Switchable Antenna Polarization using Surface-Integrated Fluidic Loading Mechanisms

1Department of Electrical and Computer Engineering
2Department of Aerospace Engineering
3Department of Mechanical Engineering
Texas A&M University, College Station, TX 77843-3128
Email: ghuff@tamu.edu

This work was sponsored in part by AFOSR grant # FA9550-08-1-0329 and the NASA funded Space Engineering Institute at Texas A&M University

Space Engineering Institute
Affiliated with Texas A&M University, Dwight Look College of Engineering

NASA

Small Satellite 2010 Logan, Utah
August 12, 2010 Mission Enabling Technologies 2
Project Team and Acknowledgements

From left to right
Second Row: Sean Goldberger, Stephen Davis, Frank Drummond, Joel Barrera, and Michelle Geppert
Front Row: Quinn Manley, YaShavaun Judie, Jamie Edelen, Samantha Smith, and Cameron Peters

Prof. Gregory H. Huff
Prof. James G. Boyd
Dr. Patrick Fink
Dr. Tim Kennedy
Dr. Phong Ngo
Magda Lagoudas
Stephen A. Long
Outline

- Motivation and Current Technology
- Polarization Reconfigurable Antenna
- Analytical Model
- Mechanism 1: Fluid Displacement
- Mechanism 2: Electrokinetic Effects
- Summary and Future Research

[www.radantmems.com]

[Courtesy NASA/JPL-Caltech]
Polarization Reconfigurable Antenna

Fluidic and Electrokinetic Reconfiguration Mechanisms

- **Mechanism 1: Fluid Displacement**
 - Alternate periodic high/low permittivity dispersions across gaps
 - Retune antenna to alter polarization at fixed frequency by circulating sections of fluid ¼ turn

- **Mechanism 2: Electric Field Assisted Microstructure**
 - Use applied bias to alter particle alignment (random/aligned permittivity)
 - Each arm can be independently controlled/biased
 - Reconfigure polarization
Mechanism 1: Fluid Displacement

Antenna with Connectorized Fluidic Displacement System

Dimensions in mm

<table>
<thead>
<tr>
<th>H₁</th>
<th>H₂</th>
<th>L₄</th>
<th>L₅</th>
<th>fₜ</th>
<th>W</th>
<th>G</th>
<th>a</th>
<th>b</th>
<th>h</th>
<th>L₁</th>
<th>L₂</th>
<th>L₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>12.9</td>
<td>45.7</td>
<td>30.5</td>
<td>1.0</td>
<td>10</td>
<td>0.3</td>
<td>1.23</td>
<td>4.1</td>
<td>1.57</td>
<td>24.54</td>
<td>7.54</td>
<td>6.85</td>
</tr>
</tbody>
</table>
Mechanism 1: Fluid Displacement

Antenna with Connectorized Fluidic Displacement System

Peristaltic pump Syringe pump COMSOL simulation of fluid flow 1 psi

Representation of Assembly

Adapter Channel Inflow/Outflow

Fabricated from PDMS
($\varepsilon_r \sim 2.66$ and $\tan \delta_e \sim 0.03$) and
ABS plastic
($\varepsilon_r \sim 2.72$ and $\tan \delta_e \sim 0.007$)
using a rapid prototype machine
Mechanism 1: Fluid Displacement

1. Mix PDMS
2. Release Agent
3. PDMS Negative
4. PDMS Capillary

Results:
- Fabricated Antenna
- PDMS Adhesive
- Milling Machine
Analytical Model

Use of a Dispersion with Periodic High-Low Dielectric on Gaps

High/Low Permittivity

$\varepsilon_r = 77.15 / \varepsilon_r = 2.1$

Note: Water emulates high dielectric fluid
Mechanism 1: Fluid Displacement

Utilizing Dynamic Material/Fluidic-Based Material Systems

Mixing rules play a large role in the development and use of these systems and need to be used judiciously…

Barium Strontium Titanate (BSTO)

\[\text{Ba}_x\text{Sr}_{1-x}\text{TiO}_3 \]

(\(\varepsilon_r \approx 1000, \mu_r \approx 1, \text{and} \tan \delta_e \approx 0.05\))

Particle Diameter <100nm

Petroleum Distillate Oil

(\(\varepsilon_r \approx 2.1, \mu_r \approx 1, \text{and} \tan \delta_e \approx 0.001\))
Mechanism 1: Fluid Displacement Summary

Use of a Dispersion with Periodic High-Low Dielectric on Gaps

High/Low Permittivity
\[\varepsilon_r = 77.15 / \varepsilon_r = 2.1 \]

- Analytical
- Simulated
- Measured

Freq. = 2.438 GHz
Freq. = 2.443 GHz
Mechanism 1: Fluid Displacement Summary

Use of a Dispersion with Periodic High-Low Dielectric on Gaps

High/Low Permittivity

$\varepsilon_r = 77.15 / \varepsilon_r = 2.1$

- Blue: Analytical
- Red: Simulated
- Black: Measured

Freq. = 2.438 GHz
Freq. = 2.443 GHz
Mechanism 1: Fluid Displacement Summary

Use of a Dispersion with Periodic High-Low Dielectric on Gaps

High/Low Permittivity

\[\varepsilon_r = 77.15 / \varepsilon_r = 2.1 \]

- **Analytical**
- **Simulated**
- **Measured**

Freq. = 2.438 GHz
Freq. = 2.443 GHz
Mechanism 2: Electrokinetic Effects

Morphology of Microfluidic Systems

Electric field mediated reversible assembly of 800nm colloidal gold particles

Tunable resistance/capacitance in micro-electronic/fluidic device

Mechanism 2: Electrokinetic Effects

Fluidic Displacement and Biased Electrokinetic Systems

Dimensions in mm

<table>
<thead>
<tr>
<th></th>
<th>H₁</th>
<th>H₂</th>
<th>L₄</th>
<th>L₅</th>
<th>fₕ</th>
<th>W</th>
<th>G</th>
<th>a</th>
<th>b</th>
<th>h</th>
<th>L₁</th>
<th>L₂</th>
<th>L₃</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.4</td>
<td>12.9</td>
<td>45.7</td>
<td>30.5</td>
<td>1.0</td>
<td>10</td>
<td>0.3</td>
<td>1.23</td>
<td>4.1</td>
<td>1.57</td>
<td>24.54</td>
<td>7.54</td>
<td>6.85</td>
</tr>
</tbody>
</table>
Mechanism 2: Electrokinetic Effects

Utilizing Dynamic Material/Fluidic-Based Material Systems

Petroleum Distillate Oil
\((\varepsilon_r \sim 2.1, \mu_r \sim 1, \text{ and } \tan \delta_e \sim 0.001)\)

Nanowhisker BTO
Radius \(\sim 5\) nm, Length \(\sim 40\) nm
\((\varepsilon_r \sim 1000, \mu_r \sim 1, \text{ and } \tan \delta_e \sim 0.05)\)

Maxwell Garnett Mixing Rule for Random Orientation
\[
\varepsilon_{\text{eff}}(\vartheta) = \varepsilon_r + \vartheta(\varepsilon_r - \varepsilon_1) \frac{\varepsilon_r + 5\varepsilon_1}{(3 - 2\vartheta)\varepsilon_r + (3 + 2\vartheta)\varepsilon_1}
\]

Maxwell Garnett Mixing Rule for Aligned Orientation
\[
\varepsilon_{\text{eff}}(j) = \varepsilon_1 + \vartheta_j \frac{\varepsilon_j - \varepsilon_r}{\varepsilon_1 + (1 - \vartheta_j)N_j(\varepsilon_j - \varepsilon_r)}
\]
\[
N_y = N_z = 0.5, N_x = 0
\]
Particle Polarization

Utilizing Dynamic Material/Fluidic-Based Material Systems

Petroleum Distillate Oil
$(\varepsilon_r \sim 2.1, \mu_r \sim 1, \text{ and } \tan \delta_e \sim 0.001)$

Nanowhisker BTO
Radius ~ 5 nm
$(\varepsilon_r \sim 1000, \mu_r \sim 1, \text{ and } \tan \delta_e \sim 0.05)$

Nanowhisker BTO Length [nm]
40
200
$279,000$
Particle Polarization

Utilizing Dynamic Material/Fluidic-Based Material Systems

Petroleum Distillate Oil
(\(\varepsilon_r \sim 2.1, \mu_r \sim 1, \text{ and } \tan \delta_e \sim 0.001\))

Nanowhisker BTO
Radius \(\sim 5\) nm
(\(\varepsilon_r \sim 1000, \mu_r \sim 1, \text{ and } \tan \delta_e \sim 0.05\))
Mechanism 2: Electrokinetic Effects

Use of a Dispersion with Electrokinetic Effects on Gaps

Note: Water emulates dielectrophoresis chaining
Mechanism 2: Electrokinetic Effects

Use of a Dispersion with Electrokinetic Effects on Gaps

Note: Water emulates dielectrophoresis chaining

Freq. = 2.438 GHz
Mechanism 2: Electrokinetic Effects

Use of a Dispersion with Electrokinetic Effects on Gaps

Note: Water emulates dielectrophoresis chaining

Freq. = 2.438 GHz
Software Defined Radio

Software controls the USRP and the Microcontroller

USRP
- Sends/Receives the Signal
- Performs Analysis on Signal
 - Determines the Bit Error Rate

Microcontroller
- Turns the pump on and off
 - Supplies or doesn’t supply voltage
- Duration depends on pump and capillaries (~1s)
Summary and Future Research

Polarization Reconfigurable Antenna

- 1st mechanism achieved by switching nano-dispersion volume fraction
 - Surface mounted microfluidic network design
 - Analytical representation
 - Measured results
- 2nd mechanism achieved by dielectrophoresis
 - Bias line implementation
 - New BTO nanowhiskers
 - Control integration with software defined radio

Future Research

- Microgravity testing
- Continue nanowhisker development
- Electrokinetic characterization of materials
- PRA testing with nanowhiskers and software defined radio
- Examining array reconfiguration
Switchable Antenna Polarization using Surface-Integrated Fluidic Loading Mechanisms

1Department of Electrical and Computer Engineering
2Department of Aerospace Engineering
3Department of Mechanical Engineering
Texas A&M University, College Station, TX 77843-3128
Email: ghuff@tamu.edu

This work was sponsored in part by AFOSR grant # FA9550-08-1-0329 and the NASA funded Space Engineering Institute at Texas A&M University