
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations, Fall
2023 to Present Graduate Studies

8-2024

Understanding Ion Rejection Mechanism of Freeze Desalination Understanding Ion Rejection Mechanism of Freeze Desalination

by Molecular Dynamics Simulation by Molecular Dynamics Simulation

Mahbuba Jannat
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd2023

 Part of the Mechanical Engineering Commons

Recommended Citation Recommended Citation
Jannat, Mahbuba, "Understanding Ion Rejection Mechanism of Freeze Desalination by Molecular
Dynamics Simulation" (2024). All Graduate Theses and Dissertations, Fall 2023 to Present. 268.
https://digitalcommons.usu.edu/etd2023/268

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations, Fall 2023 to Present by an authorized
administrator of DigitalCommons@USU. For more
information, please contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd2023
https://digitalcommons.usu.edu/etd2023
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd2023?utm_source=digitalcommons.usu.edu%2Fetd2023%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.usu.edu%2Fetd2023%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd2023/268?utm_source=digitalcommons.usu.edu%2Fetd2023%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

 UNDERSTANDING ION REJECTION MECHANISM OF FREEZE DESALINATION BY MOLECULAR

DYNAMICS SIMULATION

by

Mahbuba Jannat

A thesis paper submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Mechanical Engineering

Approved:

_____________________________ _____________________________
Hailei, Wang, Ph.D. Nicholas Roberts, Ph.D.
Major professor Committee member

_____________________________ _____________________________
Yanqing Su, Ph.D. D. Richard Cutler, Ph.D.
 Committee member Vice Provost of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2024

ii

Copyright © Mahbuba Jannat 2024

All Rights Reserved

iii

ABSTRACT

Understanding Ion Rejection Mechanism of Freeze Desalination by Molecular

Dynamics Simulation

by

Mahbuba Jannat, Master of Science

Utah State University, 2024

Major Professor: Dr. Hailei Wang
Department: Mechanical and Aerospace Engineering

Despite its promise for producing both drinking and agricultural water efficiently, freeze

desalination as a method to purify water by forming ice crystals to segregate salt ions remains

mostly untapped. While some works have been done, its underlying mechanisms of ion rejection

remain unclear. This research aims to improve understanding of ion rejection mechanisms in

freeze desalination using molecular dynamics simulations. Specifically, the study attempts to

elucidate the process by evaluating various parameters under different ensembles and

temperature conditions. To find the ion rejection rate, the tetrahedrality parameter is calculated

to find the liquid-solid interface at each timestep. Additionally, the radial distribution function

was assessed, and free energy was calculated using umbrella sampling. Results showed that ion

rejection rate is exceeding 90%, with the largest ice growth in the simulation at 235K with NPxT

used as the ensemble. The free energies for Na and Cl ions were found to be 8.6 & 8.81 kcal/mol,

indicating the Cl ions have higher free energy barrier to escape from the ice structure. As a result,

the simulations have shown the Na ions are more effectively rejected into the brine solution.

Furthermore, the radial distribution values were found to be 7.5 for Na ion and 3.9 for Cl ion.

(101 pages)

iv

PUBLIC ABSTRACT

Understanding Ion Rejection Mechanism of Freeze Desalination by Molecular

Dynamics Simulation

Mahbuba Jannat

This study explores a method called freeze desalination, which uses the natural

process of ice formation to remove salt from water at lower than freezing temperature of

water, which is 235K (Freezing temperature of this water model is 249K), making it safe for

potable water. Unlike traditional methods, freeze desalination can be more efficient and

environmentally friendly, but how it rejects salt at the molecular level is not very clear to

understand. Using molecular dynamics simulation, this research aims to uncover the details

of this process. We focused on understanding how water molecules interact with salt ions

during freezing. Our findings showed that over 90% of salt ions can be successfully removed

from the water under optimal conditions, with certain temperatures and settings leading to

the best results. Specifically, we found that sodium ions are removed more effectively than

chloride ions. This difference is due to how sodium and chloride ions interact with the

surrounding water molecules, which was measure by calculation of free energies. These

insights are crucial for improving the technique and making it a viable option for purifying

water in different settings. Overall, this work provides a clearer picture of how freeze

desalination works at a microscopic level, offering guidance on how to optimize this process

for better performance. This could have significant implications for water purification

technology, potentially leading to more widespread use of freeze desalination in the future.

v

ACKNOWLEDGMENTS

 I am immensely thankful to my major professor, Dr. Hailei Wang, whose guidance,

wisdom, and unwavering support have been a guiding light throughout my academic journey. His

mentorship has not only shaped my work but has also profoundly influenced my personal and

professional growth. I would also like to express my deepest gratitude to Adam Rasmussen from

ETRI lab, whose invaluable assistance and expertise in simulations significantly contributed to the

success of my work. His dedication and insights were instrumental in navigating the complexities

of this project. All LAMMPS simulations were completed by using the resources of Center for High

Performing Computers (CHPC) from University of Utah. I am grateful to have access to such

incredible facility.

 This journey would not have been the same without these remarkable professors, Dr.

Yanqin Su and Dr. Nick Roberts. Their collective contributions have left an indelible mark on my

work. Finally, I would like to thank my parents, Rawshan Ara & Reaz Uddin and my husband,

Abdullah Al Mamun to be always there for me. I could not do this without their constant support.

vi

CONTENTS

Page

ABSTRACT .. iii

PUBLIC ABSTRACT ... iv

ACKNOWLEDGMENTS .. v

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

NOMENCLATURE... xi

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1 Motivation of Research .. 1

1.2 Molecular Dynamics Simulation .. 3

1.3 Objectives... 20

CHAPTER 2 ... 22

METHODOLOGY ... 22

2.1 Potentials ... 22

2.2 Simulation Setup .. 26

2.3 Tetrahedrality Parameter .. 29

2.4 Interface Calculation .. 30

2.5 Ion Rejection Rate .. 31

2.6 Free Energy .. 33

2.7 Radial Distribution Function (RDF) ... 36

CHAPTER 3 ... 41

RESULTS AND DISCUSSIONS ... 41

3.1 Ice Growth and Ion Trap Comparison with Different Ensembles (NVT and NPxT) 41

3.2 Ion Rejection Rate Comparison in Different Temperature and Ensembles 44

3.3 Umbrella Sampling and Free Energy Calculation ... 49

3.4 Radial Distribution Function (RDF) Calculation .. 51

CHAPTER 4 ... 54

CONCLUSION AND FUTURE WORK SECTION ... 54

4.1 Perspectives for Future Work .. 54

REFERENCES ... 56

vii

APPENDICES ... 61

APPENDIX A .. 62

NVT_235K_0.6M_TIP4P/2005 ... 62

APPENDIX B .. 65

ION REJECTION RATE CALCULATION .. 65

APPENDIX C .. 81

UMBRELLA SAMPLING CALCULATION ... 81

APPENDIX D .. 85

RADIAL DISTRIBUTION FUNCTION CALCULATION ... 85

viii

LIST OF TABLES

 Page

Table 1. 1 Using MD simulations, water-ion model combinations are utilized to study ion
rejection. Tm, assuming pure water, is the melting temperature related to the given water
mode {49} ... 5

Table 2. 1 These are our simulation summary for LAMMPS... 40

Table 3. 1 Interface start and end in x axis of simulation box for four cases. 43

Table 3. 2 Ion Rejection Rate in four distinguished cases with salinity of brine water with
rejected ion as freezing progresses. .. 47

ix

LIST OF FIGURES

 Page

Fig. 1. 1 Number of molecules belonging to the ice slab as a function of time at different
temperatures. Inset: slope of a linear fit to the curves in the main panel as a function of
temperature. The melting temperature is taken as that for which the interpolated slope is
zero (239 K) [34]. .. 6

Fig. 1. 2 Time evolution of the density profiles for neat water simulations. A) box360 at −5° B)
box180 at −15° C) box180 at −5° D) box180 at −10° (combined constant volume/constant
pressure simulation). Note the partial melting after the switch to constant pressure around
150 ns [32]. .. 8

Fig. 1. 3 Time evolution of the density profiles for salt water freezing simulations. Trajectories
of Na+ and Cl− ions are displayed as black lines. Temperature was held at −10° in all cases. (A)
box180 with two NaCl ion pairs, (B) box180 with four ion pairs, (C) box360 with two ion pairs,
and (D) box360 with five ion pairs [32]. ... 9

Fig. 1. 4 Molecular dynamics simulation system ice growth over time, 500ns. {27}. 10

Fig. 1. 5 (A) Molecular dynamics simulation system, (b) Probability distribution of average bond
order parameter vs average bond order parameter at different temperature, (c) Values of
average bond parameter in x direction. So from figure, average bond order parameter greater
than 0.38 are ice [27]. .. 11

Fig. 1. 6 (A) Tetrahedrality parameter as a function of distance between the water's oxygen
and the closest ion, for Cl–O and Na–O. (B) The tetrahedrality parameter for different
simulation times, indicated in the legend [29]. ... 12

Fig. 1. 7 Ion concentration (left y-axis) in ice (blue circles) and brine (green squares) and the
potential energy in the MD simulation (gray line – right y-axis) as a function of time [29]. 14

Fig. 1. 8 This figure captured four results, (a) The time evolution of the total g(r), (b) oxygen-
oxygen bond for ice and water both, (c) Cl–Cl, Na–Na as well as the cross correlations between
Na–Cl, (d) O–Cl, O–Na for both ice and water components. The self-correlations of various
atoms, such as O-O, Cl-Cl, and Na-Na, are distinguished from the corresponding cross-
correlations, such as Na-Cl, O-Cl, and O-Na. The crystal's O-O radial distribution function g(r)

x

(solid line) resembles that of ice Ih with the addition of disorder brought on by the interaction
between water and brine [29]. .. 18

Fig. 2. 1 Graph of the LJ potential function: Intermolecular potential energy V(r) as a function
of the distance of a pair of particles. [45]. ... 23

Fig. 2. 2 Electrostatic potential ϕ of a point charge in a quadrupolar medium vs. the distance r
from the point charge e in water, Eq. 8. [46] .. 25

Fig. 2. 3 Values of q in y direction and simulation box bin distances in the x direction. This plot
was generated by post processing of frozen data at 53ns with NPxT ensemble at 240K. 33

Fig. 3. 1 Molecular Dynamic Simulation of growing ice front in NaCl solution using Lammps
simulation. On the left is the hexagonal ice commonly found in natural conditions in contact
with a solution of 0.6 M NaCl. Red – Oxygen, White – Hydrogen, Purple – Sodium, Green -
Chloride. ... 41

Fig. 3. 2 (a) NVT_235K_TIP4P/2005, (b) NVT_240K_TIP4P/2005, (c) NPxT_235K_TIP4P/2005,
(d) NPxT_240K_TIP4P/2005. Molecular Dynamic Simulation of growing ice front in NaCl
solution using Lammps simulation. On the left is the hexagonal ice commonly found in
natural conditions in contact with a solution of 0.6 M NaCl. All simulation consists of 18104
atoms. .. 42

Fig. 3. 3 (a) NVT_235K_TIP4P/2005, (b) NVT_240K_TIP4P/2005, (c) NPxT_235K_TIP4P/2005,
(d) NPxT_240K_TIP4P/2005. Values of q in y direction and simulation box bin in angstroms
distances in the x direction. ... 46

Fig. 3. 4 Ion concentration in ice over time vs interface location over time for NPxT ensemble
at 235K. .. 48

Fig. 3. 5 The free energy change of sodium and chloride as they progress from the ice front
must progress past the 2 energy barriers. The interface location is x = 47.97 indicated by
perpendicular dashed line on x axis. .. 50

Fig. 3. 6 RDF shown in salt water and in ice for (a) Na+, (b) Cl-. ... 53

xi

NOMENCLATURE

Acronyms

Cl- = Chloride Ion

FD = Freeze Desalination

LAMMPS = Large-scale Atomic/Molecular Massively Parallel Simulator

LJ = Lennard-Jones

MD = Molecular Dynamics

NaCl = Sodium Chloride

Na+ = Sodium Ion

NPT = Isothermal-Isobaric Ensemble

NVT = Canonical Ensemble

PMEMD = Particle Mesh Ewald Molecular Dynamics

TIP4P/2005 = Modified version of TIP4P model for general use

CHAPTER 1

INTRODUCTION

1.1 Motivation of Research

With the worldwide population and industrial activity on the rise, water scarcity is a growing

concern. Issues such as climate change and inadequate management strategies in the past few

decades have resulted in 4 billion individuals facing water scarcity for at least one month each

year [1]. Moreover, roughly 700 million people continually struggle with water scarcity [2]. Recent

analysis of groundwater systems highlights an alarming increase in depletion rates in several

regions, including South-East Asia, the Middle East, and Central and North America [3].

Desalination is considered a comparatively modern solution, which could pave the way for more

efficient desalination technologies to meet global water needs [2]. Essentially, desalination is the

process of removing salt and other impurities from seawater or brackish water to produce fresh

water suitable for human consumption and irrigation. While the concept is not new, having been

practiced in some form for centuries, advancements in technology have made it increasingly

efficient and sustainable. There are two primary methods employed in modern desalination:

reverse osmosis and thermal. Reverse osmosis (RO), where water is forced through semi-

permeable membranes to separate it from salts, and thermal distillation, which involves heating

seawater to create vapor and then condensing it to produce fresh water. As global populations

continue to grow and climate change exacerbates drought conditions in many regions, the

demand for fresh water is expected to surge. Desalination plants, especially in arid and coastal

areas, are playing a crucial role in bridging the gap between demand and supply. While the process

is energy-intensive and has environmental considerations, ongoing research and innovation are

2

paving the way for more eco-friendly and cost-effective solutions in the realm of desalination [4].

As research is going on desalination, there is another approach called freeze desalination (FD). FD

removes salts from saline water, producing purified ice and a concentrated brine byproduct

[4,6,7]. Despite advances in FD systems, a harmony on the rates of salt or brine rejection is yet to

be achieved, and the molecular mechanisms that drive FD remain unclear [6,7]. To investigate ion

rejection and molecular mechanisms that drives freeze desalination, the ion rejection

phenomenon is to be investigated. The focus on ion rejection is about pushing the boundaries of

what's known in freeze desalination, aiming to improve the technology both in terms of its

fundamental understanding and its practical application.

Ion rejection is a natural phenomenon occurring during the freezing of water-based

solutions. Unlike methods that rely on heat or pressure to separate salts from water, freeze

desalination leverages the natural tendency of ice crystals to form in a purer state, pushing away

dissolved solutes. As the water solidifies, the ions are systematically rejected or squeezed out

from the forming ice structure. The result is freshwater in the form of ice, which can be melted

for use, and a concentrated brine left behind. While the process has its set of challenges and

efficiencies to address, the fundamental science of ion rejection in freeze desalination offers a

unique and environment friendly advantage to address water scarcity issues. Foreign particles are

thrown out from the forming ice crystal lattice and remain in the residual solution, thus affecting

the concentration of ions in both the ice and remaining solution [8-12]. This phenomenon is also

seen in the upper atmosphere and potentially influences thundercloud electrification and the

Workman-Reynolds Freezing Potential [13-16]. While there has been extensive research on water

and its unique characteristics, less focus has been given to the mechanisms and kinetics of ion

rejection [27–33]. This is where molecular dynamics simulations can play a vital role. They provide

a detailed view of complex processes at the molecular level [22, 23, 27], which can contribute

3

significantly to the understanding and refinement of freeze desalination [22, 23, 27, 28]. Through

this research, innovative desalination technologies can be developed leading to more efficient,

affordable, and environmentally friendly water purification solutions [1, 2]. This knowledge could

also facilitate advancements in various industries such as agriculture, water and energy

production, where water purification is a critical element.

Numerous research efforts have been devoted to understanding the elements that influence

the rate of ion rejection via experimental studies [9–14]. Nonetheless, majority of previous MD

studies have primarily focused on how ions influence the kinetics of ice nucleation, with minimal

exploration of the microscopic mechanism of ion rejection. This area requires more

comprehensive studies. This research aims to deepen current understanding of the ion rejection

mechanism in freeze desalination through molecular dynamics simulations. By exploring the

influence of various parameters like temperature on ion rejection rate, this study hopes to

optimize the freeze desalination process. Ultimately, these findings seek to not only enhance the

efficiency of this sustainable desalination method but also inspire further innovations in water

purification to address global water scarcity.

1.2 Molecular Dynamics Simulation

This part of the chapter introduces about molecular dynamics simulations where it aims to

present molecular view of ice growth while facilitating freeze desalination of salt water. This

chapter also looks at ion rejection rate and its mechanism. So, for freeze desalination, a clear

view of microscopic details of molecular interactions is required in order to get knowledge of

the experimental expected results of the system. Molecular dynamics (MD) simulation

represents a potent method to accomplish this goal. MD simulation is a computational

4

technique that examines the temporal advancement of a system of particles, like atoms,

molecules, and charges, each characterized by specific properties. The movement of particles is

determined by solving Newton's classical equations of motion. The detailed molecular

information from MD simulations, including positions and energies of particles, can be analyzed

using statistical methods to derive thermodynamic and dynamic properties of the system, such

as temperature and free energy. The molecular details of ice formation which can shed light on

the ion rejection mechanisms while forming ice are very challenging to obtain by experimental

measurements. MD simulation, with its ability to capture detailed trajectories of individual

particles, can serve as a powerful tool for gaining insights into the microscopic aspects of freeze

desalination. The primary limitations of MD simulations are the time and size scales [55,56],

which are restricted to ∼105 molecules at a time scale of nano-/microseconds. Freeze

desalination is a long process in MD simulation compared to real time, even to get a very small

amount of ice. To observe the spontaneous formation of ice growth in the timescale accessible

to the simulation, lower temperature fairly below the freezing point is advised [57]. Moreover,

system size must be over 5000 molecules to avoid finite size effect and stochastic effects [47].

Despite these challenges, the advancement of computational technologies has led to the

increasing use of molecular dynamics (MD) simulations to explore key aspects of crystallization

and its fundamental mechanisms.

In molecular simulations, specifically those involving sodium chloride (NaCl), the choice of

potentials is crucial, as they determine how ions and molecules interact. It will also have a big

impact on how long it takes to run a single simulation. Different potentials cater to varied

simulation requirements based on the level of accuracy and computational efficiency needed.

Ion models and water models have been listed in Table 1.1.

5

Table 1. 1 Using MD simulations, water-ion model combinations are utilized to study ion
rejection. Tm, assuming pure water, is the melting temperature related to the given water
mode [49]

Group Year Water Model Ion Model Tm (K) Ref.

Vrbka 2005 SPC/E SPC/E 215 [33]

Vrbka 2007 SPC/E Smith-Dang 215 [32]

Conde 2017 TIP4P/2005 Madrid 250 [30]

Tsironi 2020 TIP4P OPLS-AA 232 [29]

Luo 2021 TIP4P/2005 Madrid-2019 249 [27]

Conde 2021 TIP4P/2005 Madrid-2019 249 [20]

The Madrid Model is preferred for its balance between accuracy and computational demand,

making it suitable for simulations where a realistic representation of ionic behavior in aqueous

environments is essential. Madrid model captures the nuances of ion-water and ion-ion

interactions effectively, vital for studying processes like salt dissolution or ion transport in water.

[30,35] The Nonpolarized rigid Monomar and Smith-Dang are other variants, each fine-tuned for

specific scenarios such as ion pairing or interactions with specific types of water models, like the

SPC/E water model [32]. These potentials allow for tailored approaches to simulating NaCl in

various environments, essential for accurately modeling processes like ice growth in FD studies,

where the interaction between salt ions, water, and ice plays a critical role [27, 49].

6

In few studies on the freezing behavior of saltwater solutions, the direct coexistence method

has emerged as a critical technique in molecular dynamics simulations. This approach typically

involves placing an ice slab in contact with a saline solution slab [34]. By observing the interface

between these two phases, the growth or melting of ice can be monitored at various

temperatures to accurately determine the melting point or freezing point [34]. Below mentioned

Figure 1.1 explains how melting temperature has been taken using direct coexistence.

Fig. 1. 1 Number of molecules belonging to the ice slab as a function of time at different
temperatures. Inset: slope of a linear fit to the curves in the main panel as a function of
temperature. The melting temperature is taken as that for which the interpolated slope is zero
(239 K) [34].

They are determining number of molecules in the ice phase, then taking a slope of it to

determine melting temperature where slope is zero. They found that the melting temperature is

around 239K because slope was zero at 240K. In addition, they also found that if slope is positive

then ice is growing and if slope is negative ice is melting. While estimating melting temperature,

salt concentration is changing but not more than 1% [34]. This method has been effectively

applied in several studies, which observed ice growth and salt ion doping in simulations with

seawater concentrations [24]. Similarly, the 2022 study using the Madrid-2019 model employed

7

direct coexistence to ascertain the freezing temperatures of both pure water and electrolyte

solutions by noting whether the ice phase grows or melts in contact with the solution [24].

Additionally, the 2018 research on the freezing-point depression of NaCl in water used this

technique to study energy stabilization in a water/NaCl system at the point of phase transition

[30]. The system was simulated for 200 ns at three different temperatures between the freezing

point of water and the sodium chloride eutectic point (at one atmospheric pressure). At the solid-

liquid interface, water changes from liquid to ice, ice plates start to expand, and the rate of ice

front growth gradually slows down. The simulated temperature has a direct impact on the final

growing ice volume. The volume of forming ice increases as the simulated temperature decreases

away from the melting point [30]. These investigations collectively underscore the significance of

the direct coexistence method in enhancing our understanding of the complex interplay between

salt, water, and ice at the molecular level, particularly in the context of freezing point depression

and ice formation processes [24, 30].

After setting up seed ice with salt water and setting the system size in MD simulation, ice

growth can be observed at lower temperature. To understand it further, first one should look into

melting temperature of ice varies with water. Vrbka and Jungwirth conducted simulations using

four different types of boxes to observe how the melting temperature of ice varies when it is in

contact with water [32,33]. They first performed these simulations for pure water using the SPC/E

water model and then repeated the simulations for saltwater to see how the presence of salt

affects the melting temperature. They stated that these melting point values can be influenced

by system size and potential cut off distance. Now if partially freezing is happening in lower

temperature, system can be kinetically trapped in metastable glass like state. Then again, if any

system has small portion of unit cells in liquid phase, it will be easier to overcome the kinetic

barriers during freezing. They found lower melting temperature when cut off distance was

8

increased a bit. If system is melting in lower temperature, interfaces become kinetically stable,

that’s why, full system does not change. These changes found for neat water freezing [33]. Vrbka

and Jungwirth found three double peaks in the density profile in the initial structure after the

production phase, where it should have four according to them. These three fully developed

double peaks that they found, shows a specific degree of pre-melting of the interface. These

double peaks in the density profiles shows consequent immediate pre-melting of the interface.

Which causes freezing shows down [38].

Fig. 1. 2 Time evolution of the density profiles for neat water simulations. A) box360 at −5° B)
box180 at −15° C) box180 at −5° D) box180 at −10° (combined constant volume/constant
pressure simulation). Note the partial melting after the switch to constant pressure around 150
ns [32].

Vrbka and Jungwirth established a procedure for neat water freezing. This protocol was

helpful to find information on brine rejection and density profiles [32]. At first, they have

equilibrated system with constant volume. They took cubic ice and SPC/E water model.

Temperature was kept within 15K of 215K (melting temperature of SPC/E). Vrbka et al. wanted to

demonstrate the kinetic antifreeze effect of the added salt at the molecular level through brine

rejection. They found that if salt concentration is low, ions do not get trapped, see the figure (c)

9

below where NaCl is 2 in pairs. But for figure (d) where NaCl is 4 in pairs, ions get trapped. They

also found increase in freezing time when salt concentration is increased. This freezing time

increase is direct demonstration of kinetic anti-freeze effect of the added salt [32].

Fig. 1. 3 Time evolution of the density profiles for salt water freezing simulations. Trajectories of
Na+ and Cl− ions are displayed as black lines. Temperature was held at −10° in all cases. (a)
box180 with two NaCl ion pairs, (b) box180 with four ion pairs, (c) box360 with two ion pairs,
and (d) box360 with five ion pairs [32].

In couple of literature, ice growth was visualized via simulations and visualizations tools

(VMD, Ovitto etc.). Where ice growth can be observed in different temperature and in different

salinity. Couple these figures have been added down here.

10

Fig. 1. 4 Molecular dynamics simulation system ice growth over time, 500ns. [27].

In Figure 1.4, ion has been trapped after 500ns. To further investigate this, interface of ice

growth needs to be calculated. In literature, there were two ways to calculate interface. One way

to go is calculating the average bond order parameter [27], another way is to calculate

tetrahedrality parameter [30].

11

Fig. 1. 5 (a) Molecular dynamics simulation system, (b) Probability distribution of average bond
order parameter vs average bond order parameter at different temperature, (c) Values of
average bond parameter in x direction. So, from figure, average bond order parameter greater
than 0.38 are ice [27].

To further investigate ion rejection mechanism, one has to identify ice growth interface. As

discussed earlier, one of the interface identification methods is to calculate tetrahedrality

parameter. After calculating tetrahedrality parameter, interface location can be found by it. So,

the tetrahedrality parameter was calculated by Luo et al [50]. It was calculated to see the effect

of ions on the local ice structures which allows to calculate the orientational order of the water

molecules in the simulation as a function of the distance to the closest ion, to assess the impact

of ions on the local ice structure [50].

𝑞𝑞 = 1 −
9

2𝑛𝑛(𝑛𝑛 − 1)
� � (cos𝜃𝜃𝑗𝑗𝑗𝑗𝑗𝑗 +

1
3

)
𝑛𝑛

𝑘𝑘=𝑗𝑗+1

𝑛𝑛−1

𝑗𝑗=1

(2)

12

𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎(𝑦𝑦) = �
𝑞𝑞𝑖𝑖
𝑁𝑁𝑦𝑦

𝑁𝑁𝑦𝑦

𝑖𝑖=1

(3)

qavg(𝑦𝑦) = 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖 +
𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑞𝑞𝑙𝑙𝑙𝑙𝑙𝑙

2
[tanh �

𝑦𝑦 − 𝐼𝐼𝑆𝑆𝑆𝑆
𝑤𝑤

� − tanh �
𝑦𝑦 − 𝐼𝐼𝐿𝐿𝐿𝐿
𝑤𝑤

�] (4)

In these equation, jik is the angle given by the lines joining the oxygen atom of a given

molecule and those of its nearest neighbors j and k (less than or equal 4) [50].

Fig. 1. 6 (A) Tetrahedrality parameter as a function of distance between the water's oxygen and
the closest ion, for Cl–O and Na–O. (B) The tetrahedrality parameter for different simulation
times, indicated in the legend [29].

Here ion rejection rate was determined by this R equation. [27]

𝑅𝑅 = �1 −
𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖
𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

� ∗ 100% (1)

13

In Luo et al.’s paper, the retention or rejection of NaCl ions depends in part on the events

that take place at the ice-water interface, therefore the researchers continued by analyzing the

free energy profiles that were discovered using PMF. An ion is less likely to escape at higher energy

barrier values because it lacks the necessary kinetic energy. Ions are then trapped in ice as a result.

Soria et al also discussed about free energy calculation to see where interfacial free energy is

higher, whether in solution or in pure water. They measured interfacial free energy with classical

nucleation theory. Finally, they found that ice solution free energy is higher in solution than pure

water [27,40].

For calculating salinity, authors also calculated molar enthalpy of water. Molar enthalpy

of water is directly dependent on Avogadro number, system’s enthalpy, and number of water

molecules. Salinity was kept at 1.85m for salt solution. As enthalpy difference is very small for the

system, they had to run long simulations to find the difference (800ns at 190K to 100ns at 300K).

For calculating enthalpy difference, they had taken two system of solution where salinity was

1.836m and 1.863m. There are two major benefits of thermodynamic integration, they could

avoid finite size effect and stochasticity associated with the finite size of the system. Soria et al

took spherical ice Ih as a sample for direct coexistence with brine. Ice seeds with any ion were

embedded into the solution [34]. A crucial observation made was in the realm of mass percent

concentration of ions within the ice. As the temperature climbs, there is a discernible decline in

the ion concentration in the ice. In conditions where the temperature is 237.5 K or more (with a

degree of supercooling not exceeding 14.5 K), the ion concentration dwindles to around 0.5%

m/m, deemed apt for agricultural irrigation, and drops further to a mere 0.1% m/m, making it

ideal for drinking purposes. [27] The rate of Na is 1.21 times higher than Cl- and there was no

general decrease in the rate for Na+ as temperature rose [27]. Both Na and Cl had diffusion

coefficients about 10 x less than bulk [27]. By examining the ice's growth rate, they evaluated the

14

effect of temperature and diffusion for this as well. Ice grows at different rates depending on

temperature, and if it grows too quickly, it will trap ions. They discovered that ions might escape

if the ratio of ice growth rate to diffusion coefficient was less than 1. There is less ion retention or

trapping in the ice at higher temperatures since it has been observed that ion diffusion is

accelerated at these temperatures. And because the ice growth rate is decreased. Ice growth rate

had a nonlinear relationship. The development of NaCl.2H2O hydrates (hydrohalites) during

cooling at T = 233 K, which coexist with ice Ih [20]. Luo et al also looked at the final mass percent

(concentration) of the solution and discovered a decreasing relationship between temperature

and mass percent. As a result, they were able to simulate water that was pure enough to be

utilized for drinking or farming at higher temperatures (about 238 K). [27]

Fig. 1. 7 Ion concentration (left y-axis) in ice (blue circles) and brine (green squares) and the
potential energy in the MD simulation (gray line – right y-axis) as a function of time [29].

15

In the context of chemistry and physics, reactions often require a certain amount of

energy to proceed. This required energy is typically termed the "activation energy". It's like a hill

a reaction must climb before it can proceed to completion. This metaphorical "hill" represents an

energy barrier. Luo et al (2021) identified that activation energy was overcome by increasing the

system's temperature, as higher temperatures gave the molecules more kinetic energy [27].

Additionally, first energy barrier refers to the initial free energy barriers that ions face at the ice-

water interface. This barrier is a result of the free energy variation at the interface, primarily

caused by the hydration energy differences between ions in water and ions in ice. It was noticed

that the first energy barriers (ΔG) tend to be the highest while the other energy barriers (ΔG) are

often smaller. Additionally, Na+ has a lower energy barrier (ΔG) than Cl-, which makes it simpler

for Na+ to break through the energy barrier. [27] The temperature plays a pivotal role in the

freezing process of NaCl aqueous solutions, particularly in determining the rate at which ions are

rejected or trapped. In the study, it was observed that ions encounter energy barriers when they

attempt to move away from the freezing front. This is due to the free energy profiles that have

multiple local minima, which are influenced by the layering of water molecules near the ice

surface. Specifically, the first free energy barriers for Na+ and Cl− were identified to be 0.70 kcal

mol−1 and 0.92 kcal mol−1, respectively. The chance of an ion overcoming these barriers is directly

proportional to exp(−ΔG∗/kBT). Given the determined values of ΔGI∗, it can be inferred that Na+

ions have a relatively lower likelihood of being trapped in the ice in comparison to Cl− ions. [27]

As for the ion rejection rate (RR) in relation to temperature, it was noted that the RR ascends with

increasing temperature for both ions. Intriguingly, at any given temperature, the RR for Na+ is

approximately 1.21 times that of Cl−. This correlation is consistent with the theoretical predictions

which suggest P∼exp(−ΔG∗/kBT). Diving into the specifics of ion diffusion coefficients, both Na+

and Cl− display diminished diffusion coefficients at the ice-water interface as temperatures

16

decrease. To put this into perspective, at 235 K, the diffusion coefficient Dx stands at 7.4 × 10−11

m2 s−1 for Na+ and 9.1 × 10−11 m2 s−1 for Cl−. It's noteworthy that these values are roughly an order

of magnitude less than what is seen in bulk solutions. [27]. Temperature was 235 K for this bulk

solution. Delving into the dynamics of ice growth, the study highlighted that as the temperature

elevates, there is a zenith in the ice growth rate before it starts to decline. This phenomenon has

significant implications; when the ice is forming rapidly, ions might not get sufficient time to

escape, thus resulting in a subdued ion rejection rate at cooler temperatures. However, a shift in

behavior is observed at higher temperatures, where the augmented diffusion of ions promotes

their migration into the liquid phase, ensuring a heightened rejection rate [27].

The average potential energy between an ion and the water molecules in the ion's

hydration shell is known as hydration energy [27]. The hydration energy of Na+ and Cl- is stronger

with water than with ice, and the differences are higher than the average thermal energy,

indicating that the NaCl ions prefer to stay in solution as the ice expands. It underscores the

preference of Na+ and Cl− ions to remain in the liquid phase over being incorporated into ice due

to the energetics of their interactions with water molecules, which are significantly influenced by

thermal energy. Through a thorough analysis of the radial distribution functions for Na+ and Cl-,

it became evident that the variations in their hydration structures between solid and liquid phases

significantly influenced their behavior. Specifically, the RDF served as a quantitative tool to

measure the hydration energy, shedding light on why these ions exhibited distinct preferences in

different phases. If the Na-ice interaction is stronger than the Na-water interaction, the Na would

not leave the ice. Luo et al. claim that the Na-Water interaction is stronger than Na-Ice. They

concluded that this indicates that the hydration energy difference for Na+ is therefore greater

than the hydration energy difference for Cl- and that the ion rejection rate of Na+ is higher than

that of Cl-. The concept of hydration energy difference plays a pivotal role in understanding the

17

behavior of ions in freezing processes. Essentially, this difference measures an ion's attraction to

water molecules in comparison to ice molecules. An ion with a pronounced hydration energy

difference shows a marked preference for the liquid water phase over the solid ice phase. Delving

into the specifics of the study by Luo et al., it was discerned that Na+ possesses a more

pronounced hydration energy difference when compared to Cl-. This means Na+ has a

considerably stronger affinity for water, indicating a more robust interaction with water

molecules relative to its interaction with ice, especially when compared to that of Cl-. This

distinction becomes evident during the freezing process; the stronger water affinity of Na+

ensures it's more likely to be expelled from the ice structure, causing it to predominantly remain

in the liquid phase. In contrast, the hydration energy difference for Cl- is less pronounced, making

it less predisposed to stay in the liquid phase when compared to Na+. Consequently, the ion

rejection rate of Na+ surpasses that of Cl-. In essence, a larger hydration energy difference

equates to a higher likelihood of an ion being rejected during ice formation, and in this scenario,

sodium’s rejection rate exceeds that of chloride due to its more pronounced hydration energy

difference. To support this, they included simulation snapshots that showed more Cl- ions trapped

in the ice structure than Na+ ions. [27]

The RDF, or Radial Distribution Function, is a tool often used in molecular dynamics (MD)

simulations to analyze the spatial distribution of particles (The spatial distribution of particles

refers to how particles are arranged or spread out in space). In the context of the study by Luo et

al., the RDF was employed to examine how ions and water molecules are spatially distributed

relative to each other. By calculating the RDF, they aimed to understand the behavior of ions near

the freezing front and how this behavior contributes to the phenomenon of ion rejection during

the freezing of NaCl solutions. The information from the RDF helped in determining the energy

barriers ions face when moving away from the freezing front, and thus, it played a crucial role in

18

their analysis of ion rejection mechanisms. Discovering a particle (a molecule or an ion) at a

specific distance from a reference particle is described by the radial distribution function (RDF). It

is employed to gather data regarding the interactions of two particles. In Tsironi et al.’s work,

radial distribution function, g(r) was computed to look at the development and regional structure

of the ice encased NaCl dihydrate crystals. In figure we can see that changes observed as a

function of simulation time where those changes happened due to freezing.

Fig. 1. 8 This figure captured four results, (A) The time evolution of the total g(r), (B) oxygen-
oxygen bond for ice and water both, (C) Cl–Cl, Na–Na as well as the cross correlations between
Na–Cl, (D) O–Cl, O–Na for both ice and water components. The self-correlations of various atoms,
such as O-O, Cl-Cl, and Na-Na, are distinguished from the corresponding cross-correlations, such
as Na-Cl, O-Cl, and O-Na. The crystal's O-O radial distribution function g(r) (solid line) resembles
that of ice Ih with the addition of disorder brought on by the interaction between water and brine
[29].

19

This hints at the possibility that the ions in the studied system may be adopting an

arrangement akin to the FCC lattice. On the other hand, the cross-correlation between Na+ and

Cl- ions presented a distinct peak at 2.8 Å. This indicates a tendency for sodium and chloride ions

to position themselves roughly 2.8 Å apart within the solution. Taking these observations

together, a compelling picture emerges. The patterns unveiled by the RDFs bear a striking

resemblance to the structure of brine crystals. Typically found in high-concentration salt solutions

like NaCl, brine, when on the cusp of solidification, manifests in a unique crystalline structure [29].

The data suggests that the ions in the studied solution seem to be mirroring this crystalline

structure. This uncanny resemblance insinuates that, given the prevailing conditions, the system

might either be teetering on the brink of crystallization or displaying short-range ordering

patterns evocative of crystallized brine. [27,34,35]

To understand structural information inside ice lattice and salt water, Radial Distribution

Function (RDF), often symbolized as g(r), is calculated. RDF is a measure used in the field of

molecular physics and statistical mechanics specially to describe how the density of a system

varies as a function of distance from a reference particle. It provides insight into the structural

organization of particles (atoms, molecules, colloids, etc.) within a given system, typically in liquids

or solids but also applicable to gases at high densities. Mathematically, the RDF is defined such

that g(r)dr represents the probability of finding a particle within a spherical shell of radius r and

thickness dr away from a reference particle, normalized by the average number density of

particles ρ in the system. Essentially, it's a ratio of local density to the overall density of the system

[48, 51]. Here is list of values and their meaning in RDF [51].

• g(r)=0: No particles are found at distance r from a reference particle, indicating a prohibited

or highly unlikely region due to repulsive forces or physical constraints.

20

• g(r)= 1: The density of particles at distance r is the same as the average density of the system,

suggesting no structural correlation between particles at this distance.

• g(r)> 1: A higher likelihood of finding a particle at distance r, indicating regions of attraction

or structural ordering.

• g(r)< 1: A lower likelihood of finding a particle at distance r, suggesting repulsion, or excluded

volume effects.

1.3 Objectives

The main goal of this research is to advance the understanding of the ion rejection mechanism

in freeze desalination using molecular dynamics simulations, ultimately aiming to improve the

efficiency of the process, contribute to the development of more sustainable desalination

technologies, and address global water scarcity challenges.

• Utilize molecular dynamics simulations as an effective tool to study the complex

interactions and dynamics of ions and water molecules during the freezing process,

providing insights that may not be easily accessible through experimental methods alone.

• Gain a comprehensive understanding of the ion rejection mechanism in freeze

desalination at the molecular level, which is a crucial aspect of optimizing the process and

improving its efficiency.

• Evaluate the impact of various parameters, including temperature, pressure, and solute

concentration, on the efficiency of ion rejection in freeze desalination, which can guide

the optimization of the process.

21

• Contribute to the body of scientific knowledge on freeze desalination and its ion rejection

mechanisms, inspiring further research, and innovation in the field of water purification

and desalination technologies.

22

CHAPTER 2

METHODOLOGY

2.1 Potentials

We are using TIP4P/2005 model and Madrid 2019 model, where both made with Lennard

Jones Potential and Electrostatic Potential. Each ion also employs a particular modified LJ

potential with an additional electrostatic component. [35]

𝑢𝑢�𝑟𝑟𝑖𝑖𝑖𝑖� = 1
4𝜋𝜋𝜖𝜖0

𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗
𝑟𝑟𝑖𝑖𝑖𝑖

+ 4𝜀𝜀𝑖𝑖𝑖𝑖 ��
𝜎𝜎𝑖𝑖𝑖𝑖
𝑟𝑟𝑖𝑖𝑖𝑖
�
12
− �𝜎𝜎𝑖𝑖𝑖𝑖

𝑟𝑟𝑖𝑖𝑖𝑖
�
6
� (6)

The additional parameters are defined as the Lennard-Jones potential, where qi is for atom i

and 0 is the vacuum permittivity.

The Lennard-Jones (LJ) potential is a widely used mathematical model to describe the

interaction between a pair of neutral atoms or molecules. It is particularly useful in simulations of

molecular dynamics because it captures both attractive and repulsive forces that occur due to van

der Waals interactions. The general form of the LJ potential is given by: [45]

𝑉𝑉(𝑟𝑟) = 4ϵ[(σ
𝑟𝑟
)12 -(σ

𝑟𝑟
)6] (7)

23

Where:

• V(r) is the potential energy as a function of the distance r between two particles.

• ϵ is the depth of the potential well, representing the strength of the attraction.

• σ is the distance at which the potential energy is zero; this parameter also represents

the effective diameter of the particles.

• The (σ
𝑟𝑟
)12 term describes the repulsion between the particles, which becomes significant

when particles are very close to each other.

• The (σ
𝑟𝑟
)6 term accounts for the attraction between the particles, which dominates at

intermediate distances

Fig. 2. 1 Graph of the LJ potential function: Intermolecular potential energy V(r) as a function of
the distance of a pair of particles. [45].r=rmin=21/6σ.

24

The plot above illustrates the Lennard-Jones potential as a function of the distance

between two particles. Here's a breakdown of the key features:

• Repulsive Region: When the distance r between particles is less than about 21/6σ, the

potential energy rapidly increases. This sharp rise represents the repulsive force that

prevents the particles from getting too close to each other, corresponding to the r−12 term

in the equation.

• Attractive Region: As the distance increases beyond 21/6σ, the potential energy dips into

negative values, indicating an attractive force between the particles. This is the region

where the r−6 term dominates, modeling the van der Waals attraction.

• Minimum Energy Point: The minimum of the curve occurs at r=21/6σ, which is the most

energetically favorable distance between the particles under this model. At this point, the

attractive and repulsive forces are balanced in such a way that the system's potential

energy is minimized.

The electrostatic potential, denoted as ϕ, quantifies the potential energy per unit charge at a

given point in an electric field, which is created by stationary electric charges. It is a scalar quantity

and integral in fields like electrochemistry, capacitor physics, and molecular modeling. The

potential ϕ at a point in space due to a point charge Q can be expressed using the formula: [46]

𝜙𝜙(𝑟𝑟) =
𝑄𝑄

4𝜋𝜋𝜋𝜋0𝒓𝒓
 (8)

Here, r is the position vector relative to the charge's location, r is the magnitude of r (the

distance to the charge), ϵ0 is the permittivity of free space, and Q is the charge. This equation

essentially states that the potential at a point is directly proportional to the charge and inversely

25

proportional to the distance from the charge. In molecular dynamics, the electrostatic potential

is crucial for calculating the forces between ions in a system, such as in a saltwater solution. Here,

the Coulombic interactions described by this potential dictate how ions like Na+ and Cl- influence

each other, crucial for predicting behaviors such as crystal formation or dissolution. This potential

also explains why charged particles move towards regions of lower potential in an electric field.

Fig. 2. 2 Electrostatic potential ϕ of a point charge in a quadrupolar medium vs. the distance r
from the point charge e in water, Eq. 8. [46]

The plot above shows the electrostatic potential ϕ as a function of distance r from a point

charge. The potential ϕ decreases as 1
𝑟𝑟
 which is evident from the curve falling off as distance

increases. Near the charge, the potential is high, indicating a strong influence of the charge at

close distances. As its moving further away, the potential decreases, reflecting the diminishing

26

influence of the charge over greater distances. This relationship is fundamental in understanding

how charged particles interact with each other and influence surrounding fields. [46]

2.2 Simulation Setup

 Molecular Dynamics (MD) simulations provide a powerful computational approach to

model the motions and interactions of atoms and molecules over time, based on principles of

classical Newtonian physics. Within the context of this project, MD simulations offer a microscopic

lens, enabling the visualization and analysis of complex processes that occur when water

molecules freeze, and ions are either incorporated into the forming ice structure or rejected into

the remaining liquid. Specifically, as water molecules arrange themselves into an ice lattice, MD

simulations can vividly illustrate how ions such as Na+ and Cl- navigate this changing environment.

By analyzing these simulations, we can gather insights into the ion rejection mechanisms,

discerning patterns in molecular movement, interaction energies, and spatial distributions that

would not be readily apparent or feasible to measure through traditional experimental methods

alone. Thus, MD simulations not only complement empirical studies but also reveal the nuanced,

molecular-scale intricacies of ion rejection during the freeze desalination process, offering

potential avenues to refine and optimize the process.

The methodology for conducting molecular dynamics simulations in the context of freeze

desalination involves the use of sophisticated software tools such as GROMACS, LAMMPS, and

PMEMD. The preparatory phase of the simulation mandates the definition of the system's

thermodynamic conditions. This entails choosing a particular thermodynamic ensemble, for

example NPT, NPxT, NVT etc., which sets the parameters for the system. With the system

boundaries defined, the simulation's next stage focuses on establishing specific thermodynamic

27

values, such as temperature (T) and pressure (P). This stage encompasses detailing both the

extensive and intensive properties of the system: N= Number of atoms, Px= Pressure in x

direction, T= Temperature & V= Volume. Here, we are using NPxT and NVT as ensembles. Next

step is setting boundaries, we are using periodic boundaries. The next crucial step is setting

equations of motions. The equations of motion are generally considered to follow one set of

definitions. Thus, the Leapfrog algorithm or the Velocity-Verlet algorithm are not different

“equations of motion” but are different numerical approximations of the equations of motion as

defined by Newton’s Laws of Motion. Various equations of motion are available for this purpose,

including the Velocity-Verlet, Leapfrog algorithms, Numerical propagation, and Verlet integration.

This stage is pivotal because molecular dynamics simulations require stable environments for

accurate predictions. To achieve this stability and control, various algorithms and theorems are

utilized. For instance:

• The Buss thermostat, Velocity rescale thermostat, and Velocity scaling thermostat are

advanced methodologies aimed at adjusting and stabilizing the temperature by

moderating particle velocities. The Nose-Hoover Theorem offers a deterministic approach

to maintaining the system's temperature.

• When it comes to pressure regulation, Berendsen barostat and Parrinello-Rahman

Barostat are commonly employed. (Add which ones are you using)

Each of these methods has its unique characteristics and applications, ensuring that the system

remains within the desired thermodynamic parameters throughout the simulation. Following this,

the simulation box must be configured, with most papers opting for a rectangular geometry. The

dimensions of the simulation box should be defined. Ours is being 5.40 nm x 4.65 nm x 17.59 nm.

28

To maintain the rigidity of water molecules, algorithms like SHAKE, SETTLE, and LINCS can be

employed.

Molecular interactions, especially those involving water molecules, are commonly defined

using specific potentials. One of the primary potentials for water interactions is the Lennard-Jones

potential, typically implemented with a cutoff of 1.2 nm [35]. Other important interactions include

Coulombic (often handled by methods like Particle Mesh Ewald) and Van der Waals [36]. To

address long-range electrostatic interactions, specialized algorithms such as Particle-Particle

Particle Mesh, Particle Mesh Ewald summation, Particle Mesh Ewald method, and Smooth Particle

Mesh Ewald procedure are employed [37]. Hydrogen bonds in water are pivotal for its unique

properties. Each water molecule can form up to four hydrogen bonds, referring to its two

hydrogen atoms and two lone pairs on the oxygen atom. The hydrogen bond is a type of dipole-

dipole interaction, where the hydrogen atom of one water molecule is attracted to the oxygen

atom of another. This bond is partly electrostatic, partly LJ potential arising from the Coulombic

force between the positively charged hydrogen and the negatively charged oxygen. However,

hydrogen bonding is stronger than typical dipole-dipole interactions due to the small size of

hydrogen and the high electronegativity of oxygen, forcing closer approach of molecules.

Here, we are using TIP4P/2005 water model for water and ice, and Madrid Model for salt.

The simulation consists of 18104 atoms and ran for 200ns for four cases, and 500ns for one cases.

Here, two different ensembles were used to observe ion rejection rate and salinity change in brine

solution, those are NVT (constant number of particles, volume, and temperature) and NPxT

(constant number of particles, pressure in x direction, and temperature). Temperature was set at

235K and 240K. These were the key parameters for LAMMPS simulation.

29

2.3 Tetrahedrality Parameter

The tetrahedrality parameter, often termed q or qt, is a measure that helps discern the local

tetrahedral structure around an atom or molecule, particularly in the context of water and its

hydrogen-bonding nature. In the MD simulations, this parameter is instrumental in characterizing

the arrangement of water molecules as they transition between liquid and solid phases. The q

parameter for a molecule, particularly a water molecule in our context, can be computed using

the following approach:

Select a Central Molecule:

• For every water molecule taken as the central molecule, identify its four nearest

neighbors, typically other water molecules. These neighbors are usually determined

based on the oxygen-oxygen distance, given the nature of hydrogen bonding in water.

Compute the Distance Vector:

• For each pair of these four nearest neighbors, compute the distance vector between their

oxygen atoms. Let's consider these vectors as rij where i and j are two neighboring

molecules among the four closest ones.

Calculate the Angle Between Vectors:

• For every combination of these vectors (6 combinations for 4 neighbors), compute the

angle θ between them. The cosine of this angle is given by eq. 9 [50],

cos(θij)=
ri⋅rj

 ∣ri∣×∣rj∣
 (9)

Tetrahedrality Parameter Calculation:

30

• The tetrahedrality parameter q for the central molecule is then given by eq. 10 [50],

q=1−3
8
∑i<j(cos(θij)+13)2

(10)

Where the summation runs over the 6 combinations of the 4 nearest neighbors.

The value of q will be close to 1 for a perfect tetrahedral arrangement (as seen in ice) and

will be significantly lower in the liquid phase where the arrangement is more distorted. Here, qice

≈0.95 and qliq≈0.77 are the local order parameters for the bulk ice and liquid, respectively [50]. By

calculating the tetrahedrality parameter, the phase transition of water molecules can be

calculated from a liquid-like to an ice-like environment during the freeze desalination process.

Areas with high q values would correspond to regions where water is freezing or already in the

ice phase, while areas with lower q values would represent still liquid or transitioning regions. In

addition, this parameter can aid in identifying the ice-water interface and can provide information

into how solute ions (like Na+ and Cl-) are behaving near this interface—whether these are being

incorporated into the ice matrix or rejected into the remaining liquid phase. For practical

calculations, most molecular dynamics software packages or associated analysis tools provide

functionalities or scripts to compute tetrahedrality parameters, given the relevance of this

measure in studying water and aqueous systems.

2.4 Interface Calculation

Identifying the ice-water interface in a freeze desalination process using the tetrahedrality

parameter is an important task. Once the tetrahedrality parameter is calculated for each water

molecule in the system, these values can be used to delineate regions of ice from regions of liquid

water, thereby identifying the interface. Defining a threshold value for the tetrahedrality

parameter, q threshold, that distinguishes between liquid-like and ice-like environments. Here,

31

qice≈0.95 and qliq≈0.77 are the local order parameters for the bulk ice and liquid, respectively like

mentioned earlier. This implies that a value close to 0.95 would indicate a structure very close to

perfect tetrahedral geometry (as found in ice), whereas a value around 0.77 would be more

representative of the less ordered liquid water structure. Water molecules with q values higher

than this threshold will be considered as being in an ice-like environment, while those below it

will be in a liquid-like state. This threshold can be set based on literature values or a separate

calibration simulation where the states of water are well-defined. [50]

2.5 Ion Rejection Rate

Calculating the ion rejection rate in the context of a freeze desalination process using

molecular dynamics (or similar simulations) involves tracking the behavior of ions (like Na+ and Cl)

with respect to the growing ice interface. Here's how to proceed:

Temporal Analysis:

• For a dynamic understanding, calculate the rejection rate at various time points or time

intervals throughout the simulation. This will provide insights into how the rejection rate

might change as the ice front grows and as ion concentrations in the remaining liquid phase

potentially increase.

Comparative Analysis:

• To provide context for findings, compare the rejection rate calculated with any available

literature values or with rates from other simulations or experimental setups. This can give

insights into the efficiency and accuracy of this freeze desalination process.

As temperature increases, the viscosity of water decreases, which can affect the flow rate

and the behavior of ions within the system. Salinity, on the other hand, indicates the

32

concentration of salt ions in the water. Higher salinity means more ions need to be rejected to

produce freshwater. These two factors are interconnected, and their interplay can have nuanced

effects on ion rejection rates. Hence, understanding the comparative rejection rates across

different temperature and salinity gradients is crucial for optimizing desalination and other water

treatment processes.

The ratio of C_ice (the ratio of the number of ions trapped in the solid phase) and C_brine

(the number of ions in the liquid phase) can be combined to determine the ratio R [27].

 R = C_ice
C_brine

 (12)

The ion rejection rate can be calculated using the following formula: [27]

Ion Rejection Rate, RR = (1 - R) * 100 (13)

This formula represents the percentage of ions that are effectively rejected from the ice phase

and remain in the brine phase during the freeze desalination process. We can investigate various

control parameters to understand their impact on the ion rejection rate. This will help to optimize

the freeze desalination process for improved efficiency [27].

33

Fig. 2. 3 Values of q in y direction and simulation box bin distances in the x direction. This plot was
generated by post processing of frozen data at 53ns with NPxT ensemble at 240K.

By analyzing these parameters, especially in relation to temperature and salinity, we can gain

insights into the optimal conditions (for ensemble, salinity, and temperature) for maximizing ion

rejection rates. This is crucial for designing more efficient freeze desalination systems, ensuring

better water quality and resource management. The structural analysis provided by q aids in

understanding the microscopic mechanisms driving these macroscopic outcomes.

2.6 Free Energy

Calculating the free energy or energy barrier at a growing ice interface in a freeze

desalination process requires determining the energy difference between the ion being in the

bulk liquid phase and the ion being at or near the ice interface.

Here's the approach:

Umbrella Sampling:

34

• This is a commonly used technique to calculate free energy profiles using MD simulations.

• Begin by placing the ion of interest (Na+ or Cl-) at various distances from the ice interface,

then apply a harmonic biasing potential to "restrain" the ion at that position during the

simulation.

• This is repeated for various positions spanning from deep within the liquid phase to deep

within the ice phase, effectively "sampling" the ion's behavior across the interface.

Run Simulations:

• For each restrained position, run an MD simulation to gather data. by using Umbrella

Sampling and MD simulations, the free energy profile of an ion at an ice interface can be

calculated. This involves running simulations for the ion at various positions, collecting

positional data, and then using methods like WHAM to construct a PMF, which gives a

detailed view of the energy landscape the ion experiences near the interface. The biasing

potential ensures that the ion explores its local environment but remains close to the

chosen position. [48]

Weighted Histogram Analysis Method (WHAM):

• To calculate the PMF, the data from all simulations (different positions) are combined

using a technique called the WHAM. This method uses the collected energy and force

data to construct a probability distribution of the ion's position. Use the WHAM technique

to combine the data from all simulations into a single free energy profile (or PMF) as a

function of distance from the interface. [48]

• The result will show the relative free energy of the ion at various positions.

35

Interpretation:

• Examine the PMF:

• Regions with higher free energy represent unfavorable positions for the ion. free

energy peaks within the liquid phase in a PMF suggest regions where ions are

more stable. For FD, this could imply more effective ion rejection if the energy

associated with ion entrapment in the ice is higher than the energy associated

with dissolution in the liquid phase, making it energetically unfavorable for them

to be incorporated into the forming ice. However, the overall impact on the

desalination process would depend on a detailed analysis of these energy barriers

in relation to the ice-liquid interface dynamics. If this region coincides (direct

coexistence of ice and brine) with the ice interface, it suggests that the ion is

rejected by the growing ice.

• Regions with lower free energy (or deep valleys) can suggest positions where the

ion is stabilized. If such valleys exist in the liquid phase but not in the ice phase, it

supports the notion of ion rejection in freeze desalination.

Repeat for Both Ions:

• The process should be repeated for both Na+ and Cl- to determine the energy barriers or

free energies associated with each ion type.

Comparative Analysis:

• Once PMFs have been calculated for both ions, the relative stabilities and energy barriers

can be compared.

36

By calculating the free energy profiles, valuable insights can be gained into the fundamental

interactions that dictate ion behavior at the ice interface, providing a deeper understanding of

the freeze desalination process at the molecular level.

2.7 Radial Distribution Function (RDF)

The RDF can be used to study the local structure and organization of particles in a system,

such as liquids, gases, or solids. It can reveal the presence of short-range and long-range order in

a system, as well as provide insights into the nature of interactions between particles, like

attractive or repulsive forces. By using the RDF in MD simulations, valuable insights into the local

structure and organization of water molecules and ions during the freeze desalination process can

be gained. The results will yield valuable insights into the ion rejection mechanism, enabling us to

optimize the process for enhanced efficiency and sustainability, especially when applied to

molecular dynamics (MD) simulations of systems like freeze desalination. Because: [44,48]

Understanding Local Structure: The RDF is a key tool in understanding the arrangement of

particles, like water molecules and ions, in a system. It is like a map how likely you are to find a

particle at a certain distance from another particle, compared to just random chance. In the

context of freeze desalination, this becomes especially useful because as water freezes, it forms

an ice-liquid interface. The RDF can show us how the water molecules and ions are arranged near

this boundary. When the RDF shows a sharp peak at a specific distance, it means that particles

are more likely to be separated by that distance – they prefer to be this far apart. On the flip side,

if there's a dip or trough in the RDF at a certain distance, it indicates that it's less likely for particles

to be separated by that distance. This information is crucial in freeze desalination studies because

it helps us understand the local structure of water and ions near the freezing interface, which is

37

vital for optimizing the process and making it more efficient. The Radial Distribution Function

(RDF) is pivotal in optimizing freeze desalination by revealing the molecular arrangement of water

and ions near the freezing interface. By analyzing RDF peaks and troughs, we can fine-tune

freezing conditions to enhance ice purity and exclude impurities more effectively. RDF plots the

density probability of particles at different distances from a reference particle, revealing where

particles are more likely to be positioned relative to each other. Sharp peaks in the RDF indicate

preferred distances where water molecules align to form ice crystals, suggesting optimal freezing

conditions that promote the formation of pure ice and the exclusion of impurities. Troughs, on

the other hand, show less likely distances for particle arrangements, helping identify where ions

or impurities are pushed out as the ice lattice forms. By analyzing these peaks and troughs, the

freezing process can be fine-tuned—adjusting the freezing rate and temperature—to maximize

ice purity and exclude impurities effectively. This analysis aids in setting precise control

parameters to improve the efficiency and scalability of freeze desalination, making it possible to

achieve higher purity and yield in ice production for water desalination. Overall, RDF serves as a

vital tool in refining freeze desalination techniques, enhancing process efficiency, and aiding in

the scale-up from laboratory to industrial applications. This insight enables the adjustment of

cooling rates, temperature gradients to maximize salt removal efficiency. Furthermore, analysis

of the RDF informs the design of additives that modify water structure, improving the selective

exclusion of impurities. By analyzing these peaks and troughs in the RDF, we can gain insights into

how the microscopic arrangements of particles influence the larger process of separating salt

from water through freezing. Analyzing the Radial Distribution Function (RDF) allows for precise

adjustments in MD simulation. Peaks indicate preferred particle distances, facilitating the

formation of purer ice by aligning water molecules optimally. Troughs highlight less likely

distances, helping to exclude impurities. This understanding guides the adjustment of cooling

38

rates and temperature gradients, maximizing salt removal. Additionally, RDF analysis informs the

development of additives that further optimize water structure for selective impurity exclusion,

enhancing overall desalination efficiency. [44,48]

Ion Exclusion from the Ice Front: As water freezes, it forms a crystalline structure that

typically excludes impurities, including ions. By examining the RDF of ions with respect to water

molecules, we can observe how ions are pushed away from growing ice interfaces. If, for example,

the RDF between water molecules and ions shows a depletion zone (a decrease in probability) at

distances corresponding to the ice-liquid interface, this suggests that ions are being rejected from

the solidifying ice front. As water freezes into ice, its crystalline structure naturally excludes

impurities such as ions. The RDF between water molecules and ions can reveal a depletion zone

at distances typical of the ice-liquid interface, indicating a reduced probability of ion presence

where ice forms. This depletion suggests that ions are actively pushed away from the ice front,

preventing their incorporation into the ice lattice, and thereby enhancing the purity of the frozen

water. As water freezes into ice, its molecules form a hexagonal crystalline structure that excludes

impurities, including ions. This process, known as ion exclusion, occurs because the regular ice

lattice cannot incorporate ions without disrupting its hydrogen-bonded network. This exclusion is

crucial for understanding natural phenomena, like the concentration of salts in unfrozen water

bodies, and applications such as freeze desalination, highlighting the intricate dance between

water's structure and impurity distribution during freezing. [44,48]

Nature of Interactions: The positions and heights of peaks in the RDF can indicate the

strength and nature of interactions between particles. Strong attractive forces between particles,

for instance, can lead to pronounced peaks at specific distances in the RDF, corresponding to

preferred binding or interaction distances. In the context of FD, if there are specific interactions

between ions and water molecules that either promote or hinder ion rejection, these could be

39

revealed in the RDF. It reveal a depletion zone at distances typical of the ice-liquid interface,

indicating a reduced probability of ion presence where ice forms. This depletion suggests that ions

are actively pushed away from the ice front, preventing their incorporation into the ice lattice,

and thereby enhancing the purity of the frozen water. Peaks at certain distances indicate,

suggesting specific binding configurations between ions and water. Such insights can identify

interactions that either promote or hinder ion rejection during freezing. By analyzing the position

and height of these peaks, scientists can deduce how ions influence the water structure,

potentially improving freeze desalination efficiency by identifying optimal conditions for

maximizing ion exclusion from the forming ice, thus enhancing water purity [44, 48].

To calculate RDF gab(r), we used eq. 11, [51]

gab(r) = (NaNb)−1��〈𝛿𝛿(|𝒓𝒓𝑖𝑖 − 𝒓𝒓𝒋𝒋| − 𝑟𝑟)〉
𝑁𝑁𝑏𝑏

𝑗𝑗=1

𝑁𝑁𝑎𝑎

𝑖𝑖=1

(11)

In a homogeneous system, the radial distribution function (RDF) is adjusted so that its value

reaches 1 at large distance between particles. The RDF measures the average number of type 'b'

particles located within a certain distance 'r' from a type 'a' particle, and presents this count as a

density value [51]. In summary, by using the RDF in conjunction with MD simulations for freeze

desalination processes, we can gain better understanding of how ions are rejected at the

molecular level.

40

We have few simulations to achieve above mentioned goals. Here is the list of it.

Table 2. 1 These are our simulation summary for LAMMPS.

41

CHAPTER 3

RESULTS AND DISCUSSIONS

3.1 Ice Growth and Ion Trap Comparison with Different Ensembles (NVT and NPxT)

The phenomena of ice growth and ion entrapment offer insights into presenting unique

challenges and opportunities for exploration. Particularly, the investigation of these processes

under different thermodynamic ensembles, namely NVT (constant number of particles, volume,

and temperature) and NPxT (constant number of particles, pressure in x direction and

temperature), reveals details about system equilibriums, structural formations, and energy

distributions. This thesis delves into the comparative study of ice growth and ion trap mechanisms

within the NVT and NPxT ensembles. We have run the simulation for 500ns to allow for adequate

freezing with NVT ensemble at 235K in Figure 14.

Fig. 3. 1 Molecular Dynamic Simulation of growing ice front in NaCl solution using Lammps
simulation. On the left is the hexagonal ice commonly found in natural conditions in contact with
a solution of 0.6 M NaCl. Red – Oxygen, White – Hydrogen, Purple – Sodium, Green - Chloride.

100ns 204ns

42

When looking closely each trapped ion, it is clear how ions are surrounded by water atoms.

Chloride is found to be surrounded by hydrogen atoms. In the other hand, sodium was found to

be surrounded by oxygen atoms due to opposite charge. There was visible ice growth for 100ns

simulation. After 100ns, ice growth was reduced substantially but ion entrapment was very less

within 200ns. We ran the same simulation with NPxT ensemble to compare ice growth and ion

entrapment.

(a) NVT_235K_TIP4P/2005 (b) NVT_240K_TIP4P/2005

(c) NPxT_235K_TIP4P/2005 (d) NPxT_240K_TIP4P/2005

Fig. 3. 2 (a) NVT_235K_TIP4P/2005, (b) NVT_240K_TIP4P/2005, (c) NPxT_235K_TIP4P/2005, (d)
NPxT_240K_TIP4P/2005. Molecular Dynamic Simulation of growing ice front in NaCl solution
using Lammps simulation. On the left is the hexagonal ice commonly found in natural conditions
in contact with a solution of 0.6 M NaCl. All simulation consists of 18104 atoms.

 As we know from literature that melting temperature of TIP4P/2005 is 249K [20,27]. So, the

temperature, set at 235K and 240K, is below the freezing point of water, creating a convenient

environment to ice growth. The fixed volume in the NVT and fixed pressure in NPxT ensemble

plays a crucial role in freezing. By setting the temperature below the freezing point but not too

low (235K and 240K here), the simulation achieves an imbalance where the kinetic energy of the

molecules is low enough to allow them to come together and form stable ice crystal structure,

but not so low that the molecular motion is overly restricted. The fixed volume of the NVT

43

ensemble further influences this balance by limiting the space in which the molecules can move,

thereby affecting the density and arrangement of water molecules and their interactions, which

is critical for the growth of ice crystals in the solution. The use of the TIP4P/2005 model for water

further impacts this process, affecting how water molecules interact with each other and with the

NaCl molecules in the solution. Thus, the substantial ice growth observed in these simulations can

be attributed to the interplay between the reduced kinetic energy at 235K. In MD simulations

described here, salinity, ion models and water models was same all four cases, but ensembles and

temperatures were different. If we compare temperatures with same ensemble in Fig. 15(a) &

15(b) and Fig. 15(c) & Fig. 15(d), lower freezing temperature gave better freezing. This agrees with

our expectation, as we have seen in literature [27, 47, 48, 49]. If we further lower the

temperature, it will give more freezing evidently up to 220K from literature. If we compare

ensembles for same temperature in Fig. 15(a) & 15(c) and Fig. 15(b) & 15(d), the most notable ice

growth was for NPxT over NVT. Here is a table to show ice growth along x axis, expressed in

interface shift.

Table 3. 1 Interface start and end in x axis of simulation box for four cases.

Cases Interface start Interface end

(a) NVT_235K_TIP4P/2005 26.97 51.56

(b) NVT_240K_TIP4P/2005 26.97 47.07

(c) NPxT_235K_TIP4P/2005 26.97 62.50

(d) NPxT_240K_TIP4P/2005 26.97 46.59

44

From Table 3 and Figure 15, we can say case (c) provided most notable ice growth where

temperature was low enough to freeze and ensemble provided constant pressure to ensure

freezing.

The differences in ice growth and ion trapping between the two ensembles are indicative of

how thermophysical properties can be influenced by the choice of ensemble. The NPxT ensemble,

by allowing volume changes, might more accurately reflect natural processes where pressure and

temperature are constant, but volume can change. In this investigation, we explore the kinetic

properties of water molecules and ions under varying thermal and physical conditions at different

temperatures and under distinct constraints of fixed and variable volume. The findings of Luo and

colleagues highlight that the rejection of ions is significantly influenced by temperature variations,

which affect both ion diffusion and the speed of ice formation [27, 48]. This interaction directly

impacts the efficiency with which ions are excluded. Notably, as the temperature approaches the

melting point (249 K, according to the TIP4P/2005 model), the rate at which ions are rejected

reaches its maximum.

 3.2 Ion Rejection Rate Comparison in Different Temperature and Ensembles

In the molecular dynamics simulations under consideration, ion rejection rates were

compared across varying temperatures using the TIP4P/2005 water model within NVT and NPxT

ensembles, the latter allowing for pressure variation in one direction. It was observed that the

most effective ion rejection occurred at a lower temperature of 235K with the NPxT ensemble,

suggesting enhanced efficiency under these specific conditions in Fig. 16 and Tab. 4 below. The

correlation with ice growth indicates a potential interest in the interplay between ice formation

and ion rejection. It is found RR (Ion Rejection Rate) for Na+ is around 1.01-1.04 times higher than

45

that for Cl- at both for temperatures 235K & 240K and for both NVT & NPxT. This probability ratio,

PNa
+/PCl

-. is lower than what we found in literature [42], which is 1.25. But this ration we have

found still aligns with fact that RR for Na+ is higher that Cl-. There could couple of reasons why we

have found lower ratio. We have used different temperature 240K and different ensemble NPxT

for two of the cases. But NVT ensemble and 235K were identical to literature.

(a) NVT_235K_TIP4P/2005

(b) NVT_240K_TIP4P/2005

46

(c) NPxT_235K_TIP4P/2005

(d) NPxT_240K_TIP4P/2005

Fig. 3. 3 (a) NVT_235K_TIP4P/2005, (b) NVT_240K_TIP4P/2005, (c) NPxT_235K_TIP4P/2005, (d)
NPxT_240K_TIP4P/2005. Values of q in y direction and simulation box bin in angstroms distances
in the x direction.

47

Figure 3.3 gives significant visualization that ions are getting rejected as a result salinity

goes higher in brine water with rejected ions. Here is listed results in Table 3.2.

Table 3. 2 Ion Rejection Rate in four distinguished cases with salinity of brine water with
rejected ion as freezing progresses.

As shown Table 3.2, higher salinity is found by using NPxT ensemble. This can be attributed to the

increased system volume (constant system pressure) associated with the NPxT ensemble. As

volume increases in NPxT (more ice growth), ion gets more rejected. While comparing the

temperatures, higher temperature provides better ion rejection because higher temperature,

ions obtain more kinetic energy to overcome the free energy barrier.

48

Fig. 3. 4 Ion concentration in ice over time vs interface location over time for NPxT ensemble at
235K.

As shown Figure 3.4, ion concentration in the growing ice section fluctuates as ions close

to the ice-water interface are captured or rejected. To address this “noise” and obtain a clearer

representation of the underlying trend, a moving average technique was applied. Specifically, a

moving average over a 10 ns window was employed to smooth out the ion concentration in the

ice section. The choice of a 10 ns window for the moving average was based on the need to

balance between smoothing the noise and preserving the essential features of the concentration

curve. This approach ensures that the key trends and variations in concentration are still visible.

The result after applying the 10 ns moving average for case 3 (NPxT_235K) is plotted in Figure 3.4.

Instead of using time as the x-axis, the interface location is used as it is directly related to time. As

shown, the ion concentration in ice is gradually increasing indicating the ion rejection rate

decreases slightly as the ice section grows larger.

49

3.3 Umbrella Sampling and Free Energy Calculation

Whether a Na+ or Cl- is trapped or rejected by the ice is largely determined by its dynamics

at the ice-water interface, which can be probed by examining the free energy profile of ions in the

vicinity of the ice front. The free energy ΔG for Na+ and Cl- in the x direction, i.e., the ice growth

direction, is shown in Figures 16a and 16b. It is seen that the free energy profiles exhibit multiple

local minima. The fluctuation of the free energy is caused by the layering of water molecules near

the ice surface (Fig. 17). The free energy variation generates energy barriers ΔG*, which are the

free energy difference between a local minimum and the adjacent maximum, as indicated in

Figure 14. If ΔG* is high, ions at a local free energy minimum (lowest point of 1st peak) may not

have sufficient kinetic energy to escape the attraction of water molecules in the ice structure and

eventually can be captured by the ice as the ice grows. On the other hand, the thermal fluctuation

of ions causes them to diffuse around the ice-water interface. The probability P of an ion

overcoming an energy barrier is proportional to exp(−ΔG* k T). In Figure 16, it is seen that the

first free energy barriers for Na+ and Cl- are the largest, which are 8.6 kcal/mol and 8.8 kcal/mol,

respectively. The second and third free energy barriers ΔG* and ΔG* are relatively small. In

addition, it is found that ΔGΙ* for Na+ is lower than that for Cl-. Combined with the effect of

temperature and the free energy landscape at the ice-water interface, are key factors determining

the rate and mechanism of ion rejection during freezing.

• The peaks are energy barrier to escape ice and go into liquid side

• Cl’s energy barrier is greater than Na, which is consistent with our literature review.

• From these plots, we can say that it is much more likely to escape ice for Na than Cl.

50

(a)

(b)

Fig. 3. 5 The free energy change of sodium and chloride as they progress from the ice front must
progress past the 2 energy barriers. The interface location is x = 47.97 indicated by perpendicular
dashed line on x axis.

Figure 3.5 (a) and (b) are instrumental in elucidating the molecular-level dynamics of ion

rejection in freezing NaCl solutions. They illustrate the free energy landscape that ions encounter

at the ice-water interface during the freezing process. The peaks depicted in the graphs represent

energy barriers that Na+ and Cl- ions must overcome to transition from the ice to the liquid side.

According to the study, the energy barrier for Cl- is greater than that for Na+, which aligns with

findings from the literature review [27, 48, 49]. This difference in energy barriers is indicative of

51

the likelihood of ion escape from ice, suggesting that Na+ ions have a higher propensity to enter

the liquid phase compared to Cl- ions. Additionally, the size of the Na+ ion plays a significant role

in its interaction with water molecules. Due to its smaller size relative to Cl-, Na+ tends to attract

water molecules more effectively, leading to the formation of hydration shells around the ion [20,

30].

3.4 Radial Distribution Function (RDF) Calculation

At the molecular scale, the dynamics of ions are governed by the molecular forces acting

on the ions by the surrounding molecules, which depend on the hydration energy per ion, which

is defined as the average potential energy between an ion and the water molecules in the

hydration shell of the ion. The hydration energy doesn’t include the other energetic interactions

or entropy. The variation of the hydration energy in water and ice is caused by the change of ionic

hydration structure. Figures 17 depict the radial distribution functions g(r) of water and ice around

Na+ and Cl-. It is seen that the first peak in g(r) for Na+ in water is 7.5 than that in ice, whereas

the g(r) curves of Cl- in water is 3.9. The integration of the g(r) curve gives the average number of

water/ice molecules Nh inside ionic hydration shells. The Na+-water interaction is stronger than

the Na+-ice interaction. The preferential rejection of sodium – or inclusion of chloride – has been

repeatedly shown in molecular dynamics studies by the absence of sodium or presence of

chlorides trapped in the ice [18,42,43,45–48]. Vrbka and Jungwirth first noted the preferential

nature of ion rejection when they only found chloride ions trapped at higher concentrations while

at lower concentrations both sodium and chloride ions were rejected [16]. It is due to the

differences in potential energy barriers. Figure 18(a) & (b) are showing the difference in the RDF

of chlorine and sodium in solid versus aqueous phases. The RDF quantifies the organizational

nature of atoms/molecules around a specific atom. For ions in solution, the RDF is directly

52

correlated with the amount of water molecules surrounding the given ion. The energy barriers

that chloride must overcome are larger than for sodium ions [42].

(a)

53

(b)

Fig. 3. 6 RDF shown in salt water and in ice for (a) Na+, (b) Cl-.

RDF data is important to understand how close other molecules is to each ions both in

ice lattice and in solution. From the values we have found in here, it is more likely that Cl- is

surrounded by more molecules compare to Na+. From this, we cannot draw conclusion yet

whether Cl- is more likely to get trapped or Na+. For that we need to calculate coordination

number and hydration energy first. It is important to note that RDF values are first step to

calculate coordination number and hydration energies.

54

CHAPTER 4

CONCLUSION AND FUTURE WORK SECTION

In this thesis, MD simulations have been used to investigate the microscopic kinetics of

ice growth and the molecular mechanism of ion rejection from freezing salt solutions has been

explored. Results showed that ion rejection rate is exceeding 90%, with the largest ice growth in

the simulation at 235K with NPxT used as the ensemble. As the temperature increases, the ion

rejection rate increases. Moreover, the rejection rate of Na+ is higher than that of Cl‒ (not

exceeding melting points). Furthermore, the molecular interactions between ions and water/ice

form energy barriers at the ice-water interface, which may cause possible entrapment of ions in

the ice. On the other hand, the inherent kinetic motion of ions allows them to overcome the

energy barriers and leads to ion rejection. The free energies for Na and Cl ions were found to be

8.6 & 8.81 kcal/mol, indicating the Cl ions have higher free energy barrier to escape from the ice

structure. As a result, the simulations have shown the Na ions are more effectively rejected into

the brine solution. Furthermore, the radial distribution values were found to be 7.5 for Na ion and

3.9 for Cl ion. So, Na+ is surrounded by more molecules than Cl-. This information is crucial to

determine which ions will get trapped during freezing.

4.1 Perspectives for Future Work

 The coordination number plays an essential role in this process as it determines the number

of nearest neighbors of ions, thereby influencing how ions interact with surrounding water

molecules and ice structures. Additionally, the hydration energy of ions, which reflects the

stability of ions when solvated, changes significantly as water transitions to ice, affecting ion

55

mobility and stability. Moreover, utilizing brackish water as a medium could further

understanding of ion rejection, as its unique ionic composition offers a varied context for

examining how multiple ion types at different concentrations impact ice nucleation and growth

dynamics.

 The TIP4P/ICE water model, which accurately represents water's properties at low

temperatures, is particularly useful for these studies. By simulating the effects of external electric

fields using this model, researchers can gain deeper insights into how field strength and frequency

modify ion mobility and ice growth kinetics. Such investigations are crucial for developing more

precise models of ion dynamics at the ice-water interface and could lead to innovative techniques

for controlling ion concentrations in environments where water is in the process of freezing. These

approaches promise to enhance theoretical understanding of freeze desalination.

56

REFERENCES

[1] M. Salehi, Global water shortage and potable water safety; Today’s concern and
tomorrow’s crisis, Environ. Int. 158 (2022) 106936. https://doi.org/10.1016/j.envint.2021.106936

[2] M. El Haj Assad, M. Nooman AlMallahi, M.A. Abdelsalam, M. AlShabi, W.N. AlMallahi,
Desalination Technologies: Overview, in: 2022 Adv. Sci. Eng. Technol. Int. Conf. ASET, 2022: pp.
1–4. https://doi.org/10.1109/ASET53988.2022.9734991.

[3] B. Zarei, E. Parizi, S. Mossa Hosseini, and B. Ataie-Ashtiani, A multifaceted quantitative
index for sustainability assessment of groundwater management: application for aquifers around
Iran, (n.d.).

[4] I. Janajreh, H. Zhang, K. El Kadi, N. Ghaffour, Freeze desalination: Current research
development and future prospects, Water Res. 229 (2023) 119389.
https://doi.org/10.1016/j.watres.2022.119389.

[5] L. Erlbeck, M. Rädle, R. Nessel, F. Illner, W. Müller, K. Rudolph, T. Kunz, F.-J. Methner,
Investigation of the depletion of ions through freeze desalination, Desalination. 407 (2017) 93–
102. https://doi.org/10.1016/j.desal.2016.12.009.

[6] A. Najim, A review of advances in freeze desalination and future prospects, Npj Clean
Water. 5 (2022) 1–15. https://doi.org/10.1038/s41545-022-00158-1.

[7] L. Macias-Bu, M. Guerra-Valle, G. Petzold, P. Orellana-Palma, Technical and
Environmental Opportunities for Freeze Desalination, Sep. Purif. Rev. 0 (2022) 1–10.
https://doi.org/10.1080/15422119.2022.2098504.

[8] K. Aagaard, E.C. Carmack, The role of sea ice and other fresh water in the Arctic
circulation, J. Geophys. Res. Oceans. 94 (1989) 14485–14498.
https://doi.org/10.1029/JC094iC10p14485.

[9] A.K. Peterson, Observations of brine plumes below melting Arctic sea ice, Ocean Sci. 14
(2018) 127–138. https://doi.org/10.5194/os-14-127-2018.

[10] R. Ferrari, M.F. Jansen, J.F. Adkins, A. Burke, A.L. Stewart, A.F. Thompson, Antarctic sea
ice control on ocean circulation in present and glacial climates, Proc. Natl. Acad. Sci. 111 (2014)
8753–8758. https://doi.org/10.1073/pnas.1323922111.

[11] A.Y. Shcherbina, L.D. Talley, D.L. Rudnick, Direct Observations of North Pacific Ventilation:
Brine Rejection in the Okhotsk Sea, Science. 302 (2003) 1952–1955.
https://doi.org/10.1126/science.1088692.

[12] R.A. Eastwood, R.W. Macdonald, J.K. Ehn, J. Heath, L. Arragutainaq, P.G. Myers, D.G.
Barber, Z.A. Kuzyk, Role of River Runoff and Sea Ice Brine Rejection in Controlling Stratification
Throughout Winter in Southeast Hudson Bay, Estuaries Coasts. 43 (2020) 756–786.
https://doi.org/10.1007/s12237-020-00698-0.

https://doi.org/10.1016/j.envint.2021.106936
https://doi.org/10.1109/ASET53988.2022.9734991
https://doi.org/10.1016/j.watres.2022.119389
https://doi.org/10.1016/j.desal.2016.12.009
https://doi.org/10.1038/s41545-022-00158-1
https://doi.org/10.1080/15422119.2022.2098504
https://doi.org/10.1029/JC094iC10p14485
https://doi.org/10.5194/os-14-127-2018
https://doi.org/10.1073/pnas.1323922111
https://doi.org/10.1126/science.1088692
https://doi.org/10.1007/s12237-020-00698-0

57

[13] A. Bogdan, Ice Clouds: Atmospheric Ice Nucleation Concept versus the Physical Chemistry
of Freezing Atmospheric Drops, J. Phys. Chem. A. 122 (2018) 7777–7781.
https://doi.org/10.1021/acs.jpca.8b07926.

[15] E.J. Smith, A.D.J. Haymet, Ion Solubility in Ice: Calculation of Potentially Favorable
Positions of CI− and Na+ Ions in the SPC/E Model of Ice 1 h*, Mol. Simul. 30 (2004) 827–830.
https://doi.org/10.1080/08927020410001709325.

[16] Y. Yashima, Y. Okada, M. Harada, T. Okada, Structures of ions accommodated in salty ice
Ih crystals, Phys. Chem. Chem. Phys. 23 (2021) 17945–17952.
https://doi.org/10.1039/D1CP01624E.

[17] M.R. Frank, C.E. Runge, H.P. Scott, S.J. Maglio, J. Olson, V.B. Prakapenka, G. Shen,
Experimental study of the NaCl–H2O system up to 28GPa: Implications for ice-rich planetary
bodies, Phys. Earth Planet. Inter. 155 (2006) 152–162.

 https://doi.org/10.1016/j.pepi.2005.12.001.

[18] B. Journaux, I. Daniel, R. Caracas, G. Montagnac, H. Cardon, Influence of NaCl on ice VI
and ice VII melting curves up to 6GPa, implications for large icy moons, Icarus. 226 (2013) 355–
363. https://doi.org/10.1016/j.icarus.2013.05.039.

[19] J.-A. Hernandez, R. Caracas, S. Labrosse, Stability of high-temperature salty ice suggests
electrolyte permeability in water-rich exoplanet icy mantles, Nat. Commun. 13 (2022) 3303.
https://doi.org/10.1038/s41467-022-30796-5.

[20] M.M. Conde, M. Rovere, P. Gallo, Spontaneous NaCl-doped ices Ih, Ic, III, V and VI.
Understanding the mechanism of ion inclusion and its dependence on the crystalline structure of
ice, Phys. Chem. Chem. Phys. 23 (2021) 22897–22911. https://doi.org/10.1039/D1CP02638K.

[21] Water: A Tale of Two Liquids | Chemical Reviews, (n.d.).
https://pubs.acs.org/doi/full/10.1021/acs.chemrev.5b00750 (accessed August 29, 2022).

[22] B. Guillot, A reappraisal of what we have learnt during three decades of computer
simulations on water, J. Mol. Liq. 101 (2002) 219–260. https://doi.org/10.1016/S0167-
7322(02)00094-6.

[24] C.P. Lamas, C. Vega, E.G. Noya, Freezing point depression of salt aqueous solutions using
the Madrid-2019 model, J. Chem. Phys. 156 (2022) 134503. https://doi.org/10.1063/5.0085051.

[25] V. Bianco, M.M. Conde, C.P. Lamas, E.G. Noya, E. Sanz, Phase diagram of the NaCl–water
system from computer simulations, J. Chem. Phys. 156 (2022) 064505.
https://doi.org/10.1063/5.0083371.

[26] M.M. Conde, C. Vega, G.A. Tribello, B. Slater, The phase diagram of water at negative
pressures: Virtual ices, J. Chem. Phys. 131 (2009) 034510. https://doi.org/10.1063/1.3182727.

[27] Luo, S., Jin, Y., Tao, R., Li, H., Li, C., Wang, J., & Li, Z. (2021). Molecular understanding of
ion rejection in the freezing of aqueous solutions. Physical Chemistry Chemical Physics, 23(23),
13292–13299. https://doi.org/10.1039/D1CP01733K.

https://doi.org/10.1021/acs.jpca.8b07926
https://doi.org/10.1080/08927020410001709325
https://doi.org/10.1039/D1CP01624E
https://doi.org/10.1016/j.pepi.2005.12.001
https://doi.org/10.1016/j.icarus.2013.05.039
https://doi.org/10.1038/s41467-022-30796-5
https://doi.org/10.1039/D1CP02638K
https://pubs.acs.org/doi/full/10.1021/acs.chemrev.5b00750
https://doi.org/10.1016/S0167-7322(02)00094-6
https://doi.org/10.1016/S0167-7322(02)00094-6
https://doi.org/10.1063/5.0085051
https://doi.org/10.1063/5.0083371
https://doi.org/10.1063/1.3182727
https://doi.org/10.1039/D1CP01733K

58

[28] S. Mahmood Fatemi Sh., M. Foroutan, Study on formation of unstable clathrate-like water
molecules at freezing/melting temperatures of water and salty water, Fluid Phase Equilibria. 384
(2014) 73–81. https://doi.org/10.1016/j.fluid.2014.10.007.

[29] Tsironi, I., Schlesinger, D., Späh, A., Eriksson, L., Segad, M., & Perakis, F. (2020). Brine
rejection and hydrate formation upon freezing of NaCl aqueous solutions. Physical Chemistry
Chemical Physics, 22(14), 7625–7632. https://doi.org/10.1039/C9CP05436G
https://doi.org/10.1039/C9CP05436G.

[30] Conde, M. M., Rovere, M., & Gallo, P. (2018). Molecular dynamics simulations of freezing-
point depression of TIP4P/2005 water in solution with NaCl. Journal of Molecular Liquids, 261,
513–519. https://doi.org/10.1016/j.molliq.2018.03.126.

[32] Vrbka, L., & Jungwirth, P. (2007). Molecular dynamics simulations of freezing of water and
salt solutions. Journal of Molecular Liquids, 134(1), 64–70.
https://doi.org/10.1016/j.molliq.2006.12.011.

[33] Vrbka, L., & Jungwirth, P. (2005). Brine Rejection from Freezing Salt Solutions: A Molecular
Dynamics Study. Physical Review Letters, 95(14), 148501.
https://doi.org/10.1103/PhysRevLett.95.148501.

[34] Soria, G. D., Espinosa, J. R., Ramirez, J., Valeriani, C., Vega, C., & Sanz, E. (2018). A simulation
study of homogeneous ice nucleation in supercooled salty water. The Journal of Chemical Physics,
148(22), 222811. https://doi.org/10.1063/1.5008889.

[35] Blazquez, S., Conde, M. M., Abascal, J. L. F., & Vega, C. (2022). The Madrid-2019 force field
for electrolytes in water using TIP4P/2005 and scaled charges: Extension to the ions F−, Br−, I−,
Rb+, and Cs+. The Journal of Chemical Physics, 156(4), 044505.
 https://doi.org/10.1063/5.0077716.

[36] J.L.F. Abascal, C. Vega, A general purpose model for the condensed phases of water:
TIP4P/2005, J. Chem. Phys. 123 (2005) 234505. https://doi.org/10.1063/1.2121687.

[37] C. Vega, J.L.F. Abascal, E. Sanz, L.G. MacDowell, C. McBride, Can simple models describe
the phase diagram of water?, J. Phys. Condens. Matter. 17 (2005) S3283.
https://doi.org/10.1088/0953-8984/17/45/013.

[38] C. Vega, J.L.F. Abascal, Simulating water with rigid non-polarizable models: a general
perspective, Phys. Chem. Chem. Phys. 13 (2011) 19663–19688.
https://doi.org/10.1039/C1CP22168J.

[39] S.P. Kadaoluwa Pathirannahalage, N. Meftahi, A. Elbourne, A.C.G. Weiss, C.F. McConville,
A. Padua, D.A. Winkler, M. Costa Gomes, T.L. Greaves, T.C. Le, Q.A. Besford, A.J. Christofferson,
Systematic Comparison of the Structural and Dynamic Properties of Commonly Used Water
Models for Molecular Dynamics Simulations, J. Chem. Inf. Model. 61 (2021) 4521–4536.
https://doi.org/10.1021/acs.jcim.1c00794.

[40] A.L. Benavides, J.L. Aragones, C. Vega, Consensus on the solubility of NaCl in water from
computer simulations using the chemical potential route, J. Chem. Phys. 144 (2016) 124504.
https://doi.org/10.1063/1.4943780.

https://doi.org/10.1016/j.fluid.2014.10.007
https://doi.org/10.1039/C9CP05436G
https://doi.org/10.1039/C9CP05436G
https://doi.org/10.1016/j.molliq.2018.03.126
https://doi.org/10.1016/j.molliq.2006.12.011
https://doi.org/10.1103/PhysRevLett.95.148501
https://doi.org/10.1063/1.5008889
https://doi.org/10.1063/5.0077716
https://doi.org/10.1063/1.2121687
https://doi.org/10.1088/0953-8984/17/45/013
https://doi.org/10.1039/C1CP22168J
https://doi.org/10.1021/acs.jcim.1c00794
https://doi.org/10.1063/1.4943780

59

[41] T. Yagasaki, M. Matsumoto, H. Tanaka, Lennard-Jones Parameters Determined to
Reproduce the Solubility of NaCl and KCl in SPC/E, TIP3P, and TIP4P/2005 Water, J. Chem. Theory
Comput. 16 (2020) 2460–2473. https://doi.org/10.1021/acs.jctc.9b00941.

[42] A.L. Benavides, M.A. Portillo, V.C. Chamorro, J.R. Espinosa, J.L.F. Abascal, C. Vega, A
potential model for sodium chloride solutions based on the TIP4P/2005 water model, J. Chem.
Phys. 147 (2017) 104501. https://doi.org/10.1063/1.5001190.

[43] S. Yue, A.Z. Panagiotopoulos, Dynamic properties of aqueous electrolyte solutions from
non-polarisable, polarisable, and scaled-charge models, Mol. Phys. 117 (2019) 3538–3549.
https://doi.org/10.1080/00268976.2019.1645901.

[44] Sneha, P., & George Priya Doss, C. (2016). Chapter Seven - Molecular Dynamics: New
Frontier in Personalized Medicine. In R. Donev (Ed.), Advances in Protein Chemistry and Structural
Biology (Vol. 102, pp. 181–224). Academic Press. https://doi.org/10.1016/bs.apcsb.2015.09.004.

[45] Generalic, Eni. "Lennard-Jones potential." Croatian-English Chemistry Dictionary &
Glossary. 29 June 2022. KTF-Split. 13 Apr. 2024. <https://glossary.periodni.com>.

[46] Slavchov, R., & Ivanov, T. (2014). Quadrupole terms in the Maxwell equations: Born
energy, partial molar volume, and entropy of ions. The Journal of Chemical Physics, 140, 074503.
https://doi.org/10.1063/1.4865878.

[47] Liu, M., Shi, Q., & Sun, Z. (2023). Molecular dynamics simulation of ammonium ion
removal by freezing concentration. Nano Express, 3(4), 045005. https://doi.org/10.1088/2632-
959X/acad1a.

[48] Thesis MECH 2021 Luo—991012980218103412.pdf. (n.d.). Retrieved April 15, 2024, from
https://lbezone.hkust.edu.hk/pdfviewer/web/viewer.php?file=aHR0cHM6Ly9sYmV6b25lLmhrdX
N0LmVkdS5oay9vYmovMS9vLzk5MTAxMjk4MDIxODEwMzQxMi85OTEwMTI5ODAyMTgxMDM0
MTIucGRm#page=1

[49] Rasmussen, A., Jannat, M., & Wang, H. (2024). Fundamentals of freeze desalination:
Critical review of ion inclusion and rejection studies from molecular dynamics perspective.
Desalination, 573, 117216. https://doi.org/10.1016/j.desal.2023.117216.

[50] Luo, S., Li, C., Li, F., Wang, J., & Li, Z. (2019). Ice Crystallization in Shear Flows. The Journal
of Physical Chemistry C, 123(34), 21042–21049. https://doi.org/10.1021/acs.jpcc.9b06225.

[51] 4.7.3. Radial Distribution Functions—MDAnalysis.analysis.rdf—MDAnalysis 1.1.0
documentation. (n.d.). Retrieved April 15, 2024, from
 https://docs.mdanalysis.org/1.1.0/documentation_pages/analysis/rdf.html.

[52] Luo, S., Li, C., Li, F., Wang, J., & Li, Z. (2019). Ice Crystallization in Shear Flows. The Journal
of Physical Chemistry C, 123(34), 21042–21049. http://dx.doi.org/10.1021/acs.jpcc.9b06225.

[53] Espinosa, J. R., Sanz, E., Valeriani, C., & Vega, C. (2013). On fluid-solid direct coexistence
simulations: The pseudo-hard sphere model. The Journal of Chemical Physics, 139(14), 144502.
https://doi.org/10.1063/1.4823499.

 [54] Frenkel, D. (2012). Simulations: The dark side (arXiv:1211.4440). arXiv.
http://arxiv.org/abs/1211.4440.

https://doi.org/10.1021/acs.jctc.9b00941
https://doi.org/10.1063/1.5001190
https://doi.org/10.1080/00268976.2019.1645901
https://doi.org/10.1016/bs.apcsb.2015.09.004
https://doi.org/10.1063/1.4865878
https://doi.org/10.1088/2632-959X/acad1a
https://doi.org/10.1088/2632-959X/acad1a
https://lbezone.hkust.edu.hk/pdfviewer/web/viewer.php?file=aHR0cHM6Ly9sYmV6b25lLmhrdXN0LmVkdS5oay9vYmovMS9vLzk5MTAxMjk4MDIxODEwMzQxMi85OTEwMTI5ODAyMTgxMDM0MTIucGRm#page=1
https://lbezone.hkust.edu.hk/pdfviewer/web/viewer.php?file=aHR0cHM6Ly9sYmV6b25lLmhrdXN0LmVkdS5oay9vYmovMS9vLzk5MTAxMjk4MDIxODEwMzQxMi85OTEwMTI5ODAyMTgxMDM0MTIucGRm#page=1
https://lbezone.hkust.edu.hk/pdfviewer/web/viewer.php?file=aHR0cHM6Ly9sYmV6b25lLmhrdXN0LmVkdS5oay9vYmovMS9vLzk5MTAxMjk4MDIxODEwMzQxMi85OTEwMTI5ODAyMTgxMDM0MTIucGRm#page=1
https://doi.org/10.1016/j.desal.2023.117216
https://doi.org/10.1021/acs.jpcc.9b06225
https://docs.mdanalysis.org/1.1.0/documentation_pages/analysis/rdf.html
http://dx.doi.org/10.1021/acs.jpcc.9b06225
https://doi.org/10.1063/1.4823499
http://arxiv.org/abs/1211.4440

60

[55] P. Nielaba, M. Mareschal, and G. Ciccotti, Bridging the Time Scales. (n.d.).
https://link.springer.com/book/10.1007/3-540-45837-9.

[56] Abrams, C., & Bussi, G. (2014). Enhanced Sampling in Molecular Dynamics Using
Metadynamics, Replica-Exchange, and Temperature-Acceleration. Entropy, 16(1), Article 1.
https://doi.org/10.3390/e16010163.

[57] G. C. Sosso, J. Chen. (2016). Crystal Nucleation in Liquids: Open Questions and Future
Challenges in Molecular Dynamics Simulations. Chemical Reviews. (n.d.).
https://pubs.acs.org/doi/10.1021/acs.chemrev.5b00744.

[58] Frenkel, D., Smit, B., & Smit, B. (2001). Understanding Molecular Simulation: From
Algorithms to Applications. Elsevier Science & Technology.
http://ebookcentral.proquest.com/lib/usu/detail.action?docID=307221.

[59] Rapaport, D. C. (2004). The Art of Molecular Dynamics Simulation (2nd ed.). Cambridge
University Press. https://doi.org/10.1017/CBO9780511816581.

[60] Meller, J. (2001). Molecular Dynamics. In Encyclopedia of Life Sciences. John Wiley &
Sons, Ltd. https://doi.org/10.1038/npg.els.0003048.

[61] Ghasemi, M., Shafiei, A., & Foroozesh, J. (2022). A systematic and critical review of
application of molecular dynamics simulation in low salinity water injection. Advances in Colloid
and Interface Science, 300, 102594. https://doi.org/10.1016/j.cis.2021.102594.

[62] Zhang, S., Zhang, C., Wu, S., Zhou, X., He, Z., & Wang, J. (2021). Ion-Specific Effects on
the Growth of Single Ice Crystals. The Journal of Physical Chemistry Letters, 12(36), 8726–8731.
https://doi.org/10.1021/acs.jpclett.1c02601.

https://link.springer.com/book/10.1007/3-540-45837-9
https://doi.org/10.3390/e16010163
https://pubs.acs.org/doi/10.1021/acs.chemrev.5b00744
http://ebookcentral.proquest.com/lib/usu/detail.action?docID=307221
https://doi.org/10.1017/CBO9780511816581
https://doi.org/10.1038/npg.els.0003048
https://doi.org/10.1016/j.cis.2021.102594
https://doi.org/10.1021/acs.jpclett.1c02601

61

APPENDICES

62

APPENDIX A

NVT_235K_0.6M_TIP4P/2005

#'TIP4P/2005'
#Total 11520 molecules 3840,20layers,576 atoms,192 molecules per
layer.
2ice 6liq 4ice 6liq 2ice=20layer
units real
dimension 3
boundary p p p
atom_style full
comm_modify vel yes

#parallel

read_data ice01.data
#read_restart iceE002_9.eq

' interactions 1O 2H 3Na 4Cl'
pair_style lj/cut/tip4p/long 1 2 1 1 0.1546 12.0 10.0
pair_coeff 1 1 0.1852 3.1589
pair_coeff 2 2 0.0 0.0
pair_coeff 3 3 0.3519 2.21737
pair_coeff 4 4 0.01839 4.69906
pair_coeff 1 2 0.0 0.0
pair_coeff 1 3 0.18962 2.60838
pair_coeff 1 4 0.01481 4.23867
pair_coeff 2 3 0.0 0.0
pair_coeff 2 4 0.0 0.0
pair_coeff 3 4 0.3439 3.00512

bond_style harmonic
bond_coeff 1 0.0 0.9572
angle_style harmonic
angle_coeff 1 0.0 104.52

kspace_style pppm/tip4p 1.0e-5
#kspace_modify order 7

group water type 1 2
group kation type 3
group anion type 4
group hydrogen type 2
group oxygen type 1
group liquid id 3601:18000
group liqoxy intersect oxygen liquid
group ion type 3 4

63

neighbor 2.0 bin
neigh_modify delay 1

timestep 2

compute Tliq water temp
compute Tion ion temp
compute Poperatom water pe/atom
compute Pope water reduce sum c_Poperatom
compute Tpar all temp/partial 1 0 1

fix SHAKE water shake 0.0001 200 0 b 1 a 1

#fix NPT all npt temp 235.0 235.0 200 z 1.0 1.0
2000.0
#fix_modify NPT temp Tpar

#fix zeromom all momentum 1 linear 0 0 1

fix zeromom all momentum 100 linear 1 1 1

fix NVT all nvt temp 235.0 235.0 200
fix_modify NVT temp Tpar

#fix fxfld all efield 0.0 0.02 0.0

thermo_style custom step temp press pe ke c_Tliq c_Tion lx ly
lz
thermo 100000
thermo_modify flush yes

fix Cp water ave/time 100000 1 100000 c_Pope file
potential.dat

===
dump atom positions for visualization, e.g. using VMD
===
dump all all custom 100000 all.lammpstrj id type x y
z
dump_modify all flush yes

dump dumpoxygen oxygen xyz 20000 dump.oxygen.xyz
dump_modify dumpoxygen flush yes
dump dumphydrogen hydrogen xyz 20000 dump.hydrogen.xyz
dump_modify dumphydrogen flush yes

64

dump dumpkation kation xyz 20000 dump.kation.xyz
dump_modify dumpkation flush yes
dump dumpanion anion xyz 20000 dump.anion.xyz
dump_modify dumpanion flush yes

===
dump atom velocities
===

#dump dumpoxygenvelocity liqoxy custom 10000 velocityO.dat x vy
#dump_modify dumpoxygenvelocity flush yes sort id

#dump dumpionvelocity ion custom 100 velocityIon.dat x vy
#dump_modify dumpionvelocity flush yes sort id

compute oxyvel oxygen chunk/atom bin/1d x lower 2.0 units box
discard no

fix vel oxygen ave/chunk 1 10000000 10000000 oxyvel vy norm
sample file velO.dat

compute VelperNa kation property/atom vy

compute VelperCl anion property/atom vy

compute VelNa kation reduce sum c_VelperNa

compute VelCl anion reduce sum c_VelperCl

fix Velocity ion ave/time 1 250000000 250000000 c_VelNa c_VelCl
file Velion.dat

#Enter loop
variable a loop 20
label loop

#Runtime 100ns
run 5000000

write_data output/system_gb_test_$a.data
write_restart restart/system_gb_test_restart_$a.data

#write_restart iceE002_2.eq
#write_data iceE002_2.data

65

APPENDIX B

ION REJECTION RATE CALCULATION

(A)MD_data_analysis and store

"""
Imports
"""
#Imports from Python libraries/packages
import os
import time

#Import from custom modules and classes
from util.database_handling import pickleStorage
from util.Ion_Atom import Atom
from util.Timestep import Timestep
from util.util import timeReq

"""
Receive User Input for the saving and processing of the MD simulation Data
"""
#Recieve user input for the datafile name:
print("MD Simulation Data File Name: ")
fileName = input()

print("Directory for Pickled Object Data: ")
directory = input()

print("Prefix for Pickled Object Files: ")
filePrefix = input()

#Generate the directory where the pickled files will be saved.
if not os.path.isdir(directory):
 command = "mkdir " + directory
 os.system(command)

print("Store file names in database (1 = yes): ")
doDatabaseStorage = input() == "1"
databaseName = ""
if doDatabaseStorage:
 print("Enter Database Name: ")
 databaseName = "databases/" + input() + "_db.sqlite"

66

"""
MD Simulation Data file Processing
"""
#Track the time required for the program
start = time.time()
print("Beginning File Processing")

#initialize parameters
timesteps = {}
timestep_values = []
atom_ids = []

#Open the data file
dataFile = open(fileName)

#Pull in the data from the file. Store them as Atom objects
line = dataFile.readline().removesuffix("\n")
count = 0
while line != "":
 if "TIMESTEP" in line:
 #Set up values for new timestep
 #if count >= 20:
 # break
 #count += 1
 timestep = int(dataFile.readline().removesuffix("\n"))
 timesteps[timestep] = Timestep(timestep)
 timestep_values.append(timestep)

 #if count % 25 == 0:
 # print("Timestep = " + str(timestep))

 elif "NUMBER" in line:
 num_atoms = int(dataFile.readline().removesuffix("\n"))

 elif "BOX BOUNDS" in line:
 #Box Bounds
 xlo, xhi = dataFile.readline().removesuffix("\n").split(" ")
 ylo, yhi = dataFile.readline().removesuffix("\n").split(" ")
 zlo, zhi = dataFile.readline().removesuffix("\n").split(" ")

 #Float Values
 xLo = float(xlo)
 xHi = float(xhi)
 yLo = float(ylo)
 yHi = float(yhi)
 zLo = float(zlo)
 zHi = float(zhi)

67

 #Add Dimensions to the timestep
 #if timestep % 200000 == 0:
 timesteps[timestep].addDimensions((xHi, xLo, yHi, yLo, zHi, zLo))

 #Skip next line
 dataFile.readline()
 else:
 #Generate new atoms and add them to the system
 atom_id, atom_type, x, y, z = line.split(" ")
 atom_ids.append(int(atom_id))
 timesteps[timestep].addAtom(Atom(int(atom_id), float(x), float(y), float(z), atom_type))

 #Move to the next line
 line = dataFile.readline().removesuffix("\n")

#Close the file
dataFile.close()

#Pull the time required for reading the data
fileReadTime = time.time()

"""
Call the Method to store the timestep data in storage and in the database
"""
print("Storing Timestep Data in Pickled Files and Database...")
for timestep in timestep_values:
 pickleStorage(timestep, timesteps[timestep], filePrefix, directory, databaseName, doDatabaseStorage)

#Pull the time required for neighbor addition and tetrahedrality Calculations
print("...Pickling == COMPLETE")
pickleTime = time.time()

"""
Output Total Times
"""
endTime = time.time()
print("File Processing Time:")
timeReq(start, fileReadTime)
print("Pickling and Database Storage time: ")
timeReq(fileReadTime, pickleTime)
print("Total Time:")
timeReq(start, pickleTime)

68

(B)Tetrahedrality Calculation

from mpi4py import MPI
import numpy as np
import math
import util.database_handling as db_handle
import util.neighbor_handling as nb_handle
import util.util as utilities
import sys
import sqlite3
import time

if len(sys.argv) < 3:
 print("Usage: Input number of timesteps being analyzed and timestep database path.")
 sys.exit(1)
numSteps = int(sys.argv[1])
database = sys.argv[2]

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

numPerProc = math.ceil(numSteps / size)

split_timesteps = None
if rank == 0:
 timesteps = db_handle.pullTimestepList(database)
 split_timesteps = utilities.splitList(timesteps, size, numPerProc)
 print(split_timesteps)

recvbuf = np.empty(numPerProc, dtype="l")
comm.Scatter(split_timesteps, recvbuf, root=0)

print("I'm ", rank, " and I recieved: ", recvbuf)

#Connect to the database
try:
 query = "file:" + database + "?mode=rw"
 conn = sqlite3.connect(query, uri=True)
except:
 print("That database doesn't exist.\nCheck your pathname and retry.")

print("Neighbor Addition and Tetra Calculations beginning on processer ", rank)
start = time.time()
for i in recvbuf:
 if i == 1:

69

 continue
 start_2 = time.time()
 timestep, file_path = db_handle.pullTimestep(i, conn)
 dimensions = timestep.getDimensions()
 delta_x = dimensions[1] - dimensions[0]
 delta_y = dimensions[3] - dimensions[2]
 delta_z = dimensions[5] - dimensions[4]
 nb_handle.constructNeighborhood(timestep, "1", 4, delta_x, delta_y, delta_z)
 db_handle.pickleObject(timestep, file_path)
 print("\tCompleted Neighbor Addition and Tetrahedrality Calculations for timestep: " + str(i))
 end_2 = time.time()
 print("\tTime required: ",end='')
 utilities.timeReq(start_2, end_2)
end = time.time()
print("Analysis Complete on rank: ", rank,". Time required:",end="")
utilities.timeReq(start, end)
print()

(C) Interface Calculation

"""
This file pulls data from the pickled timesteps and determines the interface location and plots it across the
 MD Simulation data with the curve_fit data as well.
"""

#Imports
import sqlite3
import matplotlib.pyplot as plt
import util.tetrahedral_calculations as tetrahedral_calculations
import util.database_handling as db_handle
import os
import time
import sys

#User enters input if none is given in command line
if len(sys.argv) < 2:
 #Connect to the database given by the user
 cont = False
 conn = None
 while not cont:
 print("Enter the Database File Path: ",end="")
 database = input()
 try:
 query = "file:" + database + "?mode=rw"
 conn = sqlite3.connect(query, uri=True)
 except:

70

 print("That database doesn't exist.\nCheck your pathname and retry.")
 else:
 print("That is an existing database. Connection Established.")
 cont = True
 cur = conn.cursor()
 poss_timesteps = [timestep[0] for timestep in cur.execute("SELECT timestep FROM timesteps")]
 #timesteps = [str(i * 10000000) for i in range(0, 103)]
 print("Here are the possible timesteps to analyze: ")
 count = 0
 output = ""
 while count < len(poss_timesteps):
 count2 = 0
 while count2 < 10 and count < len(poss_timesteps):
 output += str(poss_timesteps[count]) + "\t"
 count += 1
 count2 += 1
 output += "\n"
 print(output)

 #More User Input
 print("What timesteps to analyze ('all' for all timesteps, comma-separated list otherwise): ")
 toAnalyze = input()
 print("Enter Folder to save output in: ",end='')
 folderName = input()
 print("Add final interface calculations to a database (1 = yes): ",end='')
 doDatabase = input() == "1"
 if doDatabase:
 print("Enter the name of the database: ",end='')
 database2 = "databases/" + input() + "db.sqlite"
 if "databases/" not in database2:
 database2 = "databases/" + database2
 if "_db.sqlite" not in database2:
 database2 += "_db.sqlite"
 print("Save to file for Excel (1 = yes): ",end='')
 doExcel = input() == "1"
 if doExcel:
 print("Enter the name of the file to save the data to for Excel: ",end='')
 fileName = folderName + input()
 if ".csv" not in fileName:
 fileName += ".csv"
 print("Plot Calculations (1 = yes): ",end='')
 doPlotting = input() == "1"

 #Generate the directory where the pickled files will be saved.
 if not os.path.isdir(folderName):
 command = "mkdir " + folderName
 os.system(command)

71

 folderName += "/"

 #Get the timesteps to analyze
 if toAnalyze == "all":
 timesteps = poss_timesteps
 else:
 timesteps = toAnalyze.split(",")
else:
 try:
 conn = None
 try:
 query = "file:" + sys.argv[1] + "?mode=rw"
 conn = sqlite3.connect(query, uri=True)
 except:
 print("That database doesn't exist.\nCheck your pathname and retry.")
 exit()
 else:
 print("That is an existing database. Connection Established.")

 #Generate the directory where the pickled files will be saved.
 folderName = sys.argv[2]
 if not os.path.isdir(folderName):
 command = "mkdir " + folderName
 os.system(command)
 folderName += "/"
 if len(sys.argv) < 5:
 #Pull Timesteps to analyze
 if sys.argv[3] == "all":
 cur = conn.cursor()
 timesteps = [timestep[0] for timestep in cur.execute("SELECT timestep FROM timesteps")]
 else:
 if len(sys.argv) < 5:
 timesteps = sys.argv[3].split(",")
 else:
 timesteps = sys.argv[3:]
 doDatabase = False
 doExcel = False
 doPlotting = False
 else:
 if len(sys.argv) < 7:
 raise Exception("Incorrect Command Line Entries")
 if not (sys.argv[3].lower() == "true" or sys.argv[3].lower() == "false"):
 raise Exception("Incorrect Command Line Entries")
 if not (sys.argv[4].lower() == "true" or sys.argv[4].lower() == "false"):
 raise Exception("Incorrect Command Line Entries")
 if not (sys.argv[5].lower() == "true" or sys.argv[5].lower() == "false"):
 raise Exception("Incorrect Command Line Entries")

72

 doDatabase = sys.argv[3].lower() == "true"
 doExcel = sys.argv[4].lower() == "true"
 doPlotting = sys.argv[5].lower() == "true"
 if (doDatabase and doExcel) and len(sys.argv) < 9:
 raise Exception("Incorrect Command Line Entries")
 if (doDatabase or doExcel) and len(sys.argv) < 8:
 raise Exception("Incorrect Command Line Entries")
 if doDatabase and doExcel:
 database2 = sys.argv[6]
 fileName = sys.argv[7]
 if "databases/" not in database2:
 database2 = "databases/" + database2
 if "_db.sqlite" not in database2:
 database2 += "_db.sqlite"
 if ".csv" not in fileName:
 fileName += ".csv"
 if sys.argv[8] == "all":
 cur = conn.cursor()
 timesteps = [timestep[0] for timestep in cur.execute("SELECT timestep FROM timesteps")]
 else:
 timesteps = sys.argv[8].split(",")
 if doDatabase and not doExcel:
 database2 = sys.argv[6]
 if "databases/" not in database2:
 database2 = "databases/" + database2
 if "_db.sqlite" not in database2:
 database2 += "_db.sqlite"
 if sys.argv[7] == "all":
 cur = conn.cursor()
 timesteps = [timestep[0] for timestep in cur.execute("SELECT timestep FROM timesteps")]
 else:
 timesteps = sys.argv[7].split(",")
 if not doDatabase and doExcel:
 fileName = sys.argv[6]
 if ".csv" not in fileName:
 fileName += ".csv"
 if sys.argv[7] == "all":
 cur = conn.cursor()
 timesteps = [timestep[0] for timestep in cur.execute("SELECT timestep FROM timesteps")]
 else:
 timesteps = sys.argv[7].split(",")
 if not doDatabase and not doExcel:
 if sys.argv[6] == "all":
 cur = conn.cursor()
 timesteps = [timestep[0] for timestep in cur.execute("SELECT timestep FROM timesteps")]
 else:
 timesteps = sys.argv[6].split(",")
 except Exception as exc:

73

 print(exc)
 print("Incorrect Command line entries.")
 print("Must have at least the following: ")
 print("\ttimestep database path")
 print("\toutput folder path")
 print("\ttimesteps to analyze (all or comma-seperated values)")
 print("Additional Arguements include: ")
 print("*Note, timesteps to analyze must always be last argument")
 print("**Note, if any additional arguments are include, all save inquiries must be input.")
 print("\tSave to a database (true or false)")
 print("\tSave to csv for Excel file (true or false) ")
 print("\tPlot Calculations (true or false)")
 print("\tDatabase file name (if saving)")
 print("\tCSV file name (if saving)")
 print("Examples:")
 print("python interface_calculations.py databases/test_db.sqlite output_folder true true false
test.db_sqlite test.csv all")
 print("python interface_calculations.py databases/test_db.sqlite output_folder false true false test.csv
0,500000000")
 exit()
 else:
 for i in range(len(timesteps)):
 try:
 timesteps[i] = int(timesteps[i])
 except:
 print("You entered an invalid timestep.")
 conn.close()
 exit()

#Pull the Timestep Objects from their pickled location
data_timesteps = []
for timestep in timesteps:
 data_timesteps.append(db_handle.pullTimestep(timestep, conn)[0])
conn.close()

#Calculate the averages of each timestep
print("Calculating Averages...")
averages = []
for i in range(len(data_timesteps)):
 start = time.time()
 averages.append(tetrahedral_calculations.average_tetra(data_timesteps[i], 1))
 end = time.time()
 print("Averages Calculated for timestep in " + str(round(end - start, 3)) + " seconds: " + str(timesteps[i]))

#Calculate interfacial parameters
interface_params = []

74

fitData = []
for i in range(len(averages)):
 time_tuple = (int(timesteps[i]))
 popt, perr, fit_data = tetrahedral_calculations.locate_interface(*averages[i])
 test_tuple = (timesteps[i], *popt)
 interface_params.append(test_tuple)
 fitData.append(fit_data)

if doDatabase:
 try:
 conn = sqlite3.connect(database2)
 cur = conn.cursor()
 query = "CREATE TABLE data " + """
 (timestep INTEGER, interface_location REAL, interface_width REAL, c REAL, PRIMARY KEY
(timestep))"""
 cur.execute(query)
 conn.commit()
 script = "INSERT INTO data " + "(timestep, interface_location, interface_width, c) VALUES (?,?,?,?)"
 cur.executemany(script, interface_params)
 conn.commit()
 conn.close()
 except Exception as exc:
 print("Database Addition Failed. Continuing with Program.")
 print(exc)
 else:
 print("Database Generation Successful!\n")

if doExcel:
 if ".csv" not in fileName:
 fileName += ".csv"
 try:
 newFile = open(fileName, "w")
 newFile.write("timesteps (ns),Interface Location (angstroms),Interfacial Width (angstroms),c\n")
 for params in interface_params:
 outString = str(params[0]) + "," + str(params[1]) + "," + str(params[2]) + "," + str(params[3]) + "\n"
 newFile.write(outString)
 newFile.close()
 except Exception as exc:
 print("File Generation Failed. Continuing with Program")
 print(exc)
 else:
 print("File Generation Successful!\n")

if doPlotting:
 fig, ax = plt.subplots()
 print("Beginning Plotting...")
 for i in range(len(averages)):
 title = "Average Tetrahedral Order Parameter at " + str(int(timesteps[i]) / 10**6) + " ns"

75

 pngName = folderName + "tetraplot_" + str(timesteps[i]) + ".png"
 tetrahedral_calculations.plotTetra(ax, title, averages[i][0], averages[i][1], interface_params[i][1],
fitData[i], pngName)
 print("...Plotting Complete.")

(D) Ion Rejection Rate Calculation and Plot

#Imports
import sqlite3
import sys
import matplotlib.pyplot as plt
from util.database_handling import pullTimestep
from util.get_ion_param import getMolarMass
import util.ion_rejection_functions as ion_rejection_functions

"""
 *Other Ideas:
 ? Store the rejection rates in a database
 ? Have a method for calculating of averages?
 ? Have a method to plot against temperature? - This is most likely going to happen.
"""
"""
Main Running Parameters
"""
#*User Input
#print("Calculate Parameters based on averages (1 = yes): ",end='')
#doAverages = input() == "1"

if len(sys.argv) < 2:
 """
 !This section recieves input for the interface location sqlite3 database
 """
 #Initialize flag and the connection varaiable.
 complete = False
 conn_interface = None
 while not complete:
 print("Enter the Database File Path for the interface location data (-1 to quit): ",end="")
 database = "databases/interfacial_0710_params_db.sqlite"#input()
 if database == "-1":
 quit
 try:
 query = "file:" + database + "?mode=rw"
 conn_interface = sqlite3.connect(query, uri=True)
 except:
 print("That database doesn't exist.\nCheck your pathname and retry.")
 else:

76

 print("That is an existing database. Connection Established.")
 complete = True

 #Generate the Cursor connected to the database
 cur_interface = conn_interface.cursor()

 """
 !This section receives input for the timestep storage sqlite3 database
 """
 #Initialize flag and the connection varaiable.
 complete = False
 conn_timesteps = None
 while not complete:
 print("Enter the Database File Path for the timestep data (-1 to quit): ",end="")
 database_2 = "databases/0710_test_db.sqlite"#input()
 if database_2 == "-1":
 quit()
 try:
 query = "file:" + database_2 + "?mode=rw"
 conn_timesteps = sqlite3.connect(query, uri=True)
 except:
 print("ERROR: That database doesn't exist.\nCheck your pathname and retry.")
 else:
 print("That is an existing database. Connection Established.")
 complete = True

 #Generate the Cursor connected to the database
 cur_timesteps = conn_timesteps.cursor()

 """
 !This section recieves input for the molar mass sqlite3 database
 """
 #Initialize flag and the connection varaiable.
 complete = False
 conn_ion_params = None
 while not complete:
 print("Enter the Database File Path for the molar mass data (-1 to quit): ",end="")
 database_3 = "databases/ion_params_db.sqlite"#input()
 if database_3 == "-1":
 quit()
 try:
 query = "file:" + database_3 + "?mode=rw"
 conn_ion_params = sqlite3.connect(query, uri=True)
 conn_ion_params.close()
 except:
 print("That database doesn't exist.\nCheck your pathname and retry.")
 else:
 print("That is an existing database. Thank you.")

77

 complete = True

 #Determine the ions to be analyzed:
 print("Enter the ions to be analyzed as a commma-separated list (no comma if only 1 ion): ")
 print("\t\tExample: Na,Cl,Ca")
 ions = input()
 if "," in ions:
 ions = ions.removesuffix("\n").split(",")
 else:
 ions = [ions.removesuffix("\n")]
 print("Enter the atom_type id for each ion entered: ")
 atom_types = []
 for ion in ions:
 print("\t for ion " + ion + ": ",end="")
 atom_types.append(input())

 #Continuing User Input - Name of plot and should it be saved/where
 print("Enter the name of the plot (-1 to quit): ",end='')
 plotName = "test_output/trial_1.png"#input()
 if plotName == "-1":
 quit()
 print("Save the plot (1 = yes): ",end='')
 doPlotSave = input() == "1"

 #Continuing User Input - Name of the csv file for data storage
 print("Enter the file name for a csv file (none to not save.):",end="")
 csvFileName = input()
 doCSV = csvFileName.lower() != "none"
 if ".csv" not in csvFileName:
 csvFileName += ".csv"

else:
 if len(sys.argv) < 7 or len(sys.argv) > 8:
 print("ERROR: Invalid CMD Line Argumennts")
 print("CMD line arguments are:")
 print("\tInterface Database")
 print("\tData Storage Database")
 print("\tAtom Information Database")
 print("\tIons to analyze - as a comma-seperated list")
 print("\tAtom types for the list - as a comma-seperated list")
 print("\tCSV file name for storage (if none, no data will be saved to a csv file)")
 print("\t(Optional) Plot File Names")
 print("\tExamples:")
 print("\t\tpython ion_rejection_calc.py interfaces_db.sqlite object_data_db.sqlite atom_info_db.sqlite
Na,Cl,Ca 3,4,5 plot_plot.png")
 print("\t\tpython ion_rejection_calc.py interfaces_db.sqlite object_data_db.sqlite atom_info_db.sqlite
Na,Cl,Ca 3,4,5")
 exit()

78

 database = sys.argv[1]
 database_2 = sys.argv[2]
 database_3 = sys.argv[3]
 ions = sys.argv[4].split(",")
 atom_types = sys.argv[5].split(",")
 csvFileName = sys.argv[6]
 doCSV = csvFileName.lower() != "none"
 if ".csv" not in csvFileName:
 csvFileName += ".csv"

 #!This section recieves input for the interface location sqlite3 database
 try:
 query = "file:" + database + "?mode=rw"
 conn_interface = sqlite3.connect(query, uri=True)
 except:
 print("That database doesn't exist.\nCheck your pathname and retry.")
 exit()
 else:
 print("That is an existing database. Connection Established.")

 #Generate the Cursor connected to the database
 cur_interface = conn_interface.cursor()

 #!This section receives input for the timestep storage sqlite3 database
 try:
 query = "file:" + database_2 + "?mode=rw"
 conn_timesteps = sqlite3.connect(query, uri=True)
 except:
 print("ERROR: That database doesn't exist.\nCheck your pathname and retry.")
 exit()
 else:
 print("That is an existing database. Connection Established.")

 #Generate the Cursor connected to the database
 cur_timesteps = conn_timesteps.cursor()

 #Continuing User Input - Name of plot and should it be saved/where
 if len(sys.argv) == 8:
 plotName = sys.argv[7]
 doPlotSave = True
 else:
 plotName = "placeholder.png"
 doPlotSave = False

#*Get Timestep List:
print("These are the timesteps in the data chosen: ")

79

timesteps = [values[0] for values in cur_timesteps.execute("SELECT timestep from timesteps")]
ion_rejection_functions.printDataTables(timesteps, columns=10)

#*Loop through all the timesteps:
interface_locations = [] #& List of interface locations as a tuple with the location, interface width, and c value
ion_rejection_vals = [[] for i in range(len(atom_types))] #& 2D matrix of the ion rejection values per ion type.
ions_in_liq = [[] for i in range(len(timesteps))] #& 2D matrix storing the number of ions/ion_type/timestep
concentration_vals = [] #& The concentrations calculated using the total quantity of ions.

#*Get the molar masses of each ion and store in a list
molar_masses = [] #& List of the molar masses of each ion in the solution
for ion in ions:
 molar_masses.append(getMolarMass(database_3, ion))

#*Get the molar mass of water
molar_mass_water = getMolarMass(database_3, "Ow") + 2 * getMolarMass(database_3, "H")

for i in range(len(timesteps)):
 #*Pull the timestep
 timestep_obj = pullTimestep(timestep=timesteps[i], conn=conn_timesteps)[0]

 #*Pull the interface location information
 interface_data = ion_rejection_functions.pullInterfaceLocation(timestep=timesteps[i],
database=conn_interface, table="data")
 interface_locations.append(interface_data)

 #*Determine the domains to count the atoms
 left_domain = (timestep_obj.getDimensions()[1], interface_data[1])
 right_domain = (interface_data[1], timestep_obj.getDimensions()[0])

 #*Count ions/atoms of interest in each section
 water_count = ion_rejection_functions.count_atoms(timestep=timestep_obj, atom_type="1",
domain=right_domain)
 for j in range(len(atom_types)):
 atoms_left = ion_rejection_functions.count_atoms(timestep=timestep_obj, atom_type=atom_types[j],
domain=left_domain)
 atoms_right = ion_rejection_functions.count_atoms(timestep=timestep_obj, atom_type=atom_types[j],
domain=right_domain)

 #*Determine ion rejection for each atom type
 ion_rejection = ion_rejection_functions.calc_ion_rejection(ion_trapped=atoms_left, ion_total=(atoms_left
+ atoms_right))

 #Add to lists/totals#
 ion_rejection_vals[j].append(ion_rejection)
 ions_in_liq[i].append(atoms_right)

 #*Calculate Concentration of Salts:

80

 concentration_vals.append(ion_rejection_functions.calc_ppt_concentration(ions_in_liq[i], water_count,
molar_masses, molar_mass_water))

#*Plot Changes in Concentrations
x_values = [(x * 2) / 1000000 for x in timesteps]

fig, (ax1, ax2)= plt.subplots(2, sharex=True)
ax1.set_xlim(0, x_values[len(x_values) - 1])
ax1.set_ylim(60, 100)
ax1.set_ylabel("Ion Rejection Rate(%)", fontsize=12)
ax1.plot(x_values, ion_rejection_vals[0], "b-", label=ions[0])
ax1.plot(x_values, ion_rejection_vals[1], "r-", label=ions[1])
ax1.set_title("Rate of Ion Rejection over Time")
ax1.legend(loc="lower left")
ax2.set_ylim(3.4, 5.5)
ax2.set_ylabel("Concentration(m/m %)")
ax2.set_title("Change in Concentration over Time")
ax2.plot(x_values, concentration_vals, "g-", label="NaCl Salt")
ax2.set_xlabel("Time (ns)")
plt.savefig(plotName)
conn_interface.close()
conn_timesteps.close()

if doCSV:
 csvFile = open(csvFileName, "w")
 header = "Timestep(ns),Concentration(%m/m),"
 for i in ions:
 header += str(i) + ","
 csvFile.write(header+"\n")
 for i in range(len(x_values)):
 line = str(x_values[i]) + ","
 line += str(concentration_vals[i]) + ","
 for j in ion_rejection_vals:
 line += str(j[i]) + ","
 line += "\n"
 csvFile.write(line)
 csvFile.close()

81

APPENDIX C

UMBRELLA SAMPLING CALCULATION

#=======================
Initialization
#=======================
units real
dimension 3
atom_style full
bond_style harmonic
angle_style harmonic
pair_style lj/cut/tip4p/long 1 2 1 1 0.1546 12.0 10.0
kspace_style pppm/tip4p 1.0e-5
boundary p p p

#Various necessary variables
variable interface equal 47.97 #Change this to the interface
variable particle_mass equal 22.99 #Change based on the ion being
used.
variable y_high equal 39.1867
variable y_low equal 0.07815
variable z_high equal 36.874
variable z_low equal 0.12754
variable particle_x_pos equal ${interface}
variable particle_y_pos equal 0.5*(${y_high}+${y_low})
variable particle_z_pos equal 0.5*(${z_high}+${z_low})
variable k equal 1000/100
variable k_ice equal 2500/100

#read in system data and add together
read_data system_gb_test_20.data extra/atom/types 1 #Change the
data file to the one you are using for Ion Rejection Simulation

#Add the umbrella sampling particle
create_atoms 5 single ${particle_x_pos} ${particle_y_pos}
${particle_z_pos}

Water Pair coefficients
pair_coeff 1 1 0.1852 3.1589
pair_coeff 2 2 0.0 0.0
pair_coeff 1 2 0.0 0.0

Ion Pair Coefficients
pair_coeff 3 3 0.35190153 2.21737
pair_coeff 4 4 0.01838504 4.69906
pair_coeff 1 3 0.18962 2.60838
pair_coeff 1 4 0.01481 4.23867
pair_coeff 2 3 0.0 0.0

82

pair_coeff 2 4 0.0 0.0
pair_coeff 3 4 0.3439039 3.00512

#US Extra Atom Coefficients - Change per ion (this is for sodium
currently)
pair_coeff 1 5 0.18962 2.60838
pair_coeff 2 5 0.0 0.0
pair_coeff 3 5 0.3439039 3.00512
pair_coeff 4 5 0.35190153 2.21737
pair_coeff 5 5 0.35190153 2.21737

#Bond and Angle Coefficients
bond_coeff 1 0.0 0.9572
angle_coeff 1 0.0 104.52

#Neighbor Handling
neighbor 2.0 bin
neigh_modify delay 1

#Mass for the 5th particle
mass 5 ${particle_mass}

#Groups
region ice_reg block EDGE ${interface} EDGE EDGE EDGE EDGE
group oxygen type 1
group hydrogen type 2
group sodium type 3
group chloride type 4
group water type 1 2
group salts type 3 4
group ice region ice_reg
group ice_oxygens intersect oxygen ice
group topull type 5

#===
Minimization Running
#===
#Change bonds to have high values to imitate the SHAKE algorithm
#Bond Coefficient for Harmonic Bond
bond_coeff 1 100000.0 0.9572

#Angle Coefficient for Harmonic Angle style
angle_coeff 1 10000.0 104.52

#Thermodynamic Handling
thermo_style custom step temp etotal press
thermo 10

#Spring fix to force minimization to be focused on solely ions
fix tether water spring/self 1000

#Minimization Parameters
min_style cg
minimize 1e-5 1e-5 5000 10000

83

unfix tether

#==
Umbrella Sampling Parameters
#==
#Reset the timestep
reset_timestep 0

#Bond and Angle Coefficients
bond_coeff 1 0.0 0.9572
angle_coeff 1 0.0 104.52

#Shake Algorithm
fix SHAKE all shake 0.0001 200 0 b 1 a 1

#NPT running
fix NPT all npt temp 260.0 260.0 100 y 1.0 1.0 2000.0 z 1.0 1.0
2000.0
compute Tpar all temp/partial 1 1 1
fix_modify NPT temp Tpar

#Force Fix - to keep the ice from melting.
fix springforce ice_oxygens spring/self ${k_ice}

#Momentum Fix - keeps the particles centered in the box
fix zeroMom all momentum 100 linear 1 1 1
fix recenter all recenter INIT INIT INIT

#Timestep (same for equilibration and production run)
timestep 2

#Output for visualizaiton and tetrahedrality order parameter
calculations.
dump all all custom 500000 vis_us.lammpstrj id type x y z

thermo 500000

#Umbrella Sampling Loop
variable b loop 48 #Change for a differnt number of bins
label loop2

#Variables
variable xdes equal (${interface}+7)+(${b}/2-15) #Change this to
change the range of x-dist sampled
variable xave equal xcm(topull,x)

#Bias Potential for Umbrella Sampling
fix bias topull spring tether ${k} ${xdes} 0 0 0

#Equilibration Running
run 1000000

#Data Collection Fix

84

fix myat1 all ave/time 10 10 100 v_xave v_xdes file
position.${b}.dat

#Data Collection Run Command
run 1000000

#Reset
unfix myat1
next b
jump SELF loop2

85

APPENDIX D

RADIAL DISTRIBUTION FUNCTION CALCULATION

import MDAnalysis as mda
from MDAnalysis.analysis import rdf
import matplotlib.pyplot as plt
import util.ion_rejection_functions as ion_rej_fn
import sqlite3
import time
from util.util import timeReq
import sys
import numpy as np

#Handle command line input
if len(sys.argv) < 2:

 #Input required for system if not used in command line or if command line options are not going to be
used.
 sysFile = "input/rdf_adf_test.data"
 trajectFile = "input/vis_test.data"
 interfaceDatabase = "databases/md_test_interfaces_db.sqlite"
 timestepDatabase = "databases/md_test_db.sqlite"
 ions = ["Na", "Cl"]
 doAllFrames = False
 output_folder = "output"
 output_prefix = "new_test_2"
 dummyFile = "input/new_test_sw_input.data"

elif len(sys.argv) < 9:
 print("ERROR: Missing Command Line Arguments. Format and Example below:")
 print("FORMAT: python rdf_calculations.py <system_file> <dump_file> <ice/water_interface_file>
<timestep_database> <ions> <do_all_frames> <output_folder> <output_prefix>")
 print("EXAMPLE: python rdf_calculations.py input/rdf_adf_test.data input/vis_test_mod.data
databases/md_test_interfaces_db.sqlite databases/md_test_db.sqlite Na,Cl True output test_2_7")
else:
 sysFile = sys.argv[1]
 trajectFile = sys.argv[2]
 interfaceDatabase = sys.argv[3]
 timestepDatabase = sys.argv[4]
 ions = sys.argv[5].split(",")
 doAllFrames = sys.argv[6] == "True"

86

 output_folder = sys.argv[7]
 output_prefix = sys.argv[8]
 dummyFile = "dummyFile.data"

#Load and Modify System
print("Shrinkwrapping System")
time0 = time.time()
system = mda.Universe(sysFile, [(trajectFile, 'LAMMPSDUMP')], atomstyle="id resid type charge x y z")

system_bounds = []

for i in system.trajectory:

 #Shrinkwrap the system for RDF Calculations
 max_x = 0
 min_x = 1000
 max_y = 0
 min_y = 1000
 max_z = 0
 min_z = 1000
 all_atoms = system.select_atoms("type 1 or type 2 or type 3 or type 4")

 for atom in all_atoms:
 x_pos, y_pos, z_pos = atom.position
 max_x = x_pos if x_pos > max_x else max_x
 min_x = x_pos if x_pos < min_x else min_x
 max_y = y_pos if y_pos > max_y else max_y
 min_y = y_pos if y_pos < min_y else min_y
 max_z = z_pos if z_pos > max_z else max_z
 min_z = z_pos if z_pos < min_z else min_z
 dataset = (max_x, min_x, max_y, min_y, max_z, min_z)
 #print(dataset)
 system_bounds.append(dataset)

#Regenerate files
dump_file = open(trajectFile)
new_dump_file = open(dummyFile, "w")

count = -1
line = dump_file.readline()
while line != "":
 if "TIMESTEP" in line:
 count += 0
 new_dump_file.write(line)
 elif "BOX BOUNDS" in line:
 new_dump_file.write(line)
 new_dump_file.write("" + str(system_bounds[count][1]) + " " + str(system_bounds[count][0]) + "\n")
 new_dump_file.write("" + str(system_bounds[count][3]) + " " + str(system_bounds[count][2]) + "\n")

87

 new_dump_file.write("" + str(system_bounds[count][5]) + " " + str(system_bounds[count][4]) + "\n")
 dump_file.readline()
 dump_file.readline()
 dump_file.readline()
 else:
 new_dump_file.write(line)
 line = dump_file.readline()

#Close files
dump_file.close()
new_dump_file.close()
time01 = time.time()
print("System Shrinkwrap completed in ",end="")
timeReq(time0, time01)

#Generate System
print("Loading Shrinkwrapped System")
time1 = time.time()
system = mda.Universe(sysFile, [(dummyFile, 'LAMMPSDUMP')], atomstyle="id resid type charge x y z")
time2 = time.time()
print("System loaded in:")
timeReq(time1, time2)

#Get the length of the trajectory
numTimesteps = len(system.trajectory)

#Pull the timestep interface data
try:
 query = "file:" + timestepDatabase + "?mode=rw"
 conn_timesteps = sqlite3.connect(query, uri=True)
except:
 print("ERROR: That database doesn't exist.\nCheck your pathname and retry.")
 exit()
else:
 print("That is an existing database. Connection Established.")

#Generate the cursor
cur_timesteps = conn_timesteps.cursor()

#Get the timesteps
timesteps = [values[0] for values in cur_timesteps.execute("SELECT timestep from timesteps")]

#Pull Interface Database
try:
 query = "file:" + interfaceDatabase + "?mode=rw"
 conn_interface = sqlite3.connect(query, uri=True)
except:

88

 print("That database doesn't exist.\nCheck your pathname and retry.")
 exit()
else:
 print("That is an existing database. Connection Established.")

#Get the interface location information using the timesteps
interfaceLocations = []
for i in range(len(timesteps)):
 interfaceLocations.append(float(ion_rej_fn.pullInterfaceLocation(timestep=timesteps[i],
database=conn_interface, table="data")[1]))

#Close sqlite connections
conn_interface.close()
conn_timesteps.close()

#array for the results to be added together
rdf_results_ice = [[] for i in ions]
rdf_results_water = [[] for i in ions]

#Loop through the timesteps (using the trajectory) and compute the rdf for each timestep for a set number of
bins
count = 0
print("Beginning RDF Calculations")
time5 = time.time()
while count < 5:
 time3 = time.time()
 #Set the frame of the trajectory:
 system.trajectory[count]

 #Get the atom groups
 interface = str(interfaceLocations[count])
 selPhrase = "prop x < " + interface + " and type 1"
 oxygens = system.select_atoms("type 1")
 ionsInWater = []
 ionsInIce = []
 bins = []
 typeCount = 3
 #Loop through the ions, analyzing each set's RDF and storing in a list.
 for i in range(len(ions)):
 selPhrase = "prop x > " + interface + " and type " + str(typeCount)
 ionsInWater.append(system.select_atoms(selPhrase))
 selPhrase = "prop x < " + interface + " and type " + str(typeCount)
 ionsInIce.append(system.select_atoms(selPhrase))
 iceRDFCalculated = False
 waterRDFCalculated = False
 if len(ionsInIce[i]) > 0:
 rdfIon = rdf.InterRDF(ionsInIce[i], oxygens, nbins=500, norm="rdf", range=(0,15))

89

 rdfIon.run()
 rdf_results_ice[i].append(rdfIon.results.rdf)
 bins = rdfIon.results.bins
 iceRDFCalculated = True
 if len(ionsInWater[i]) > 0:
 rdfIon = rdf.InterRDF(ionsInWater[i], oxygens, nbins=500, norm="rdf", range=(0,15))
 rdfIon.run()
 rdf_results_water[i].append(rdfIon.results.rdf)
 bins = rdfIon.results.bins
 waterRDFCalculated = True
 if doAllFrames:
 fig, ax1 = plt.subplots()
 fig.set_figwidth(8)
 fig.set_figheight(8)
 if waterRDFCalculated:
 label = ions[i] + " in Solution"
 ax1.plot(bins, rdf_results_water[i][len(rdf_results_water[i])-1], "r-", label=label)
 if iceRDFCalculated:
 label = ions[i] + " in Ice"
 ax1.plot(bins, rdf_results_ice[i][len(rdf_results_water[i])-1], "b--", label=label)
 label = "r (" + r'\AA' + ")"
 ax1.set_xlabel(label)
 ax1.set_ylabel("g(r)")
 title = ions[i] + " Ion RDF"
 ax1.set_xlim(0,12.0)
 ax1.legend(loc="upper right")
 figName = output_folder + "/" + output_prefix + "_" + ions[i] + "_" + str(count) + ".png"
 fig.savefig(figName)
 plt.close(fig)

 #Increment
 count += 1

 #Calculate Times and print
 time4 = time.time()
 print("Frame " + str(count) + " completed in:")
 timeReq(time3, time4)

#End of While loop
time6 = time.time()
print("RDF Calculations completed in:")
timeReq(time5, time6)

for i in range(len(ions)):
 averaged_rdf_ice = [0 for i in range(len(bins))]
 averaged_rdf_water = [0 for i in range(len(bins))]
 count = 1
 for j in range(len(rdf_results_ice[i])):

90

 for k in range(len(bins)):
 averaged_rdf_ice[k] += rdf_results_ice[i][j][k]
 averaged_rdf_water[k] += rdf_results_water[i][j][k]
 count += 1
 for l in range(len(averaged_rdf_ice)):
 averaged_rdf_ice[l] = averaged_rdf_ice[l] / count
 averaged_rdf_water[l] = averaged_rdf_water[l] / count

 fig, ax1 = plt.subplots()
 fig.set_figwidth(8)
 fig.set_figheight(8)
 label1 = ions[i] + " in Solution"
 label2 = ions[i] + " in Ice"
 ax1.plot(bins, averaged_rdf_water, "r-", label=label1)
 ax1.plot(bins, averaged_rdf_ice, "b--", label=label2)
 label = "r (" + r'\AA' + ")"
 ax1.set_xlabel(label)
 ax1.set_ylabel("g(r)")
 title = ions[i] + " Ion RDF"
 ax1.set_title(title)
 ax1.set_xlim(0, 12.0)
 ax1.legend(loc="upper right")
 plt.close(fig)

 #Save Fig
 figName = output_folder + "/" + output_prefix + "_" + ions[i] + "_total.png"
 fig.savefig(figName)

#Save the RDF data for use in coordination number calculations.
ice_np = np.array(rdf_results_ice)
water_np = np.array(rdf_results_water)
bins_np = np.array(bins)
np.save("input/ice_rdf_data.npy", ice_np)
np.save("input/water_rdf_data.npy", water_np)
np.save("input/bins.npy", bins_np)

	Understanding Ion Rejection Mechanism of Freeze Desalination by Molecular Dynamics Simulation
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	NOMENCLATURE
	CHAPTER 1
	INTRODUCTION
	1.1 Motivation of Research
	1.2 Molecular Dynamics Simulation
	1.3 Objectives

	CHAPTER 2
	METHODOLOGY
	2.1 Potentials
	2.2 Simulation Setup
	2.3 Tetrahedrality Parameter
	2.4 Interface Calculation
	2.5 Ion Rejection Rate
	2.6 Free Energy
	2.7 Radial Distribution Function (RDF)

	CHAPTER 3
	Results and Discussions
	3.1 Ice Growth and Ion Trap Comparison with Different Ensembles (NVT and NPxT)
	3.2 Ion Rejection Rate Comparison in Different Temperature and Ensembles
	3.3 Umbrella Sampling and Free Energy Calculation
	3.4 Radial Distribution Function (RDF) Calculation

	CHAPTER 4
	Conclusion and Future Work section
	4.1 Perspectives for Future Work

	REFERENCES
	Appendices
	Appendix A
	NVT_235K_0.6M_TIP4P/2005

	Appendix B
	Ion Rejection rate calculation

	Appendix C
	Umbrella Sampling calculation

	Appendix D
	Radial Distribution Function calculation

