Dam, AZ-CA. To better focus our analysis on the UCRB, we accurately de-

lineated the geographical boundaries of this region, using geospatial data provided by

the ScienceBAse-Catalog of United States Geological Survey (USGS), website - (https:

//www.sciencebase.gov/catalog/item/imap/4f4e4a38e4b07f02db61cebb, accessed on

September 19th, 2023). This effort enabled us to identify a subset of 20 monitoring stations

called USGS gauge locations, that fell within the UCRB’s domain. For our analysis, we

standardized the streamflow values by converting them into millimeters per month (mm/-

month) through a normalization process based on the UCRB’s area. This transformed

representation was used consistently in our research to facilitate comparative analysis and

modeling.

In parallel, we turned our attention to the SNOTEL network, a system of automated

monitoring stations positioned throughout the United States. These stations are primar-

https://www.usbr.gov/lc/region/g4000/NaturalFlow/current.html
https://www.usbr.gov/lc/region/g4000/NaturalFlow/current.html
 https://www.sciencebase.gov/catalog/item/imap/4f4e4a38e4b07f02db61cebb
 https://www.sciencebase.gov/catalog/item/imap/4f4e4a38e4b07f02db61cebb
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ily operated by government agencies, with the United States Department of Agriculture’s

Natural Resources Conservation Service (USDA NRCS) and the National Oceanic and At-

mospheric Administration (NOAA) playing important roles. The SNOTEL network is in-

strumental in collecting data related to snowpack, precipitation, temperature, and vari-

ous other meteorological and hydrological parameters. Our data collection strategy for

SNOTEL was centered on real-time data, as these sensors had been deployed more re-

cently, allowing us access to data spanning 30 years leading up to December 2020. As

of December 2020, our analysis revealed the existence of 138 SNOTEL sensors within

the boundaries of the UCRB, according to data from the USDA NRCS, website acces-

sible at [59]. The USDA NRCS website also provides a report generator, accessible at

(https://wcc.sc.egov.usda.gov/reportGenerator/, accessed on 19 September 2023),

allowing users to retrieve various data concerning SNOTEL sensors. These sensors pro-

vided diverse data types, including measurements of snow water equivalent, snow depth,

precipitation, temperature, snow density, and soil moisture. Snow water equivalent is how

much depth water would cover the ground if the snow cover were to melt and become a

liquid. The data was available at different temporal resolutions, ranging from hourly to

daily, monthly, and even half-yearly intervals. Analysis and insights of the obtained data

are explained in section 4, Data Analysis.

https://wcc.sc.egov.usda.gov/reportGenerator/


CHAPTER 4

DATA ANALYSIS

In this section, we present an overview of the data analysis conducted for streamflow

forecasting. This encompasses preprocessing the data acquired from both SNOTEL and

USBR sources, selecting relevant features, representing data over the specified time, and

dividing the dataset for training and testing purposes.

We extracted data from SNOTEL sensors, including Snow Water Equivalent, Snow

Depth, Precipitation Accumulation, Temperature (observed, max, min, and average), Snow

Density, and Station Name. To ensure that the SNOTEL data was compatible with the

streamflow data, we processed and aggregated the daily SNOTEL records, which often

amounted to more than 46,000 data values, into a consistent monthly format. This align-

ment allowed for more effective comparative analysis and facilitated the integration of these

datasets. Figure 4.1 provides a clear visual representation of the distribution of SNOTEL

sensors within the UCRB and their relation to the USGS monitoring gauges. Upon analy-

sis, it was observed that there are numerous null values in attributes like Snow Depth (over

16,000) and Snow Density (almost 25,000), despite the data being collected from sensors

since 1991. However, there is a lack of continuous data for Snow Depth and Density until

2008. Consequently, these attributes, 54% missing values for snow depth and 74% missing

values for snow density were omitted from our analysis, focusing on the available sensor data

rather than prediction. For temperature-related data, we prioritized the average tempera-

ture as the primary feature, discarding the observed, minimum, and maximum attributes.

Ultimately, our analysis concentrated on Snow Water Equivalent (SWE), Precipitation Ac-

cumulation (Prcp Acc), and Average Temperature (Temp Avg) as the main data derived

from the SNOTEL sensors. Since the streamflow data is available on a monthly basis, we

aggregated the SNOTEL data on a monthly scale while excluding stations. After monthly

data aggregation, no missing values were found for temperature, precipitation, and snow
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water equivalent. However, snow depth was missing 24% of its values, and snow density

was missing 47.5%. Therefore, it is reasonable to exclude these two attributes from the

analysis.
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Fig. 4.1: Spatial Distribution of SNOTEL Weather Stations and USGS Gauges within the
Upper Colorado River Basin.

Consequently, we obtained a data frame with 360 rows, representing 30 years of data.

Time series plots of these attributes along with the moving average are plotted over the

years, as illustrated in Figure 4.2 while the monthly streamflow data obtained from the

USBR is depicted below in Figure 4.3. The time series plot of average temperature exhibits

a slight positive trend, indicative of the global warming pattern observed in the UCRB

region. To facilitate model training and evaluation, we split the 30-year dataset into 80%

for training purposes and 20% for testing. The performance of the models will be assessed

by comparing their predicted values with the actual streamflow values obtained from the

USBR, using evaluation metrics.
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Fig. 4.2: Time Series Plots of SNOTEL data - Snow Water Equivalent (SWE) in inches,
Precipitation Accumulation (Prcp Acc) in inches, and Average Temperature (Avg Temp)
in degree Fahrenheit.
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Fig. 4.3: Time Series Plot of Streamflow data from the US Bureau of Reclamation.

In our analysis, we incorporated the streamflow data from past months to predict future

months. Additionally, we explored the correlation between these attributes in Figures 4.4

and 4.5 to illustrate the variations in streamflow corresponding to each attribute. We
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used Pearson correlation in our analysis, as it is widely used in scientific research due to its

effectiveness in assessing linear relationships between variables. It measures the strength and

direction of such associations, making it ideal for datasets where linearity is assumed. The

obtained results align with expectations, revealing a high correlation between the predicted

value, streamflow, and the average temperature. Since we are analyzing data from a large

area, we can not completely rely on the correlation between snow water equivalent and

temperature. Snow water equivalent is influenced by temperature and precipitation at

higher altitudes, but at lower levels, it is heavily affected by snow depth [60] At higher

altitudes, the high temperature leads to a decrease in snow water equivalent and an increase

in precipitation. In aggregate, these factors contribute to an overall increase in streamflow.

In this paper, the terms ’streamflow’ and ’flow’ are used interchangeably and refer to the

same hydrological parameter.

Notably, the removal of the streamflow value during feature selection yielded varia-

tions in the predicting percentage, as elucidated by comparing the results in Chapter 6,

Experimental Results.
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CHAPTER 5

METHODOLOGY

This section provides an overview of the methodologies employed for streamflow fore-

casting. We delve into the mathematical expressions defining the models and discuss the

evaluation metrics. The section is structured into three subsections for clarity: (1) uni-

variate time-series prediction model, (2) multivariate time-series prediction model, and (3)

evaluation metrics.

5.1 Univariate Time-Series Prediction Model

In the univariate time series prediction model, both the input and output features are

the same, focusing on the streamflow without introducing additional variables. Specifically,

the Lees Ferry streamflow has been selected for prediction, as it serves as the boundary be-

tween the Upper and Lower Colorado River Basin (CRB). Machine learning models utilized

for this prediction task include RFR, LSTM, SARIMA, and GRU.

The entire dataset has been partitioned into sets of look-back (past) and look-ahead

(future) sequences for training and testing purposes. Given the limited data availability,

encompassing only 30 years, with 6 years allocated for testing, various sequence lengths

have been considered, including 12, 24, 36, 48, and 60 months, summing up to a maximum

of 72 months (6 years) for any given combination of input and output sequence. Optimal

results were achieved with a configuration using 12 months of look-back and 12 months of

look-ahead data for uni-variant data. Contrary to common normalization practices such as

Z-Normalization or Min-Max Scaling, equations (1) and (2) respectively, it was observed

that applying such transformations did not yield significant improvements when compared

to using the actual, unaltered data.

Znorm =
x− µ

σ
(5.1)
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where x is observed value, µ and σ are the mean and standard deviation of the data.

xscaled =
x− xmin

xmax − xmin
(5.2)

where x is observed value, xmin and xmax are the minimum and maximum values for that

particular attribute.

Consequently, the analysis proceeded without normalization, employing the data after

preprocessing for RFR, LSTM, and GRU models. SARIMA models require the entire

dataset to estimate their parameters. Therefore, in SARIMA modeling, the entire dataset

was utilized for training the model instead of using sequences. To ensure fairness in result

comparisons and observations, the same dataset was employed for both training and testing

across all combinations of models and sequence lengths.

RFR

A Random Forest is a meta-estimator that involves fitting multiple decision tree re-

gressors on different subsets of the dataset. The algorithm utilizes averaging to enhance

predictive accuracy and mitigate the risk of overfitting. In general, RFR can be defined as

the following equation:

RFR(x) =
1

N
(T1(x) + T2(x) + ....+ TN (x)) (5.3)

where N is the number of decision trees, Ti(x) is the prediction made by the tree i on input

x, and RFR(x) is the average prediction.

We conducted hyperparameter tuning to construct the most optimal models. Improved

outcomes for univariant RFR are achieved when using default hyperparameter values such

as 100 estimators, minimum samples split set to 2, minimum samples leaf set to 1, and

incorporating bootstrap. Various lengths of look-back windows were investigated to identify

the most effective one.
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LSTM

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) ar-

chitecture designed to address the vanishing gradient problem in traditional RNNs, using

the below architecture, Figure 5.1. LSTMs are particularly well-suited for processing and

predicting sequences of data due to their ability to capture and remember long-term depen-

dencies. They are widely used in natural language processing, speech recognition, time-series

forecasting, and other tasks where capturing long-term dependencies is crucial. Activation

functions, such as sigmoid, tanh, Rectified Linear Unit (ReLU), and softmax, are math-

ematical operations utilized in neural networks to introduce non-linearity, facilitating the

learning of complex patterns in data. Specifically within LSTM cells, sigmoid layers regulate

information flow by selectively gating input, output, and forget signals. These layers utilize

activation functions to produce outputs between 0 and 1, contributing to the processing of

input information and learning long-range dependencies in sequential data. Specifically:

1. The first sigmoid layer determines the extent to which the cell should discard or

forget information from the previous state.

2. The second sigmoid layer, combined with the hyperbolic tangent (tanh) nonlinearity,

helps the LSTM decide which information should be stored in the cell state. The tanh

activation function ensures that the stored information is within the range of -1 to 1.

3. The rightmost sigmoid layer determines which part of the processed input will be

returned as the output.

tanh

tanh

X(k)

C(k)

H(k)

C(k-1)

H(k-1)

Fig. 5.1: Structure of LSTM memory unit.
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The cell state, represented by the straight horizontal line on top of the network, under-

goes updates at each time step, integrating the information and producing the final output.

The combination of these sigmoid and tanh operations allows the LSTM cell to effectively

capture and manage long-term dependencies in sequential data. In general, LSTM is defined

by the following equations:

i(k) = a(Wi(H(k − 1), X(k)) + bi) (5.4)

f(k) = a(Wf (H(k − 1), X(k)) + bf ) (5.5)

o(k) = a(Wo(H(k − 1), X(k)) + bo) (5.6)

¯C(k) = tanh(Wc(H(k − 1), X(k)) + bc) (5.7)

C(k) = f(k) ∗ C(k − 1) + i(k) ∗ ¯C(k) (5.8)

H(k) = o(k) ∗ tanh(C(k)) (5.9)

The equations (4), (5), and (6) correspond to the input, forget, and output gates,

respectively, in the LSTM cell. In these equations, a(.) denotes the activation function for

these gates, X(k) represents the input vector at a time k, ¯C(k) is memory cell candidate,

C(k) denotes the memory cell state, and H(k − 1) denotes the hidden state. The symbols

W and b represent the weight and bias parameters, respectively. Additionally, the symbol

∗ indicates element-wise multiplication. A memory cell candidate refers to the information

that is proposed to be stored in the memory cell during the processing of input data. It

undergoes a series of transformations before being potentially stored in the memory cell.

The memory cell refers to the component responsible for storing and maintaining long-term

dependencies in the sequential data.

To forecast a complete sequence of streamflow akin to the input, this model necessitates

many-to-many structures of LSTM, which involves returning the representations of hidden

states. In our examination, we employed the ReLU as the activation function for the hidden
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layers, as outlined below.

The LSTMmodel was trained with a hidden layer consisting of 50 neuron units each and

a dense layer corresponding to the look-ahead value for each sequence of input vs output,

aimed at predicting the streamflow according to the output sequence. ReLU activation

functions were incorporated into the hidden layer. The training process spanned 100 epochs

with a batch size of 32. Batch size refers to the number of training examples used in one

iteration of the optimization algorithm. It determines how many samples are processed

before updating the model’s parameters. The loss function utilized during training was

Mean Square Error (MSE), calculated as the discrepancy between the observations and

predictions and the optimizer is ”Adam”. The optimizer is a key element in training neural

networks. It adjusts the model’s parameters to minimize the loss function, improving overall

performance. The most widely used optimizers are Adam, Stochastic Gradient Descent, and

RMSprop. It is worth noting that the input shape was configured as (look-back value, j )

to ensure compatibility with the sequence where j denotes the number of features used for

training.

GRU

The GRU, or Gated Recurrent Unit, is a type of RNN architecture that offers a simpler

structure compared to LSTM networks, featuring fewer gates for computational efficiency.

It comprises key components such as the update gate, responsible for regulating the flow of

new data into the current unit, and the reset gate, which determines which state variables

should be retained or forgotten. The hidden state of the GRU represents the information

propagated from the one-time step to the next. Additionally, the reset gate and update

gate in GRU are designed to capture both short-term and long-term dependencies within

sequential data. This makes GRU a versatile choice for various tasks involving sequential

data processing.

zt = σ(Wz.[Ht−1, Xt] + bz) (5.10)
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rt = σ(Wr.[Ht−1, Xt] + br) (5.11)

H̄t = tanh(Wh.[rt ∗Ht−1, Xt] + bh) (5.12)

Ht = (1− zt) ∗Ht−1 + zt ∗ H̄t (5.13)

The equations (11), (12), and (14) correspond to the update, rest, and output gates,

respectively, in the GRU. H̄t refers to the candidate activation vector. It is like a suggestion

for the next memory state. It is calculated using input data and the previous memory state,

offering a potential update for the new memory state. In these equations, σ represents the

sigmoid function, Xt represents the input vector at time t, Ht−1 denotes the previous

memory state, and Ht denotes the final cell state. The symbols W and b represent the

weight matrices and bias parameters. Additionally, the symbol ∗ indicates element-wise

multiplication, the same as in the LSTM cell.

In our analysis, the GRUmodel was configured with the following parameters, manually

set to optimize performance: GRU layer with 50 neuron units and ReLU activation function,

as in Equation 10; Input data shape set to look-back time steps and 1 feature, that is Flow;

Addition of a dense layer to the model, responsible for outputting predictions for the next

look-ahead time steps; Furthermore, the parameters for epochs, batch size, verbose, loss

function, and optimizer were set to match those used for LSTM. This ensures consistency

and facilitates comparison between the two models in terms of training and evaluation.

SARIMA

The SARIMA (Seasonal Autoregressive Integrated Moving Average) model is a time

series forecasting method that incorporates both autoregressive and moving average com-

ponents, as well as seasonal differencing. It is designed to analyze past data in order to

make predictions about future values in a time series and is defined as:

SARIMA = c+

p∑
n=1

αnyt−n +

q∑
n=1

θnϵt−n +
P∑

n=1

ϕnyt−mn +

Q∑
n=1

ηnϵt−mn + ϵt (5.14)
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Here, p is the number of AR terms, d is the degree of differencing indicating the

number of times the series needs to be differenced to make it stationary, and q is the number

of moving average terms. Other parameters P, D, Q, and m are seasonal autoregressive

order, seasonal difference order, seasonal moving average order, and number of observations

in a single seasonal cycle respectively. The values ”d” and ”D” are 0 for our SARIMA

model. Setting, d = D = 0 means that no differencing is applied to the time series data,

indicating that the data is already stationary and does not require differencing to make

it stationary. We trained the SARIMA model with the optimal hyperparameters tailored

for each combination of input and output sequences. The order and seasonal parameters of

SARIMA are closely linked to the characteristics of the input and output data, necessitating

training with the entire dataset. For the specific combination of input-output sequence, the

best parameters determined were (p, d, q) for the order and (P, D, Q, m) for the seasonal

order, with the values (3,0,2) and (2,0,1,12) respectively.

5.2 Multivariate Time-series Model Prediction

The correlation between temperature and streamflow is stronger than that of precip-

itation and snow water equivalent with streamflow, as depicted in Figure 4.5. But, the

varying patterns in streamflow, as shown in Figures 4.2, 4.3, and 4.4, correspond closely to

changes in the other variables than the temperature. Thus, there appears to be a significant

relationship between streamflow and meteorological parameters. In the multivariate time

series analysis, the introduction of SNOTEL data such as snow water equivalent, average

temperature, and precipitation has led to changes in the hyperparameter settings of the

models. Here are the updated hyperparameters for each model:

1. RFR: In contrast to the univariate RFR model, hyperparameters were fine-tuned to

optimize performance. Increased tuning, including: 500 estimators, Minimum samples split

set to 10, Minimum samples leaf set to 5, Maximum depth set to 9, Utilization of bootstrap

for resampling

2. LSTM and GRU: - No changes apart from modifying the input shape to (look-back

size, 4) to accommodate the additional three attributes from the SNOTEL data in the input
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sequence.

3. SARIMA: - Adjustments in order and seasonal order hyperparameters based on the

combination of input-output sequences, as discussed in the subsection SARIMA of univari-

ate time series analysis. No additional hyperparameters are introduced for this model.

These changes aim to enhance the models’ ability to capture the relationships between

the meteorological factors and streamflow, thereby improving the accuracy of the predictions

in the multivariate setting.

5.3 Evaluation Metrics

In this section, we outline the metrics employed for comparing the machine learning

models and conducting both univariate and multivariate analyses. The metrics utilized

in our analysis include Mean Absolute Error (MAE), Root Mean Square Error (RMSE),

Mean Absolute Percentage Error (MAPE), Symmetric Mean Absolute Percentage Error

(SMAPE), and R-squared (R2).

For clarification, let’s consider yi as the predicted value, xi as the observed value, and

n as the number of observations.

• Mean Absolute Error (MAE): It calculates the average of the absolute differences be-

tween the predicted and actual values. It provides a measure of the average magnitude

of errors in the predictions, without considering their direction and it is defined as

follows:

MAE =
1

n

n∑
i=1

|(yi − xi)| (5.15)

• Root Mean Square Error (RMSE): It is a commonly used metric for evaluating the

accuracy of a predictive model. RMSE is calculated by taking the square root of the

average of the squared differences between predicted and actual values and defined as

follows:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − xi)2 (5.16)
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• R-squared (R2): It is a statistical measure that represents the proportion of the vari-

ance in the dependent variable (predicted values) that is explained by the independent

variable (actual values). It is also known as the coefficient of determination. R2 is

defined as:

R2 = 1−
∑n

i=1(yi − xi)
2∑n

i=1(yi − zi)2
(5.17)

where z represents the mean of the actual values. The closer the value of R2 to

1, the better the model’s predictions compared to the actual values. However, it is

essential to consider other evaluation metrics alongside (R2) to gain a comprehensive

understanding of the model’s performance.

• Mean Absolute Percentage Error (MAPE): It is also one of the most widely used

metrics. It calculates the average percentage difference between predicted and actual

values and is defined as:

MAPE = (
1

n
)

n∑
i=1

|yi − xi
xi

| ∗ 100 (5.18)

The Mean Absolute Percentage Error (MAPE) can encounter issues when the actual

values in the dataset are close to or equal to zero, resulting in undefined or extremely

large percentage errors. This problem can distort the evaluation of model performance,

especially when dealing with datasets containing zero or near-zero values. Symmetric Mean

Absolute Percentage Error (SMAPE) addresses the issue of asymmetric errors in MAPE

by considering the average of the percentage error. It is also expressed as a percentage as

follows:

SMAPE =
1

n

n∑
i=1

|yi − xi|
(|yi|+ |xi|)/2

∗ 100 (5.19)
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CHAPTER 6

EXPERIMENTAL RESULTS

In this section, we will explore the detailed experimental outcomes of our analysis. This

section is organized into subsections: (1) a comparison between Univariate and Multivariate

Time Series, (2) a comparison of Four Machine Learning Models, (3) Sequence Analysis for

RFR Model, and (4) Meteorological Factors Influence on Streamflow. We will delve into

each of these areas in detail.

In our analysis, we explored various combinations of look-ahead and look-back periods

to improve streamflow prediction accuracy. Through our investigation, we found that using

an RFR model with a look-back period of 24 months and a look-ahead period of 12 months

yielded the most favorable results. While our data allows for predicting streamflow up to

60 months ahead, we observed that the accuracy diminishes for longer forecast horizons.

This is particularly noteworthy considering the potential variability introduced by climate

changes over five years. Therefore, it is imperative to strike a balance between forecast

horizon and accuracy when making long-term predictions. To evaluate the performance

of different machine learning models and their input-output sequence combinations, we

employed five evaluation metrics as mentioned in the above section. These metrics provided

comprehensive insights into the predictive capabilities of each model, enabling us to identify

the most effective approach for streamflow prediction in our analysis.

6.1 Comparison of Univariate and Multivariate Time-Series

We conducted a thorough analysis by exploring multiple sequences of input and output

combinations. A total of 15 possible combinations can be obtained for our data. The (input,

output) sequences are organized into sets including pairs such as (12,12), (12,24), (12,36),

(12,48), (12,60), (24,12), (24,24), (24,36), (24,48),(36,12), (36,24), (36,36), (48,12), (48,24),

(60,12). The primary aim of this analysis was to assess the potential enhancement in RMSE
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achieved by integrating meteorological factors into the input sequence. Univariate models

demonstrated superior performance initially. Upon comparison with multivariate models,

the effectiveness of the univariate approach diminished. To visually depict these differences,

we generated distribution plots for the RMSE values associated with each model, as shown

in Figure 6.1.
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Fig. 6.1: Comparison of RMSE Distribution between Univariate and Multivariate Models.

For multivariate LSTM models, we observed a significantly narrower range of RMSE

values compared to their univariate counterparts. The width of the univariate RMSE range

was approximately 6, whereas it reduced to nearly 2 for the multivariate models. Similarly,

the density distribution for multivariate LSTM models exhibited a single peak, indicating

a concentrated distribution of RMSE values within a specific range. Interestingly, the

univariate LSTM model achieved a lower minimum RMSE value than the multivariate

LSTM model. For multivariate RFR models, although the minimum RMSE value decreased
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from around 2.1 to 1.6 compared to univariate models, the change in the range of values

was not as significant as observed in RFR models. The density distribution showed a single

peak for both univariate and multivariate models. Conversely, for SARIMA models, both

univariate and multivariate distributions exhibited nearly identical minimum values, while

the maximum value differed by almost 1.1. In univariate models, the maximum value was

above 8, whereas in the multivariate model, it was 6.9. Additionally, in both models, the

density showed peaks at a single value, which were almost the same. In GRU models,

the range of RMSE values also decreased by approximately 0.75 in multivariate models

compared to univariate ones. The density distribution showed a single peak for multivariate

models, while for univariate models, there was a noticeable second peak. Multivariate GRU

models exhibited the highest peak density, followed by RFR and LSTM. Univariate GRU

models had a higher density for the second peak than the other.

The median R2 plot comparing univariate and multivariate models demonstrated that

all models performed better in terms of R2 values when meteorological factors were included

in the input sequence, Figure 6.2. Despite this difference is not so large, it still reflects a

good improvement.
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Fig. 6.2: Comparison of Median R2 between Univariate and Multivariate Time-Series Mod-
els.
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The gap between the maximum R2 values of univariate and multivariate models is

greater in SARIMA and LSTM than in the RFR and GRU. However, it is important to

highlight that there were instances in the univariate SARIMA approach where the R2

values turned negative, indicating poor model performance, Figure 6.3. While there was

one combination where the SARIMA model outperformed RFR, LSTM, and GRU in terms

of R2 values, this superiority was not consistent across other combinations. Adjusting

hyperparameters did not lead to improvement in cases where the R2 values were found to be

negative. This observation underscores the SARIMA model’s reliance on streamflow data,

with limited impact from additional meteorological factors incorporated in the multivariate

approach.

Based on Figures 6.1 and 6.2, we found that integrating snow water equivalent, tem-

perature, and precipitation data from the Upper Colorado River Basin into streamflow

prediction models leads to a reduction in RMSE values and enhanced R2 values.

6.2 Comparison of ML Modles

In this section, we will compare the results obtained from the 15 combinations con-

cerning the four models: RFR, LSTM, GRU, and SARIMA. We begin by examining the

RMSE of the four univariate models, as shown in Figure 6.4. The density plots illustrate

that the ranges of RMSE values for RFR, and GRU are quite similar, with slight variations

in width. However, the distribution of RMSE values for SARIMA is notably different, ex-

hibiting much greater variability and density that is distinct from the other models. Despite

the density of LSTM falling within the range of RFR and GRU, its spread is comparable to

SARIMA. This difference is also apparent in the boxplot of RMSE values Figure 6.3, where

the spread of SARIMA’s and LSTM’s RMSE distribution is much wider compared to the

other models, with the outliers. In the presence of an outlier in the RFR RMSE plot, the

median values of RMSE for both RFR and GRU are nearly identical.
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Fig. 6.3: MAE, RMSE, SMAPE, MAPE, and R2 Results of Univariate Time-Series ML
Models.
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From Figure 6.4, we can see that the MAE values for both RFR and GRU models are

quite similar, at 1.72 and 1.74 respectively, with an interquartile range of 0.18 for both. On

the other hand, LSTM and SARIMA models have larger interquartile ranges of 0.44 and

0.51 respectively, indicating more variability in their performance. In terms of RMSE, the

median values for RFR and GRU are also close, at 2.86 and 2.87 respectively, with LSTM

slightly higher at 3.05. When looking at MAPE, GRU performs the best with a value of

109, followed by LSTM with 107.67, and RFR closely resembling SARIMA at 113.3 and

114 respectively. SARIMA exhibits a minimum value of around 82 in the plot, which is

notably distant from its median. The same trend is observed in SMAPE, with a minimum

of around 22 and a median of 48 for SARIMA, while RFR has a median of 32.7 with an

interquartile range of 3.75, and GRU with a smaller interquartile range of 2.89 and a median

of 36.17. Consistently, RFR shows the highest median R2 value at 0.67, followed closely by

GRU at 0.65, while LSTM trails at 0.41 and SARIMA with the lowest median R2 value of

0.2. These observations suggest that in the univariate model, RFR outperforms the other

models.
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Fig. 6.5: RMSE distribution of Multivariate Time-Series Models.

In the next step, we plotted the RMSE distribution for multivariate models, Figure 6.5.

It is observed that the RFR RMSE values have an overall lower magnitude compared to
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others. However, the spread of GRU is less dense, mainly concentrated in a certain range.

The stretch of GRU lies between that of RFR and LSTM, where GRU is less stretched

compared to its distribution in the univariate approach (as depicted in Figure 6.4). Similar

to the univariate distribution, SARIMA’s distribution is stretched, with density located

differently from the others. Comparatively, RFR, LSTM, and GRU exhibit narrower RMSE

error distributions compared to their univariate model.
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Fig. 6.6: RMSE, SMAPE, MAPE, and R2 Results of Multivariate Time-Series ML Models.

Upon examining the box plots of multivariate models Figure 6.6, we did not notice

any significant increase in variability for the SARIMA model compared to its univariate

counterpart. RFR showed improvements across all metrics in the multivariate approach,

with median values of MAE, RMSE, MAPE, SMAPE, and R2 being around 1.51, 2.51, 112,

30, and 0.78, respectively. In contrast, in the univariate approach, these values were around

1.74, 2.9, 113, 32, and 0.66, respectively. LSTM’s MAE median remained the same as its
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univariate but exhibited a narrower interquartile range and better R2 values. In addition to

RFR, GRU performed well in the multivariate approach, with improved medians of MAE

from 1.75 to 1.6, RMSE from 2.9 to 2.6, and R2 from 0.65 to 0.7, and overall, displayed a

narrower interquartile range for these metrics. It is worth noting that RFR, LSTM, and

GRU each had outliers for R2 value. Indeed, across both the univariate and multivariate

approaches, RFR consistently outperformed all other models in terms of various evaluation

metrics.

A qualitative analysis of the plots indicates that incorporating additional meteorolog-

ical factors such as snow water equivalent, temperature, and precipitation from the Upper

Colorado catchment leads to enhanced streamflow predictions for the Lees Ferry River.

While assessing the errors of multivariate models in predicting 12-month streamflow

using both 24-month and 12-month input sequences, we noticed that the resulting values

were quite similar. To determine the optimal combination, we compared the predicted

streamflow values with the observed USBR values for RFR, LSTM, and GRU. SARIMA

was excluded from this comparison due to its inconsistent performance. The evaluation

metric values for the remaining models are depicted in Table 6.1. Comparison of predicted

and observed USBR streamflow of these models are shown in Figure 6.7

Table 6.1: Model Performance Metrics

Models Metrics
2-6 MAE RMSE MAPE SMAPE R-squared
Univariate
RFR 1.52 2.57 111.01 29.17 0.74
LSTM 2.14 3.63 108.62 47.50 0.49
GRU 1.48 2.50 103.68 32.83 0.75
Multivariate
RFR 1.34 2.25 109.34 27.33 0.80
LSTM 1.60 2.58 99.98 43.30 0.74
GRU 1.50 2.40 105.28 32.80 0.77
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Fig. 6.7: Comparison of Predicted and Observed USBR Streamflow Using Multivariate
Time-Series Models (RFR, LSTM, GRU) with Input-Output Combinations of 12-12 and
24-12, for the Period from May 2015 to April 2016 over the Test Set.
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Our analysis revealed that the predicted values for the period from May 2015 to Au-

gust 2015 exhibited greater variability for the 12-12 combination compared to the 24-12

combination when compared against the observed values. However, the streamflow values

remained almost identical for the subsequent seven months, making the error values for the

12-12 combination similar to those for the 24-12 combination. Upon careful examination of

both the graphs and the error values, we determined that the 24-12 combination of RFR,

with MAE of 1.3, RMSE of 2.2, MAPE of 109, SMAPE of 27.3, and R2 of 0.8, represented

the superior model for this dataset. Figure 6.8 illustrates the predicted streamflow using

the optimal 24-12 input-output combination compared against the observed values for the

discussed models.
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Fig. 6.8: Comparison of Predicted vs Observed USBR Streamflow from Multivariate Time-
Series Models (RFR, LSTM, GRU) over the Test Set (May 2015 - April 2016).

6.3 Sequence Analysis for RFR Model

In addition to the previous experiments, we conducted a comparison of different input

(look back) and output (look ahead) sequence combinations for the best model, RFR, both

in univariate and multivariate scenarios. This comparison aimed to observe the variations

in prediction quality resulting from different combinations of look ahead and look back
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sequences. We considered a range of look back and look ahead span windows, including 12,

24, 36, 48, and 60 months. As outlined in the Methodology section, we explored all possible

combinations where the sum of the sequence lengths equaled 72 months (6 years), matching

the length of the testing set. Assigning 80% dataset to training is commonly regarded as

a best practice in many articles [61]. This allocation ensures an ample amount of data for

both modeling and testing. Utilizing a smaller portion of the data for training can lead to

less effective models [62, 63]. The main objective of this experiment is to observe how the

predictions or errors vary with changes in the combinations of input and output sequences.
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Fig. 6.9: Heatmap Visualization of Evaluation Metrics (MAPE, SMAPE, R2, MAE, and
RMSE) for Univariant RFR Model.

Figure 6.9 shows heat maps of evaluation metrics for the univariate time-series RFR

model. From the heatmap, it is evident that increasing the output sequence length with a

particular input sequence tends to result in higher errors across all metrics. However, this

trend is not consistent for the input sequence length of 12 months, where the values do

not follow a clear pattern. Notably, interesting results are observed for the input sequences

predicting 12-month and 48-month outputs, yielding similar MAE (1.6) and R2 (0.7) met-

rics, although RMSE (2.76 and 2.68) and SMAPE (30.67 and 31.51) values differ slightly.

The prediction of a 24-month output sequence with a 12-month input sequence outperforms

other combinations with this input, demonstrating the lowest MAE (1.53), RMSE (2.61),
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and highest R2 (0.72) values. Analyzing specific output sequence lengths with increasing

input sequence lengths reveals that the model’s performance does not significantly improve,

except for the 24-month input and 12-month output combination, which stands out as the

optimal configuration for the RFR model. This combination yields the lowest MAE (1.52),

RMSE (2.57), MAPE (111), SMAPE (29.17), and highest R2 (0.74) values in our analysis.
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Fig. 6.10: Predictions of Univariate Time-Series RFR Models with Different Look-back
Span Windows against Ground Truth (May 2018 - April 2019).

The visual representation of the results, Figure 6.10 confirms this observation. Initially,

with a look-back of 12 months, the predicted values align with the observed values in the

first 5 months when compared with others. Subsequently, with a look-back of 24 months,

the predicted values become closer to the observed values. The patterns for 48 months and

12 months follow a similar trajectory in Figure 6.10 as well. However, with a look-back

of 36 months, the predictions deviate significantly from the observed values, showcasing a

different graph compared to other combinations.

Next, we plotted the error heatmap of evaluation metrics for the multivariate RFR

models to analyze variations in the results, similar to the univariate observations, and to

compare these results with the univariate models, Figure 6.11. Through this, we examined

the impact of changing input and output sequences on error values.
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Fig. 6.11: Heatmap Visualization of Evaluation Metrics (MAPE, SMAPE, R2, MAE, and
RMSE) for Multivariate RFR Model.

In Figure 6.11, the trend of increasing error values with an increase in the input se-

quence while keeping the output sequence constant can be clearly detected. This trend

holds for every combination of output sequences. Similarly, by maintaining a constant in-

put sequence and varying the output sequence from bottom to top, an increase in MAE and

RMSE values is observed. However, this trend was not observed for the univariate model

with a 12-month input sequence. Notably, in most cases, predicting the output sequence

with a 12-month input results in lower error values compared to using higher input values.

For instance, predicting 36 months with a 12-month input yields lower error values than

predicting 24 or 48 months with the same input as output. Interestingly, the MAPE of pre-

dicting 48 months and 24 months with a 12-month input shows the same value, 100, despite

their difference in MAE (1.50 and 1.38, respectively). An increasing trend is observed for

predicting 12 months with 36, 48, and 60 months of data for MAE and RMSE, but MAPE

values for 36 and 48 are the same at 113, higher than the 110 observed for 60 months.

Interestingly, the SMAPE values deviate from this pattern, with 60 months showing the

lowest value at 28.1, followed by 30.1 for 36 months and 31 for 48 months. However, this

trend contrasts with the R2 plot, where the 36-month input sequence exhibits a higher value

of 0.77 compared to 0.75 for both 48 and 60 months. The highest R2 value is observed for
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predicting 12 months of data with 12 and 24 months of input, and the other metrics for

these two combinations also show slight differences. From Figure 6.12, it is apparent that

the predicted flows for 36 and 60 months follow a similar trajectory for 9 out of the 12

months, yet there is not a clear correlation between them in terms of the metrics. Similarly,

there seems to be a relationship between 48 and 12 months. Notably, the 12-month input

sequence appears to deviate further from the observed values compared to the 24-month

look-back period, although it achieves a higher R2 value of 0.8. Reducing the magnitude

of the graph in the second plot of Figure 6.12 facilitates a better understanding of the

predicted flow across various combinations.
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Fig. 6.12: Predictions of Multivariate Time-Series RFR Models with Different Look-back
Span Windows against Ground Truth (May 2018 - April 2019).

The experiment concludes that for this dataset, increasing the sequence values of the

input does not improve performance beyond a certain point, which is observed to be 24

for both univariate and multivariate RFR models. Based on these observations and as

discussed in the above section (Figure 6.5), predicting 12 months with a 24-month input is

considered the optimal RFR model.

6.4 Ablation Analysis

In this section, we investigated the influence of meteorological factors on streamflow.
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To achieve this, we systematically included various combinations of these factors alongside

streamflow in the input sequences to predict the output. Each combination of input and out-

put sequences resulted in seven different feature combinations, as the streamflow remained

constant while the meteorological factors varied. Subsequently, we trained machine learning

models using only meteorological factors as features to predict streamflow values, excluding

the streamflow data itself. This approach aimed to discern the models’ dependency on these

factors in predicting streamflow. Better results are obtained when streamflow is included in

the features alongside meteorological factors. Across all sequences, we examined both sce-

narios and identified the top three feature combinations for each sequence. It is important

to note that there was no consistent top feature combination for all the sequences. These

observations yielded intriguing results. We analyzed the top three feature combinations

for each sequence based on their RMSE and R2 values, considering their importance in

evaluating the model.

In the Figure 6.13, ”S” represents Snow Water Equivalent, ”P” stands for Precip-

itation Accumulation, and ”T” denotes Average Temperature. The columns labeled as

RMSE 1 F indicate the first RMSE value with historic streamflow included in the features,

while RMSE 1 represents the first RMSE value without historic streamflow in the features.

Similarly, the remaining labels follow this pattern, where the suffix ”F” denotes the presence

of historic streamflow in the features, while the absence of this suffix indicates the exclusion

of historic streamflow. It is noteworthy that both ”P” and ”SP” combinations have the

highest count for RMSE and R2 values, with only one count for all combinations, ”SPT”.

Conversely, the ”ST” combination has the lowest count in both scenarios. ”SPT” has a

good count, but ”SP” and ”P” are denser in their distribution. Upon tallying all values,

we found that the highest count is for ”SPT” (45), followed by ”SP” (44), and then ”P”

(39), while the rest have lower counts. To gain a deeper understanding of the important

combinations, we plotted the feature importance for the RFR model, Figure 6.14. From this

plot, it is evident that temperature is a highly important feature for predicting streamflow,

despite having only 13 counts (alone) in the top three combinations. Precipitation and snow
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water equivalent exhibit almost the same importance, reflected by their combination count

of 44. Based on all the observations from our analysis, we conclude that all three factors—

precipitation, snow water equivalent, and average temperature need to be included in the

features along with historic streamflow to obtain unbiased and optimal results.
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CHAPTER 7

DISCUSSION

In our study, we found that the RFR model achieved optimal results in both univariate

and multivariate scenarios when all meteorological factors were included to predict monthly

streamflow data. Our findings are consistent with previous studies by Hosseinzadeh et

al. [15] and Xu et al. [37] which show that multivariate models perform better than the

univariate models. Our results also agree with Zhao et al. research [38] that including

surface temperature can improve predictions. Additionally, Figure 6.14 highlights how

important temperature is as a contributing factor in our models. Following RFR, the GRU

model performed better than the LSTM model. LSTM has been reported to perform well in

predicting streamflow in snowmelt regions [64] and has outperformed models like Support

Vector Regression [65] in previous studies. Some studies stated that LSTM and GRU

can achieve good results for predicting streamflow [66] but we observed that standalone

LSTM did not yield satisfactory results in both univariate and multivariate scenarios for

our dataset. The effectiveness of the LSTM model depends on several factors, including

the volume of data available, the nature of feature relationships (whether linear or not),

the optimization of hyperparameters, and the complexity of the model architecture. In our

study, we trained the model using monthly streamflow data spanning 24 years. However, our

analysis revealed that the predicted feature did not exhibit a strong linear correlation with

the input features, Figure 4.5, likely due to the basin’s extensive geographical coverage and

varying altitudes. These factors likely contributed to the model’s performance. Conversely,

the results obtained with the GRU model were comparable to those of the RFR model.

The superior performance of RFR compared to other ML models may be attributed

to its architecture, which helps in mitigating overfitting. However, it is worth noting that

there are studies where RFR has outperformed models like LSTM [67], SVM and Neural

Networks [68], while in other cases, the results have been the opposite [69]. Among the ML
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models tested, SARIMA exhibited the least performance and required considerable time

to adjust hyperparameters for satisfactory results. In time series-based methods, SARIMA

has been shown to outperform other models such as ARIMA, ARMA [70], and it even

performed better than LSTM in monthly streamflow predictions [15]. However, in our

analysis using 30 years of monthly data, LSTM performed better than SARIMA. Recent

studies have highlighted SARIMA’s reliability for longer lead-time forecasts, although its

effectiveness may diminish when trained on short observation periods due to overfitting

issues [25, 36] and they have demonstrated good performance in drought conditions [71],

which could explain their underperformance in this study. However, the performance of

SARIMA models could potentially be improved with access to larger datasets.
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Fig. 7.1: Boxplot of R2 for RFR Model Across Different Streamflows.

To evaluate the generalizability of our best-performing model, RFR, we assessed its

performance across three distinct locations in the Upper Colorado River Basin: Maybell,

along the Yampa River in Colorado; Archuleta, on the San Juan River in New Mexico; and

Greenwood, along the Colorado River in Colorado. These sites were chosen for their diverse

geographical positions within the UCRB and their significant influence on flow dynamics at

Lees Ferry, as depicted in Figure 2.1. Streamflow at these locations is notably lower than
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at Lees Ferry, providing indications of the model’s adaptability. Our evaluation revealed

consistently smaller errors at these locations compared to Lees Ferry. In both univariate

and multivariate scenarios, Maybell consistently had the lowest MAE values, averaging

0.12 and 0.21, respectively, while Lees Ferry had much higher MAE values, reaching 1.74

for univariate and 1.5 for multivariate. Similarly, in terms of RMSE for both univariate

and multivariate scenarios, Lees Ferry showed higher values (2.9 and 2.51) compared to

Maybell (0.22, 0.21) and Archuleta (0.39, 0.38, respectively). The evaluation metrics for

Archuleta and Glenwood exhibit similar values. The RFR model performed better at alter-

native locations than at Lees Ferry, with Maybell achieving the highest R2 values of 0.85

(single-variable) and 0.868 (multiple-variable). These results are depicted in Figure 7.1.

These findings underscore the model’s robust performance in regions with lower stream-

flow. However, it is important to note that our analysis did not address extreme events

such as floods or droughts.
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CHAPTER 8

CONCLUSIONS

In this study, we used machine learning (ML) models to forecast streamflow in the Up-

per Colorado River Basin (UCRB), focusing on Lees Ferry, a key point for water flow into

the Lower Colorado River Basin (LCRB). Streamflow data from 1991-2020 was obtained

from the USBR and meteorological data - snow water equivalent, precipitation, and tem-

perature from SNOTEL weather stations. Using monthly data, we trained four ML models

(RFR, LSTM, GRU, and SARIMA). Initially, we trained the models on past streamflow

data (univariate approach) and then incorporated meteorological factors (multivariate ap-

proach). Evaluation with metrics like RMSE, R2, and MAE showed that the multivariate

models outperformed the univariate ones, indicating the positive influence of meteorological

factors on streamflow prediction. The RFR model yielded the best results overall, and the

GRU model outperformed LSTM. We also explored the impact of meteorological factors

and input-output combination sequences on prediction for RFR models. A combination of

24 months of input data predicting 12 months of output data yielded the best results.

Based on our investigation, this study represents the first attempt to examine the im-

pact of meteorological factors on streamflow prediction while incorporating sliding window

concepts for both look-back and look-ahead sequences. Our study has limitations, such as

not extensively discussing certain aspects like the influence of temperature and not explor-

ing hybrid models. Based on these findings, there is an opportunity to extend this study by

including more meteorological variables, enlarging the dataset, and investigating alterna-

tive graph-structured modeling techniques like Graph Neural Networks. This could result

in stronger conclusions and improved predictive precision. Examining model performance

within defined radii around chosen SNOTEL stations and using diverse spatial shapes in-

stead of all SNOTEL data, could also provide valuable insights into localized streamflow

behavior.
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