5-2013

Of Form and Fire

Louis R. Reilly
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports
Part of the Art and Design Commons

Recommended Citation
https://digitalcommons.usu.edu/gradreports/276

This Creative Project is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Plan B and other Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact dylan.burns@usu.edu.
I will design and create a body of functional ceramic vessels for soda firing. These ceramic vessels will have clean silhouettes, undulating rims, stretched proportions, and smooth surfaces. I intend for these characteristics to best display the wide-ranging texture, sheen, and hue possible with the soda firing process.

I intend for this body of ceramic vessels to be tied together not only by the soda-fired surface, but also by a unified aesthetic. This aesthetic is informed not only by the requirements of soda firing, but also by historical research, sketching, and breakthrough leading towards creating a pot that is successful on a visual and functional level. Tying together this aesthetic are characteristics that create a lineage of features in the vessels. Attachment points will be accentuated, feet will carry a similar treatment, and rims will have a similar undulation and fullness. Function is deeply considered and these pots should be comfortable, easy to use and simple to care for.

The soda firing technique is selected for the potential to create a wide range of surface effects in a single firing. Small changes in firing schedule and clay body formulation have the potential to affect the soda-fired surface drastically. During the firing, sodium carbonate and bi-carbonate are introduced into the kiln as a solid between 2200° and 2340° Fahrenheit. This mixture of soda ash and baking soda vaporizes, is carried through the kiln by flame, and when combined with the bare clay surface glazes the pots. Clay samples are drawn from the kiln during the firing to gauge the amount of soda needed. A typical soda firing may use 3-6 pounds of soda; I will use between 10-20 pounds to achieve a deep and rich surface. The kiln is carefully down-fired with the goal of achieving flashes of bright red, orange, and yellow on the surface of the pots.

A high-alumina clay body with coarse silica sand granules will be used as the preliminary clay body for soda firing. When this clay body is soda fired it produces a dimpled glazed surface with distinctive bands of hue and shade. By removing the sand from this clay body, a smooth and colorfully flashed surface becomes possible. The addition of wollastonite or talc to the high-alumina clay body may change the surface completely. While serving as a flux, these minerals matte the surface of the vessels with crystals and could produce colors different from those in the original high-alumina clay body. Through this clay body research, I hope to add to the pallate of achievable surfaces in the soda firing technique.

My goal is to unify quiet, direct, and honest ceramic vessels with the dramatic soda fired surface to create a finished pot that is equally beautiful and useful.
Of Form and Fire

For this exhibition I endeavor to present a broad representation of historically inspired ceramic vessels that are enriched by the dramatic effects of the soda firing process. By greatly varying scale and function I hope to reveal a sliver of what is possible when a potter sits down at the potter’s wheel. Focus is placed on balancing useful ‘everyday’ pots and those that function purely to enhance a space.

Soda firing invigorates form with variations of hue, sheen, and texture. Purposeful kiln loading establishes channels for flame to lick the surface of the pots with bands of red, yellow, and orange. The pots are fired without exterior applied slips or glazes. When the kiln reaches 2240 degrees Fahrenheit, a mixture of baking soda and soda ash is introduced into the kiln through various ports. The heat created by the two natural gas burners vaporizes this mixture and the turbulent path of the flame within the kiln distributes the vapor amongst the pots. This soda vapor reacts with three specially formulated clay bodies resulting in three dynamically glazed surfaces. The surfaces of these pots result from a direct interaction between clay, soda vapor, and sixteen hours of firing.

The potential for progress draws me into the studio. My work is in a constant state of evolution; taking the best form of many and repeating it keeps the work moving forward. For me, the best pots integrate beauty and utility and I hope the ceramic vessels in this exhibition appear honest and proud.

Louis R. Reilly