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ABSTRACT

Fishing Vessel Detection in Exclusive Economic Zones from Low Earth Orbit Satellites

with Power and Computational Constraints

by

Kyler E. Nelson, Master of Science

Utah State University, 2024

Major Professor: Mario Harper, Ph.D.
Department: Computer Science

Illegal fishing activities pose a significant threat to the sustainability of marine ecosys-

tems and to economies and societies that are reliant on such resources. Automatic Informa-

tion System (AIS) signals are vital in tracking and understanding locations of ships; many

vessels engaged in illegal fishing disable this AIS signalling. Optical satellite imagery pro-

vides a potential solution that could be deployed on resource-constrained, low earth orbit

satellites. Due to datasets for fishing vessel detection from optical satellite imagery are

scarce, making development of an effective detection model difficult. This research explores

the design of an intelligent decision-making system to respond to illegal fishing activity

and proposes a new dataset augmentation technique to improve performance of the critical

fishing vessel detection component of this system. The proposed decision-making system

will use ship location data from a low-power optical imaging satellite and shore-based ship

detection systems for identification of illegal fishing activity.

(60 pages)
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PUBLIC ABSTRACT

Fishing Vessel Detection in Exclusive Economic Zones from Low Earth Orbit Satellites

with Power and Computational Constraints

Kyler E. Nelson

Illegal fishing activities pose a significant threat to the sustainability of marine ecosys-

tems and the economies and societies which rely on them. Detection of fishing vessels

engaging in illegal activity is difficult, as many ships engaging in such activity actively

avoid detection through radio systems used for maritime traffic monitoring. Satellite im-

agery provides a promising means for detecting fishing vessels, though designing an effective

system is difficult due to limited availability of labeled image datasets of fishing vessels. This

research proposes a system to detect illegal fishing activity through the use of a low-power

ship detection satellite and proposes a decision-making process capable of analyzing ship

movements and location to determine if a ship is engaging in illegal fishing. To overcome

current limitations in available image datasets with labeled fishing vessels, this research

proposes a new method for expanding existing image datasets to improve ship detection

performance. The proposed illegal fishing detection system is further designed to be capa-

ble of weighing various social, economic, and ecological factors involved when determining

a response to an incident of illegal fishing.



v

ACKNOWLEDGMENTS

I would like to express my deepest appreciation to my advisor, Dr. Mario Harper, for

his invaluable expertise and support throughout the research process, as well for the late-

night editing sessions and genuine interest in myself and my research. I am also extremely

grateful to my committee members, Dr. Vladimir Kulyukin and Dr. John Edwards, for

their thoughtful feedback and insight.

Many thanks are due to my collaborators from Utah State University’s LACE-C3A

research, Ben Lewis and Shawn Jones, who provided helpful insight in understanding the

challenges inherent to space-based deployments of machine learning. I am also grateful to

my friends and fellow students in the Utah State University DIRECTLab, for their helpful

suggestions and close camaraderie.

Lastly, I would be remiss in not mentioning the support I received from friends and

family, especially my wife, as she tended to our newly growing family during the many long

hours required throughout the research process. The interest of friends and family in my

research, as well as their unwavering support, kept me motivated throughout this work.

Kyler E. Nelson



vi

CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

PUBLIC ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Document Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 PROPOSED MARITIME SURVEILLANCE SYSTEM ARCHITECTURE . . . . . . 5
2.1 Ship Detection Satellite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Benefit of Onboard Ship Detection over Ground System Ship Detection 7
2.2 Ship Detection Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Selection of Object Detection System . . . . . . . . . . . . . . . . . 9
2.2.2 Ship Detection Model Compute Platform . . . . . . . . . . . . . . . 11

2.3 Ground System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Key Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Dataset Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Accounting for Ship Detection Model Uncertainty . . . . . . . . . . . . . . . 16

3 TRAINING THE FISHING VESSEL DETECTOR . . . . . . . . . . . . . . . . . . . . . . . 18
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Data Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Ship Classification Datasets . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Dataset Augmentation for Maritime Environments . . . . . . . . . . 23

3.3 Proposed Augmentation Method . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 Instance Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Image Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.3 Image Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Class Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5.1 Augmentation Parameters . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.2 Model Training and Validation . . . . . . . . . . . . . . . . . . . . . 33
3.5.3 Classification Performance . . . . . . . . . . . . . . . . . . . . . . . . 33



vii

3.5.4 Impact of Augmentation on Overfitting . . . . . . . . . . . . . . . . 37
3.5.5 Performance on Edge Compute Platforms . . . . . . . . . . . . . . . 38

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1 Ship Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Future Research Directions for Ship Detection . . . . . . . . . . . . 41
4.2 Discussion of Illegal Fishing Detection Agent Design . . . . . . . . . . . . . 42
4.3 Application to Existing and Future Datasets . . . . . . . . . . . . . . . . . 43

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



viii

LIST OF TABLES

Table Page

2.1 Model Sizes for YOLO Models . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 YOLOv8 performance on NVIDIA Jetson Orin Nano 8GB — 15W TensorRT 13

2.3 YOLOv8 performance on NVIDIA Jetson Orin Nano 8GB — 7W TensorRT 13

3.1 Comparison of Fine-Grained Ship Detection Datasets . . . . . . . . . . . . . 22

3.2 List of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Classification Results for Fishing Vessels — Best Model of 100 Epochs . . . 34

3.4 Classification Results for Fishing Vessels — YOLOv8n Best Model of 300
Epochs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Performance of Best Models on Jetson Orin Nano 8GB DevKit . . . . . . . 39

3.6 Memory Footprint of Best Models on Jetson Orin Nano 8GB DevKit . . . . 39



ix

LIST OF FIGURES

Figure Page

2.1 Architecture of the proposed Maritime Surveillance System . . . . . . . . . 5

3.1 POSEIDON-SAT Augmentation Pipeline . . . . . . . . . . . . . . . . . . . 25

3.2 Images from ShipRSImageNet selected for and excluded from augmentation 27

3.3 Example of two images before and after augmentation with bounding boxes
displayed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Distributions of fine-grained ship categories in the training set of ShipRSIm-
ageNet datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Confusion matrices of baseline YOLOv8n model and best YOLOv8n model
with augmentation — best of 300 epochs . . . . . . . . . . . . . . . . . . . . 36

3.6 Validation loss comparisons of trained YOLO models . . . . . . . . . . . . . 37



x

ACRONYMS

AIS Automatic Identification System

BCE Binary Cross-Entropy

CNN Convolutional Neural Network

CPU Central Processing Unit

EEZ Exclusive Economic Zone

FPGA Field Programmable Gate Array

FPS Frames Per Second

GPU Graphics Processing Unit

HBB Horizontal Bounding Box

LACE-C3A Low-power Array for CubeSat Edge Computing
Architecture, Algorithms and Applications

LEO Low Earth Orbit

MPA Marine Protected Area

MSS Maritime Surveillance System

NPU Neural Processing Unit

OBB Oriented Bounding Box

ONNX Open Neural Network Exchange

RL Reinforcement Learning

SAR Synthetic Aperture Radar

SDK Software Development Kit

SoC System on a Chip

SODIMM Small Outline Dual In-line Memory Module

YOLO You Only Look Once



CHAPTER 1

INTRODUCTION

Combating illegal fishing requires addressing complex challenges across technological,

economic, and social realms. This thesis outlines the development of an intelligent, au-

tonomous system designed to efficiently collect data and formulate responses from Low-

Earth Orbit (LEO) observation to combat illegal fishing activities. By breaking down

the problem into data acquisition and response formulation, the thesis seeks to enhance

the practicality and cost-effectiveness of monitoring systems, ensuring they operate within

computational constraints to protect marine ecosystems effectively.

1.1 Motivation

Illegal fishing activity is a significant concern worldwide, impacting economies, ecosys-

tems, food supply chains, and international relations [1]. Estimates as of 2020 predict

current global economic losses due to illegal fishing to range from $26 bn to $58 bn USD

annually [2], a significant increase from a 2009 estimate of $10 bn to $23.5 bn annually [3].

Ecological impacts of illegal fishing are often broad and varied, though one of the most

visible and well-understood impacts is the reduced sustainability of a fish population within

a fishery [1], or in the potential damage to at-risk marine populations within designated

marine protected areas [4].

Illegal fishing is conducted both by vessels registered within the country controlling

an EEZ, as well as by vessels registered within another country [1, 2, 5]. Offenses of illegal

fishing include fishing in MPAs, foreign vessels operating within another country’s EEZ

without authorization, and fishing beyond specified quotas, among other offsense [1].

Many ships engaging in illegal fishing turn off or manipulate AIS and radio transponders

to avoid detection [6,7]. Remote sensing technologies using satellite imagery can provide an

effective means for the detection of marine vessels that do not transmit Automatic Identi-
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fication System (AIS) messages [8,9]. Deployment of satellite-based ship detection systems

can aid countries in combating illegal fishing occurring within their Exclusive Economic

Zone (EEZ). Additional data streams, such as surface radar, can be used for effective de-

tection of marine vessels which disable AIS [10], though such systems may not provide

sufficient data on their own due to limitations such as an insufficient range to monitor an

entire EEZ, potential signal interference, or limitations on the types of information provided

about detected ships (e.g. lack of ship type).

Locating fishing vessels using systems such as AIS and remote sensing satellites is

only one component of identifying illegal fishing activity for the purpose of determining a

response based on real-time ship movements. Analysis of ship movements and behaviors

aids in gaining a stronger understanding of the extent of illegal fishing in an area of interest,

as demonstrated by the methods used in [4,11]. However, analysis of the behavior of fishing

vessels across a large region, where motivations for illegal fishing activity can greatly vary, is

presently a difficult and time-consuming process. Further research is needed to determine a

method of analyzing real-time fishing vessel location data to detect instances of illegal fishing

in order to enable quick response efforts to combat illegal fishing while such an operation is

still ongoing. Furthermore, once illegal fishing activity is identified, it is necessary to weigh

the potential economic, social, and ecological costs of the illegal fishing activity against the

costs incurred to dispatching a deterrence response.

1.2 Objectives

This thesis will outline the architecture of an intelligent Maritime Surveillance System

(MSS) composed of two main components: a remote sensing element consisting of a low-

power, Low Earth Orbit (LEO) satellite system tasked with detecting ships, and a ground

system running a decision-making algorithm that analyzes ship location data from the satel-

lite to assess whether a fishing vessel may be engaging in illegal activities. The architecture

of this system is detailed in Chapter 2. Through the analysis of ship location data, relevant

socioeconomic and ecological factors (as discussed in Section 1.1), and consideration of input

data uncertainties, the decision-making algorithm can recommend whether it is worthwhile
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to deploy defense resources, such as coast guard patrols, for further investigation and po-

tential intervention. This structured approach enables efficient allocation of resources for

monitoring and combating illegal fishing.

In order for the MSS to perform effectively, the input data provided to the decision-

making algorithm must sufficiently represent the real-world conditions and factors that the

algorithm must consider. Two of the most critical inputs to this decision-making algorithm

are the location of a ship and the type of ship. Additional metrics for detected ships, such

as the size and heading would also be of particular interest for the response algorithm.

Obtaining these valuable data points on vessels that are attempting to avoid detection

through typical broadcast means, such as AIS or weather radar, is particularly difficult and

would rely heavily on the ship data collected by a remote sensing satellite.

Due to the importance of fishing vessel detection performance to the MSS, this thesis

will propose the use of a lightweight object detection model for ship detection from overhead

optical satellite imagery. This model will be deployed onboard a low-cost, low-power remote

sensing satellite platform, such as a CubeSat, which imposes very strict operational power

constraints on the ship detection model. Limited dataset availability for training optical ship

detection models presents a significant challenge for the achievement of high fishing vessel

detection performance under such operational constraints. This thesis proposes a dataset

augmentation method to improve the performance of the ship detection model within the

difficult constraints of low-cost, low-power satellite platforms. The ship detection model

and augmentation method proposed to accomplish the task of fishing vessel detection are

discussed in Chapter 3. Ship location information from the satellite will be provided to the

decision-making algorithm, which will use this location data to detect illegal fishing activity

and inform response decisions.

The satellite constraints that the proposed ship detection model is designed to work

within are a result of collaboration with ongoing research with Utah State University’s

LACE-C3A (Low-power Array for CubeSat Edge Computing Architecture, Algorithms and

Applications) mission, which is researching micro-satellite hardware designs and compute
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architectures. A use case of interest for the LACE-C3A mission is the detection of fishing

vessels within the exclusive economic zone of Brazil. The use of low-power micro-satellites

for ship detection would enable the MSS to be deployed within preferred cost and perfor-

mance parameters specified by the government of Brazil, which seeks to utilize the proposed

MSS to combat illegal fishing activity Designing the MSS to operate within constraints of

the micro-satellite platform for the LACE-C3A mission provides a more cost-effective and

practical deployment solution for fishing vessel detection satellites.

This thesis will conclude with the discussion of how the fishing vessel detection model

will be implemented into the proposed MSS architecture and how this model will interact

with the MSS decision-making agent responsible for identifying and responding to illegal

fishing activity. Avenues of future research for the ship detection model training method

and the MSS will also be discussed in the conclusion of this thesis.

1.3 Document Outline

The remainder of this thesis is organized as follows: In Chapter 2, the design and archi-

tecture of an intelligent Maritime Surveillance System (MSS) for illegal fishing detection is

presented. Chapter 3 presents a paper that proposes and evaluates a dataset augmentation

method to enhance the fishing vessel detection performance of an optical ship detection

model that is well-suited for deployment on the low-power remote sensing satellite used

in the MSS. Chapter 4 presents a summary of our findings and their implications for the

design and future research of intelligent maritime surveillance systems aimed at detecting

and responding to illegal fishing activity.



CHAPTER 2

PROPOSED MARITIME SURVEILLANCE SYSTEM ARCHITECTURE

The proposed Maritime Surveillance System (MSS) for illegal fishing detection consists

of two primary components, detailed in Fig. 2.1: a low-power ship detection satellite de-

signed to identify fishing vessels within a region of interest, and a ground system that will

receive information about detected fishing vessels to determine whether detected vessels

are engaged in illegal fishing activity. The ground system will additionally weigh various

factors of interest, such as the location of suspected incidents of illegal fishing, locations

of response vessels, cost of response, etc. in order to determine whether a response should

be dispatched to a suspected incident of illegal fishing activities. Furthermore, the ground

system will incorporate information from relevant ground and shore-based sensing systems

to augment data transmitted from the ship detection satellite.

Ground System

Illegal Fishing
Detection and

Response DecisionAIS Data Surface
Radar

Social, Economic, Ecological Modeling

Optical Satellite Imagery
Ship Detection

Estimated
Ship Type

and
Location

AIS Data
Weather
Radar
Data

Onboard Signal Receivers

Satellite System

Data Payload

Ground-Based Sensing

Response Decision (Y/N)
and Plan

Fig. 2.1: Architecture of the proposed Maritime Surveillance System

One key design decision for the proposed MSS is that ship detection and classification

tasks are performed onboard the ship detection satellite instead of transmitting captured

images to the ground system for processing. Though this design imposes significant con-

straints to the compute power available to the ship detection system, strict communication

and bandwidth constraints of low-power satellites, combined with the requirement of high
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resolution imagery for ship detection, make performing ship detection on the ground system

infeasible.

2.1 Ship Detection Satellite

The satellite platform that the ship detection model targets is based on a proposed

CubeSat platform design from Utah State University’s ongoing LACE-C3A (Low-power

Array for CubeSat Edge Computing Architecture, Algorithms and Applications) mission

research. Development of the LACE-C3A mission satellite’s systems and compute platform

is ongoing, though two critical constraints have been identified:

1. Ship detection compute hardware must operate within a maximum power budget of

10W.

2. The ship detection model must process images and transmit results to the ground

system within a minimum of 10–15 minutes following image collection.

Performing ship detection within the 10W power constraint is crucial for deployment

onboard satellite platforms such as LACE-C3A due to the limited power generation capacity

of typical CubeSat solar arrays. The 10–15 minute image processing time deadline is a

result of bandwidth limitations, as well as time and power constraints due to the orbital

characteristics of the LACE-C3A satellite. Additionally, the satellite must transmit all

observation results to the ground system before it passes into Earth’s shadow, as the satellite

must power down non-essential systems, including the ship detection system, to conserve

power for maintaining orbit and receiving critical flight commands due to the limited power

generation capabilities of the solar array on the satellite.

The satellite will be deployed into Low Earth Orbit (LEO), which is optimal for satellite

imagery tasks on such small platforms. For the target orbital elevation of the LACE-

C3A mission satellite, an orbital period of approximately 90min is expected. With the

assumption of an orbit which directly passes the area to observe, the satellite is expected

to have approximately 10min–20min per orbit for imaging the region of interest, leaving
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a maximum of 25min for data processing and transmission to the ground system before

passing into Earth’s shadow. This estimate is based on ideal conditions as factors such as

orbital decay, orbital drift, time of day, and length of day will often result in tighter time

constraints, leading to the design target of a maximum image processing time of 10min–

15min.

The LACE-C3A mission satellite platform additionally aims to deploy the ship detec-

tion model for execution on a PolarFire MPF300T FPGA if the ship detection model can

operate within its constraints.

In addition to a compute platform for running a ship detection model, the satellite will

be equipped with an AIS receiver and weather radar signal detection payload to aid in the

detection of ships.

Satellite imagery will be provided through an optical camera system equipped on the

satellite. Though ship detection using synthetic aperture radar (SAR) technology is more

well-studied for identification of vessels that are attempting to avoid detection [7,9,12–15],

power and physical satellite size constraints for the LACE-C3A mission platform prevent

the inclusion of SAR equipment. Additionally, SAR equipment is more difficult to add to

a satellite payload, while optical imaging payloads are often less expensive and simpler to

deploy, providing a more viable payload for constrained satellites.

2.1.1 Benefit of Onboard Ship Detection over Ground System Ship Detection

Bandwidth limitations and image quality requirements for effective ship detection mod-

els prevent the use of an MSS design where images are transmitted to the ground system for

ship detection, instead of performing ship detection onboard the satellite. Bandwidth limi-

tations prevent transmission of all collected images before the satellite passes into Earth’s

shadow.

The satellite will communicate with the ground system over the Iridium network, which

offers a maximum of 352 kbit/s of available transmit bandwidth from the satellite through

the Iridium Certus 700 service [16]. With the use of lossless PNG compression, a single

12MP image at a size of 7MB would require approximately 20 s to transmit to the ground
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system, assuming full transmit bandwidth is available on the satellite. For a single 1 km-wide

observation pass over an EEZ—which extends 200 nautical miles from a country’s shoreline

(approx. 370 km)—using an imaging resolution of 1
3m/px (meters per pixel) would require

transmission of 278 images to the ground system. This transmission process would require

92.6min, exceeding the orbital period of the satellite. Furthermore, the satellite will need

to image an area with an observation pass wider than 1 km, bandwidth must be shared with

other operational systems on the satellite, an efficient lossless compression implementation

may not be feasible for the satellite platform, and a significant amount of system memory

may be required to buffer images awaiting transmission.

Reducing image quality through lossy compression or by making the spatial resolution

more coarse could result in a significant detriment to the performance of the MSS as accurate

optical ship detection models, such as those leveraged by the proposed MSS, require high-

quality images at fine spatial resolutions.

One additional advantage to onboard ship detection can be found in the potential for

enabling real-time ship detection results to be provided to the MSS, as detection result data

consists of very little data, in contrast to full images. If inference speed is sufficiently fast,

such that images can be processed shortly after capture, total memory requirements for the

satellite platform would be significantly lower due to the elimination of the need to buffer

many images in memory for transmission.

2.2 Ship Detection Model

The ship detection algorithm will be developed to operate within the constraints im-

posed by the target satellite platform described in Section 2.1. The purpose of the ship

detection system is to identify, classify, and locate fishing vessels that are not transmitting

AIS or other signals, such as weather radar, which will also be monitored by the ship de-

tection satellite. This task of identifying and classifying ships that do not transmit these

signals will be carried out by a deep-learning object detection computer vision model. The

ship location and approximate size can be estimated from the object bounding box when

combined with information about the geographical location and spatial resolution data as-
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sociated with satellite images. Estimates of vessel heading and velocity can be obtained

through wake detection and analysis [17] and examination of the change in the location of

a ship over a period of time.

Data transmissions to the ground system will include information received from AIS

transmissions, as well as whether a detected ship is transmitting AIS signals. Weather radar

signals will also be monitored, as ships that are not transmitting AIS may be equipped with

weather radar equipment.

Considering that deployment of the ship detection model to a more resource-constrained

FPGA platform is one of the ideal goals of the LACE-C3A mission, the selected object de-

tection model should be one that can be deployed to an FPGA should sufficient performance

be available within these constraints.

2.2.1 Selection of Object Detection System

The YOLO family of object detection models is notable for being efficient, lightweight,

and performant. These characteristics make YOLO models an excellent fit for deployment

to resource-constrained edge computing platforms.

YOLO models follow a high-level architecture of a single-shot detection model coupled

with a Convolutional Neural Network (CNN) backbone for feature extraction. As a single-

shot model, YOLO eschews the use of separate detection and classification networks used

in multi-shot models, instead using a single network. Control over the learning of object

detection components, such as classification and bounding box precision, is accomplished

primarily though the design of the model’s loss function [18].

The YOLO architecture has continued to receive active research and development while

remaining lightweight and performant, making the YOLO family of models an ideal choice

for the LACE-C3A mission satellite platform’s edge compute needs. The research in this

thesis will focus particularly on YOLOv5 [19], released in 2020, and YOLOv8 [20], released

in 2023.
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Major Architectural Changes to YOLO: YOLOv2 improved on the original YOLO

model architecture in many ways to address multiple shortcomings that caused the original

YOLO to lag behind the then-current state-of-the-art object detection models in terms of

detection performance [21]. YOLOv5 and YOLOv8 share similarities in overall network

structure to each other, as both YOLOv8 and YOLOv5 leverage a modified CSPDarknet53

backbone (CSPDarknet53 was first introduced with YOLOv4 [22]). The most significant

differences between YOLOv5 and YOLOv8 are found in the change to a decoupled network

head and in the switch to anchor-free bounding-box predictions in YOLOv8 [23]. YOLOv8

and YOLOv5 both leverage a block based on Feature Pyramid Networks, first added in

YOLOv3 [24]. Feature Pyramid Networks, first described in [25], provide the benefit of

improving detection performance of objects across different sizes and scales within an image.

Comparison of YOLO Model Sizes: Table 2.1 provides a comparison of the sizes

of different variants of YOLOv5 and YOLOv8, as measured by the number of network

parameters in each model. Though these models are similar in many respects, several

differences in model sizes are of interest. For model size variants which are medium and

smaller of YOLOv5 and YOLOv8 (i.e. nano, small, and medium), YOLOv8 has a larger

number of network parameters than YOLOv5; while for the model size variants larger than

medium (i.e. large and x-large), YOLOv8 has fewer network parameters than YOLOv5

[19,20].

A more in-depth study of the changes in each version of YOLO from the original YOLO

model to YOLOv8 can be found in [23].

Table 2.1: Model Sizes for YOLO Models

Model Parameter Count (Million)

YOLOv5n [19] 1.5
YOLOv5s [19] 7.2
YOLOv8n [20] 3.2
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Further discussion and comparisons of YOLO models in this thesis will be limited to

YOLOv5 and YOLOv8.

2.2.2 Ship Detection Model Compute Platform

To deploy the ship detection model within the requirements outlined in Section 2.1,

two potential compute platforms have been identified as suitable candidates: the NVIDIA

Jetson Orin Nano and the PolarFire MPF300T FPGA. Each of these platform options

comes with a set of trade-offs, of which the trade-offs that are most relevant to the design

of the ship detection system’s object detection model will be discussed in this section. Most

recent versions of YOLO (e.g. YOLOv5, YOLOv8, etc.) are built using PyTorch [26],

which provides a powerful and efficient framework for training deep learning models using

gradient-based optimization methods. As the YOLO family of models are designed for

object detection based on the MS-COCO dataset [18–21, 24], YOLO models that are to

be evaluated for ship detection and classification will require training on an appropriate

dataset. Additionally, the ship detection compute platform will need to consume the model

produced from the PyTorch training process in order to run the needed inference tasks for

ship detection.

NVIDIA Jetson Orin Nano

The NVIDIA Jetson Orin Nano is a power-efficient embedded compute module based

on a low-power version of NVIDIA’s Orin SoC, equipped with a 6-core ARM Cortex-A78AE

CPU and a 1024-core NVIDIA Ampere architecture GPU with 32 Tensor Cores (for the

8GB memory configuration) [27]. The Jetson Orin Nano module is built in a SODIMM form

factor and supports two operating power profiles of 15W and 7W for ease of integration

in various applications. The combination of the Ampere GPU and support for NVIDIA’s

TensorRT runtime, combined with sufficient memory and the 7W operating power profile,

the Jetson Orin Nano is a highly performant edge compute platform capable of working

within the power constraints and required compute performance requirements of the ship

detection satellite. Additionally, PyTorch models are straightforward to convert to Ten-
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sorRT engines by providing an ONNX export of the PyTorch model to the TensorRT tool

set. The primary challenge involved with leveraging a Jetson Orin Nano onboard the ship

detection satellite would be in properly equipping the satellite hardware with the needed

shielding and protection to prevent instability of the platform when deployed in orbit.

The Jetson Orin Nano is capable of running even the largest YOLOv8 model, YOLOv8x,

with a total of 68.2 million parameters [20] at 15 Frames Per Second (FPS), based on our test

results described in Table 2.2 when configured with its maximum power profile of 15W and

running model inference using the NVIDIA TensorRT inference engine. Since the LACE-

C3A satellite has only a 10W power budget for ship detection compute, we benchmarked

all sizes of YOLOv8 on this hardware to better understand its performance characteristics.

To benchmark YOLOv8, we exported each model to the TensorRT model format, with

optimizations enabled. Benchmarking was done using the standard MS-COCO weights and

on the benchmark image included with the Ultralytics package [20]. The inference speed

results detailed in Tables 2.2 and 2.3 were averaged over 20 runs, after model warm-up.

Low-Power FPGAs

Low-power FPGA-based solutions provide an attractive alternative to GPU, CPU, and

Tensor Processor Unit (TPU)-based compute platforms for neural networks, particularly in

the case of power-constrained edge compute uses where power efficiency and good per-

formance are both priorities [28]. The PolarFire series of FPGAs, such as the MPF300T

which the LACE-C3A project aims to use, are notable for their low-power and efficient

operation [29]. PolarFire FPGAs are also available in radiation-tolerant models [30], which

makes the PolarFire platform an ideal choice for the LACE-C3A satellite if the ship de-

tection model can achieve sufficient performance when deployed to this platform. This

FPGA deployment would reduce overall payload power consumption, though it may reduce

model inference in contrast to an implementation utilizing a larger FPGA, GPU, NPU, or

CPU-based platform.

An overlay-based approach for executing the ship detection model on an FPGA is

needed to avoid reprogramming the FPGA while the satellite is in orbit—a high risk
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Table 2.2: YOLOv8 performance on NVIDIA Jetson Orin Nano 8GB — 15W TensorRT

Model
Preprocess

(ms)
Inference

(ms)
Postprocess

(ms)
Total
(ms)

FPS

YOLOv8n 8.093059 7.113039 4.520750 19.726849 50.695996
YOLOv8s 8.211410 11.188936 4.587913 23.988259 41.692290
YOLOv8m 8.208847 23.460329 4.658818 36.327994 27.569564
YOLOv8l 8.152449 34.915364 4.846358 47.914171 20.871132
YOLOv8x 8.198047 56.018651 6.894732 71.111429 14.064526

Table 2.3: YOLOv8 performance on NVIDIA Jetson Orin Nano 8GB — 7W TensorRT

Model
Preprocess

(ms)
Inference

(ms)
Postprocess

(ms)
Total
(ms)

FPS

YOLOv8n 12.055993 15.288353 6.386757 33.731103 29.650167
YOLOv8s 12.100554 25.920308 6.389236 44.410098 22.518897
YOLOv8m 12.040007 57.614601 6.835580 76.490188 13.074090
YOLOv8l 12.075269 86.382687 6.844807 105.302763 9.496504
YOLOv8x 12.089908 147.361970 6.883073 166.334951 6.012014

operation—to load a new or modified ship detection model. A reprogramming failure oc-

curring while the satellite is in orbit would significantly disrupt mission activities and runs

a substantial risk of placing the satellite compute systems in an unrecoverable state with-

out physical access. The overlay FPGA program and associated model optimization and

compilation toolchain could be implemented through the Microchip VectorBlox Software

Development Kit (SDK) for PolarFire FPGAs [31] if the capabilities of this SDK and its

accompanying FPGA logic core design are sufficient. Otherwise, the LACE-C3A mission

will design a custom overlay FPGA program and compilation toolchain capable of consum-

ing an ONNX exported model from PyTorch, such as the design described in [32], if more

flexibility is needed.

YOLO on FPGAs: YOLO models, such as YOLOv2, have been successfully deployed

on resource-constrained FPGA platforms with a trade-off of slower execution time com-

pared to a less constrained hardware platform [33]. On more powerful FPGA platforms,

more recent versions of YOLO (i.e. YOLOv3, YOLOv5, and YOLOv8) can be deployed
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to FPGA platforms compatible with software toolkits such as AMD Vitis [34] and Intel’s

FPGA AI Suite [35], both of which contain YOLOv3 in their model zoos and are compat-

ible with model export formats supported by YOLOv5 and v8 [19, 20]. For the PolarFire

MPF300T FPGA platform proposed for the LACE-C3A mission satellite, it is estimated

that approximately one-third of the available logic units would be utilized for an implemen-

tation of YOLOv2 as described by Zhang, et al. [33], and many of the functional blocks used

in this implementation would also be utilized in implementations for newer versions of the

YOLO family of models. Microchip’s VectorBlox SDK for PolarFire FPGAs [31] contains

an example implementing YOLOv5, which indicates that the PolarFire FPGA selected for

LACE-C3A should be capable of running more recent YOLO models. The most notable

challenge of running a more recent version of YOLO on the LACE-C3A mission’s FPGA

platform lies in the implementation of the major architectural changes that each version

of YOLO introduces while continuing to operate within the limited number of FPGA logic

units and maintaining inference times within acceptable parameters.

Selection of Compute Platform for Benchmarking

As the design of the compute platform for the LACE-C3A mission is still ongoing, the

research presented in this thesis will use an NVIDIA Jetson Orin Nano 8GB Developer Kit

as the target compute platform for running and benchmarking the ship detection system.

Though the Jetson Orin Nano platform is capable of running larger versions of YOLO,

or other more complex models, this thesis will focus on the YOLO family of models, par-

ticularly the smaller variants, to focus on the problem of fishing vessel detection within

tight resource constraints. This focus has been chosen as we anticipate that the PolarFire

MPF300T FPGA, which the LACE-C3A mission currently proposes to use, may not be

able to run larger models within necessary inference performance requirements and other

resource constraints, such as available system memory for model weight storage. Presently,

we expect that only the nano or small variants of YOLOv5 or YOLOv8 would be imple-

mentable within the performance requirements of the satellite’s target FPGA platform. For

this reason, analyses presented in this thesis will primarily focus on these smaller variants
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of YOLO.

2.3 Ground System

The ground system will receive detection results and signal readings from the ship

detection satellite. These readings will then be fed into an intelligent decision-making

agent, which will determine the location of detected ships and the risk that unauthorized

fishing vessels pose within the area of interest, which is the Exclusive Economic Zone (EEZ)

of the country of Brazil.

To enable the model to balance conflicting priorities, the ground system will also be

provided information about response resources, such as coast guard ships, and data points

which can be used to estimate the cost of investigating a given fishing vessel. Using this

information, the decision-making agent will determine the potential impact that a detected

fishing vessel could have, based on location, size, and other metrics, to determine whether

the potential benefit of dispatching a response crew to investigate is likely to outweigh the

costs involved in such a dispatch.

In order to better handle inaccuracies and uncertainty in the object detection model

used for ship detection, as well as the uncertainty inherent in quantifying the potential

impact of a suspected case of illegal fishing activity, the decision-making model will use this

information about data uncertainty as an input as well.

2.4 Key Research Questions

To determine the feasibility of the proposed Marine Surveillance System, there are

three main research questions that must be answered:

1. Can an adequate ship detection model be trained with the currently available datasets?

2. Can a model of sufficient performance be identified or built to operate within the power

limits and constraints of the ship detection satellite, as described in Section 2.1?
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3. Can the decision-making agent responsible for determining a response to a suspected

illegal fishing incident perform effectively when given data points which may contain

a significant degree of uncertainty?

2.5 Dataset Limitations

For best results when training an object detection model from scratch, a large dataset is

generally required. For example, the YOLOv5 documentation recommends at least 10,000

instances of each class [36]. Unfortunately, datasets of optical satellite imagery with fishing

vessels specifically labeled, in contrast to more general categories such as warships, passenger

ships, and merchant vessels, are scarce. Constructing a new dataset for the task of fine-

grained ship detection is particularly time-consuming and difficult, requiring experts who

can identify fine-grained ship types from satellite imagery.

Fortunately, datasets containing fine-grained labeling of ships in optical satellite im-

agery are publicly available, though the number of fishing vessels labeled in such datasets

are often small, such as the ShipRSImageNet dataset compiled by Zhang, et al. [37]. The

research in this thesis will explore methods to train an object detector to identify fishing

vessels when only very limited data is available.

2.6 Accounting for Ship Detection Model Uncertainty

The decision-making agent will already be subject to measures of uncertainty in its

input space, such as the potential impact of a given vessel if it is engaging in illegal fishing.

This decision becomes even more uncertain when it is not always known with a high degree

of confidence whether or not a given vessel is actually a fishing vessel. If a pattern or

distribution can be identified within the classification errors made by the ship detection

model, it may be possible to design the decision-making agent to leverage information

about the types of errors that the ship detection model makes to minimize the potential

impact on the agent’s performance.

Reinforcement learning (RL) provides a strong candidate framework for building a

capable decision-making algorithm to run on the ground system by training an agent to



17

make illegal fishing incident response decisions. RL methods are particularly useful when

working within the inherent uncertainty involved in making decisions based on uncertain

input data and sometimes-conflicting priorities as the agent can learn a policy based on

the various inputs about the environment provided to it. The inclusion of uncertainty

information as part of the decision-making algorithm’s input to the agent should allow

the agent to better work within, and leverage these uncertainty metrics, to improve its

performance in comparison to a simpler decision policy. The action space of the agent

is relatively straightforward: the actions are to either dispatch a response to a particular

detected vessel, or to take no action. In contrast, the input space is much more complex,

and should consist of the ship location data provided by the detection satellite, as well as

additional data points that the model should weigh when making a response decision, such

as those discussed in Sec 1.1.



CHAPTER 3

TRAINING THE FISHING VESSEL DETECTOR — POSEIDON-SAT1

Abstract

This paper introduces POSEIDON-SAT, a novel dataset augmentation method de-

signed to enhance the detection of fishing vessels using optical remote sensing technologies,

which is critical for safeguarding important conservation and economic fishing zones from

illegal fishing activities. Effective monitoring and detection are often hampered by the ves-

sels’ tactics to evade detection, such as disabling or manipulating Automatic Information

System (AIS) radio transponders. Although convolutional neural networks (CNNs) are

adept at detecting and classifying ships from optical imagery, the fine-grained classification

required is severely restricted by the lack of high-quality, detailed datasets, especially for

fishing vessels which are underrepresented in existing datasets.

POSEIDON-SAT addresses these challenges by augmenting scarce datasets with syn-

thesized instances of fishing vessels, thereby improving the training and performance of

ship detection models. This augmentation is particularly beneficial for lightweight models

deployed on low-power, edge computing platforms aboard remote sensing satellites, where

computational resources are limited. We compare the efficacy of POSEIDON-SAT with

traditional class weighting techniques and evaluate the augmented dataset’s impact on the

performance of lightweight YOLO models. Our results demonstrate that POSEIDON-SAT

significantly enhances model accuracy and reduces the likelihood of false positives, making

it an invaluable tool in the global effort to combat illegal fishing through enhanced remote

sensing capabilities.

Code for POSEIDON-SAT is publicly available.2

1This chapter was prepared as a submission to the IEEE Transactions on Intelligent Transportation
Systems with the title of POSEIDON-SAT: Data Enhancement for Optical Fishing Vessel Detection from
Low-Cost Satellites authored by Kyler Nelson and Mario Harper.

2Available at https://github.com/Kytech/POSEIDON-SAT

https://github.com/Kytech/POSEIDON-SAT
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3.1 Introduction

Illegal fishing activity inflicts severe economic damages, with annual global losses esti-

mated between $26 and $58 billion USD as of 2020 [2]. This practice not only undermines

communities dependent on marine resources but also jeopardizes the sustainability of ma-

rine ecosystems [1, 2]. The variety of illegal fishing practices includes overfishing beyond

quotas, unauthorized operations within another nation’s Exclusive Economic Zone (EEZ),

and violations within Marine Protected Areas (MPA) [4].

Effective monitoring of these activities often employs the Automatic Identification Sys-

tem (AIS), a system initially designed for collision avoidance, which has since been adapted

to monitor illegal fishing activities [11]. However, AIS is not foolproof; vessels engaged in

illegal activities may deactivate AIS, tamper with its signals, or operate without it, escap-

ing detection [6, 7]. A significant percentage, 72–76%, of industrial fishing vessels remain

unmonitored [7].

Satellite-based remote sensing has emerged as a potent tool against illegal fishing, par-

ticularly in detecting ”dark” vessels that do not transmit AIS signals [8]. Nevertheless,

transmitting satellite imagery data remains a costly and bandwidth-intensive task. More-

over, executing ship detection tasks on edge computing devices aboard power-restricted

satellites poses significant challenges.

Notably, Convolutional Neural Networks (CNNs) have shown promise in detecting

and classifying dark ships using both optical and Synthetic Aperture Radar (SAR) im-

ages. Despite this, such models require extensive training datasets to perform effectively.

Renowned datasets include DOTA for optical ship detection [38] and xView3-SAR for SAR

imagery [13]. These datasets vary widely in the granularity of ship classifications, from ba-

sic distinctions between ship and no ship to detailed identifications of specific vessel types.

Fine-grained ship detection, which includes identifying fishing vessels, typically requires

specialized datasets that are not abundantly available.

The scarcity of detailed optical datasets for fishing vessels significantly hampers the per-

formance of object detection models, especially those designed for lightweight architectures
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like those in the YOLO family. Given these constraints, developing effective ship detec-

tion models for use on low-power satellites such as CubeSats in Low Earth Orbit (LEO)

is particularly challenging. Although comprehensive SAR-based datasets are available, the

hardware required for SAR is often too cumbersome for small satellites, which makes optical

imagery a more practical choice for such platforms.

Cube-satellites equipped with optical remote sensing technologies offer a promising so-

lution to this challenge. Their ability to continuously monitor large swathes of the ocean

from low Earth orbit, coupled with advancements in edge computing, allows for real-time

data processing and ship detection. This satellite technology can significantly enhance the

detection and monitoring of fishing vessels, making it an essential tool in the global effort

to combat illegal fishing. The deployment of lightweight YOLO models on these satellites,

enhanced by our POSEIDON-SAT dataset augmentation method, aims to maximize detec-

tion accuracy while operating within the stringent power and computational constraints of

small-form factor satellites.

This paper addresses the scarcity of fishing vessels in optical satellite data by comparing

two prevalent methods: dataset augmentation and class weighting within the model’s loss

function. We apply these techniques to enhance the performance of lightweight detection

models, specifically using the ShipRSImageNet dataset. In addition, we assess the classifi-

cation errors of these models and discuss how integrating data on model uncertainties with

the behavioral analytics of ships can forge robust mechanisms for illegal fishing detection.

We will evaluate several models from the YOLO family—including YOLOv8 nano, YOLOv5

nano, and YOLOv5 small—chosen for their minimal computational demands suitable for

deployment on power-limited edge compute platforms [19, 20]. Finally, we will benchmark

the trained models’ inference capabilities on an edge compute platform designed to operate

under a stringent 10-watt power limit, demonstrating the feasibility of our methods for

real-world applications on board a CubeSat.
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3.2 Data Considerations

Training a YOLO network for the task of fishing vessel detection relies heavily on avail-

able datasets. This section will discuss the availability of both optical and SAR datasets,

followed by a discussion of existing methods for enhancing currently available fishing vessel

detection datasets.

3.2.1 Ship Classification Datasets

The DOTA dataset, compiled from optical satellite images sourced from Google Earth,

stands as a prominent resource for ship detection, containing approximately 2,700 ship

instances annotated with Oriented Bounding Boxes (OBBs). However, its utility for spe-

cialized tasks such as fishing vessel detection is limited by its broad categorical definition,

which lumps all ships under a single label [38]. In contrast, the DIOR dataset significantly

expands the available data with 64,000 ship instances, although it shares the same limita-

tion of a singular ship category, necessitating additional label refinement for fine-grained

analysis [39].

Among datasets tailored for fine-grained ship detection from optical imagery, HRSC2016,

FGSD, xView, and ShipRSImageNet offer more nuanced ship categorizations within a

smaller scope, each containing fewer than 20,000 ships [37,40–42]. Notably, only xView and

ShipRSImageNet include categories for fishing vessels, with ShipRSImageNet providing a

comprehensive refinement of ship labels through enhancements such as the introduction of

OBBs and corrections to mislabeled instances [37]. Table 3.1 provides an overview of each

fine-grained ship detection dataset.

SAR Datasets

Synthetic Aperture Radar (SAR) is the primary modality for ship detection in remote

sensing, primarily due to its robust capability to capture high-resolution imagery inde-

pendent of lighting conditions and weather, thereby offering considerable advantages over

optical imaging. SAR technology excels in detecting metallic objects on the sea’s surface,

making it exceptionally effective for identifying ships. Due to these advantages, SAR has



22

Table 3.1: Comparison of Fine-Grained Ship Detection Datasets

Dataset
# of

images
Image
Size

# of Ship
Instances

# of Ship
Categories

Fishing
Vessel

Category?

HSRC2016 [40] 1,070
300×300 –
1.5k×900 2,976 25 No

FGSD [41] 2,612 930×930 5,634 43 No
xView [42] 1,413 1.5k×1.2k 5,672 9 Yes

ShipRSImageNet
[37]

3,435
930×930 –
1.4k×1k 17,573 50 Yes

become the predominant method for conducting maritime surveillance and ship detection

tasks, and several datasets exist for public use [13,43–46].

Many SAR datasets often leverage Automatic Identification System (AIS) signals to

augment the detection and classification of ships. This integration of AIS with SAR im-

agery allows for the correlation of real-time ship movement data with the detected images,

significantly enhancing the accuracy of ship categorization. Techniques described in liter-

ature [14, 15, 47] detail how AIS data can be correlated with SAR images to identify and

classify vessels, including those involved in illicit activities such as illegal fishing. This

correlation not only improves the quality of the datasets but also simplifies the labeling

process, resulting in larger, more accurate datasets with fewer errors compared to manually

annotated optical imagery datasets [37].

Among the SAR datasets, the xView3-SAR dataset stands out due to its comprehensive

coverage and detailed categorization of ships, including a substantial number of fishing

vessels. With 47,412 fishing vessels out of more than 220,000 ship instances, xView3-

SAR provides an unparalleled resource for the detection of dark fishing vessels [13]. This

dataset is instrumental in advancing research on the detection of illegal fishing activities,

offering detailed insights that are critical for developing robust detection algorithms. The

extensive number of fishing vessels in xView3-SAR not only enhances the dataset’s utility

but also exemplifies the effectiveness of SAR technology combined with AIS data in maritime

surveillance.
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3.2.2 Dataset Augmentation for Maritime Environments

Ruiz-Ponce and colleagues developed the POSEIDON data augmentation tool, specif-

ically designed for maritime object detection models. This method, when applied to the

SeaDronesSee dataset, demonstrated a notable improvement in model performance, achiev-

ing a 4.6% increase in detection accuracy using YOLOv8 over traditional class weighting

techniques [48]. The SeaDronesSee dataset, which includes various images captured by aerial

drones over marine environments from multiple camera angles, shares characteristics with

optical satellite imagery, making it a suitable candidate for the POSEIDON augmentation

method [37,49].

The POSEIDON method involves two primary processes: synthetic object instance

generation and instance removal. These processes are designed to balance the dataset by

adjusting the representation of classes within it.

Instance Generation

The instance generation component of POSEIDON involves four critical steps:

1. Image Normalization: This initial step ensures consistency across the dataset by

rescaling all images to match the width of the smallest image while maintaining the

original aspect ratio. This normalization is crucial for maintaining the integrity and

comparability of features across different images.

2. Object Instance Extraction: Here, objects are extracted from their original im-

ages. This extraction process is necessary for subsequent steps where these objects

will be recontextualized within new scenes.

3. Image Categorization and Selection: Images and their extracted instances are

categorized based on the camera angle at the time of capture. This categorization

ensures that the augmentation process respects the original perspective, thereby main-

taining the realism and applicability of the augmented data.
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4. Addition of New Objects to Images: New objects are added to different images,

ensuring no overlap with existing objects. This step involves placing extracted in-

stances into new backgrounds, effectively simulating different scenarios, and enriching

the dataset’s diversity. The placement also ensures that the augmented images remain

realistic and useful for training robust detection models.

The augmentation process expands the dataset and enhances its variety and balance,

which is crucial for training models to recognize underrepresented classes effectively.

Instance Removal

Conversely, the instance removal process targets the reduction of overrepresented classes

to prevent model bias. This is achieved by replacing the pixels within the object’s bound-

ing box with black pixels and subsequently removing the associated label information. This

method of undersampling helps in balancing the dataset, ensuring that no single class

dominates the learning process, thus facilitating a more generalized and effective detection

capability.

The integration of these two processes—instance generation and removal—provides a

comprehensive approach to dataset augmentation. By enhancing the dataset’s diversity and

balance, POSEIDON significantly improves the performance of object detection models on

complex tasks such as ship detection in varied maritime environments. This methodological

innovation is pivotal in advancing the capabilities of satellite and aerial imagery analysis,

particularly in the challenging conditions typical of maritime surveillance.

3.3 Proposed Augmentation Method

We choose to augment the ShipRSImageNet dataset using a heavily modified POSEI-

DON method [48]. Modifications were necessary as the original normalization step in PO-

SEIDON resulted in significant detail loss across the dataset due to the use of down-scaling

images to the same maximum width in the original POSEIDON normalization process. The
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modified POSEIDON-SAT loosely follows the same general structure of POSEIDON and is

described in Fig. 3.1.

Instance Extraction

Select Images to Augment

Add New Instances to Images

Fig. 3.1: POSEIDON-SAT Augmentation Pipeline

POSEIDON-SAT significantly modifies the processes performed in POSEIDON steps

1, 3, and 4, and makes small changes to step 2. The most significant difference is found

in steps 1 and 4. We note that the normalization step from POSEIDON is folded into the

augmentation step.

Similar to the original POSEIDON method, augmentation is only performed on the

training set and not the validation set.

3.3.1 Instance Extraction

The process of ship instance extraction remains relatively unchanged from the POSEI-

DON method. The primary difference is the use of both OBBs and Horizontal Bounding

Boxes (HBBs), in contrast to POSEIDON’s use of only HBBs, which results in a rougher

extraction of instances from the original image.

In the instance extraction step, the process involves scanning all dataset images to

identify and extract ships of the class targeted for augmentation, such as fishing vessels.

Each identified ship is cropped to its horizontal bounding box (HBB), and then further
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refined by masking out any pixels outside its oriented bounding box (OBB). These extracted

ship instances are then saved as individual images, which will be used later in the image

augmentation process.

3.3.2 Image Selection

POSEIDON-SAT introduces a refined image selection criterion to identify which im-

ages from the ShipRSImageNet dataset are suitable for augmentation with synthetic ship

instances. This adjustment is crucial as not all images are conducive to augmentation

due to various spatial constraints. These constraints ensure that ships are not erroneously

placed on land, shorelines, docks, or overlapping with other ships. The process to prevent

new ships from being placed on top of existing ones involves straightforward bounding box

collision checks.

However, avoiding placement on shorelines or docks presents a greater challenge since

the ShipRSImageNet dataset lacks specific segmentation data for these features. This is-

sue contrasts with the conditions of the SeaDronesSee dataset, for which the POSEIDON

method was originally developed. In the SeaDronesSee dataset, shorelines are generally

not present in the images, significantly reducing concerns about unrealistic placements of

synthetic instances. Only images identified as ships in open water, whose image background

was primarily ocean, were selected for augmentation with additional ship instances. Fig. 3.2

illustrates several examples of images that were selected or excluded for augmentation based

on this criteria.

3.3.3 Image Augmentation

Once suitable images are selected from the ShipRSImageNet dataset, the augmentation

process begins by generating new ships from previously extracted instances. Each selected

source ship is rescaled to match the spatial resolution of the target image, expressed in

meters per pixel (m/px), and then randomly flipped horizontally and vertically to enhance

variety. The ships are positioned randomly within the image, ensuring they do not overlap

with existing ships. This process can be repeated to add multiple ships to the same image.
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(a) Sample of images to augment

(b) Sample of images excluded from augmentation

Fig. 3.2: Images from ShipRSImageNet selected for and excluded from augmentation

The rescaling step replaces the earlier normalization method used in POSEIDON (Step

1), offering a tailored approach for satellite imagery that maintains the physical size of the

ship in the image while preserving detail better than the original POSEIDON’s method. If a

ship instance comes from an image with the same spatial resolution as the target image, this

normalization step is skipped. Most images in the ShipRSImageNet have known resolutions

from metadata or can be estimated, like an image from the FGSD dataset with an estimated

resolution of 1.025m/px based on dataset averages [41]. All fishing vessels specifically are

sourced from images in the xView dataset, which has a consistent resolution of 0.3m/px [42].

The random flipping creates diverse orientations, needed for training robust models,

as all images depict ships from an overhead perspective at sea. The augmentation process

allows for varying the number of ships added per image, with parameters defining the

minimum and maximum additions. This iterative augmentation continues until the desired

number of ships is integrated into the selected images, effectively enriching the dataset with

varied and realistic ship instances.

Fig. 3.3 gives an example of several images before and after augmentation.
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(a) Before Augmentation

(b) After Augmentation

Fig. 3.3: Example of two images before and after augmentation with bounding boxes dis-
played

3.4 Class Weighting

In model training for object classification, especially when dealing with imbalanced

datasets, adjusting the weight of different classes in the loss function can significantly en-

hance performance. This approach is often applied using cross-entropy loss, a common

choice for classification tasks, which includes several methods for class weighting suitable

for tasks like fishing vessel classification [50–52].

YOLOv8 and YOLOv5 are both leveraged in the classification and use cross-entropy

for calculating loss through the use of Binary Cross-Entropy (BCE), also known as log

loss. For object classification, a typical use of BCE loss applies a sigmoid activation to

network outputs prior to computing the BCE loss on the resultant probabilities produced by

the sigmoid activation function. For improved numerical stability, YOLOv5 and YOLOv8

use a modified implementation of BCE loss, provided by the PyTorch framework [53],

that combines the sigmoid activation and BCE loss into a single layer. The BCE loss

implementation used by these YOLO models additionally introduces a positive class weight
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parameter, which can be used to adjust the weight of a positive example of a particular

object class in the dataset used for training. The BCE loss function ℓ used by YOLOv5

and YOLOv8 is given by:

ℓ(x, y) = R(L), L = {ℓ1, . . . , ℓC},

ℓc = −(pcyc · log σ(xc) + (1− yc) · log(1− σ(xc)))

(3.1)

where

C total number of object classes in the dataset

c class number, 1 ≤ c ≤ C

ℓc loss computed for class number c

xc activation value for class label c

yc ground truth value for class label c

pc weighting factor to apply to objects with class label c

σ sigmoid activation function

R a reduction operation to apply over the losses of each class c

By default, pc is defined as 1 for all classes, effectively applying a sigmoid activation

followed by the standard BCE loss. The particular reduction operation R varies between

YOLOv5 and YOLOv8. For YOLOv5, the values are averaged across all classes and all

instances detected in the minibatch, while YOLOv8 reduces BCE losses in a subsequent

step following the BCE loss computation. Setting weighting factors pc for each class c

relative to the number of instances of each class in the dataset ensures that each class has

an equal impact on the network’s classification loss when training on an imbalanced dataset.

Class weighting was implemented in YOLO v5 and v8 by modifying the BCE loss

function used to classify detected objects. The default BCE loss implementation used by

both YOLO v8 and v5 follows the form described in (3.1) with the positive class weight pc

set to 1 for every class c, effectively using a non-weighted BCE. Though the YOLO v5 and

v8 loss functions are different, the general structure of the classification component remains
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relatively unchanged.

To apply an equal weight to each class in the loss function in YOLO v5 and v8, the pc

values for each class c are assigned to a value proportional to the size of the largest class

in the dataset as described by Algorithm 1. Effectively, positive examples of classes that

are fewer in number compared to the largest class are given additional weight in the loss

function.

Algorithm 1 Computation of BCE Positive Class Weights P

X ← list of class labels in the dataset
C ← number of classes in the dataset

Require: len(X) > 0, C > 0
Ensure: P = {p1, . . . , pC}, ∀pc ∈ P, pc ≥ 1

labelCounts← count occurrences(X)
largestClassSize← max(labelCounts)
P ← a list of 1s of length C
for all pc in P do ▷ c is the class number

if labelCounts[c] > 0 then
pc ← largestClassSize / labelCounts[c]

end if
end for

3.5 Evaluation

To evaluate the proposed dataset augmentation technique POSEIDON-SAT, two aug-

mented versions of the ShipRSImageNet dataset [37] were generated using different param-

eters and compared. Several ship categories defined in ShipRSImageNet are combined for

validation due to their low relevance in fishing vessel detection. The limited availability of

source fishing vessel instances guided the decision to avoid increasing the number of gener-

ated instances, due to concerns about creating insufficient variety. The POSEIDON-SAT

method was evaluated alongside class weighting in the loss function. Experiments were

conducted using both POSEIDON-SAT and class weighting to assess whether combining

these methods could lead to further improvements in performance.
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Table 3.2 describes the set of training experiments conducted to compare the

POSEIDON-SAT technique with class weighting, detailing which of the augmentation meth-

ods were used, if any, and whether class weighting was used for each experiment. Each

training experiment was performed on a YOLOv5 nano, YOLOv5 small, and YOLOv8 nano

model. Experiments were repeated on multiple versions of YOLO to test the POSEIDON-

SAT method on more than one network architecture. Performance was analyzed across

several classification metrics to measure the impact of augmenting the training dataset

and/or weighting classes in the loss function during training.

Table 3.2: List of Experiments

Category Experiment
Augmentation

Method
Weighted?

Baselines Baseline None No
Baseline Weighted None Yes

Augmented Augmented Standard No
MatchRes Matched

Resolution
No

Augmented
+Weighted

Augmented + Weights Standard Yes
Aug. MatchRes + Weights Matched

Resolution
Yes

3.5.1 Augmentation Parameters

The augmentation process of POSEIDON-SAT is controlled by several elements: the

images selected for augmentation, the minimum and maximum number of ships to add, and

the maximum number of ships that can be added to a single image. The image augmentation

selection criteria described in Sec. 3.3.2, resulted in the selection of 171 images to augment.

The two augmented versions of the ShipRSImageNet dataset were generated using

POSEIDON-SAT for evaluation. The first, ”standard” version does not limit itself to

only augmenting images of 0.3m/px resolution. The second ”matched resolution” version

augments images with a spatial resolution of 0.3m/px, which matches the spatial resolution
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of the extracted fishing vessel instances and avoids the need for normalization. This reduces

the number of images selected for augmentation to 109. The ”matched resolution” variant

is tested to determine whether the normalization step during augmentation has a notable

impact on the network’s performance.

To decide how many fishing vessels to add to the dataset, we analyzed the distribution

of ship categories in the ShipRSImageNet dataset, which is displayed in Figure 3.4. This

analysis revealed that while the largest categories contain around 1,000 instances each, there

are only 318 instances of fishing vessels. To balance the dataset, we plan to add 513 new

fishing vessel instances, increasing their total to 831. The distribution of ship categories

after application of augmentation is also illustrated in Figure 3.4.

During the image augmentation selection process, manual observation indicated that

most selected images could comfortably accommodate up to five additional fishing ships.

Thus, we set a maximum of five and a minimum of one fishing vessel per image. Initially, 513

vessels were added to the dataset. However, for the variant of the augmentation process

that matched image resolutions, we reduced the total number of added ships to 327 to

prevent overcrowding, as there were fewer suitable images. Despite concerns that fewer

ships might decrease performance, tests showed that maintaining the original count of 513

did not significantly improve, and sometimes slightly worsened, performance.

Fig. 3.4: Distributions of fine-grained ship categories in the training set of ShipRSImageNet
datasets
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3.5.2 Model Training and Validation

For each experiment, an NVIDIA RTX 3090 24 GB GPU was used to train the YOLOv5

nano, v5 small, and v8 nano models. A batch size of 32 was used, and models were trained

for 100 epochs, starting with the standard pre-trained weights from the MS-COCO dataset

for each YOLO model. For YOLOv8 nano, an additional training run of 300 epochs for

each experiment was conducted. YOLOv5 models were not trained up to 300 epochs due

to signs of overfitting. The model with the best performance over the span of each training

job was selected for use in the evaluation of model performance on the original validation

set of ShipRSImageNet.

3.5.3 Classification Performance

To evaluate the impact of augmentation and class weighting on YOLOv5 and YOLOv8,

three metrics were used to evaluate the performance of fishing vessel detection: recall,

precision of ship classification PrecisionS , and the rate of false positives from the image

background FPRbg. As YOLO is a multi-class classifier, for the computation of classification

metrics, the positive class will refer to the fishing vessel category and the negative class will

refer to the remaining ship categories. Recall follows the standard definition of TP
TP+FN ,

while PrecisionS is a slightly modified form of the precision metric TP
TP+FP , with the single

change that false positive predictions originating from the image background are excluded

from the count of false positives FP . Effectively, PrecisionS measures the accuracy of

correctly identifying fishing vessels as ships rather than as part of the image background.

For the metrics of recall and PrecisionS , TP , FP , and FN are defined as: the number of

true positive predictions, number of false positive predictions, and number of false negative

predictions, respectively. The metric FPRbg, defined as BGp/BG, whereBGp is the number

of false positives from the image background and BG is the total number of false positive

detections across all ship categories, specifically addresses false positives that arise from the

image background.
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The training results for the best model after 100 epochs for each YOLO model are

detailed in Table 3.3. Only YOLOv8n was trained beyond 100 epochs due to the overfitting

of YOLOv5 beyond 100 epochs. Results for the best YOLOv8 model after 300 epochs are

described in Table 3.4.

YOLOv5n shows up to a 10% improvement in recall over the baseline when using

augmentation, with a slight increase in precision and minimal impact on the background

false positive rate. YOLOv8 shows a similar pattern, achieving an 8% increase in recall after

extended training for up to 300 epochs and specifically when augmentations are matched

to the resolutions of the images to prevent rescaling during normalization.

Table 3.3: Classification Results for Fishing Vessels — Best Model of 100 Epochs

YOLOv5n YOLOv5s YOLOv8n

Experiment Recall PrecisionS FPRbg Recall PrecisionS FPRbg Recall PrecisionS FPRbg

Baseline 0.39 0.55 0.06 0.39 0.62 0.06 0.45 0.65 0.05

Baseline

Weighted

0.41 0.53 0.07 0.39 0.57 0.07 0.53 0.40 0.12

Augmented 0.49 0.57 0.07 0.43 0.59 0.08 0.49 0.58 0.06

Augmented

MatchRes

0.46 0.58 0.07 0.40 0.52 0.06 0.30 0.67 0.04

Augmented

+ Weights

0.40 0.46 0.08 0.44 0.47 0.06 0.48 0.58 0.06

Aug.

MatchRes +

Weights

0.37 0.49 0.07 0.32 0.54 0.05 0.47 0.55 0.05

Table 3.4: Classification Results for Fishing Vessels — YOLOv8n Best Model of 300 Epochs

Experiment Recall PrecisionS FPRbg

Baseline 0.45 0.56 0.05
Baseline Weighted 0.47 0.53 0.07
Augmented 0.36 0.45 0.06
Augmented MatchRes 0.53 0.60 0.06
Augmented + Weights 0.49 0.49 0.09
Aug. MatchRes + Weights 0.49 0.42 0.08

However, when YOLOv8n is trained for only 100 epochs, it exhibits signs of underfit-

ting, although it still improves in recall or precision for fishing vessel detection with each

augmentation method. Meanwhile, YOLOv5s sees a small gain in recall but at the expense
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of precision among ship classes. The lesser performance of YOLOv5s compared to YOLOv5n

might be due to less optimal training parameters or insufficient training duration. Alter-

natively, the YOLOv5s architecture might struggle with overfitting on a relatively small

dataset.

In terms of augmentation techniques, the matched resolution method generally achieves

slightly higher precision than the standard method, suggesting that reducing ship normal-

ization during augmentation enhances precision.

Combining class weighting with augmentation generally improves recall more than us-

ing class weighting alone, though its effect on precision varies. However, class weighting

tends to significantly increase the false positive rate from the background (FPRbg), leading

to more false detections and sometimes worse performance than the baseline. This increase

in FPRbg is consistent across all models that use class weighting, with these classifiers

producing at least twice as many background false positives across all ship categories. For

instance, the baseline YOLOv8n model registered 763 false ship detections in the back-

ground, whereas the class-weighted baseline model saw 2,468 such detections. While com-

bining augmentation and class weighting in YOLOv8n reduced the false detections to 1,895,

using augmentation without class weighting was more effective, resulting in only 791 false

background detections.

The top performing YOLOv8n model utilizing the matched resolution augmentation

method additionally resulted in noticeable recall improvements to the cargo ship and barge

ship categories, as evidenced in the confusion matrices in Fig. 3.5. When considering how

other vessel types may work in tandem with dark fishing vessels (e.g. a refrigerated cargo

ship with AIS operating near a fishing vessel with AIS disabled so that a catch can be

offloaded and processed at sea [6]), this improved general classification performance is of

further benefit for systems designed to detect illegal fishing from ship movement data.
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(a) Baseline model

(b) Augmented MatchRes model

Fig. 3.5: Confusion matrices of baseline YOLOv8n model and best YOLOv8n model with
augmentation — best of 300 epochs
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3.5.4 Impact of Augmentation on Overfitting

The use of class weighting has been found to increase the likelihood of overfitting in

models. This tendency is illustrated in Figure 3.6a, which shows the model’s validation

losses. A similar pattern is observed with YOLOv8, except that for experiments without

class weighting, the validation loss tends to plateau over time instead of rising again.

Models trained with augmented datasets exhibit overfitting at rates comparable to

those trained on baseline datasets. However, models using class weighting are more prone

to overfitting. Figure 3.6b shows that combining class weighting with augmentation does

not significantly mitigate overfitting, considering the specific types and amounts of augmen-

tation used.

Figure 3.6c compares the validation loss of the best-performing YOLOv5n and YOLOv5s

models. As detailed in Table 3.3, YOLOv5n outperformed YOLOv5s. One potential reason

for this discrepancy in performance might be that increasing the number of parameters

in a model, particularly with a small dataset, can lead most of these new parameters to

contribute to overfitting rather than genuine learning.

(a) YOLOv5 for baseline,
augmented, and weighted
experiments

(b) YOLOv5 and YOLOv8
for augmented-only and
augmented + weights
experiments

(c) YOLOv5n and
YOLOv5s augmented
experiments

Fig. 3.6: Validation loss comparisons of trained YOLO models; YOLOv8 experiments ad-
ditionally produced results very similar to a.
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Unlike YOLOv5s, YOLOv8n did not show a similar extent of overfitting, likely due

to its newer architecture and smaller size. However, the small variance in validation losses

between YOLOv5n and YOLOv5s makes it challenging to definitively attribute the perfor-

mance differences to specific causes without additional experiments.

3.5.5 Performance on Edge Compute Platforms

To rigorously assess the inference capabilities of YOLOmodels enhanced by POSEIDON-

SAT, we conducted benchmark tests on an NVIDIA Jetson Orin Nano 8GB DevKit. This

setup mirrors the computational constraints typical of edge devices aboard cube satellites

and other small-form Low Earth Orbit (LEO) spacecraft, ensuring our findings are directly

applicable to real-world satellite operations. We optimized the models for the NVIDIA Ten-

sorRT runtime, which is tailored to maximize inference performance on NVIDIA hardware.

The benchmarks focused on evaluating model performance under the constrained power

conditions typical of small satellites. We tested the models at two distinct power profiles—15W

and 7W—to simulate operational scenarios in space where power efficiency is paramount.

The results of these benchmarks, which provide insights into both the speed and efficiency

of the models under different power conditions, are comprehensively detailed in Table 3.5.

Benchmarks were performed across the validation dataset with a single image batch size

and an input dimension of 960 × 960. Additionally, the memory footprints of each model

configuration, crucial for understanding their viability on resource-limited platforms, are

documented in Table 3.6. Note that the Jetson Orin Nano uses a shared CPU and GPU

memory architecture. This evaluation underscores our models’ suitability for deployment in

spaceborne systems, where minimizing power consumption and optimizing space is critical.

3.6 Conclusion

The application of the POSEIDON-SAT dataset augmentation method to YOLOv5

and YOLOv8 models trained on the ShipRSImageNet dataset has not only improved recall

by 10% and 8% respectively but also increased precision by 3–4% in accurately detecting

fishing vessels. This method outperforms traditional class weighting, offering less overfit-
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Table 3.5: Performance of Best Models on Jetson Orin Nano 8GB DevKit

Power Profile 15W 7W

Pre. Inference Post. FPS Pre. Inference Post. FPS
(ms) (ms) (ms) (960× (ms) (ms) (ms) (960×

Model 960) 960)

YOLOv5n Augmented 2.3 11.6 4.9 53.2 2.9 19.4 6.9 34.2
YOLOv5s Augmented 1.8 15.1 4.1 47.6 2.9 35.1 6.6 22.4
YOLOv8n Augmented

+ MatchRes
2.2 11.9 4.2 54.6 3.2 26.7 6.4 27.5

Table 3.6: Memory Footprint of Best Models on Jetson Orin Nano 8GB DevKit

Model
Model Size

(MiB)
Total Inference Memory Use

(GiB)

YOLOv5n 5.9 1.25
YOLOv5s 15.9 1.29
YOLOv8n 7.6 2.93

ting, superior classification performance, and fewer false positives from the background.

Remarkably, using POSEIDON-SAT without combining it with class weighting yielded the

best results.

The significant improvements in recall are particularly vital for detecting fishing vessels,

enhancing the model’s ability to identify ”dark” fishing vessels. Despite the models pro-

ducing a substantial number of false positives—–likely due to the lack of background-only

images—–the enhanced detection capabilities facilitated by POSEIDON-SAT are crucial for

systems that rely on analyzing ship movement data. Such systems can now better differen-

tiate between real and false-positive movements, thereby improving the overall efficacy of

illegal fishing detection.

Moreover, the successful application of POSEIDON-SAT has shown to improve classi-

fication accuracy across various ship categories, which could be instrumental in identifying

vessels, such as refrigerated cargo ships, potentially involved in illegal fishing operations.

Looking forward, we recommend further testing of the POSEIDON-SAT method across

different CNN architectures and on larger datasets to explore whether a greater variety of

source ships and backgrounds can further boost model performance. More realistic ship
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instance integration during augmentation and enhanced extraction processes with detailed

segmentation labels are also anticipated to yield positive outcomes. Additionally, deploying

POSEIDON-SAT on SAR and other types of overhead maritime aerial imagery datasets

could significantly enhance dataset quality and scalability, broadening the scope of its ap-

plication in fishing vessel detection.

This method’s effectiveness on cube-satellites equipped with edge computing capabili-

ties highlights its practicality for real-world satellite operations. These satellites, operating

under strict power and computational constraints, benefit immensely from the lightweight

nature of the augmented YOLO models, making this approach a transformative solution

for continuous and efficient maritime surveillance from space.
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CHAPTER 4

CONCLUSION AND FUTURE WORK

This chapter will provide a final discussion of the impacts of the experiments discussed

in Chapter 3 on the design of a Maritime Surveillance System (MSS), such as the MSS

proposed in Chapter 2, and will provide concluding remarks on future research direction.

4.1 Ship Detection

Though classification performance for fishing vessel detection is still far from ideal,

the POSEIDON-SAT method is able to achieve notable performance improvements over a

YOLOmodel trained with a non-augmented dataset. Evaluation of the proposed POSEIDON-

SAT augmentation method has shown that application of this method can help to overcome

barriers to improving classification performance of ship detection on current and future

fine-grained ship detection datasets. A detailed summary of the benefits and merits of

POSEIDON-SAT were previously discussed in Section 3.6.

Of particular concern for application of a YOLO model trained with a POSEIDON-SAT

augmented dataset for use in the MSS described in Chapter 2 is the inference performance on

an edge compute platform with a 10W power limit, such as the NVIDIA Jetson Orin Nano

described in Section 2.2.2. Results from benchmarking inference performance of the best

YOLO models on the Jetson Orin Nano 8GB DevKit, discussed in Section 3.5.5, confirms

the suitability of running these models on such a compute platform based on results detailed

in Table 3.5 for the 7W power profile. Memory footprints of each model, shown in Table 3.6,

are also low enough to be practically deployed to resource-constrained compute platforms.

4.1.1 Future Research Directions for Ship Detection

Finding an ultimate solution to the difficulty of constructing a lightweight ship detec-

tion model for optical satellite imagery is still ongoing, and requires further enhancements
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to dataset availability and model architectures. Though our POSEIDON-SAT augmen-

tation method shows notable performance improvements for fishing vessel classification,

larger and more robust base datasets are needed to understand the full potential impacts

of POSEIDON-SAT on the performance of future detection models.

Several of the potential enhancements to the proposed POSEIDON-SAT augmenta-

tion method discussed in Section 3.6 have significant promise for future research. The

false-positives in the ship detection model have a significant potential for improvement

by adding background images to the dataset, as the ShipRSImageNet dataset this the-

sis applied POSEIDON-SAT to does not contain any background-only images. The best

training practices for YOLO recommend including a significant number of background-only

images [36], though adding such images should be relatively straightforward due to higher

availability of satellite images which consist of only open ocean. Adding segmentation in-

formation about shorelines in ShipRSImageNet images would allow utilizing more images

during the POSEIDON-SAT augmentation process, enabling the use of images with shore-

lines without potentially placing ships on land. Creating an initial model from a synthetic

fine-grained ship detection dataset, such as UnityShip [54], followed by training on a real

dataset augmented with POSEIDON-SAT may further enchance the ship detection model

performance. Testing POSEIDON-SAT augmentation on the training dataset of an LMO-

YOLO model [55], which is designed for detection of ships in low-resolution images, should

improve the detection of smaller fishing vessels. Enhancing POSEIDON-SAT through the

use of methods for more realistic incorporation of generated fishing vessel instances, such

as the method proposed in [56], should additionally result in more robust ship detection

models.

4.2 Discussion of Illegal Fishing Detection Agent Design

The decision-making system of the proposed MSS handles the task of leveraging ship

location and category information to determine whether a vessel is engaging in illegal fishing

activity. Effective approaches for monitoring ship movement activities to detect illegal

fishing activity where high quality ship location data is available, such as data from AIS,
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have been proposed in [4, 11]. Similar approaches could be leveraged for ship location

and category data produced by ship detection models, though the proposed ship detection

approach has a higher degree of uncertainty in the produced data. However, the generally

high performance of such approaches indicates that these models may be able to effectively

filter out false-positives from the ship detection model, permitting the ship detection model

to lean more towards prioritizing recall to potentially detect a larger percentage of all illegal

fishing activity.

Consideration of the known uncertainties within the ship location and category data

produced by the ship detection of the MSS is worth direct consideration and research.

Leveraging known uncertainty, such as the probability of an inaccurate ship category pre-

diction, can be used to improve the reliability of the illegal fishing detection and response

decision-making agent. Techniques such as Reinforcement Learning (RL) are excellent can-

didates for application to environments with notable variance and uncertainty. RL has seen

significant application to robotics applications, where complex behaviors and noisy inputs

are common, indicating a high degree of promise for application to a illegal fishing detection

and decision-making system.

If the ship detection model and the illegal fishing detection and response decision-

making agent are built to enable real-time observation of an area of interest, with enough

satellites to observe the area of interest over a longer time period are deployed, an RL

approach could yield a significant benefit in the form of enabling real-time learning based on

developing conditions. The ability to deploy ship detection on low-cost satellites makes such

a multi-satellite system and real-time learning agent much more affordable and practical,

especially as smaller satellites in Low Earth Orbit (LEO) may be able to make more frequent

observations than a single, larger satellite.

4.3 Application to Existing and Future Datasets

The lack of large datasets for ship detection from optical satellite imagery continues

to complicate research in the area of ship detection from optical satellite imagery. Dataset

augmentation provides a useful technique for balancing datasets and for increasing the
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size of existing datasets. Though performance of models augmented with POSEIDON-SAT

yield notable improvements, further enhancements are needed to improve high classification

performance.

The detection models resulting from this research could be leveraged for the construc-

tion of newer datasets. Deployment of multiple low-power satellites with optical imaging

capabilities and AIS receivers could continually image areas of interest with a reasonably

high frequency, due to the quicker orbital period of such small satellites when deployed in

LEO. Developing and running an AIS correspondence algorithm, similar to those described

by [14,15,47], onboard the satellite could be used to ensure that communication bandwidth

is used only to transmit images which can be automatically labeled for construction of a

large dataset. The LACE-C3A satellite platform used for the proposed MSS has the benefit

of these small satellites being equipped with AIS as well as optical imagery capabilities,

which could allow real-time correlation of images to AIS data at the time of image capture

on the satellite. Such a real-time onboard AIS correlation approach would likely use simpler

algorithms than the methods referenced previously, which are focused on correlating AIS

data with SAR imagery which were captured by different sources, potentially at different

times. Constructing a dataset through the application of the MSS proposed in this thesis

would provide a significant contribution to the field of optical fine-grained ship detection,

where dataset availability is extremely limited.

The POSEIDON-SAT augmentation method additionally has potential application to

SAR and other types of ship imaging datasets where ship instances are clearly distinguish-

able. The significant contrast between ship instances and their background in images, such

as SAR, should make the POSEIDON-SAT method transfer well to other types of ship

datasets. With the most significant challenge for ship detection systems from satellite im-

agery being centered around the lack of large datasets, future work should explore the

application of augmentation techniques to larger and initially more varied datasets to aid

in the creation of high-quality training datasets as future data collection work is performed.
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