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ABSTRACT 

 Air pollution poses one of the largest environmental risks to human health, and greatly 

contributes to increased mortality within populations. Of the different types of pollutants, fine 

particulate matter (PM2.5) has the most adverse health effects. Long-term exposure to PM2.5 is 

known to have serious health outcomes; however, evidence has indicated that even short-term 

exposure to moderate concentrations of PM2.5 is detrimental to human health. While PM2.5 does 

contribute to various respiratory conditions by affecting lung function, it also significantly 

affects the cardiovascular system. Elevated PM2.5 exposure increases risk for cardiovascular 

disease, congestive heart failure, and cardiac arrhythmias. To assess risk for these conditions, 

PM2.5 exposure levels must be accurately measured. This is most commonly done through 

centrally located air monitoring stations that are dispersed throughout the U.S. In Utah, these 

stations are managed by the state’s Department of Environmental Quality (DEQ) and they collect 

hourly PM2.5 readings 24/7. It is believed that PM2.5 level readings obtained from the DEQ do not 

accurately reflect personal exposure to the pollutant. Without accurate measurements of PM2.5 

exposure, it is not possible to elucidate the role PM2.5 plays in lung and cardiovascular functional 

decline. This study aimed to determine whether published DEQ data strongly correlates to 

individual’s exposure to PM2.5 by comparing readings from personal air monitors. We 

hypothesized that both within and across a population of individuals, the personal air monitor 

PM2.5 readings would correlate poorly with the published PM2.5 concentrations. For the study, 20 

volunteer residents of Cache Valley wore an AirBeam personal environmental monitor for a 

period of 8-10 hours as they went about their typical days. The AirBeam PM2.5 readings from 

each individual were adjusted using calibration equations to account for inter-instrument 

variability and deviations in accuracy from the DEQ monitors. The hourly averages of the 
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corrected values were then compared to the published DEQ data for the specific time frame the 

monitors were worn. For each participant, the DEQ data was plotted against the recorded 

AirBeam readings and linear regression equations were generated for each of the correlation 

graphs. Within subject R2 values from all 20 correlation graphs were low, with an average of 

0.10 ± 0.02 and range from 0.004 to 0.38. These low values indicate that within the group of 

volunteers, the DEQ published data did not accurately reflect individual PM2.5 hourly exposures. 

Additionally, plotting the daily DEQ averages versus the AirBeam daily PM2.5 averages 

generated a linear regression equation with a between subject R2 value of 0.27. This, too, 

exhibited a moderately low R2 value, which demonstrates a poor correlation between the DEQ 

and AirBeam data across subjects. These findings illustrate a need for the use of personal 

environmental monitors to accurately assess individual PM2.5 exposure levels and possible cause 

and effect relationships to certain health outcomes. 

 

 

  



 iv 

ACKNOWLEDGEMENTS 

 I would like to express my deepest gratitude to Dr. Michael Lefevre for taking me under 

his wing and helping me grow and learn. Thank you for teaching me all about PM2.5 and its 

significance in this world, and for always being kind and understanding when I broke and/or lost 

certain items. The AirBeam devices and smartphones utilized in this project were provided by 

Dr. Lefevre’s research lab, and were vital to the completion of this project. I would also like to 

thank Dr. Randal Martin for being willing to get involved as a committee member, to Janet 

Bergeson for helping Dr. Lefevre and I throughout this whole process (and for being a great 

comfort during my mini mental breakdowns), and to the volunteers willing to participate in this 

study. Without all these individuals, this project would never have been completed.  

  



 v 

TABLE OF CONTENTS 

Abstract  ......................................................................................................................................... ii 

Acknowledgements  ...................................................................................................................... iv 

List of Tables & Figures  .............................................................................................................. vi 

Introduction  .................................................................................................................................... 1 

Materials & Methods  ..................................................................................................................... 6 

Results  .......................................................................................................................................... 10  

Discussion  .................................................................................................................................... 19 

Capstone Reflection  ..................................................................................................................... 23 

Literature Cited ............................................................................................................................. 27 

Author Biography  ........................................................................................................................ 32 

 

  



 vi 

LIST OF TABLES AND FIGURES 

Figure 1. Particulate matter size  ..................................................................................................... 2 

Figure 2. AirBeam and AirCasting app  ......................................................................................... 6 

Figure 3. AirBeam cross-correlation  ............................................................................................ 10 

Figure 4. AirBeam calibration graphs and equations  ................................................................... 11 

Figure 5. Air Quality Index (AQI)  ............................................................................................... 12 

Figure 6. Participant data vs. DEQ graphs  ................................................................................... 13 

Figure 7. Across subject correlation graph ................................................................................... 16 

Figure 8. PM2.5 readings with annotated location information  .................................................... 17 

 

  



 1 

INTRODUCTION 

 In December of 1952, stagnant weather patterns lead to a dramatic increase in pollutant 

concentration in London, UK (Brunekreef and Holgate, 2002). A thick cloud of lethal smog 

settled over the city that remained for a period of several days. Sharp increases in morbidity and 

mortality immediately followed, with reported deaths triple the expected amount (Brunekreef 

and Holgate, 2002; Bell et al., 2004). Elevated mortality in the following months, previously 

believed to be attributed to an influenza outbreak, were determined to also be from lingering 

effects of the smog, reaching an overall estimated death toll of approximately 12,000 (Bell and 

Davis, 2001; Bell et al., 2004). The evident association between rising air pollution levels and 

mortality in this and several similar events prompted the development of measures like the Clean 

Air Act to promote public health and environmental protection (U.S. Environmental Protection 

Agency, 2017).  

 Air quality conditions have improved since that time; however, pollution remains one of 

the largest environmental risks to human health. An estimated 3 million deaths each year are 

attributed to ambient air pollution, and 6.5 million deaths were linked to both indoor and outdoor 

pollution (World Health Organization, 2016). Air pollution consists of various components, 

including volatile organic compounds and gaseous pollutants such as carbon monoxide, nitrogen 

oxides, sulfur dioxide and ozone (Bourdrel et al., 2017). Another important pollutant is 

particulate matter (PM). PM is a mixture of small particles that are suspended in the air (Yang et 

al., 2017). These particles can originate from either natural sources such as sea spray, pollen, 

dust, smoke from brushfires or it can develop from human activity, including vehicle emissions, 

household fuel, or industrial processes (Australian Government..., 2005). PM is classified by the 

aerodynamic diameter (size) of the particles into three main categories: “coarse” PM10 (≤ 10 µm), 
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“fine” PM2.5 (< 2.5 µm), and “ultrafine” PM0.1 (< 0.1 µm) (Yang et al., 2017; U.S. Environmental 

Protection Agency, 2017). Fine particulate matter (PM2.5) appears to have the most serious health 

affects due to its ability stay suspended for longer periods of time and to penetrate the lungs and 

bloodstream (World Health Organization, 2016; Pope and Dockery, 2006). 

Inhalation of PM2.5 is associated with various health conditions. Several cohort studies 

found that elevated PM2.5 exposure was linked to increased risk for lung cancer, and each 10-

µg/m3 rise in PM2.5 concentration corresponded to an approximately 4%, 6%, and 8% elevated 

risk for all-cause, cardiopulmonary, and lung cancer-related mortality, respectively (Gharibvand 

et al., 2017; Pope et al., 2002). The Air Pollution and Health: a European Approach 2 Project 

also determined a positive association between elevated particle concentrations and number of 

hospital admissions for asthma, chronic obstructive pulmonary disorder (COPD) and other 

respiratory diseases (Atkinson et al., 2001). In addition to the respiratory effects, elevated air 

Figure 1. Particulate matter size. Particulate matter is divided into coarse (≤ 10 µm), fine (< 
2.5 µm), and ultrafine (< 0.1 µm) particles. Approximately 5 PM10 molecules span the width 
of a human hair, and 4 PM2.5 molecules fit the diameter of one particle of PM10. Image taken 
from the U.S. Environmental Protection Agency. 
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pollution was found to cause neuroinflammation and accumulation of amyloid β 42, both of 

which are early biomarkers for Alzheimer’s and Parkinson’s disease (Calderón-Garcideuñas et 

al., 2008; Wu et al., 2015). Another significant effect from PM2.5 is on the cardiovascular system 

(Brook et al., 2010). Several meta-analyses have found notable increases in cardiovascular 

mortality in response to PM2.5 exposure, an effect more strongly associated than mortality from 

respiratory diseases (Bourdrel et al., 2017; Hoek et al., 2013). Rises in PM2.5 have additionally 

been found to increase the risk of and/or exacerbate myocardial infarction (MI), cardiovascular 

disease, cardiac arrhythmias, and congestive heart failure (Peters et al., 2001; Nawrot et al., 

2011; Brook et al., 2010).  

 Although mechanistic details of how PM2.5 contributes to these conditions are not 

completely known, existing data has identified several highly plausible biological pathways. 

Among these pathways is the release of proinflammatory cytokines induced by oxidative stress, 

leading to consequences such as systemic inflammation, increased blood coagulability, vascular 

dysfunction, and atherosclerosis (Brook et al., 2004; Brook et al., 2010; Pope and Dockery, 

2006). One study specifically found that PM2.5 exposure induced significant gene upregulation of 

receptors for interleukin 1 and 6 (IL-1 and IL-6), activating a signaling pathway to the 

inflammatory response (Watterson et al., 2007). Multiple studies have also determined a link 

between PM2.5 and the synthesis of C-reactive protein, a biomarker of inflammation that is 

strongly associated with increased cardiovascular disease risk (Yang et al., 2017; Brook et al., 

2004). While many biomarkers and possible pathways have been discovered, no single 

mechanism is known to be responsible for the health outcomes from exposure to PM2.5 (Yang et 

al., 2017). 
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 An important concern about PM2.5 is that adverse health effects are not only observed 

with long-term elevated levels. Multiple studies have found that although the most serious health 

outcomes are from long-term PM2.5 exposure, there is evidence of autonomic dysfunction as well 

as acute cardiovascular morbidity and mortality associated with short-term exposure (Brook et 

al., 2004; Atkinson et al., 2014; Rich et al., 2016).  Moreover, these health effects were observed 

with concentrations below published guidelines and regulations (Brunekreef et al., 1995; Brook 

et al., 2004). No study has been able to determine a threshold level of PM2.5 to which there are no 

health effects; however, a dose-dependent relationship between PM2.5 exposure and health risk 

has been established (Johnson and Graham, 2005; Pope and Dockery, 2006). 

 To assess the risk for all the previously discussed health conditions, exposure levels need 

to be determined. Most studies use PM2.5 concentrations that are measured and reported hourly or 

daily from centrally located air monitoring stations (classified as ambient fixed-site monitors) 

(Brunekreef and Holgate, 2002; Yin et al., 2017). In Utah, the government’s Department of 

Environmental Quality (DEQ) manages the fixed-site monitoring stations in the state (Utah 

Department of Environmental Quality, 2017). A substantial limitation to this method of 

collection, however, is that it assumes that the PM2.5 levels present at the fixed-site monitor is 

representative of exposure levels for all individuals within a population (Brunekreef and Holgate, 

2002). Many researchers believe that the variable spatial and temporal characteristics make 

fixed-site monitoring inadequate for measuring personal PM2.5 exposure levels (Yin et al., 2017). 

To obtain more accurate estimates of individual PM2.5 exposure, portable air pollution monitors 

have become increasingly utilized (McKercher et al., 2017). 

 Cache Valley in northern Utah/southern Idaho is known for terrible inversions during the 

winter. In January of 2004, a PM2.5 concentration of 132.5 µg/m3 was recorded, a value that far 
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exceeded the U.S. Environmental Protection Agency’s National Ambient Air Quality Standard 

(NAAQS) of 35 µg/m3, and is considered the “worst ever” PM pollution episode in the country 

(Malek et al., 2006). One of the rationales behind this study centers on the potential for minor 

elevations in PM2.5 (but levels still considered in the “healthy range”) to contribute to adverse 

health. By studying lower ranges (concentrations that are typically experienced throughout the 

year), it may be particularly important to obtain accurate measures of personal PM2.5 exposure to 

assess its impact (or lack thereof) on health. Like other environmental researchers, we speculate 

that the fixed-site reports are not adequate representations of individual PM2.5 exposure. The aim 

of this study, therefore, was to determine if PM2.5 concentrations reported by the monitor station 

in Cache Valley are indeed representative of individual exposure or if personal environmental 

monitors are necessary to accurately assess risk for air pollution-related health conditions and 

mortality. 
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MATERIALS AND METHODS 

The AirBeam 

 Small, low-cost personal air environmental monitors have become commercially 

available in the last decade to facilitate collection of individual air pollution exposure. For this 

 

Figure 2. AirBeam and AirCasting app. The AirBeam personal air monitor collects 
surrounding air and using light scatter technology measures the concentration of PM2.5 in the 
air. The data is sent to the AirCasting Android app, which graphs and maps the data. Image 
taken from the AirCasting website. 
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study, we used the AirBeam personal environment monitor developed from the non-profit 

organization HabitatMap. The AirBeam is a palm-sized device which draws air from the 

surrounding environment into the machine, wherein LED light is scattered off the particles 

(HabitatMap, 2017). A detector registers the light scatter and converts it into an estimated 

measurement of particle concentration in the air. These measurements are communicated via 

Bluetooth to the AirCasting Android smartphone app. Since the app also collects GPS location 

information in real-time along with the recorded PM2.5 levels, the data is both graphed and 

mapped on the AirCasting app. Due to the lower cost of these devices, questions of their overall 

performance have arisen. One study found that when compared to reference instruments, the 

AirBeam showed a correlation of 0.7-0.96 (Sousan et al., 2017). The device does have excellent 

precision, however requires proper and frequent calibration (Yang et al., 2017). 

Calibration and Cross-Correlation  

This project utilized 4 AirBeam monitors. A cross-correlation was performed on the 

devices to assess their accuracy and inter-instrument variability. All 4 AirBeams were set up at 

the Smithfield monitoring station and recorded PM2.5 readings for a 24-hour period. The values 

during that time were in a range between 20-35 µg/m3. To supplement this 24-hour data, 5 

additional 5-minute recordings were done that covered lower PM2.5 levels (range between 0-10 

µg/m3). Data from each AirBeam was plotted against the other AirBeam readings, then the data 

from each AirBeam was also plotted against the DEQ PM2.5 levels. R2 values were determined 

for each of these plots. Evidence provided by this information indicated that the instruments 

needed to be calibrated individually. This calibration was achieved by generating power function 

curves for each of the AirBeam vs DEQ graphs, which were then used as post-hoc correction 

factors.  
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Participant Data Collection 

 Collection of PM2.5 exposure levels was conducted during the months of April and May. 

20 volunteers were recruited to participate in this project, all of which were residing in Cache 

Valley during the time of the study. Each participant received an orientation session in which 

he/she was given an AirBeam and an Android smartphone with the AirCasting app pre-

downloaded on it. During the orientation, the participant signed an informed consent form 

(approved by the USU IRB, protocol #8339) and was taught how to use the AirBeam and 

navigate the mobile phone and app. The following day, the participant carried the AirBeam and 

phone and collected PM2.5 readings for an 8-10-hour period as he/she carried out their typical 

day. Since we only had 4 air monitors, just 1 or 2 participants would collect data on a given day. 

Upon completion of the collection process, the participants returned the devices, and information 

from their recording sessions were emailed and uploaded to a computer for further analyses. 

Data Processing and Analysis 

The PM2.5 data obtained from each volunteer needed adjustments to account for the 

overall moderate accuracy of the devices. Using the power function curves generated from the 

calibration graphs, the PM2.5 values were corrected according to which AirBeam device was 

used. To evaluate the correlation within subjects, the average hourly adjusted PM2.5 values for 

each participant were plotted against published values from the DEQ for that respective day, 

creating a total of 20 different graphs. Linear regression equations and R2 values were then 

generated that fit the corresponding data for each graph. Average, standard deviation, and range 

of all the R2 values were then computed. For determination of across subject correlation, the 

daily averages from each participant were plotted on a single graph against the daily DEQ 
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averages of the particular days of data collection. A linear regression equation and R2 value were 

generated. 

Location Information 

 A subset of the participant data was further analyzed by observing PM2.5 level variations 

in conjunction with location changes. The adjusted AirBeam readings from 5 subjects and the 

corresponding DEQ data were plotted in time (average minute value) vs PM2.5 concentration 

graphs. Using Google Maps, the recorded GPS coordinates determined the locations of the 

participants during instances in which the AirBeam and DEQ data either deviated markedly from 

each other or periods of stable exposure levels. The location data was added as annotations to 

each participant’s exposure graphs.  
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RESULTS 

Cross-Correlation and Calibration Data 

 Data obtained from the 24-hour and supplemental Smithfield collection periods were 

used to generate plots comparing each AirBeam with one another and with the DEQ’s published 

data. R2 values were computed for each of the 10 graphs. These values (shown in Fig. 3A) 

indicated whether the AirBeams correlate well with each other and if their PM2.5 readings were 

close to the values obtained from the DEQ. The individual AirBeams correlated very well with 

one another, with an average R2 value of 0.97. However, the average R2 for the AirBeams 

compared to the DEQ was 0.71. The personal air monitors therefore correlated only moderately 

with the published DEQ data. This moderate correlation indicated an overall moderate accuracy  

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

B 
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for the AirBeams, and demonstrated a need for the individual calibration of the air monitors 

against the DEQ. 

Post-hoc correction factors were used as a means of calibration for the AirBeam devices. 

The power function curves created from the AirBeam vs. DEQ plots of the Smithfield collection 

period were used as the correction factors (shown in Fig. 4). The equations used as the correction 

factors are: y=1.8841x0.7404 (AirBeam_1), y=1.819x0.75 (AirBeam_2), y=2.1954x0.685 

(AirBeam_3), and y=2.1322x0.761 (AirBeam_4). 

 

 

 

 

 

 

 

 

Figure 3. AirBeam cross-correlation.  Table of R2 values for each of the cross-correlation 
plots (A), and scatterplot matrix of the same graphs (B). The individual AirBeams correlated 
very well with each other, as indicated by the high R2 values in A (average 0.97) and the tight 
collection of datapoints in B. The lower R2 (average 0.71) shown in A and the more dispersed 
datapoints in B demonstrate a lower correlation for the AirBeams compared to the DEQ. This 
lower correlation suggests a moderate overall accuracy of the devices. 

y = 1.8841x0.7404

R² = 0.9798

0

10

20

30

40

0 20 40 60

D
EQ

 P
M

2.
5

AirBeam_1 PM2.5

AirBeam_1 y = 1.819x0.75

R² = 0.97693

0

10

20

30

40

0 20 40 60

D
EQ

 P
M

2.
5

AirBeam_2 PM2.5

AirBeam_2

A B 

C D 

y = 2.1954x0.685

R² = 0.96527

0

10

20

30

40

0 20 40 60 80

D
EQ

 P
M

2.
5

AirBeam_3 PM2.5

AirBeam_3 y = 2.1322x0.761

R² = 0.96989

0

10

20

30

40

0 10 20 30 40 50

D
EQ

 P
M

2.
5

AirBeam_4 PM2.5

AirBeam_4



 12 

 

Participant Data 

 The hourly average PM2.5 levels obtained from each participant, after being adjusted 

using the correct calibration equation, were plotted against the DEQ’s hourly PM2.5 readings for 

the respective collection period (shown in Fig. 6A-T). 3 out of the 20 participants (15%) had an 

hourly average PM2.5 exposure level within the “Unhealthy to Susceptible Groups” range of the 

EPA’s Air Quality Index (AQI), 1 of which even reached into the “Unhealthy Range” (Utah 

Department of Health, 2017). Looking at the average minute values, 8 of the 20 participants 

(40%) had readings within the susceptible group range, 3 of which also had values that extended 

into the unhealthy range.  

 

For each of the 20 graphs that were created, a linear regression equation and an R2 value 

were generated. Analysis of the R2 values for the graphs gave a mean of 0.10, with a standard 

deviation of 0.10 and standard error 0.02 (0.10 ± 0.02). R2 values ranged from 0.004 to 0.38.  

Figure 5. Air Quality Index (AQI). Index of PM2.5 concentrations, classified by the potential 
to affect human health. 15% of the participants for this study had an hourly average in the 
“Unhealthy for Sensitive Groups” range, and 40% had minute averages within this range. 
Image taken from the Utah Department of Environmental Quality. 

Figure 4. AirBeam calibration graphs and equations. The AirBeam devices required individual 
calibration. Each AirBeam was plotted against the DEQ readings and power function curves were 
generated from the graphs (A-D). These were used as equations to adjust the PM2.5 values recorded 
by participants in the data collection process. 
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This low average and range indicates that the R2 values for all 20 graphs were markedly small, 

providing evidence of a low correlation between the AirBeam and the DEQ readings within the 

group of participants. To assess across subject correlation, the daily averages from each 

participant were plotted against the daily DEQ averages for those days of collection (shown in 

Fig. 7. The R2 generated from that graph was 0.27, another a low value. The DEQ PM2.5 readings 

thus also correlated poorly with the individual readings across subjects. 
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Figure 6. Participant data vs. DEQ graphs. For a within subject assessment, PM2.5 readings 
from each of the 20 participants were plotted against the published DEQ readings for the 
respective period (A-T). Linear equations and R2 values were generated for each graph. All R2 

values were found to be markedly low, indicating low correlation within the group of subjects. 
Note that each plot has its own scale due to varying exposure levels for each individual. 
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Location Data 

 PM2.5 readings taken from Participants 1, 3, 5, 15, and 20 were additionally analyzed to 

observe the link (or lack thereof) between changes in location and variations in PM2.5 exposure 

levels. Both PM2.5 readings from the AirBeams and DEQ were plotted in Time (minute value) vs. 

PM2.5 graphs, and location information (taken from inputting GPS coordinates into Google 

Maps) was annotated on the graphs (shown in Fig.8). 3 out of the 5 charts exhibited marked 

differences between AirBeam and DEQ readings when the participant was at his/her residence 

(Fig. 7A, 7B, and 7D). At times when the participants were either in a building on the Utah State 

University campus or at their places of work, the individual PM2.5 levels were at or close to the 

DEQ’s published readings. However, there was one instance in which the PM2.5 levels inside the 

building were markedly high, but leveled off to near DEQ levels (seen in Figure 7C). Most the 

PM2.5 concentration peaks recorded by the AirBeams were in conjunction with travel either by 

bus or car.
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Figure 7. Across subject correlation graphs. To study correlation across subjects, daily averages 
from each participant were plotted against the DEQ daily averages on one graph. The R2 value 
generated was also markedly low, indicating poor correlation across subjects. 
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Figure 8. PM2.5 readings with annotated location information. AirBeam (blue) and DEQ 
(red) PM2.5 data from Participants 1, 3, 5, 15, and 20 were graphed against time in minute 
increments (A-E). Location information revealing instances of marked differences between 
AirBeam and DEQ data were annotated on the 5 graphs. Large AirBeam peaks were mostly 
attributed to car/bus travel, and for Participants 1, 3, and 15 PM2.5 exposure increased when 
at their residences. Again, each graph has its own scale due to varying exposure levels. 
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DISCUSSION 

DEQ vs. AirBeam 

 The purpose of this study was to determine if PM2.5 levels recorded by the fixed-site 

monitoring station in Smithfield accurately represent the PM2.5 exposure experienced by the 

individual within Cache Valley. When studying population-level health effects of air pollution, 

obtaining readings from fixed-site stations is a sufficient form of measurement; however, at the 

individual level, PM2.5 exposure concentrations can vary greatly due to spatial and temporal 

changes that sparsely located monitor stations cannot precisely measure (Strickland et al., 2013; 

Mead et al., 2013). Using published PM2.5 data from these stations to assess individual health 

risk, therefore, may cause error. Utilization of personal environmental monitors is believed to 

help more accurately quantify individual exposure, thus minimizing this measurement error 

(Steinle et al., 2013). We hypothesized that when comparing PM2.5 concentrations from personal 

air monitors to the published DEQ data, they would correlate poorly with each other for both 

within and across a group of individuals.  

 The AirBeam personal environmental monitor was chosen as the specific device used for 

this study. Although other instruments were found to have marginally better overall performance, 

the AirBeam was sufficient for our needs (Sousan et al., 2017). Plotting the measured PM2.5 

levels against the DEQ readings for each participant created 20 different scatterplots. Linear 

regression equations and R2 values generated from each graph provided the information 

necessary to evaluate the correlation between DEQ and AirBeam data.  

This study was conducted during the months of April and May, both of which typically 

have lower reported PM2.5 levels. If the DEQ reports do indeed accurately reflect individual 

exposure, we would have also observed lower PM2.5 concentrations reported by the AirBeams. 

While this was true for most of the collection time, there were several instances in which PM2.5 
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exposure levels were higher and within the “Unhealthy to Susceptible Groups” range of the 

EPA’s AQI.  Additionally, the R2 values generated from the graphs all were considerably low for 

both within and across the group of participants. The AirBeam devices were calibrated directly 

against the DEQ, allowing us to recognize that any deviations in PM2.5 concentration between 

AirBeam and DEQ were likely not due to instrument inaccuracy. If the DEQ data accurately 

represents individual exposure, then both DEQ and the AirBeam adjusted values should strongly 

correlate with one another. The low R2 values observed in the graphs, however, demonstrate that 

they were in fact not similar.  

Inspection of the 20 DEQ vs AirBeam scatterplots revealed that there was no common 

relationship between the sets of information. 14 of the graphs exhibited lines of best fit with 

negative slopes, while the remainder were positive. Furthermore, these graph slopes all had 

varying levels of steepness, ranging from -4.2 to +1.2. The lack of a visible pattern illustrates that 

people can experience varying levels of PM2.5 exposure at the same time due to being in different 

locations. This suggests that a fixed-site monitor reporting one single PM2.5 concentration for 

individuals in differing locations may not accurately represent their personal exposure.  

Because the fixed-site monitor stations are static, they are limited to making estimates of 

PM2.5 levels for a large area. More concentrated locations within that area can therefore be 

misrepresented, and likewise PM2.5 levels for places of lower concentrations can be over-

estimated. Through observation of participants’ location data, fluctuations in exposure levels 

were seen in conjunction with specific locations. During times when the participants were inside 

public buildings, the AirBeam readings were generally at, near, and sometimes even below the 

DEQ’s reported values, whereas markedly higher PM2.5 levels were found at times of travel by 

bus or car. It is presumed that the increased exposure levels at these times were attributed to 

automobile exhaust, but further investigation may be prudent. 
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An interesting finding from the participant location information is that a few subjects had 

prominent increases in PM2.5 exposure when they were at their places of residence. These 

readings could be due to several different factors, including infiltration of outdoor air pollutants, 

firsthand/secondhand smoke, cooking, or combustion of fuels for heating (Li et al., 2017). Since 

indoor PM2.5 has a different composition than outdoor pollutants, these marked increases in 

exposure levels prompted a follow up with the participants in question (Abdel-Salam, 2015). 

Participant 1 confirmed that he/she cooked both at the beginning of the recording session and 

upon return to his/her residence. Participant 3 reported the use of candles in the morning and the 

burning of incense by a roommate upon arrival back home. Participant 15 revealed that he/she 

cooked at the very end of the recording session (around 7:00pm). The World Health 

Organization (WHO) recommends a daily maximum indoor PM2.5 concentration of 25 µg/m3 

(Gurley et al., 2013). While only 1 of the 3 subjects surpassed this value, this high variability of 

PM2.5 concentrations observed within households may be an important area of further study in 

evaluating air pollution-related risks to health.   

Study Limitations 

 Data collection was aimed to occur during the earlier months of the year (February 

through May); however, restrictions inhibited collection from beginning until April. This is a 

relatively short period for a study, therefore PM2.5 concentrations were less varied than expected. 

A greater diversity of PM2.5 data would have strengthened our findings. Additionally, 20 

participants may be too small of a group to obtain results representative of all residents of Cache 

Valley. Although low R2 values were consistently seen with all the participants, the R2 average 

may be less accurate of a value due to the smaller sample size. Increasing the number of subjects 

would increase confidence in the accuracy of our results.   
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 Another significant limitation to this study was the available subject location information. 

2 of the mobile phones utilized for the study were unable to capture GPS coordinates, which was 

not discovered until after the data collection process was completed. Of the 20 participants, only 

11 recorded location data. Lack of the other 9 participants’ GPS information inhibited a thorough 

analysis of PM2.5 fluctuations relative to variations in location.  

Conclusion 

 Although several factors limited the data obtained, these findings are nevertheless an 

adequate collection of preliminary data, which will prove useful for future studies on personal 

PM2.5 exposure. The low R2 values observed from the DEQ vs AirBeam graphs, coupled with a 

lack of visible pattern and fluctuating individual exposure levels, indicate that DEQ and 

AirBeam PM2.5 level readings were poorly correlated with one another both within and across 

subjects. These findings confirm our hypothesis that PM2.5 concentrations published from fixed-

site monitoring stations do not adequately reflect the dynamic nature of individual PM2.5 

exposure. This underscores the need to implement personal monitoring systems to aid in the 

evaluation of individual risk for respiratory diseases, cardiovascular disease, congestive heart 

failure, and numerous other air pollution-related health conditions.  
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CAPSTONE REFLECTION 

 The USU Honors Program strives to provide a well-rounded education for its students. 

One of the ways it does so is by advocating and aiding in the pursuit of real-world experiences, 

beyond the scope of the classroom. A form of practical experience Honors students are 

encouraged early on to get involved in is research.  

My initial exposure to the field of scientific research was a little rocky. I learned a great 

deal and gained experience working in a laboratory setting, but the specific work I was doing did 

not particularly interest me. I began as a volunteer in a research lab that was studying the 

pathogenesis of certain neuropsychiatric disorders. My work in this lab consisted of aiding in the 

care of the mice colonies, tagging and tailing the mice, performing PCR, and sectioning mice 

brains. As an aspiring physician, I enjoy interacting with people, and although the work being 

done in that research lab was related to human health and was conceptually interesting, it did not 

allow me that human interaction that I wanted. 

 When I first contacted Dr. Lefevre about working together on my Honors Capstone 

Project, I wasn’t entirely sure of what I wanted to do. As part of the NDFS department, Dr. 

Lefevre is typically involved in dietary-related research on functional foods and bioactive 

chemicals, but he has a strong interest in the health effects of air pollution, particularly in Cache 

Valley. Conversing with him sparked my interest in air pollution and PM2.5, and we were able to 

develop a project. Dr. Lefevre allowed me to spearhead the entire project, but provided much 

guidance and assistance when needed.  

 Initially, in addition to comparing individual exposure to the DEQ readings, this project 

aimed to observe how variations in PM2.5 exposure levels correlated to changes in Heart Rate 

Variability (HRV). Measuring HRV—the variation in time between one heartbeat and the next—

is a way to assess autonomic function, and therefore risk for cardiovascular conditions. Because 
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we were using human subjects in the project, approval from the University’s Institutional Review 

Board (IRB) was needed. Two separate proposals were made for each component of the study. 

The HRV component was approved later than expected, so due to time constraints we were 

unable to include that component in my project. Dr. Lefevre has chosen to continue that portion 

of the study on his own.  

 Despite not being able to study HRV, completing this capstone project was an excellent 

learning experience for me. Frequent meetings with Dr. Lefevre allowed me to learn more about 

the experimental design process. I discovered the fundamental steps to developing and starting a 

study, such as the generation of a project proposal, applying for IRB approval, calibrating the 

necessary machinery, and recruiting individuals as participants. While conducting the project, I 

learned how to use certain scientific equipment (the AirBeam) to collect data as well as how to 

process and analyze the information obtained from those devices. Additionally, I had the 

opportunity to present this project at USU’s Student Research Symposium. Dr. Lefevre taught 

me how to compose a suitable poster for the presentation. At the time of the research 

symposium, however, data collection had not yet begun, so Dr. Lefevre guided me in how to 

create an informative poster.  

While undergoing this entire process, I learned about the many pitfalls that can occur 

during research. The first problem encountered was the time restraint caused by the late IRB 

approval. The IRB is exceedingly important in protecting human participants in research from 

potential risks, but the time needed to obtain approval from them was unanticipated. Because the 

project started later than expected, we missed out on more varied levels of PM2.5. Although we 

still got a decent variation in exposure levels, a wider range of data would have strengthened the 

project. With this experience, I learned that many hoops must be jumped through just to even 

begin a study, and that sufficient time needs to be allotted to get through these obstacles.  
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Another instance that was thought to be problematic was the accidental loss of the 

smartphone used for the calibration collection period. Although the phone was eventually 

recovered, this loss allowed us to discover how reasonably priced Android phones are without a 

service plan. In addition to being an Android smartphone, the AirBeam devices only require a 

phone with Bluetooth connection and the ability to connect to wifi, so a service plan was not 

essential. We were concerned that using only Android owners as participants would considerably 

limit our data; however, the affordable nature of the plan-less smartphones allowed us to 

purchase a phone for each of the AirBeams and thus prevent this limitation.  

 But unfortunately, 2 of the phones somehow had their location information turned off, 

which deprived us GPS coordinates from 9 participants. This limited our ability to observe PM2.5 

changes in conjunction with specific locations. We were able to obtain interesting findings with 

the data we had, but information from all the participants would have been beneficial.  Had I 

checked the participant data immediately after receiving it, I would have caught this problem 

early on and been able to fix it, minimizing the loss. This experience taught me for future 

potential projects to look at data after each collection period, not just during the data analysis 

process.  

 Despite all these obstacles, we conducted the study and collected a great deal of 

information on PM2.5 exposure, which will be used as a good starting point for further 

investigation. I absolutely enjoyed doing this project, both because the subject matter was 

fascinating and it allowed me to interact with people. I learned a great deal from the experience, 

and hope that I can pass what I’ve learned to future Honors students. I highly encourage getting 

involved in research early, both to gain experience and to figure out likes/dislikes. Enough time 

needs to be allotted for everything (figuring out a project, making the capstone proposal, IRB 

approval, collection of necessary materials, etc.). And it is exceedingly important to double 



 26 

check everything, especially the instruments being used in the event of errors or faulty 

equipment. But most importantly, don’t worry about messing up or having to start over again. It 

is all part of the learning process. Everything will be okay! 
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