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ABSTRACT 

Understanding the Relationship between Livestock Disturbance, the Protocols Used to 

Measure that Disturbance and Stream Conditions 

 
by 

 
Lindsey Goss, Master of Science 

Utah State University, 2013 

 

Major Professor: Chris Luecke 
Department: Watershed Sciences 
 
 
 Understanding and managing the effects of livestock grazing on stream systems is 

of particular concern on federal lands throughout the Interior Columbia River Basin.  

Land managers monitor three short-term indicators of livestock disturbance (streambank 

alteration, stubble height, and woody browse) seasonally to ensure livestock grazing does 

not degrade the long-term health of stream and riparian systems.  There are multiple 

methods for evaluating these indicators; one concern is that different monitoring 

approaches may have different results.  In this research I evaluated three short-term 

disturbance indicators and compared four different protocols for monitoring streambank 

alteration at the end of the grazing season.  In order for these indicators to be meaningful 

the methods should be repeatable, related to grazing intensity, representative of 

cumulative impacts throughout the season, and related to long-term stream conditions.  

Additionally, it is important that land mangers understand how these indicators respond 

under different climatic and landscape conditions. 
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 In this study I found that the results were dependent on the protocol used and the 

specific indicator monitored.  Measures of streambank alteration and stubble height were 

moderately repeatable while methods for estimating woody browse were not repeatable.  

Stubble height and streambank alteration were related to grazing intensity, but the ability 

to detect alteration at the end of the season was influenced by erosional processes 

occurring within the grazing season.  Streambank alteration was much higher during the 

drier year of the study because livestock were more dependent of the riparian areas when 

precipitation was limited.  Overall, climatic and geo-physical conditions across the 

landscape were weakly related to the pattern of disturbance in riparian areas; however, 

there was higher livestock disturbance in cold arid environments.  While the short-term 

indicators of stubble height and alteration were cumulatively related to long-term stream 

conditions, the ability to detect changes in individual stream conditions was dependent on 

the indicator and protocol used.  These findings can be used by land managers to make 

informed decisions about which protocols to use for end-of season disturbance 

monitoring and will help land managers better understand the relation between short-term 

indicators and long-term stream conditions. 

  (106 pages) 
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INTRODUCTION 

 Livestock grazing has occurred on rangelands throughout the western United 

States since the early 1800’s.   Historically livestock played an important part in the 

western economy generating more income than any other single agricultural commodity. 

Little thought was given to how grazing affected other resources such as fisheries, and 

native flora or fauna (Platts 1986).  As grazing intensity increased, rangelands and 

adjacent riparian areas deteriorated (Platts 1986).  In response, a series of laws and 

guidelines, beginning with the Taylor Grazing Act of 1934, were established to regulate 

the number of livestock permitted and to ensure responsible management practices on 

public lands (Coggins and Lindberg-Johnson 1982).  Livestock grazing no longer plays 

such a dominant role in western economy, but it continues to provide economic stability 

for ranchers and its legacy carries on as a western tradition. 

 There is a growing concern about the impacts of livestock grazing in riparian 

areas (Clary and Kinney 2002).  When compared to adjacent uplands, riparian areas are 

used disportionately by livestock as they seek out forage, water, and shade (Roath and 

Krueger 1982; Marlow and Pogacnik 1986; Belsky et al. 1999).  Changes to channel 

structure and riparian composition from excessive grazing can lead to degraded 

functionality of stream systems (Clary and Webster 1989; Platts 1991; Neary and Medina 

1996).  Trampling of streambanks can cause physical changes in channel morphology 

through widening of stream channels (Platts 1986; Neary and Medina 1996) and collapse 

of undercut banks (McIver and McInnis 2007).  Soil compaction and shearing of the bank 

from hooves leads to increased surface runoff, soil erosion, and fine sediments in the 

streambed (Warren et al. 1986; Usman 1994; Trimble and Mendel 1995).  Overgrazing in 
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riparian zones can negatively affect vegetation vigor, community structure, and species 

composition (Kaufman and Krueger 1984; Bengeyfield and Svoboda 1998).  Heavily 

grazed reaches have lower densities of native species (Fleischner 1994; Frank 2005), 

decreased tall rhizomatous plant species (Jones et al. 2010), and lower abundance of bank 

stabilizing hydric plant species (Coles-Ritchie et al. 2007).  These disturbed areas favor 

exotic and invasive inhabitants, and short-lived smaller plants lacking adequate root 

structure to stabilize banks (Clary and Kruse 2004; Jones et al. 2010).  The cumulative 

effects of increased suspended sediment, excess nutrients, and reduced vegetative cover 

are detrimental to water quality and instream temperatures (Belsky et al. 1999).  In order 

to maintain healthy riparian zones, federal agencies monitor on the ground conditions in 

an attempt to ensure that livestock grazing doesn’t degrade the long-term functionality of 

stream channels and riparian ecosystems.   

 Indicators monitored to assess grazing intensity include stream characteristics 

such as streambank angle, undercut banks, bank stability, and riparian species 

composition (Platts et al. 1987; Bauer and Burton 1993; Green and Kauffman 1995; 

Neary and Medina 1996; Clary 1999; Heitke et al. 2008).  The condition of these 

attributes change slowly over time (Green and Kauffman 1995) therefore are commonly 

measured when assessing the long-term effects of grazing in riparian areas (McIver and 

McInnis 2007; Heitke et al. 2008).  To maintain the integrity of these long-term attributes 

and as a measure of accountability, managers also monitor short-term indicators of 

livestock disturbance.   

  Short-term indicators such as streambank alteration, stubble height, and levels of 

woody browse are measured to assess annual livestock grazing disturbance (Heady 1949; 
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Kauffman et al. 1983a; USDI-BLM 1996; Bengeyfield and Svoboda 1998; Clary and 

Leininger 2000; Cowley and Burton 2005; Bengeyfield 2006; Heitke et al. 2008; Burton 

et al. 2011).  Streambank alteration is defined by the presence of shearing, trampling, and 

trailing to the streambank as a direct result from current year ungulate use (Burton et al. 

2011; Heike et al. 2008).  Stubble height is a measure of the height of residual herbaceous 

vegetation remaining after grazing (Bengeyfield and Svoboda 1998, Clary and Leininger 

2000; Burton et al. 2011). Woody browse is an estimate of utilization to current year 

branch growth for trees and shrubs (Heady 1949; Burton et al. 2011).  Healthy 

herbaceous and woody vegetation provide strong root systems that stabilize banks and, 

filter sediment, slow water during high stream flows, and provide shade to streams 

(Micheli and Kirchner 2002; Burton et al. 2011).  The purpose of measuring these 

attributes (streambank alteration, stubble height, and woody browse) is to estimate how 

much of the streambank has been disturbed by livestock and other ungulates (Burton et 

al. 2011).  Each of these indicators can be used as a trigger for moving livestock at a 

predetermined standard level and as an end-of-season indicator of current year grazing 

intensity (Cowley and Burton 2005; Burton et al. 2011).  When these indicators are 

maintained at a threshold it is thought to facilitate long-term riparian health and can be 

used to hold land management agencies accountable for riparian management plans 

(Heitke et al. 2008). 

 A common method used for measuring the effects of livestock grazing is the 

Multiple Indicator Monitoring (MIM) protocol described by Burton et al. (2011).  This 

protocol is designed to be a quick and cost effect way to measure short-term disturbance 

indicators.  One concern with using this rapid assessment approach is that it could 
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simplify methods so that they no longer relate to or bias the estimates of the disturbances 

being evaluated (Anderson 2003; Heitke et al. 2008).  For example, when assessing 

streambank alteration the MIM protocol does not directly measure the area of the 

streambank that has been altered but instead provides an index of streambank alteration.  

This index approach can lead to a consistent bias that overestimates the amount of 

streambank alteration (Heitke et al. 2008).  This protocol could therefore become 

problematic if management thresholds standards were based on more accurate estimates 

of streambank alteration (e.g., Bengeyfield 2006; Heitke et al. 2008).   

Regardless of the measurement protocol, there currently are few rigorous, 

scientifically reviewed evaluations of streambank alteration standards for grazing 

(Cowley 2002).  The only published article suggests that if streambank alteration is 

maintained around 17% then bank conditions will improve and cross sectional stream 

width will be reduced (Bengeyfield 2006).  This small scale study consisted of only one 

protocol and two streams.  Based on this paper many management agencies apply 

compliance standards (e.g., 20%) for an allowable amount of streambank alteration.  One 

concern is that different monitoring approaches may result in different mean estimates of 

streambank alteration (Heitke et al. 2008).  A more rigorous understanding of the 

applicability of any standard is needed if it is to be broadly applied.  Additionally, more 

information must be considered in order to understand the relationship between different 

streambank alteration protocol approaches and other short-term indicators of riparian use 

such as stubble height and woody browse. 

 Maintaining livestock disturbance at or below the compliance standards is 

important to land management but can be difficult because of temporal and spatial 
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variation in livestock behavioral patterns.  Many studies have looked at factors which 

influence the annual and spatial distribution of livestock across the landscape (e.g., Roath 

and Krueger 1982; Senft et al. 1982; Gillian et al. 1984; Marlow and Progacnik 1986; 

Bailey 2005).  Marlow and Progacnik (1986) and Roath and Krueger (1982) found that 

cattle spent a disproportionate amount of time utilizing vegetation in the riparian zones 

late in the summer.  During years of drought livestock spend a larger proportion of 

grazing season in riparian zones than under normal precipitation patterns (Marlow and 

Progacnik 1986).  Observational studies have found cattle to spend less time on steep 

slopes and more time in close proximity to water sources (Roath and Krueger 1982; 

Gillian et al. 1984).  These studies were generally limited to a few pastures and did not 

quantify characteristics which caused higher use of riparian zones.  A large scale 

evaluation that can incorporate the variability across drainage basins is necessary to better 

understand conditions which contribute impacts to riparian areas.   

 In this study I evaluated three short-term indicators of livestock disturbance 

(streambank alteration, stubble height, and woody browse) and compared four different 

protocols for monitoring streambank alteration at the end of the grazing season.  In order 

for these indicators to be meaningful, the methods should be accurate, repeatable, related 

to grazing intensity, representative of cumulative impacts throughout the season, and 

related to long-term stream conditions.  Additionally, it is important that land mangers 

understand how these indicators respond with different landscape and climatic 

conditions.   

 The objectives of this research were to evaluate 1) the relationships and accuracy 

of four protocols for measuring streambank alteration, 2) the relationships among 
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streambank alteration, stubble height, and woody browse, 3) repeatability of each 

protocol and indicator, 4) temporal variability of the indicators, 5) the relationship of 

indicators with landscape and climatic conditions, 6) the relationship between short-term 

indicators and grazing intensity, and 7) the relationship between short-term indicators and 

long-term stream conditions.  The information presented here can be used by land 

managers to make informed decisions about which methods to use for end-of season 

livestock disturbance monitoring and will help land managers better understand the 

relation between short-term indicators and long-term stream conditions.  

  

METHODS 

Study Area and Sample Design 

 The study area included Forest Service and Bureau of Land Management (BLM) 

lands within the Interior Columbia River Basin (ICRB; Figure 1).  Evaluated reaches 

were selected from Pacfish/Infish Biological Opinion Effectiveness Monitoring Program 

(PIBO EMP; Kershner et al. 2004a) monitoring reaches so as to be a spatially balanced 

sample of Designated Monitoring Areas (DMA) within the ICRB.  Designated 

Monitoring Areas are permanently monumented stream reaches which were selected for 

monitoring because they contained impacts that result principally from livestock grazing.  

In addition, eleven reference reaches with no livestock grazing for 30 years or more were 

selected to serve as controls for this study.  The evaluated reaches were located within 17 

National Forests (Beaverhead-Deerlodge, Boise, Clearwater, Colville, Deschutes & 

Ochoco, Helena, Humboldt-Toiyabe, Lolo, Malheur, Nez Perce, Okanogan-Wenatchee, 
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Panhandle, Payette, Salmon-Challis, Sawtooth, Umatilla, Wallowa-Whitman) and four 

BLM units (Idaho Falls, Prineville, Spokane, and Vale).   

 The sampled reaches covered a wide range of climatic and geophysical landscape 

attributes (Table 1).  Characteristics ranged from elevations of 155 to 2,360 m, bankfull 

width from 0.95 to 12.6 m, stream gradient from 0.03 to 6.8%, and sinuosity from 1 to 

2.3 (Figure 2).  Vegetative conditions at the reaches ranged from meadows, grasslands, 

coniferous forests, scrublands, open canopy deciduous to barren.  Characteristics of the 

catchment above the evaluated reach ranged from areas of 0.23 to 443.93 km2, average 

annual precipitation from 0.31 to 1.68 m, and average annual temperature from -0.08 to 

9.84 C˚.  The large sample size allowed for representation of the variable geographic and 

climatic conditions of the study area. 

 To meet the objectives, I implemented a two year study design.  Monitoring 

occurred toward the end of the grazing season from mid September to mid October to 

accurately capture the cumulative effects of livestock grazing throughout the season.  In 

2010 a total of 65 reaches were evaluated with 11 reaches serving as reference.  In 2011 a 

total of 147 reaches were evaluated with 10 reaches serving as reference.  Sixty-three 

reaches were evaluated in 2010 and 2011. 

Stream Reach Evaluations 

 Reach setup and sampling methods generally followed directions within the MIM 

protocol (Burton et al. 2011).  The bottom of the evaluated reaches was monumented and 

observers were provided written direction, coordinates, photographs, and monument 

locations to ensure evaluations were conducted along the same stream reach.  The 

evaluated reaches extend 110 m upstream from the monumented bottom of the reach.  All 
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evaluations occurred along the greenline (Winward 2000).  Greenline is the first 

perennial vegetation that forms a lineal grouping of community types on or near the 

water’s edge and most often occurring at or slightly below the water’s edge (Winward 

2000).  Methods for determining greenline placement were modified from Leary and 

Ebertowski (2010).  Unlike MIM, which allows for plots to be placed 6 meters away 

from water’s edge, this approach uses an upper limit, which is the first flat depositional 

feature above bankfull.  With this method a plot is placed along the streambank even if 

there is no greenline vegetation (Leary and Ebertowski 2010).  This approach was used to 

insure monitoring corresponded to bank locations where more intensive stream habitat 

data was collected.  Slight modifications of this approach were made to be consistent 

with the MIM protocol in that the greenline did not extend into the water, did not exceed 

a 45˚ horizontal angle from level ground, and could be obtained up to a 75˚ vertical angle 

rotation from the stream parallel (Burton et al. 2011).   

Indicators of Livestock Disturbace 

  I evaluated three short-term indicators of livestock disturbance; streambank 

alteration, stubble height, and woody browse.  Streambank alteration was defined by the 

presence of shearing, trampling, and trailing of the streambank (Heike et al. 2008; Burton 

et al. 2011; Table 2).  The disturbance had to be obvious and from the current seasons 

use.  “Obvious” streambank alterations, defined by Burton (2011), were those that were 

readily observed from no closer than approximately 61 cm (2 ft) from the streambank;  

this meant livestock impacts needed to be evident without kneeling close to or lying on 

the ground (Burton et al. 2011).  Stubble height was defined as the median height of the 

herbaceous vegetation (graminoids and forbs) along the greenline.  Woody browse was 
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an estimate of the percent of current year branches that were grazed by livestock and wild 

ungulates.   

 Streambank alteration was evaluated using four protocols 1) the MIM protocol 

defined by Burton et al. (2011; MIM), 2) a modified version of the MIM protocol 

(hereafter called Mod) that increased the possible range of values altered by livestock 

within sampled plot, 3) a Single Line Alteration protocol (hereafter called SLA) 

implemented by Region 1 of the USDA Forest Service (Region 1 Bank Alteration Task 

Group 2005), and 4) a line intercept approach (hereafter called LI) modified from 

Bengeyfield (2006). 

 Estimates of streambank alteration as determined by MIM, Mod, and SLA 

protocols, stubble height, and woody browse were rapid assessments using the aid of 

quadrat frame placed along each streambank.  The primary sampling quadrat consisted of 

two 20 x 50 cm Daubenmire (1959) plots placed side by side (Figure 3) with the 50 cm 

center bar placed along the greenline (Burton et al. 2011).  Observers walked upstream on 

the left bank and downstream on the right bank, placing the quadrat on the streambank 

directly in front of the toe every three paces (approximately every 2.75 m).  A minimum 

of 40 quadrat placements were evaluated on each bank.  If an observer was approaching 

the end of a reach and felt they would not obtain the minimum quadrat placement, the 

pace was then adjusted to that less than 2.75 m so as to obtain at least 40 plots on the 

streambank.  Once the frame was placed on the streambank it was adjusted so the center 

bar of the frame was along the greenline (Region 1 Bank Alteration Task Group 2005; 

Burton et al. 2011).  All estimates of streambank alteration as determined through MIM, 

Mod, and SLA protocols, stubble height, and woody browse occurred simultaneously 
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with quadrat placement.  This was done as to ensure that all indicator measurements were 

taken from the same locations.   

 Streambank Alteration.  The MIM protocol for evaluating streambank alteration 

used a modified five line intercept approach.  The sampling frame was divided into five 

lines extending 20 cm on either side of the greenline perpendicular to the 50 cm center 

bar (Figure 3).  The original frame include bars representing the 1st and 5th lines; the 2nd 

3rd, and 4th lines were visually projected by the observer 10 cm apart perpendicular to 

the center bar representing lines two through four (Burton et al. 2011).  For this study I 

modified the frame to include bars for the three lines that would normally be visually 

projected by the observer.  The amount of alteration at a quadrat frame was recorded as 

the total number of lines that intercepted hoof alterations, regardless of the amount of the 

line that was altered.  Each line that intercepted alteration was representative of 20% 

alteration for the 40 x 50 cm quadrat area.  The maximum of 100% alteration could be 

obtained when all five lines intercepted alteration at any point along the bar.   

 To increase the resolution of the measurement and presumably precision and 

accuracy, the number of possible intersects of the Mod frame was increased from five to 

100 (Figure 3).  This was done by dividing each of the five lines into 20 increments; each 

increment was 2 cm in length.  The number of increments that intercepted alteration was 

record for each of the five bars on the quadrat frame.  Each 2-cm increment that 

intercepted alteration was representative of 1% alteration for the 40 x 50 cm quadrat area.  

The maximum of 100% alteration could be obtained for a quadrat frame when all 100 

increments intercepted alteration. 
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 The SLA method was modified from the USFS Region 1 Bank Alteration Task 

Group (referred to as point intercept method in the literature; 2005).  For this method a 

91.4 cm bar was inserted perpendicular to the center bar of the quadrat frame extending 

45.7 cm on either side of the greenline (Figure 3).  A value of one was recorded for the 

plot if alteration such as a hoof print intercepted any portion of the 91.4 cm line.  This 

method would normally be performed without the aid of a quadrat frame and the 91.4 cm 

line would be visually projected by the observer.  The number of measurements recorded 

in this study was lower than the 50 measurements per bank described by the Standardized 

Protocol for Measuring Bank Alteration on Grazing Allotments protocol implemented 

through Region One of the USFS (Region 1 Bank Alteration Task Group 2005).  The 

slight deviation of methods was required so as to collect data in a timely manner that was 

consistent and comparable with the MIM and Mod quadrat placement.   

 The LI method, modified from Bengeyfield (2006), is a measurement of the linear 

length of alteration that occurs along the greenline.  The LI method is an accurate way of 

measuring alteration (Kaiser 1983) but takes more time than the other three protocols 

(Region 1 Bank Alteration Task Group 2005; Burton et al. 2011).  With this method 

measuring tape was placed directly on the greenline for the entire 110 meters on both 

banks of the evaluated reach.  The length of each livestock alteration which occurred 

directly beneath the tape was recorded (Figure 4). 

 Estimates of percent streambank alteration were evaluated and summarized for all 

reaches evaluated in 2010 and 2011 using the MIM and the Mod protocols.  Alteration 

data was evaluated at all reaches using the Mod sampling frame because it permitted both 

MIM and Mod methods to be collected at the same time.  I did this by summarizing 
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alteration by each line within each quadrat placement.  In this way if four of the 10 

smaller 2-cm increments were altered using the Mod protocol the entire line would be 

treated altered by the MIM protocol.  This permitted the easy conversion of data collected 

using the Mod method to that of the MIM method.  Percent streambank alteration for 

MIM was determined by summing the total number of lines that had at least one 

increment of alteration divided by the total number of lines recorded for the reach.  

Percent streambank alteration for Mod was calculated by summing the total number of 

increments with alteration then dividing by the total number of increments recorded for a 

reach. 

 The SLA method was evaluated at a subset of 30 reaches in 2011.  Percent 

streambank alteration for SLA was computed as the sum of number lines that intercepted 

alteration divided by the total number of SLA lines evaluated within each reach. 

The LI method was evaluated at subset of 12 reaches in 2010 and 15 reaches in 

2011.  Percent streambank alteration using the LI method was calculated by summing the 

total alteration divided by the total length summed across both banks (Kaiser 1983).  This 

estimate was likely to be the most accurate in that it is a direct approach rather than an 

indexed approach (Elzinga et al. 1998). 

 Stubble Height.  Methods for measuring stubble height were adapted from Burton 

et al. (2011) and the Utilization Studies and Residual Measurements Technical Reference 

(USDI-BLM 1996).  The median height of vegetation was recorded using the same 

quadrat frame and frame placement as for streambank alteration.  Within the frame 

stubble height was determined in the first subplot section nearest the handle and on the 

greenline side of the quadrat frame (Figure 5).  Height measures were only recorded for 
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herbaceous vegetation (graminoids and forbs) composing at least 25% cover within the 

10 x 20 cm portion of the plot used in this measurement.  If vegetation didn’t cover 25% 

of the first subplot, the observer then recorded the median height of vegetation in the 

nearest 10 x 20 cm subplot on the greenline side of the quadrat frame that did have 25% 

cover.  If all four subplots on the greenline side of the quadrat frame were exhaust 

without encountering suitable vegetation then a value of NA (not applicable) was 

recorded.  Median height was evaluated for all graminoid and forbs within the 10 x 20 cm 

subplot.  This was done by the observer determining the median height of the vegetation 

within the 10 x 20 cm subplot; this height was measured (by ruler) and recorded.  

Graminoid or forb was recorded indicating the dominant vegetation type found within the 

10 x 20 cm subplot.  Mean stubble height was summarized as the total sum of the median 

stubble height measures and dividing it by total number of applicable measurements 

recorded for each reach. 

 Woody Browse.  Methods for evaluating woody browse were adapted from Burton 

et al. (2011) and the Utilization Studies and Residual Measurements Technical Reference 

(USDI-BLM 1996).  Woody browse was the percent class of the current year leaders that 

had been browsed within a 2 x 2.75 m plot (Table 3, Figure 6).  The 2 x 2.75 m plot was 

projected by the observer and was 2 m wide (1m on each side of the greenline) extending 

2.75 m from the quadrat handle to the next consecutive quadrat handle.  Woody browse 

was recorded for each of the following four shrub types: willow (Salix sp.), birch and 

alder (Betulaceae – Betula sp.  and Alnus sp.), dogwood (Cornus sericea), aspen and 

cottonwood (Populus sp.).  Estimates of browse were evaluated on the first of each shrub 

type rooted within a plot.  The first shrub was defined by that closest to the handle of the 
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quadrat frame.  When species of other shrub types were encountered within the plot, no 

browse class was recorded for those woody shrubs.  Percent woody browse was 

summarized as the mean of the midpoint values for all woody shrub types recorded for a 

given reach.   

Observer Repeatability 

 Multiple independent evaluations conducted on the same reach at the same time 

were used to gain an understanding of the repeatability among the observers for each of 

the livestock disturbance indicators and streambank alteration protocols.  Reach 

evaluations were performed by a total of 33 independent observers over the two year 

study.  Because previous studies have shown that increased training reduces observer 

variability (Heitke et al. 2008, Olsen et al. 2005, Whitacre et al. 2007, Hannaford et al. 

1997) all observers received field training and a written protocol of methods to refer to 

when questions came up after the training.  Field training included how to set up a reach, 

greenline identification, quadrat placement, identification of ungulate alteration, stubble 

height measurements, and the different methods for measuring streambank alteration.  

Additional training provided in 2011 included woody vegetation identification, methods 

for measuring woody browse, taking repeat photographs, methods for measuring 

streambank alteration with the SLA method, and practice reach evaluations.  Observers 

were instructed not to discuss the measurements they recorded to ensure independent 

evaluations.   

 I selected a subset of reaches for evaluations by multiple observers to capture 

variability associated with measuring streambank alteration (MIM, Mod, and SLA), 

stubble height, and woody browse.  Repeat evaluations occurred at 24 reaches in 2010 
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and 48 reaches in 2011.  For the repeat evaluations two observers independently 

measured streambank alteration, stubble height, and woody browse using the modified 

quadrat frame (there was an exception where one reach was evaluated by four observers 

in 2010).   

At a subset of these reaches, observers also estimated alteration using the LI 

approach.  For the LI method each observer placed a measuring tape along one 

streambank (i.e., observer 1 placed left bank, observer 2 placed right bank measuring 

tape) and both observers independently measured streambank alteration along a single 

fixed LI transect for each streambank.  Each measuring tape was secured to the 

streambanks using turf pins to ensure observers sampled the same transect locations. 

 Overall this sampling design yielded 72 reaches with repeat observations of 

streambank alteration for the MIM and Mod methods, 30 reaches with repeat 

observations for the SLA method, 15 reaches with repeat observations for the LI method, 

72 reaches with repeat observations for stubble height, and 38 reaches with repeat 

observations of woody browse (repeat woody browse data from 3 reaches could not be 

compared because no shrubs were present; repeat woody browse data from 7 reaches 

could not be compared because woody browse was recorded by only one observer at the 

reach). 

End-of-Season Variability 

 The objective of measuring at the end-of-season is to record conditions that are 

representative of the cumulative effects of livestock grazing throughout the season.  One 

concern was that the amount of measured livestock disturbance could change rapidly post 

grazing season due to livestock being present, precipitation events, or changes to stream 
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flows.  To address this concern a subset of 34 reaches were selected for a second end-of-

season evaluation.  The average time between the first and second evaluation was 

approximately 20 days with a range of 10 to 30 days.  Disturbances indicators that were 

evaluated at the secondary evaluations included streambank alteration as determined 

through MIM and Mod, stubble height, and woody browse.  If all livestock had been 

removed from the allotments then any changes to streambank alteration, stubble height, 

and woody browse between visits could be attributed to the weathering or wildlife. 

 Precipitation.  Precipitation was quantified for each reach because rainfall could 

possibly make it difficult to determine whether the disturbance was from the present year 

or from previous years.  Estimates of precipitation were obtained using Snowpack 

Telemetry (SNOTEL) climate sensor tabular datasets (USDA-NRCS 2012) and 

Regressions on Independent Slopes Model (PRISM) spatial datasets (PRISM Climate 

Group 2012).  Two daily precipitation records were derived for each reach from the 

nearest two SNOTEL climate sensors.  Each precipitation dataset included the total 

amount of precipitation (summation of daily precipitation) recorded by the SNOTEL 

sensor from the date of the first evaluation to the date of the second.  The SNOTEL 

sensors were useful because they were able to provide an estimate of the total amount of 

precipitation that occurred between the two end-of-season evaluations, but inference to 

the actual amount of precipitation which occurred at the reaches was limited because the 

sensors were located several kilometers away (distances of 1 to 45 km) and at different 

elevations than the evaluated reaches (elevation differences from the reaches to sensors 

ranging from -338 to 1,139 m).  To account for these concerns PRISM monthly 

precipitation records were obtained for each reach and SNOTEL climate sensor.  The 
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monthly precipitation datasets included the sum of precipitation for September and 

October 2011. 

 Repeat Photographs.  Three to five repeat photographs of streambank conditions 

and ungulate disturbances were taken at reaches that received two separate end-of-season 

evaluations.  The repeat photographs were visually inspected to determine if there was 

evidence of change to streambank alteration, stubble height, or woody browse and 

evidence of precipitation events or changes to the stream stage.  For each reach three 

questions were evaluated: 1) was there visual evidence that livestock were present 

between the two evaluations (e.g., new hoof prints, browse to vegetation, or new cow 

patties)?;  2) was there visual evidence that stream stage had increased between 

evaluations (e.g., risen water levels, new scour lines present, ponding in the adjacent 

riparian area)?; and 3) was there visual evidence that alteration (hoof prints, shearing, and 

trailing) had become less evident on the second evaluation?  Brief one to three sentence 

statements were written for each reach indicating and describing any changes that were 

apparent from the photographs.  To prevent any biases, the repeat photographs were 

assessed independently without knowledge of measured changes in streambank 

alteration, stubble height, and woody browse.  Likewise, the photographs were assessed 

without any knowledge of the amount of time, precipitation, or changes to stage height 

which occurred between visits. 

Variability between Years 

 Variation in annual precipitation strongly affects vegetation production and 

grazing capacity in upland areas ultimately affecting grazing use in riparian areas 

(Marlow and Pogacnik 1986, Asner et al. 2004; Nippert et al. 2006; Heisler-White et al. 
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2008).  To understand the annual variation of the pattern of livestock disturbance, I 

evaluate 63 reaches in consecutive years and compared the differences to differences in 

precipitation.  Monthly precipitation was obtained for each reach using PRISM spatial 

datasets (PRISM Climate Group 2012).  The sum of the total amount of precipitation was 

computed for each water year (1 October through 30 September).  Precipitation for the 

water year was used rather than annual precipitation because the evaluations were 

conducted in September and October; therefore any precipitation occurring in November 

and December would have no influences on the measurement taken for the given year.  

The precipitation that occurs in late October through December accumulates as snow 

pack ultimately contributing to spring runoff, ground water recharge, subsurface flows, 

and base flows for the proceeding season.   

Landscape Attributes Which May Affect Livestock Impacts  

 Many stream conditions are affected by a variety of landscape characteristics at 

different spatial scales (Burnett et al. 2006; Al-Chokhachy et al. 2010).  If livestock 

disturbance were related to landscape conditions one would expect a strong relation 

among these conditions.  Such a finding would suggest consistent difficulty in 

management of livestock across certain portions of the landscape.  In contrast if there 

were little relationship between landscape characteristics and livestock disturbance then 

this would suggest past management has had affect on the amount of disturbance to 

riparian areas.  The reaches evaluated in this study covered a wide range of climatic and 

geophysical landscape conditions that encompassed the variability of many drainage 

basins within the ICRB (Figure 2).  To determine if the disturbance indicators were 

affected by these conditions, I quantified a set of 11 climatic and landscape attributes 
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(Table 1).  ArcGIS version 9.2 (ESRI 2008) was used to calculate stream density, average 

precipitation, average temperature, and percent geology within each catchment, and 

percent of forested vegetation, slope, and road density within a 90-m buffer on both sides 

of streams from the bottom of each reach and continuing upstream for 1 km (here on after 

referred to as segment scale).  Specifics of methods for deriving each attribute have been 

reported in Al-Chokhachy et al. (2010).   

Grazing Intensity 

 For any of the disturbance indicators or protocols to be meaningful, results 

derived from them should be related to grazing intensity.  To estimate grazing intensity I 

placed time lapse cameras at 10 reaches in 2011.  The cameras were placed in locations 

so as to capture as much of the reach as possible while still maintaining a quality 

photograph in which livestock could be distinguished from wildlife.  Each camera was set 

to take a photograph of the reach once every 15 or 30 minutes during daylight hours 

(approximately 6 am to 10 pm).  The cameras were established and began taking photos 

in mid June to early July and were removed the second week of October.  The cameras 

were intended to take pictures for three and a half months, but unforeseen events (e.g., 

cameras knocked over and secure digital cards lost in the field) resulted in large gaps in 

the photo datasets.  Approximately 3,500 photos were taken at each reach (with the 

exception of one reference reach with approximately 1,500 photos).  Over 30,000 photos 

were visually inspected.  Livestock and wild ungulates within the riparian area were 

documented for each day of photographs.  Grazing intensity was determined by summing 

the total number of days with livestock or wild ungulates within the riparian area and 

dividing it by the total number of days containing photographs for each reach.    
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Stream Attributes Which May Be Affected By Livestock Impacts 

 Livestock disturbance indicators are measured annually because they are thought 

to cumulatively be indicative of long-term stream conditions (Burton et al. 2011).  For 

this investigation I selected eight stream habitat attributes that were likely to be altered 

over the long-term by livestock grazing.  The selected attributes have been shown to be 

affected by land management activities such as livestock grazing (Kauffman et al. 1983b; 

Platts and Nelson 1985; Myers and Swanson 1995; Knapp and Matthews 1996; Clary 

1999; Clary et al. 2002; Ranganath et al. 2009) and are considered important physical 

habitat for native fisheries in headwater streams (Al-Chokhachy et al. 2010).  The 

attributes were sampled according to Heitke et al. (2010) and include width to depth ratio, 

bank angle, percent undercut banks, bank stability, residual pool depth, percent pools, 

percent fine sediment (< 6 mm), and median particle size (d50).  Specifics of field 

methods and summaries for each stream habitat attribute have been reported Al-

Chokhachy et al. (2010).  Data for these attributes were collected by PIBO-EMP as part 

of a long-term monitoring project and did not occur at the same time or necessarily the 

same year as the reach evaluations for this study.  To reflect current conditions I used the 

most recent assessments of these attributes for this study.   

 

DATA ANALYSIS 

 The analysis focused on five different aspects of evaluating the short-term 

livestock disturbance indicators.  The first focused on among and within comparison of 

the three different short-term indicators as well as the four different protocols for 

streambank alteration.  I then compared the variability of each of the methods evaluated, 
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and the variability of the indicators within and among grazing seasons.  The disturbances 

indicators were then related to climatic and landscape characteristics to determine if there 

was an effect.  Then I related the indicators of livestock disturbance to grazing intensity 

within the riparian area.  Finally, I related these short-term livestock disturbance 

indicators to long-term indicators of stream conditions.  All statistical analysis was 

conducted using SAS (Version 9.3; SAS Institute 2010) and a significant result was 

defined as α < 0.1.   

Indicators of Livestock Disturbace 

 I evaluated the relationships among the four streambank alteration protocols, 

MIM, Mod, SLA, and LI.  Then I related each of the four protocols to measurements of 

stubble height and woody browse.  For reaches with multiple observations within a year, 

mean values for streambank alteration, stubble height, and woody browse were computed 

and used in this analysis.  Mean values of the indicators from the secondary observations 

(to assess end-of season variability in 2011) were omitted for relations with SLA and LI 

as these methods were not evaluated at the post grazing season evaluations.   

 Relationship among Streambank Alteration Protocols.  I tested whether measures 

from the four alteration protocols were related to each other.  Streambank alteration, 

regardless of protocol, should be 0% when there is no alteration and should not exceed 

100% regardless of level of alteration.  The shape of the relationship between these two 

known points, however, can vary depending upon how the protocol evaluates alteration.  

I determined which of four models best explained the relationships between the 

protocols.  The simplest model was a linear model with an intercept forced through 0, 

given by (equation 1): 
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where y is one of the alteration measurements and a is the slope estimate of the compared 

alteration measurement (x).  Next I evaluated three non-linear asymptotic functions; the 

Michealis-Menten function given by Equation 2, a 3-parameter exponential function 

given by Equation 3, and a 2-parameter asymptotic exponential function (Equation 4; 

Crawley 2007): 
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where x is one of the alteration measures, y is the other alteration measure and the a, b, 

and c parameters control the shape and a asymptote of the relationship.  The advantage of 

these functions is they are non-linear, have an x y intercept near zero and should 

asymptote at values near 100.  The fit of these models were compared using Akaike 

Information Criterion (AIC) with the best model having the lowest AIC value (Akaike 

1974).  For simplicity and consistency in explanation the independent variable (x) was the 

protocol with the lower increment of measure (i.e., higher resolution of measure).  The 

dependent variable (y) was that with the higher increment of measure (i.e., lower 

resolution of measure).  The goodness of fit of the non-linear models was calculated as 

one minus the ratio between the corrected sum of squares (SSE) and the total sum of 

squares given by Equation 5:  
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 Relationship among Measures of Streambank Alteration, Stubble Height, and 

Woody Browse.  Measures of streambank alteration (MIM, Mod, SLA, and LI) were 

compared with measures of stubble height and woody browse to determine if there were 

relationships among the short-term indicators.  The primary goal of this analysis was to 

determine if the vegetation and alteration relations had a threshold point in which the 

conditions of one indicator began to rapidly deteriorate or improve with changes to the 

another indicator.  Likewise, I compared stubble height and woody browse to determine 

if there was a relation and if there was a threshold value in which conditions began to 

degrade or improve.  The relations were analyzed using a non-parametric method for 

estimating locally weighted regression lines (LOESS) with a first degree polynomial. 

Although the use of LOESS does not result in an equation describing the pattern, it does 

permit visual assessment of the relationships.  Stubble height and woody browse were the 

independent variables when compared to streambank alteration.  Stubble height was also 

the independent when compared to woody browse.  Optimal smoothing parameters for 

the LOESS fit were selected using minimum AIC selection.  Additional smoothing 

parameters were inspected to see if thresholds could be identified through abrupt changes 

to the slope of the locally weighted regression lines.  The AIC selected smoothing 

parameters were used when the alternative smoothing parameters provided no visual 

improvement in the identification of a threshold for the LOESS regressions. 

Observer Repeatability 

 The reaches that were evaluated by multiple observers on the same day were used 

to describe the variability associated with the four streambank alteration protocols (MIM, 

Mod, SLA, and LI), stubble height, and woody browse.  Variability was assessed by 
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calculating the root mean square error (RMSE), coefficient of variation (CV), and signal 

to noise ratio (S:N) of each disturbance indicator (Kaufmann et al. 1999; Heitke et al. 

2008; Roper et al. 2010).  The RMSE is the equivalent to the standard deviation of the 

repeat measurements across all stream reaches and the CV is a dimensionless measure of 

variability scaled to the grand mean across all reaches (CV = (RMSE/mean)  x 100).  The 

lower the RMSE and CV for a given disturbance indicator the lower the variability and 

the more precise the measurement (Kaufmann et al. 1999; Roper et al. 2010).  The 

advantage of RMSE is that the units are the same as those that were measured.  This can 

be easily used to inform the decision maker of the variability around a standard.  The 

advantage of CV is that there are no units so is it can be compared across different 

methods. A CV below 30 indicates the method is generally repeatable.   

The RMSE and CV were calculated for each disturbance indicator using analysis 

of variance (ANOVA) techniques.  All evaluations were based on current conditions 

therefore streams that were evaluated by two or more observers in separate years were 

treated as separate reaches.  Linear mixed models (PROC MIXED), with each reach 

treated as a random effect, were used to decompose the variance among the reaches 

(signal [S]) to the variance among observers (noise [N]); all error not due to the main 

effect of stream reach was treated as observer variability; Roper et al. 2002; Roper et al. 

2010).  The S:N ratio was calculated as the variance among the reaches divided by the 

variance among observers.  A high S:N (> 6.5) indicates differences between reach 

evaluations were a result of differences to riparian conditions rather than observer 

variability within the reach (Stoddard et al. 2008).  A S:N ratio of one indicates the 

variability in the disturbance indicator among a set of reaches is equal to the variability 
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among observers in the evaluation of the disturbance indicator for those reaches.  

Disturbance indicators with a S:N ratio less than 2.5 were considered nonrepeatable, S:N 

ranging from 2.5 to 6.5 were considered to have moderate repeatability, and S:N greater 

than 6.5 were considered to have high repeatability (Stoddard et al. 2008; Al-Chokhachy 

et al. 2010; Roper et al. 2010).   

 The RMSE, CV, and S:N were used to compare the repeatability of each 

disturbance indicator as well as provide estimates of the repeatability among the four 

streambank alteration protocols.  Comparisons of CV are appropriate for metrics in 

different measurement units but can be misleading if local or regional means of the 

disturbance indicator differ (Kaufmann et al. 1999; Roper et al. 2010).  The RMSE 

avoids such problems by expressing the precision as equal, therefore is more appropriate 

for comparing variability of metrics applied across many different reaches (e.g., 

streambank alteration; Kaufmann et al. 1999).  One caveat with RMSE is that it may be 

difficult to make a comparison when units or the scale differ among the attributes.   

End-of-Season Variability 

   The reaches with two end-of season evaluations conducted at different times 

were used to determine if post grazing season measures of livestock disturbance differed 

from measures taken toward the end of the grazing season, and to determine if those 

differences were an effect of continued grazing or weathering events (time, precipitation, 

and stream flows).  Changes to livestock disturbances were computed for each reach as 

the difference of the two evaluations, where mean disturbances measures from the first 

evaluation were subtracted from those of the second evaluation.  A positive value would 

indicate an increase of the disturbance indicator measured and a negative value would 
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indicate a decrease of the disturbance indicator measured.  A difference within the range 

of variability of the method (+ 1 RMSE as determined in the preceding section) would 

indicate that there was little evidence that the disturbance indicator changed between the 

two end-of-season evaluations.   

 Precipitation.  Multiple linear regression (MLR) techniques were used to estimate 

the amount of precipitation that occurred at the reaches between the two end-of-season 

reach evaluations.  Such techniques are commonly applied to spatially interpolate and 

predict precipitation and runoff volumes when such data are not readily available (Hay et 

al. 1998; Brezonik and Stadelmann 2002; Naoum and Tsanis 2004).  The MLR model 

was built using the daily and monthly precipitation records obtained for the two nearest 

SNOTEL climate sensors to the reaches.  The response variable for the MLR model was 

the total amount of precipitation between the first and second evaluations as recorded by 

each of the SNOTEL climate sensors.  The covariates for the model included the total 

amount of precipitation for October and September that occurred at each SNOTEL 

climate sensor as determined from the PRISM spatial dataset and the total number of 

days on record.  The total number of days on record was equivalent to the number of days 

between each of the two reach evaluations and served as a way to account for the variable 

time frame between the evaluation dates.  To ensure the MLR model did not over fit the 

dataset, the model was calibrated using a randomly selected subset of 90% percent of the 

SNOTEL climate sensors records (n = 61) and validated with the remaining 10% of 

records (n = 7).   

 The covariate parameters from the MLR model were then applied to the stream 

reaches which received two end-of-season evaluations.  The variables that went into the 
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model included the total amount of precipitation for October and September that occurred 

at a reach as determined from the PRISM spatial dataset and the total number of days 

between the two end-of-season evaluations.  The calculated response provided an 

estimate of the total amount of precipitation which occurred at each of the stream reaches 

over the respective time frame between the two end-of-season evaluations.   

 Streamflow data was not available for the reaches in this study so the total 

precipitation in the catchment served as surrogate for changes to stage height and high 

discharge events.  The precipitation in the catchment was computed for each reach by 

multiplying the upstream watershed catchment area by the predicted amount of 

precipitation at the stream reach.   

 Relation of Disturbance Indicators with Time and Precipitation.  I tested whether 

the changes in livestock disturbance (streambank alteration, stubble height, and woody 

browse) were related to the amount of time, and precipitation at the reach and in the 

upstream watershed catchment area.  The relations were assessed using linear regression 

analyses.  The dependent variables for the analyses included changes to streambank 

alteration (MIM and Mod), stubble height, and woody browse.  The independent 

variables included the total amount of time, precipitation at the reach, and precipitation in 

the catchment that occurred between the two end-of-season evaluations.  These analyses 

were conducted using only the managed reaches because livestock were not at the 

reference reaches so the changes to the indicators were negligible.   

Variability between Years 

 The reaches that were evaluated in consecutive current years were used to 

determine if livestock disturbance measures were affected by yearly variations of 
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precipitation.  Analyses were conducted separately for MIM and Mod streambank 

alteration, stubble height, and precipitation.  Mean streambank alteration, stubble height, 

and total precipitation (for the respective water year) were computed for each year of the 

study.  Paired t tests were used to determine if the differences between the two years were 

significantly different from zero.  If there was significantly different precipitation for a 

given year and a corresponding significant difference in the measurement it could be 

interpreted that precipitation had an effect on that livestock disturbance indicator. 

Relationship among Livestock Grazing Indicators and Landscape Conditions 

 To determine if the pattern of livestock disturbance was a function of climatic and 

landscape conditions I used MLR techniques to predict streambank alteration and stubble 

height based on their relation with a number of covariates (Smith 1988; Al-Chokhachy et 

al. 2010; see Table 1).  For this analysis I computed all possible multiple linear 

regressions using adjusted R2 with AIC (PROC REG).  The most appropriate models 

were determined through the minimum AIC.  The response variables for the models 

included MIM streambank alteration, Mod streambank alteration, and stubble height.  

The analyses were limited to these three disturbance indicators as they were evaluated for 

all reaches during both years of the study and had a sufficient sample size for MLR 

analysis.  If there were strong correlations with the disturbances indicators and the 

climatic and landscape variables then it would suggest these conditions contribute to the 

pattern of livestock disturbances within riparian areas. 
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Relationship among Livestock Grazing Indicators and Grazing Intensity 

 The ten reaches with time lapsed cameras were used to determine if the livestock 

disturbance indicators were related to grazing intensity.  The relations were tested using 

linear regression analysis.  The independent variable for the analysis was percent of the 

days with ungulates and was equal the sum of days with livestock and wild ungulates 

within the riparian area divided by the total number of days containing photographs for 

each reach.  The dependent variables included 2011 disturbances indicators: MIM and 

Mod streambank alteration, stubble height, and woody browse.   

Relationship among Livestock Grazing Indicators and Stream Conditions  

 I examined the relationship between livestock disturbance measures at the end of 

the grazing season to long-term conditions of stream habitat.  This was done by 

predicting eight stream characteristics based on their relationship with livestock 

disturbance.  Within in this frame work I first incorporated a number of climatic and 

landscape covariates that could affect the susceptibility physical habitat within the 

evaluated reaches (Burnett et al. 2006; Al-Chokhachy et al. 2010; Table 1).  I then 

incorporated livestock disturbances indicators as covariates for the stream habitat 

attributes to determine if short-term-conditions were related to long-term stream 

conditions. 

 All possible multiple linear regressions were computed for each of the stream 

habitat attributes using adjusted R2 with AIC (PROC REG).  The most appropriate 

models were determined through the minimum AIC (Akaike in 1974).  The response 

variables for the analysis included width to depth ratio, bank angle, percent undercut 

banks, bank stability, residual pool depth, pool frequency, percent fine sediment (< 6 
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mm), and median particle size.  The covariates included the climatic and landscape 

conditions listed in Table 1. 

  After determining the best covariate models, streambank alteration (MIM and 

Mod) and stubble height were individually added to determine if the disturbance 

indicators improved the individual models for each of the stream habitat variables.  An 

improved model would be based on a lower AIC values but the value of this 

improvement would be further refined by model fit (adjusted R2) and the disturbance 

indicator being a significant model parameter.  Model improvement would suggest that 

the indicator had an effect on the individual stream habitat variable. 

 

RESULTS 

Indicators of Livestcok Disturbance 

 Streambank alteration as determined by the four disturbance protocols differed 

(Table 4).  The overall average alteration was 23.5% (SD 20.9, n = 121) for MIM, 8.8% 

(SD 9.5, n = 121) for Mod, 26.4% (SD 14.4, n = 30) for SLA, and 10.4% (SD 21.2, n = 

27) for LI.  Mean stubble height was 24.2 cm (SD 14.4, n = 212) and mean woody 

browse was 23% (SD 20.1, n = 133).  The standard deviation was generally as big as or 

bigger than the mean for the method, indicating that there was high variation in the 

amount of disturbance among the stream reaches. 

 Relationship among Streambank Alteration Protocols.  The best model describing 

the relationship between the MIM protocol and the Mod protocol was the non-linear 

Michealis-Menten model (P < 0.01, pseudo r2
 = 0.94, n = 212, Figure 7).  The relation of 

the two protocols was described by the Michealis-Menten model where a = 3.9 + 0.13 (+ 
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1 SE) and b = 0.03 + 0.002 (n = 212).  The relation initially increased with a slope 

approximately equal to three for lower alteration values (where MIM < 42% and Mod < 

15%).  In this range a 1% increase under the Mod protocol related to an approximate 3% 

increase with the MIM protocol.  For higher alteration values (where MIM > 42% and 

Mod > 15%) the slope tapered to a value approximately equal to 1.5.   

 Percent alteration as determined through SLA was nonlinearly related to percent 

alteration as determined through MIM (P < 0.01, pseudo r2 = 0.98) and Mod (P < 0.01, 

pseudo r
2 = 0.96).  Percent alteration from the SLA method was consistently higher than 

alteration of the MIM and Mod methods.  The slope of the relations initially rose quickly 

but then flattened off at higher values.  The relations between the protocols was again 

described by the Michealis-Menten model where a = 1.8 + 0.13 and b = 0.01 + 0.003 for 

MIM and a = 7.3 + 0.62 and b = 0.07 + 0.01 for Mod (n = 30; Figure 8).  The relation of 

MIM and SLA initially increased with a slope approximately equal to 1.5 for lower 

alteration values (where MIM < 29% and SLA < 35%).  The relation of MIM to SLA was 

nearly equal with a slope of approximately 1 for higher alteration values (where MIM > 

29% and SLA > 35%).  The relation of Mod and SLA increased steeply with a slope 

approximately equal to 5.4 for very lower alteration values (where Mod < 6% and SLA < 

30%).  For Mod alteration values greater than 6%, the slope of the relation was 

approximately equal to 1.8.  The difference of streambank alteration between the SLA 

and Mod methods was greater than the difference between the SLA and MIM methods, 

indicating that measures of alteration from the SLA method were more closely related to 

measures from MIM than those obtained through Mod.   
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 Percent alteration as determined with the MIM (P < 0.01, pseudo r2 = 0.91) and 

Mod (P < 0.01, pseudo r2 = 0.92) protocols were nonlinearly related to the LI (n = 27; 

Figure 9).  The relations between these protocols were described by the Michealis-

Menten model where a = 5.01 + 0.73 and b = 0.05 + 0.01 for MIM, and a = 1.26 + 0.17 

and b = 0.02 + 0.01 for Mod.  These estimates indicate MIM overestimated while Mod 

slightly underestimated streambank alteration when compared to the LI.  The relation of 

MIM and LI initially rose quickly with a slope approximately equal to 3.3 for lower 

alteration values (where MIM < 42% and LI < 15%).  For higher alteration values (where 

MIM > 42% and LI > 15%) the MIM protocol had approximately two times the amount 

of streambank alteration as that of the LI protocol with the slope tapering to a value 

approximately equal to 0.8.  The relationship between of Mod and LI was nearly 

equivalent for lower alteration values (where Mod < 15% and LI < 14%).  The relation 

suggests that a 1% increase under the Mod protocol is approximately equal to a 1% 

increases in streambank alteration under the LI protocol.  For higher alteration values 

(where Mod >15% and LI >14%) the slope tapered to a value approximately 0.5 

suggesting the Mod protocol underestimated alteration at higher disturbance levels when 

compared to the LI protocol.   

 Relations among Streambank Alteration, Stubble Height, and Woody Browse.  

The four streambank alteration protocols, MIM, Mod, SLA, and LI, had similar trends 

with higher measures of stubble height being associated with lower streambank alteration 

(Figure 10).  In all cases, streambank alteration rapidly decreased with increased stubble 

height and then flattened out above a threshold value of stubble height.  The threshold 

valuie at which stubble height flattened was 26 cm for MIM, 26 cm for Mod, 27 cm for 
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SLA, and 44 cm for LI.  At lower stubble heights the slope of the relations were 

approximately -1.5, -0.7, -1.7, and -0.5, with MIM, Mod, SLA, and LI, respectively.  The 

relationships among streambank alteration and woody browse varied among the four 

methods.  Overall, MIM, Mod, SLA, and LI alteration increased with percent woody 

browse, but the relations were weak and markedly differed among the four methods.  At 

lower levels of woody browse the relation with streambank alteration had a slope of 

approximately 0.6 with MIM, 0.2 with Mod, 1.6 with SLA, and 0.4 with LI.  The 

relationship began to taper and flatten at approximately 35% woody browse for MIM and 

Mod methods and approximately 25% browse with the LI method.  The SLA maintained 

a positive relation for all levels of woody browse but the slope of the relation declined to 

approximately 0.7 for woody browse values greater than 10%.  There was an overall 

negative trend in the relation between woody browse and stubble height (Figure 11).  The 

slope of the relation was approximately -0.5, suggesting that a one centimeter decrease in 

stubble height is approximately equal to a 0.5% increase in woody browse.  The relation 

did not have a threshold value in which the slope changed dramatically. 

Observer Repeatability 

 Observer repeatability differed among the streambank alteration protocols (MIM, 

Mod, SLA, and LI), stubble height, and woody browse (Table 5).  The LI protocol for 

measuring streambank alteration had the lowest variability of all methods assessed; 

observers consistently arrived at similar results of streambank alteration (RMSE = 1.8%) 

and the variation among reaches was the most distinguishable from that among observers 

(S:N = 15.2).  Of the three rapid assessments for evaluating streambank alteration Mod 

was the most repeatable as determined through the RMSE (4.5%), followed by SLA 
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(RMSE = 6.9%), and then MIM (RMSE = 7%).  Reach variability (signal) and observer 

variability (noise) followed similar trends as the RMSE yet the proportion of that 

variability was not equal among the protocols.  The MIM and SLA methods for 

evaluating streambank alteration had high repeatability with a S:N ratio of 8.4 and 8.8, 

respectively while the Mod method had a moderately repeatable S:N ratio of 3.3.  Stubble 

height had moderate repeatability with a RMSE of 8.3 cm and S:N ratio of 2.7.  Woody 

browse had the greatest variability of all the disturbance indicators evaluated (RMSE = 

14.5%, CV = 65.9%); measurements of woody browse were nonrepeatable having nearly 

as much variation among observers as that among stream reaches (S:N = 1.3). 

End-of-Season Variability 

 Overall, streambank alteration (MIM and Mod) changed at most of the reaches, 

stubble height changed at very few reaches, and woody browse changed at half of the 

stream reaches that were evaluated on two separate dates following the 2011 grazing 

season.  The changes to the disturbances indicators were inconsistent with some reaches 

having increased and other reaches having decreased measurements of alteration.  

Streambank alteration as determined with MIM increased at six reaches, decreased at 18 

reaches, and had no change at 10 reaches.  Streambank alteration as determined with Mod 

increased at eight reaches, decreased at 12 reaches, and had no change at 14 reaches.  

Most of the changes for stubble height fell within the range of observer variability 

between the two evaluations, with five reaches having increased and three having 

decreased measurements.  Woody browse increased at six reaches, decreased at nine 

reaches, and had no change at 15 of the evaluated reaches.    



35 

 
 

 Precipitation.  The MLR model for predicting the total amount of precipitation 

that occurred at the SNOTEL climate sensors had good fit and therefore could be applied 

to the stream reaches (P < 0.01, adjusted R2 = 0.7).  The model used to predict the 

amount of precipitation was:   

 Precipitation = 0.07 + 0.026(time) + 0.526(precip Sep + Oct)                                [6] 

with time being the total number of days between the first and second evaluations and 

precip being to the total amount of precipitation (cm) for September (Sep) and October 

(Oct) as determined from the PRISM spatial datasets. 

 Relation of Disturbance Indicators with Time, Precipitation, and Precipitation 

Volume.  The regression analyses showed different relationships to livestock disturbance 

changes (streambank alteration, stubble height, and woody browse) and the three end-of-

season variables (time, reach precipitation, and catchment precipitation) at the stream 

reaches (Figure 12).  No single temporal variable showed a significant effect on the four 

livestock disturbance measures.  Streambank alteration as determined through MIM (P = 

0.04, r2
 = 0.14) and Mod (P = 0.09, r2

 = 0.09) significantly decreased as post season 

precipitation within the catchment above the evaluated reach increased.  Browse to 

woody vegetation significantly increased over time (P = 0.02, r2
 = 0.18) and with 

increased precipitation at the reach (P = 0.02, r2
 = 0.20).  Changes to stubble height had 

no relation with time or precipitation variables.   

 Repeat Photographs.  Of the 34 reaches that had a second evaluation 29 reaches 

had repeat photographs that could be visually inspected for continued grazing, increased 

stream stage, and changes to livestock disturbances.  Eleven of the 29 reaches had visual 

evidence that livestock grazing continued after the first evaluation (e.g., Figure 13).  
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Indications of continued grazing were noted through decreased stubble height, increased 

hoofprints or shearing, and presence of new cow patties in the repeat photographs.  There 

was visual evidence that stream stage had increased at 14 of the reaches between the two 

evaluation (e.g., Figure 14 and Figure 15); of these reaches at least five had evidence that 

stage height had risen and then resided (evidence though new scour lines, ponding within 

the riparian area, and water flow patterns over riparian vegetation).  Estimates of stage 

height increase ranged from approximately 2 cm to 60 cm.  The photographs also 

indicated that livestock alterations (hoof prints, shearing, and trailing) had become less 

evident at 17 of the reaches (e.g., Figure 15 and Figure 16).  It was very apparent that 

changes to alterations were an effect of weathering events including splash detachment 

(i.e., precipitation) and soil erosion from rising and residing streamflows (e.g., Figure 16 

and Figure 17).  Many photographs showed substantial evidence of soil erosion between 

the two evaluations, the rate of erosion varied from reach to reach; the degree of the 

erosion ranged from minor with hoof prints and shears less evident, to moderate with 

displaced soils washed away from high flows, to substantial with substantial amounts of 

sediment transported away from banks exposing new roots and carrying portions of bank 

materials downstream.  Eight of the 29 (28%) reaches had repeat photographs which 

showed evidence of both increased alteration from continued grazing and decreased 

alteration resulting from weathering of the soil through precipitation and high flow 

events.   

Variability between Years 

 There was significantly greater precipitation (P < 0.01) and significantly lower 

alteration as determined with both the MIM (P < 0.01) and Mod (P < 0.01) protocols in 
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2011 than in 2010 (n = 63; Table 6).  Mean alteration was 15% (SD 12.7) for Mod and 

35.4% (SD 25.4) for MIM for the first year the evaluations.  The following year these 

values decreased by nearly half the disturbances to 7% (SD 6.3) alteration for Mod and 

20.9% (SD 17.5) alteration for MIM.  There was no statistical evidence that stubble 

height differed between the two years.  Mean precipitation was 62.8 cm (SD 23.6) for the 

2010 water year 2010 and 74.4 cm (SD 32.3) for the 2011 water year, therefore on 

average each reach had approximately 11.6 cm more precipitation in 2011 than in 2010.  

The monthly distribution of precipitation indicated that much of the additional 

precipitation for 2011 occurred as snow accumulation over the winter months, November 

– March, and as rain on snow during the spring, April – May (Figure 18).  The summer 

months, June – August, had lower precipitation in 2011 than that of 2010.  Although no 

direct analysis was done, it can be inferred that the increased precipitation in 2011 lead to 

decreased use of riparian areas by livestock and wild ungulates. 

Relationship among Livestock Grazing Indicators and Landscape Conditions 

 Model fit was low and structure varied among the multiple linear regression 

models for the individual disturbances indicators (adjusted R2 range = 0.10-0.14; Table 

7).  Streambank alteration for MIM was higher on small, low gradient reaches that were 

within catchments of high drainage densities, low precipitation, and low temperatures.  

Streambank alteration as measured with Mod had similar model structure as MIM but 

Mod evaluations were not affected by stream gradient.  Stubble height was higher on 

steep gradient sinuous streams within catchments of high annual precipitation and 

temperature, and low percent igneous geology.  Overall there was little evidence of a 

consistent pattern of livestock disturbance with environmental conditions.  The climatic 
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variables, average annual precipitation and temperature, were the only attributes that 

were included in all of the models; with greater annual precipitation and temperature 

resulting in reduced streambank alteration and greater stubble heights.   

Relationship among Livestock Grazing Indicators and Grazing Intensity 

 The livestock disturbance indicators were linearly related to the percent days with 

ungulates in the riparian area.  Streambank alteration as determined through MIM (P = 

0.06, r2
 = 0.37) and Mod (P = 0.07, r2

 = 0.36) significantly increased, and stubble height 

significantly decreased (P = 0.09, r2
 = 0.32) as the percent of days with ungulates in the 

riparian area increased (Figure 19).  The slopes of the relations were 0.46 + 0.99 for 

MIM, 0.17 + 0.37 for Mod, and -1.56 + 0.60 for stubble height.  These relations suggest a 

1% increase of the percent days with ungulates in the riparian area will result in a 0.46% 

increase of streambank alteration through MIM, and a 0.17% increase of streambank 

alteration through Mod.  Likewise, a 1% increase of the percent of days with ungulates in 

the riparian will result in a decrease of stubble height by 1.6 cm.  There was insufficient 

statistical evidence of a relation between percent woody browse and grazing intensity (P 

= 0.15, r2
 = 0.3). 

Relationship among Livestock Grazing Indicators and Stream Conditions  

 Model structure explaining the condition of stream habitat attributes varied 

considerably (Table 8).  This suggests that watershed and climatic attributes affected 

individual stream attributes differently regardless of the level of livestock grazing.  

Model fit to predict individual stream attributes with only watershed and climatic 

attributes ranged from 0.07 to 0.5 (R2).  Reaches with larger bankfull widths had greater 
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width to depth ratios, lower bank stability, deeper pools, less fine sediment, and larger 

median particle sizes.  Highly sinuous reaches had more acute bank angles with more 

undercut banks and lower bank stability.  Sinuous reaches also had more percent pools 

with finer sediment and smaller medium particle size.  Steeper gradient reaches had 

greater width to depth ratios with more obtuse bank angles and greater abundances of 

shallow pools.  Reaches with steeper slope of the segment had greater width to depth 

ratios with more obtuse bank angles and a lower abundance of undercuts.  Steeper sloped 

segments also had greater channel roughness (decreased fine sediment and larger median 

particle size) and pools that were shallower and less abundant.  Reaches with a high 

density of roads at the segment had lower pool frequency and less fine sediment.  High 

forested cover of the segment contributed to shallow pools that were less abundant and 

larger median particles size.  Catchments with high drainage density had wider and 

shallower reaches with pools that were shallow and less abundant.  Stream reaches 

receiving high precipitation within the catchment had lower width to depth ratios, more 

acute bank angles with more undercuts, deeper and more abundant pools, and less 

channel roughness (more fine sediment and smaller median particle size).  Reaches with 

higher temperatures within the catchment had more obtuse bank angles, lower percent 

undercut banks, more deep pools, and more fine sediment.  Stream reaches within 

catchments with a high proportion of igneous geology were found to have more obtuse 

bank angles, lower bank stability, more pools, and smaller median particle sizes.  

Catchments with a greater proportion of sedimentary geology were found to have more 

obtuse bank angles with a lower percent of undercut banks, more deep pools, and smaller 

median particle sizes at the reach scale. 
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 After accounting for watershed and climatic attributes, model improvement varied 

considerably with the addition of individual short-term indicators of livestock disturbance 

(Table 8).  After accounting for landscape and climatic conditions MIM streambank 

alteration significantly improved the model for three stream habitat attributes (width to 

depth ratio, bank angle, and percent undercut banks) while the addition of Mod 

streambank alteration significantly improved the model for only one stream attribute 

(width to depth ratio).  Stubble height had the greatest effect on stream conditions with 

model improvement of four stream habitat attributes (bank angle, percent undercut banks, 

bank stability, and residual pool depth).  Stream reaches with higher MIM and Mod 

streambank alteration had significantly higher width to depth ratios (MIM with p < 0.01, 

R
2 = 0.54; Mod with p < 0.01, R2 = 0.54).  Bank angles became more obtuse with 

increased MIM streambank alteration (p = 0.03, R2 = 036) and decreased stubble height 

(p = 0.03, R2 = 0.36).  Reaches with lower amounts of MIM alteration and higher stubble 

heights had higher percentages of undercut banks (MIM with p = 0.05, R2 = 0.29; stubble 

height with p = 0.03, R2 = 0.29).  Bank stability improved (p = 0.02, R2 = 0.08) and pools 

were deeper (p < 0.01, R2 = 0.47) on stream reaches with greater stubble heights.  There 

was little evidence that pool frequency, percent fine sediment less than 6 mm, or median 

particle size (d50) were affected by streambank alteration or stubble height disturbance 

indicators.   

   

DISCUSSION  

 This study presents strengths and weaknesses of using annual short-term 

disturbance indicators as management objectives for grazing.  I found results were 
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dependent on the specific protocol (i.e., MIM, Mod, SLA, and LI), which indicator was 

used (i.e., streambank alteration, stubble height, and woody browse), the observer, and 

when the evaluations were conducted.  While there were many factors affecting 

outcomes, these year-end measures were related to grazing intensity and long-term 

stream conditions.   

Streambank Alteration Protocols 

 I found that differences in protocols affected mean estimates of streambank 

alteration in a manner similar to those described by Heitke et al. (2008).  The three rapid 

approaches (MIM, Mod, and SLA) are an index of streambank alteration whereas the LI 

method is a direct measure of streambank alteration in that it directly measured the 

percent of the greenline altered (Kaiser 1983; Bengeyfield 2006).  The MIM and SLA 

methods treat a line that barely intercept a hoofprint as if it were 100% altered 

(presences/absence; Heitke et al. 2008).  In contrast, the Mod method, with a finer 

resolution, may indicate that only 5% a line was altered (one increment of a line 

intercepts alteration).  Index values derived with MIM will always equal or exceed Mod 

and index values derived with SLA will always equal or exceed MIM and Mod.  The 

difference of these protocols reflects how streambank alteration was evaluated and 

summarized rather than differences in the actual disturbance (Heitke et al. 2008). 

The differences among these protocols when evaluating the same reach can be 

problematic when a specific standard is applied.  For example, the application of a 

standard to maintain streambank disturbance at or below 20% alteration might be a very 

conservative standard for reaches evaluated with SLA.  Alternatively, a 20% threshold 

standard may have adverse impacts to reaches evaluated with Mod.  The difference of 
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outcomes in the field among methods means that any objective or standard for 

streambank alteration must be based on the protocol used.   

 In this study I found that MIM and SLA exceeded the amount of alteration along 

the greenline as determined by LI.  In contrast Mod mimicked the results of LI in the 

range of 0 to 20% but underestimated alteration at higher levels of disturbance.  While 

not directly tested, the underestimation likely occurred because Mod sampled a different 

area than the LI method.  The LI was placed linearly along the greenline – an area that is 

very susceptible to livestock alteration.  In contrast MIM, Mod, and SLA evaluated an 

area that included the greenline along with other stream side features which could 

potentially be less susceptible to hoof alterations such as steep 90o banks, flowing water, 

or the streambed materials.  When the greenline was adjacent to the water’s edge (e.g., 

small streams and E channels; Rosgen 1994) the lines of the rapid assessments extend 

over water.  In accordance with MIM and SLA protocols any portion of the sample width 

that extended over water was ignored (USDI-BLM 1996; Burton et al. 2011).  This is 

problematic because it results in a variable sample area that is dependent upon stream 

characteristics.  Take for example a scenario of two stream reaches: the first reach with 

slowly sloping banks and the entirety of the greenline approximately one meter away 

from water’s edge (e.g., B channels at baseflow; Rosgen 1994); the second reach with the 

entire greenline adjacent to water’s edge (e.g., E channel; Rosgen 1994).  In the first 

reach the entire sample plot is susceptible to being altered since all of it is in an area 

livestock are likely to disturb.  In the second case only half of the plot area is susceptible 

to disturbance therefore the probability of detection is decreases by half.  The LI method 

avoids the issue of a variable sample area as the continuous line intercept is placed 
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directly on top of the streambank never extending over the water’s edge.  While the 

difference between the surveys along a line versus an area is problematic for all of the 

rapid evaluations, the variable sample width has greater consequence with the Mod 

protocol.  This problem can be illustrated by assuming banks of both the streams 

described above were 100% covered by signs of livestock disturbance.  In the first 

stream, where all the plots fall 100% on land, the MIM, Mod, SLA, and LI would all 

record 100% disturbance.  In the second stream half of the plots would fall over water.  

Because the MIM and SLA treat any part of the line as if it were altered, both methods 

would conclude 100% alteration.  Similarly, the LI evaluation would also arrive at 

measures of 100% alteration.  The Mod protocol, however, would find 50% alteration 

since half of the sample area would fall over water and no measurement would be taken.   

 The underestimation occurs because Mod allows for index values (individual 

increments of a line) to be recorded for areas other than the streambank.  The problem is 

less severe with MIM and SLA because at least some portion of the index value (sample 

line) always extends over the streambank and because these methods inherently 

overestimate the amount of the streambank altered by livestock.  Because of the strong 

congruence between the LI and Mod on reaches where all samples occur on dry land; 

Mod will generally underestimate bank alteration on reaches where greenline is 

predominantly on or near the water’s edge. 

Indicators of Livestock Disturbace 

 The three indicators of livestock disturbance (streambank alteration, stubble 

height, and woody browse) were related to each other but the relations exhibited 

considerable variation.  As expected streambank alteration decreased as stubble increased 
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and woody browse decreased.  These general trends were observed across all four 

alteration protocols.  Likewise, woody browse decreased as stubble height increased.  

While these general trends were observed, many reaches fell outside of what was 

expected suggesting the indicators may respond differently at different sites (Bryant et al. 

2006, Burton et al. 2011). 

 The scatter in the relationships among the three livestock disturbance indicators 

(streambank alteration, stubble height, and woody browse) suggests that is it is possible 

for a reach to have low disturbance with one short-term indicator (e.g., low streambank 

alteration) while exceeding disturbance standards with another indicator (e.g., low 

stubble height).  Such outcomes occur because the potential of an individual indicator to 

respond to livestock grazing is affected by inherent characteristics of riparian vegetation 

and channel conditions (Bengeyfield and Svoboda 1998; Bryant et al. 2006).  One 

underlying cause is that stubble height is limited to vegetation potential.  Reaches with a 

high abundance of low growing forbs such as violet (Viola sp.) and brook saxifrage 

(Saxifraga odontoloma) will have low stubble height measures regardless of livestock 

grazing in the riparian area.  Another factor affecting vegetation potential is the amount 

of available light to the understory (Anten and Hirose 1998; Lieffers and Stadt 1994).  

Even without livestock grazing the height of many palatable riparian plants, such as blue 

joint reed grass (Calamagrostis canadensis), will be less in a closed canopy system (e.g., 

cedar forest) than in an open canopy system (e.g., open meadow).  The palatability of 

individual plant species can also have an effect on the amount of browse to riparian 

vegetation (Kauffman et al. 1983a; Alldredge et al. 2001; Bryant et al. 2006; Butler and 

Kielland 2008).  Stubble height and woody browse summaries may indicate low 
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disturbance on stream reaches with a high abundance of less palatable vegetation (e.g., 

alder [Alnus sp.], Woods' rose [Rosa woodsii], and thistle [Cirsium sp.]) and a low 

abundance of highly palatable vegetation (e.g., willow [Salix sp.], sedge [Carex sp.], and 

Kentucky blue grass [Poa pratensis]) regardless of livestock use or browse to more 

palatable plant species.  Additionally, there are conditions in which streambanks are 

resistant to penetration (e.g., cohesive soil containing clay along a dry or entrenched 

channel) or are impervious to disturbance (e.g., bedrock or boulder armored stream 

channels).  Even at very high grazing intensities such conditions will contribute to lower 

streambank alteration.   

 This study provides clear evidence that each of the indicators evaluated provides 

different information about a grazed reach.  Since each of these indicators plays an 

important role in riparian health and stream function all three indicators (streambank 

alteration, stubble height and woody browse) should be monitored.  Streambank 

alteration gives information’s about sediment additions to the stream, the mechanical 

breakdown of banks and excessive erosion that can alter channel morphology which can 

ultimately lead to increases in stream temperature and degrade habitat for aquatic species 

(Platts 1991; Clary et al. 1996; Neary and Medina 1996; Bengeyfield 2006).  Healthy 

riparian vegetation as evaluated by stubble height stabilizes banks, slows bankfull flows, 

filters out sediment, increases soil moisture, and supports base flows (Clary and Webster 

1989; Welsh 1991; Neary and Medina 1996).  Healthy woody vegetation has strong deep 

root systems that stabilize banks, shade streams, and provide woody debris which support 

food-web dynamics and create habitat diversity for aquatic species (Welsh 1991).  Each 

of these indicators is essential to riparian function; excessive disturbance to any one of 
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these indicators could be detrimental to overall stream health.  It is important that land 

managers take into account all three indicators when making management decisions and 

assessing end-of-season conditions.   

Observer Repeatability 

 Sources of variability identified in previous studies of field measurements for 

stream attributes include differences and duration of training (Hannaford et al. 1997; 

Olsen et al. 2005; Whitacre et al. 2007; Heitke et al. 2008), professional background 

(Heitke et al. 2008), differences in the protocol used (Whitacre et al.2007; Heitke et al. 

2008; Roper et al. 2010), and the number of measurements taken (Roper et al. 2002; 

Olsen et al. 2005).  In this study measurements of streambank alteration and stubble 

height were relatively repeatable while methods for evaluating woody browse were 

nonrepeatable.  When disturbance threshold standards are applied or set as goals, it is 

important that all observers consistently arrive at the same measurement (i.e., low 

RMSE) and variance from reach to reach is distinguishable from that of the observer (i.e., 

S:N > 6.5).  The intensive assessment (LI streambank alteration) was the only method in 

this study that met these criteria.  None of the rapid assessments in this study (streambank 

alteration [MIM, Mod, and SLA], stubble height, and woody browse) were both 

repeatedly measured and distinguishable from the differences among stream reach 

conditions (low RMSE and S:N > 6.5).   

 The training of all methods and protocols used in this study was limited to four 

hours in 2010 and twelve hours in 2011.  The variation associated with the measurement 

of short-term livestock disturbances indicators could potentially be reduced through more 

intensive trainings.  Roper et al. (2010) suggested that when a protocol or method is 
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found to have poor performance, improvement can only occur if the protocols are 

regularly evaluated and training and oversight are thorough and ongoing.   

 Two general trends of the four streambank alteration protocols were 1) variability 

increased as the increment of measure increased and number of measurements recorded 

decreased and 2) variability increased as mean streambank alteration increased.  

Although the LI method had the lowest variability the measure did not incorporated 

sources of variability of the other methods.  It evaluated alteration along the entire reach 

rather than every 2.75 m.  Because observers recorded alterations along a single fixed line 

most of the variability of the LI can be attributed to the among observer determination of 

hoof alterations.  In addition to this variability the three rapid assessments (MIM, Mod, 

SLA) incorporated the among observer variability associated with sample locations (i.e., 

variability of quadrat placement).  The large differences in variability of streambank 

alteration between a time intensive assessment (LI method) and the rapid assessments 

(MIM, Mod, and SLA) can thus be attributed to differences in 1) the number of 

measurements sampled, 2) the scale or resolution of measurement, and 3) the fact that 

these other approaches sample an area versus a fixed line.   

 The primary difference between the four protocols for assessing streambank 

alteration was the maximum number of measurements that were recorded at an individual 

stream reach and resolution of those measurements.  The number of sample locations 

(i.e., quadrat frames placed) at an individual reach was equal for each of the rapid 

assessments (MIM, MOD, and SLA) evaluated, yet the number of measurements 

recorded at an individual sample location differed.  For the rapid assessments the SLA 

had the lowest number of measurements recorded with one linear measure taken per 2.75 
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m of streambank, followed by MIM with five measures subsampled per 2.75 m of 

streambank, and then Mod with 100 measures subsampled per 2.75 m of streambank.   

The number of measurements recorded for an attribute has been identified in the 

literature as a source of variability in stream monitoring (Roper et al. 2002; Olsen et al. 

2005).  As the number of measurements per given increment increases so does the 

resolution of the measurements.  The SLA had the lowest measurement resolution with a 

length of 91.4 cm, followed by MIM with 20 cm, and Mod with 2 cm.  The LI method 

had the highest resolution with measurements recorded to the nearest 1 cm increment 

along continuous line.  The concept of resolution and its relation to accuracy and 

precision are commonly applied to spatial data datasets (e.g., digital elevation models 

[DEM], light detection and ranging [LiDAR], and photographs) for vegetation (e.g., 

Hosoi and Omasas et al. 2007) and stream channel attributes (e.g., Wheaton et al. 2010).  

Many studies have found that accuracy and precision (variability) improve with higher 

resolution (Gao 1997, Horritt and Bates 2001, Shi et al. 2012).  Although the application 

of the term resolution is generally applied to spatial data, the same general concept 

applies.  In this research I found that method variability (RMSE) decreased and S:N 

increased as the number of measurements recorded at a reach increased.   

Woody browse had the highest observer variability of the three livestock 

disturbance indicators.  This variability likely contributed to the weak relations among 

other disturbance indicators and the insignificant relation grazing intensity.  Hall and 

Max (1999) also found high variability in measurements of livestock use to riparian 

woody plants.  However, the trends in this study may be more reflective of an inadequate 

sample design rather than inherent variability associated with browse.  Measurements of 
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woody browse were limited to four shrub types; the lack of an “other shrub” category 

was problematic as few observers had experience with shrub identification prior to this 

study.  I found seven reaches in which one observer recorded woody browse values and 

the second observer recorded no data indicating a misidentified shrub type by at least one 

of the observers.  Furthermore the shrubs selected for woody browse evaluations 

overweighed utilization to non-palatable shrubs such Alder (Alder sp), Birch (Betula sp.) 

and Dogwood (Cornus sericea) and did not include many palatable shrubs such as Cherry 

(Prunis sp.), antelope bitterbrush (Purshia tridentate), and service berry (Amelanchier 

sp.) which would have likely demonstrated stronger relations with the other disturbance 

indicators and grazing intensity within the riparian area.  It is clear a more comprehensive 

definition of the method and training are needed. 

 The method for evaluating stubble height in this research differed from more 

commonly applied methods in that measurements were taken on all herbaceous 

vegetation rather than key species (USDI-BLM 1996; Bryant et al. 2006; Burton et al. 

2011).  Key species are generally limited to a few native, palatable, hydric, and deep-

rooted or rhizomatous species that serve as an indication of change and are based on 

specific management objectives (e.g., Carex sp.; USDI-BLM 1996; Burton et al. 2011).  

Although no formal investigations were conducted it is proposed that stubble height 

evaluations limited to palatable vegetation types would have demonstrated stronger 

relations with streambank alteration and grazing intensity, and measurements would have 

differed between wet and dry years.  However, the species level plant identification 

necessary for key species measurements would likely have resulted in higher variability 

mimicking that of woody browse, which required only genus or family recognition by the 
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observer.  Furthermore, key species measures generally ignore nonnative vegetation, such 

reed canary grass (Phalaris arundinacea) and Kentucky blue grass (Poa pratensis), that 

are found in high abundance in many riparian communities (Winward 2000) and provide 

some type of stabilization along the streambanks (Binns 1994).  Therefore, it is likely that 

stubble heights on key species would have been less informative of long-term stream 

conditions such as bank stability and bankangle. 

 The use of key species was not feasible in this study because selections of 

individual key species are dependent on local vegetation types and would vary from 

reach to reach.  Furthermore, protocols for identifying, selecting, and using key species 

are difficult to train and would have required that all participating observers had the 

knowledge of an experienced field botanist.  It was important that the protocols 

implemented in this study could easily be taught to observers with no experience and 

could be broadly applied to the large scale study area of the Interior Columbia River 

Basin.  In practice protocols should always be easy to train and broadly applied, yet it is 

also important that protocols do not simplify methods to the extent that they no longer 

provide useful information about the disturbances being evaluated.   

End-of-Season Variability 

 In measuring the cumulative effects of grazing agencies make at single evaluation 

of alteration within a week of the removal of livestock from a pasture.  This assumption 

is tenable if measurements over this timeframe are within the range of variability found 

among observers conducting evaluations at the same time.  In this study I found 

streambank alteration and woody browse varied considerably while stubble height 

remained relatively constant between the two separate end-of-season evaluations.  The 
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changes that occurred between visits were not consistent among the reaches indicating 

that other factors likely contributed to the differences between the two end-of-season 

evaluations.   

 Measurements of streambank alteration had the largest amount of variability 

between the two end-of-season evaluations; the variability was affected by the 

precipitation in the watershed catchment.  This was expected because the volume of 

precipitation in the watershed affects runoff and is positively correlated with stream 

discharge (Ward and Trimble 2004).  High discharge events can cause substantial erosion 

through shear stress of the water on the streambanks (Trimble 1994) or as the water 

levels reside because of rapid drawdown of the water table in the banks (Simon et al. 

1999; Zaimes et al. 2006).  At the very least, this will increase the difficulty of 

determining whether streambank alteration is from the current year or from the previous 

year.  The repeat photographs of the reaches provided evidence that changing water 

levels caused individual hoofprints to become less evident and smooth vertical shears 

undetectable.  Inference from these findings should not be limited to end-of season 

precipitation events.  Low order mountainous streams, such as those used in this study, 

have irregular flood patterns with numerous peaks that are influenced by daily 

precipitation events throughout a season (Junk et al. 1989).  It is likely that any large 

precipitation event within the grazing season would result in decreased measurements of 

streambank alteration.  Within season variation of streambank alteration was also 

observed by Laine (2011) in a study of five streams in central Idaho.  Although the 

reasons were not discussed, reaches in that study had up to 30% decreases of MIM 

streambank alteration within the gazing season (Laine 2011, fig.  10a-e).  Because of high 
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within season variation of streambank alteration, it is important that land managers 

monitor frequently throughout the grazing season so the observations can be used as a 

trigger to move cattle when conditions exceed the allowable disturbances levels.  Large 

changes to measured alteration were observed in as little as 10 days in this study; so it is 

equally as important that end-of-season evaluations occur on or as close as possible to the 

day cattle are removed from the pasture.   

 Stubble height remained relatively constant between the end-of-season 

evaluations and did not change as an effect of time or precipitation events at the end of 

the grazing season.  This was expected because the evaluations took place at the end of 

the growing season therefore very little to no vegetation growth would have occurred.  

Additionally, measures of vegetation height cannot be affected by erosional processes 

such as those observed with streambank alteration.   

 Woody browse was affected by both time and precipitation.  The second reach 

evaluations took place during the second week of October; pictures from the plant 

cameras indicated that some of the precipitation events were snow fall events.  Several of 

the repeat photographs indicated that leaves had begun to drop at the time of the second 

evaluation.  It is conceivable that effects of seasonality (time) may have contributed to 

the observers’ perception of woody browse.  The increase in woody browse may have 

also been attributed to continue grazing by livestock and wild ungulates; however, if this 

were true one would have expected larger variations in stubble height between the two 

end-of-season evaluations.  Similar to stubble height, browse to woody vegetation would 

not have been affected by the increased streamflows such as streambank alteration.   
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 Several reaches in this study were found to have more livestock disturbances 

during the second evaluation.  This can be is attributed to continued grazing by livestock 

on the reaches following the first evaluation.  This study provides evidence that livestock 

remain in many allotments after the take out date.  The continued grazing likely 

contributed to the excessive scatter in the relations between the livestock disturbance 

indicators and end-of-season time and precipitation variables.  If livestock remained 

within the riparian area, streambank alteration could have remained high regardless of the 

amount of alteration that had been washed out from precipitation events.   

Variability among Years 

 Yearly variation in precipitation can influence the distribution of livestock across 

the landscape (Roath and Krueger 1982; Marlow and Progacnik 1986).  In this study, I 

found that streambank alteration was much higher during the drier year of 2010.  During 

years of limited precipitation the overall biomass and palatability of available upland 

vegetation decreases (Pitt and Heady 1978; Roath and Krueger 1982; Ballard and 

Krueger 2005).  Consequently livestock congregate in riparian areas much earlier in the 

grazing season and remain for longer durations of time throughout out the season (Roath 

and Krueger 1982).  It is important that land managers consider yearly variation of 

precipitation as stocking rates that maintain moderate livestock disturbance during a wet 

year can have adverse impacts during dry year (Holecheck 1988).  To reduce livestock 

impacts it may be necessary for land managers to adjust stocking rates during years with 

lower precipitation (Marlow and Progacnik 1986). 
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Climatic and Landscape Conditions 

 Overall I found that climatic and landscape conditions were weakly related to 

pattern of livestock disturbance across the Interior Columbia River Basin.  Of the 

conditions that were evaluated, climatic characteristics explained the most variability for 

both stubble height and streambank alteration indicators.  Spatial distributions of 

temperature and precipitation can have substantial effects on vegetation type and plant 

growth across the landscape (Sala et al.1988; Smith and Huston 1989).  When these 

climatic factors are limited the quantity and quality of the upland vegetation is also 

limited (Sala et al. 1988).  Therefore it is conceivable that livestock would be more 

dependent on riparian vegetation in cooler arid environments than in warmer mesic 

environments.   

Although landscape characteristics did contribute to the pattern of livestock 

disturbance within riparian areas, the overall proportion of variability explained by those 

characteristics was low suggesting that it is possible to have low livestock disturbance in 

cold arid areas and high disturbance in warm mesic areas.  The lack of a strong pattern 

indicates that grazing intensity and past management practices played a large role in the 

amount of livestock disturbance to the riparian areas.  Such a statement should not be 

taken to suggest the management across a wide span of landscapes takes the same amount 

of effort but that individual managers can control livestock disturbance regardless of the 

landscape characteristics of the area they are managing.   

Grazing Intensity 

 The time lapse cameras provided quantifiable evidence that measures of 

streambank alteration and stubble height were related to grazing intensity, but these 
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relations were weaker than expected.  This is likely attributable to the large gaps of 

photographs resulting from observers misplacing secure digital cards and cameras getting 

knocked over in the field.  The pattern of livestock use within riparian areas varies 

throughout the grazing season (Marlow and Progacnik 1986, Roath and Krueger 1982; 

Ballard and Krueger 2005).  Some of the reaches had photographs missing at the 

beginning of the season while others were missing photographs taken toward the end of 

the season.  This shortcoming made it difficult to determine exactly how many and the 

frequency to which livestock were within the riparian areas.   

 Despite the missing photographs, the time lapse cameras were an effective way of 

to capture riparian use by wild ungulates and livestock.  Generally information regarding 

use is limited to the numbers of livestock which were permitted within an allotment or 

pasture.  These numbers do not take into account trespassing livestock, wild ungulates, or 

the frequency to which these ungulates are within the riparian area.  Observational studies 

are very time consuming and are often limited to a few study locations (e.g., Marlow and 

Progacnik 1986, Roath and Krueger 1982; Ballard and Krueger 2005).  For this study, I 

used timelapse cameras at a very small subset 10 reaches to gain a general estimate of 

grazing intensity.  Such techniques could easily be applied to larger sample sizes.  

Moreover, timelapse cameras are a cost effective tool that can be used to identify grazing 

intensity as well as the temporal and spatial distribution of livestock within a 

management unit.   

Long-Term Stream Conditions 

 The short-term indicators of livestock disturbance were found to be related to the 

condition of stream attributes.  The relations that were observed were in the direction that 
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was expected, suggesting the levels of streambank alteration and stubble height are 

indicative of long-term stream conditions.  Like to others, I found channel width to depth 

ratio (Platts 1981a; Hubert et al. 1985; Stuber 1985; Overton et al. 1994; Matthews 1996; 

Knapp and Matthews 1996; Clary 1999), bank angle (Platts 1981a; Myers and Swanson 

1995; Knapp and Matthews 1996; Belsky et al. 1999; Clary and Kinney 2002), undercut 

banks (Kauffman et al. 1983b; Overton et al. 1994; Myers and Swanson 1995; Knapp and 

Matthews 1996), bank stability (Platts 1981a; Kauffman et al. 1983b; Overton et al. 1994; 

McIver and McInnis 2007), and pool depth  (Hubert et al. 1985; Myers and Swanson 

1994) were affected by differences in livestock grazing intensity within the season. 

  These long-term stream responses occur because of the indirect effects from 

vegetation removal and direct effects from livestock hooves.  The combination of grazing 

and trampling reduces riparian vegetation through defoliation and mechanical disturbance 

(Hofman and Ries 1991; Trimbel and Mendel 1995).  Compaction of the banks prevents 

infiltration of water and air to roots substantially reducing vegetation viability (Clary 

1995) and can alter species composition from deep rooted to shallow rooted (Reed and 

Peterson 1961; Trimble and Mendel 1995).  The culmination of these effects are the loss 

of the above and below ground biomass necessary to slow stream flows, filter sediments, 

and stabilize banks (i.e., degraded riparian function; Micheli and Kirchner 2002; Burton 

et al. 2011).   

The direct force from livestock hooves shears away vertical banks, causes 

undercut banks to collapse, and creates ramps (trails) along the streambank (Trimble 

1994; Bohn 1998; Clary and Kinney 2002).  The mechanical breakdown of the bank is 

then accelerated through hydraulic action along the unprotected streambanks (Trimble 
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1994) creating a sloping bank profile representing a fundamental change to channel 

morphology and a general degradation of stream habitat condition (Bohn 1998; Clary and 

Kinney 2002).   

 Like others I found insufficient evidence of that percent pools (Kershner et al. 

2004b), percent fine sediment (Overton et al. 1994; Knapp and Matthews 1996; Clary 

1999), or median particle size (Ranganath et al. 2009) were affected by livestock grazing.  

This is inconsistent with other studies that have reported decreased percent pools (Myers 

and Swanson 1996; Magillian and MacDowell 1997), increased fine sediment (Hubert et 

al. 1995; Myers and Swanson 1996), and decreased median particle size (Raymond and 

Vondraccek 2011) with grazing.  The failure to find an effect from livestock disturbance 

on substrate (median particle size and percent fine sediment) may reflect that these 

conditions are not only affect by grazing but may also be affected by other management 

activities occurring within the upstream catchment such as mining or timber harvest 

(Rinne 1988; Clary 1999; Ranganath et al. 2009).  Another possible reason for the lack of 

a distinguishable relation is grazing may simplify the channel morphology in a manner 

that allows more efficient sediment transport.  The possible interactions among stream 

attributes with livestock and other impacts make it difficult to isolate the impact of 

livestock disturbance.    

 The capacity to detect effects from livestock grazing may also have been limited 

by the temporal disconnect between the measurements of livestock disturbance and 

evaluations of stream conditions.  Due to the availability of the PIBO-EMP dataset, field 

measurements of the stream attributes often took place on a date prior to field 

measurements for the disturbance indicators.  This is likely why the stream attribute 
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models had limited improvement with the model fit (R2) with the addition of the 

disturbance indicators.  That I still found relations with streams conditions suggests the 

patterns of livestock disturbance observed in this study were likely reflective of long-term 

management practices within the reach; meaning a large portion of the stream reaches 

with high disturbance in 2010 and 2011 likely had high disturbance in preceding years.  

The temporal disconnect between the stream habitat surveys and disturbance measures, 

however, added error to the models that may have precluded detections of some 

relationships. 

 Because modifications to channel morphology can degrade aquatic habitat, it is 

important that the method selected for monitoring is informative of long-term stream 

conditions.  I found streambank alteration as evaluated through the MIM method was 

more sensitive to changes in long-term stream conditions than the Mod method.  Since 

both measures are related to livestock grazing this variation is likely attributed greater 

signal in the MIM approach and the finding that streambank alteration measurements 

decreased (become less evident) as a result of erosional processes within the grazing 

season.  Consequently MIM, which inherently overestimates the amount of streambank 

alteration present at the time of an evaluation, may be more expressive of collective 

livestock disturbances throughout the season. 

 

CONCLUSIONS 

 The use of standards in combination with monitoring is, and should remain, an 

important management tool to minimize the impacts of grazing in riparian areas 

(Bengeyfield and Svoboda 1998; Clary and Leininger 2000; Heitke et al. 2008).  It is 
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important that standards for any indicator of livestock disturbance not only facilitate 

healthy riparian conditions but also identify the protocol to be used to evaluate that 

indicator (Heitke et al. 2008).  The suit of indicators and associated protocols used to 

evaluate end-of-season livestock disturbance should be accurate, repeatable, related to 

grazing intensity, representative of the cumulative effects of grazing within a season, and 

related to long-term stream conditions.  When standards are applied to an indicator the 

overall accuracy of the measurement does not have as much merit as ensuring the other 

criteria is fulfilled.  Kruskal (1991) argues that there are no true values, just different 

ways of measurement.  

 In this study I found that streambank alteration was related to other disturbance 

indicators, was moderately repeatable, and was related to grazing intensity.  While the LI 

and Mod methods provided a more accurate snapshot of livestock disturbance, MIM and 

SLA had greater signal of the cumulative impacts from livestock throughout the grazing 

season.  This is why the MIM protocol explained more of the long-term stream 

conditions than the Mod protocol.  While many factors can affect the outcomes, MIM and 

SLA streambank alteration can be effective monitoring tools when used in conjunction 

with other indicators of livestock disturbance.   

 Stubble height at the end of the grazing season has been regarded as a dependable 

indicator of livestock use in riparian areas for a number of years (Heady 1949; Kauffman 

et al. 1983a; Bengeyfield and Svoboda 1998; Clary and Leininger 2000; USDI-BLM 

1996; Bryant et al. 2006; Burton et al. 2011).  I found stubble height was a moderately 

repeatable indicator, related to grazing intensity, representative of the cumulative effects 

of grazing throughout the season, and was informative of long-term stream conditions.  
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The findings of this study suggest stubble height is a dependable monitoring tool for 

evaluating livestock disturbance at the end of the grazing season.   

 Estimates of woody shrub utilization have been used as an indicator of livestock 

use in riparian areas for many years (Heady 1949; Bengeyfield and Svoboda 1998; 

USDI-BLM 1996; Bryant et al. 2006; Burton et al. 2011).  There are a number of 

acceptable methods for evaluating this indicator (e.g., Bonham 1989, USDI-BLM 1996, 

Hall and Max 1999; Burton et al. 2011).  The method for evaluating woody browse in 

this study was weakly related to other indicators of livestock disturbance, had high 

observer variability, and was not related to grazing intensity.  The findings of this 

research are likely a reflection of an inadequate design of woody browse methods and 

should not suggest that woody shrub utilization is poor indicator of livestock use.  

However, it does suggest that training for this method may be more time consuming than 

the other protocols.   

 In evaluating end-of-season conditions, it is important land manages monitor a 

suite of indicators of livestock disturbance because indicators may respond differently at 

different sites, under different vegetation types, and under different climatic patterns 

(Bryant et al. 2006, Burton et al. 2011).  Managers should be cautious in taking action 

based on a single evaluation using any metric because there will always be some error in 

measure, regardless of the protocol used (Roper et al. 2002; Heitke et al. 2008, Roper et 

al. 2010).  Since the greatest cost of monitoring livestock grazing are costs associated 

with getting to the site, streambank alteration, stubble height, and woody browse should 

all be measured once at the site (Burton et al. 2010).  It is important that land managers 

use each of these short-term disturbance indicators as each can provided different 
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information of the degree to which livestock grazing is influencing long-term riparian and 

stream health.  Understanding the strengths and weakness of the indicators and the 

protocols used will aid with interpreting results and valuable resource for land managers 

implementing end-of-season disturbance monitoring in riparian areas. 
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Table 1. Mean and standard deviation (SD) climatic and landscape attributes for reaches 
in the study area including bankfull width, gradient, index of sinuosity, slope, percent 
forested, road density, precipitation, temperature, drainage density, and percent geology 
(sedimentary and igneous) which were considered as covariates within models of stream 
conditions. 

Attribute Mean SD 

Bankfull width (m) a 4.5 2.5 

Gradient (%) a 2.1 1.5 

Sinuosity a 1.3 0.2 

Slope (%) b 25.1 12.9 

Percent Forested (%) b 43.8 26.2 

Road Density (km/km2) b 2.9 2.7 

Precipitation (m) c 0.7 0.3 

Temperature (C˚) c 4.9 1.7 

Drainage Density (km/km2) c 1.4 0.6 

Sedimentary (%)  c 10.3 21.9 

Igneous (%) c 76.5 34.1 
a Quantified at the reach scale. 
b Quantified at the segment scale. 
c Quantified at the catchment scale. 
 
 
 
Table 2.  Definitions of the types of disturbances used to define streambank alteration in 
all four protocols evaluated in this study.  A streambank was altered when the presence of 
any of these three alterations were determined to have occurred in the current year 
(Heitke et al. 2008).   

Types of alterations Definition 

Shearing Removal of a portion of the streambank by hooves leaving a smooth 
vertical surface and an indentation of a hoof print at the 
bottom or along the sides. 

Trampling Indentation of a hoof print and exposed roots or soil, resulting in  a 
depression at least 13 mm (1/2 in) deep or soil displacement 
at least 13 mm upwards. 

Trailing Trails/paths and other severe trampling are counted as alteration if 
there are signs of current year use.  Because of compacted 
soils, trailing counts even if hoof prints do not result in a 13 
mm depression. 
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Table 3.  Descriptions of woody browse classes and associated midpoint values used for 
evaluations in 2011 (Burton et al. 2011).   

Browse 
Class 

Midpoint Description 

Unavailable Blank No shrub present or shrubs and trees have > 50% of current 
year growth > 1.5 m above the ground. 

0% 0 No browse of woody vegetation. 

1-20% 10 1-20% of current year leaders have been browsed leavening 
80-99% of current year leaders intact. 

21-40% 30 21-40% of current year leaders have been browsed leavening 
60-79% of current year leaders intact. 

41-60% 50 41-60% of current year leaders have been browsed leavening 
40-59% of current year leaders intact. 

61-80% 70 61-80% of current year leaders have been browsed leavening 
20-39% of current year leaders intact. 

81-100% 90 81-100% of current year leaders have been browsed leavening 
0-19% of current year leaders intact. 

 
 
 
Table 4.  Overall mean and standard deviation (SD) of percent streambank alteration, 
stubble height (SH; n = 212) and woody browse (WB; n = 133) for all reach evaluations.  
Percent alteration was evaluated using four streambank alteration protocols: Multiple 
Indicator Monitoring (MIM; n = 212), Modified MIM (Mod; n = 212), Single Line 
Alteration (SLA; n = 30), and Line Intercept (LI; n = 27).   

  MIM (%) Mod (%) SLA (%) LI (%) SH (cm) WB (%) 

Mean 23.6 8.8 26.3 10.4 24.2 23 

SD 20.9 9.5 21.2 12.4 14.4 20.1 
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Table 5.  Overall mean, root mean square error (RMSE), coefficient of variation (CV), 
and ratio of signal to noise (S:N) for repeat measurements of percent streambank 
alteration, stubble height (SH; n = 146) and woody browse (WB; n = 76).  Percent 
alteration was evaluated using four streambank alteration protocols: Modified MIM  
(Mod; n = 146), Multiple Indicator Monitoring (MIM; n = 146), Single Line Alteration 
(SLA; n = 30), and Line Intercept (LI; n = 15).   

  MIM (%) Mod (%) SLA (%) LI (%) SH (cm) WB (%) 

Reaches 72 72 30 15 72 38 

Mean 22.7 8.2 26.3 5.6 24.9 22 

RMSE 7 4.5 6.9 1.8 8.3 14.5 

CV 30.6 54.3 26.4 32.3 33.2 65.9 

S:N 8.4 3.3 8.8 15.2 2.7 1.3 
 
 
 
Table 6.  Annual mean and standard deviation (SD) of for multiple indicator monitoring 
(MIM) and Modified MIM (Mod) percent streambank alteration, stubble height (SH), and 
total water year precipitation for the 63 reaches that were evaluated during both years of 
the study.   

  MIM (%)   Mod (%)   SH (cm)   Precip (cm) 

  2010 2011   2010 2011   2010 2011   2010 2011 

Mean 35.4 20.9   15.0 7.0   26.2 23.8   62.8 74.4 

SD 25.4 17.5   12.7 6.3   16.6 13.7   23.6 32.3 

 
 
 
Table 7.  Parameter estimates, model structure, and model fit (adjusted R2) for multiple 
linear regression models for multiple indicator monitoring (MIM) and Modified MIM 
(Mod) streambank alteration and stubble height.  Covariates include: bankfull width (m), 
gradient (%), and sinuosity of the reach; average annual precipitation (precip; m) and 
temperature (temp; C˚), and percent igneous geology of the catchment. 

Indicator Regression Model Adjusted R2 

MIM (%) 50.9 – 2.7(bankfull) + 4.6(drainage) – 10.4(precip) – 2.1(temp) – 1.8(gradient) 0.14 

Mod (%) 17.9 – 0.86(bankfull) + 2.7(drainage) – 5.2(precip) – 1.0(temp) 0.10 

SH (cm) 2.5 + 13.1(sinuosity) – 0.08(igneous) + 12.3(precip) + 0.94(temp) – 1.5(gradient) 0.14 

 
  



Table 8.  Parameter estimates, model structure, model fit (R2), Akaike information criterion (AIC), value for the multiple linear 
regression models for stream habitat variables.  Covariates include: bankfull width (bf; m), gradient (%), and sinuosity (sin) or the 
reach; slope (%), forested cover (%) of the segment; road density (road; km/km2), average annual precipitation (precip; m) and 
temperature (temp; C˚), and percent sedimentary(sed) and  igneous (ign) geology of the catchment; multiple indicator monitoring 
(MIM; %) and Modified MIM (Mod; %) streambank alteration and stubble height. 

Stream 
Attribute 

Regression Model Indicator 
P-Value 

Adjusted 
R

2 
AIC ∆ AIC 

Width to 
depth ratio 

 2.95 + 2.9(bf) + 1.0(grad) + 0.12(slope) + 1.7(drainage) – 9.7(precip) 
 

0.52 796 
 

 -0.22 + 3.1(bf) + 1.1(grad) + 0.13(slope) + 1.4(drainage) – 9.0(precip) + 0.08(MIM) ** 0.002 0.54 787 -8.37 

 0.78 + 3.0(bf) + 1.1(grad) + 0.12(slope) + 1.4(drainage) – 9.0(precip) + 0.15(Mod) ** 0.005 0.54 789 -6.14 

 3.0 + 2.9(bf) + 0.9(grad) + 0.12(slope) + 1.7(drainage) – 9.0(precip) – 0.05(SH) 0.114 0.52 795 -0.60 

Bank angle 
(˚) 

 113 + 1.2(bf) – 18.1(sin) + 1.5(grad) + 0.22(slope) – 14.9(precip) + 3.1(temp) + 0.07(ign) + 0.15(sed) 
 

0.35 1164 
 

 106 + 1.5(bf) – 17.2(sin) + 1.7(grad) + 0.23(slope) – 13.9(precip) + 3.3(temp) + 0.06(ign) + 0.14(sed) + 0.12(MIM) ** 0.032 0.36 1161 -2.84 

 110 + 1.4(bf) – 17.6(sin) + 1.6(grad) + 0.22(slope) – 14.3(precip) + 3.3(temp) + 0.06(ign) + 0.14(sed) + 0.16(Mod) 0.175 0.35 1164 0.06 

 113 + 1.2(bf) – 15.6(sin) + 1.2(grad) + 0.22(slope) – 12.7(precip) + 3.3(temp) + 0.05(ign) + 0.16(sed) – 0.18(SH) ** 0.028 0.36 1161 -3.07 

Percent 
undercut 
banks 

 13.0 + 18.3(sin) – 0.27(slope) + 13.3(precip) – 2.3(temp) – 0.07(sed) 
 

0.28 1147 
 

 16.7 + 18.9(sin) – 0.29(slope) + 11.5(precip) – 2.4(temp) – 0.07(sed) – 0.10(MIM) ** 0.052 0.29 1145 -1.90 

 15.3 + 18.5(sin) – 0.28(slope) + 12.2(precip) – 2.4(temp) – 0.06(sed) – 0.15(Mod) 0.179 0.28 1147 0.13 

 14.8 + 15.8(sin) – 0.27(slope) + 10.6(precip) – 2.4(temp) – 0.08(sed) + 0.17(SH) ** 0.028 0.29 1144 -3.02 

Bank 
stability 

 110 – 0.42(bf) – 9.1(sin) – 0.02(ign) 
 

0.06 856 
 

 110 – 0.41(bf) – 9.1(sin) – 0.02(ign) + 0.0007(MIM) 0.978 0.06 858 2.00 

 111 – 0.44(bf) – 9.1(sin) – 0.02(ign) – 0.02(Mod) 0.717 0.06 858 1.86 

 110 – 0.48(bf) – 10.7(sin) – 0.01(ign) + 0.09(SH) ** 0.021 0.08 853 -3.43 

Residual 
pool depth 
(m) 

 0.15 + 0.03(bf) – 0.05(grad) – 0.002(slope) – 0.001(forest) – 0.03(drainage) + 0.16(precip) + 0.02(temp) + 0.001(sed) 
 

0.45 -774 
 

 0.18 + 0.03(bf) – 0.05(grad) – 0.002(slope) – 0.0008(forest) – 0.03(drainage) + 0.15(precip) + 0.02(temp) + 0.001(sed) – 0.0006(MIM) 0.309 0.45 -773 0.91 

 0.17 + 0.03(bf) – 0.05(grad) – 0.002(slope) – 0.0008(forest) – 0.02(drainage) + 0.15(precip) + 0.02(temp) + 0.001(sed) – 0.001(Mod) 0.262 0.45 -773 0.67 

 0.12 + 0.03(bf) – 0.04(grad) – 0.002(slope) – 0.0008(forest) – 0.03(drainage) + 0.12(precip) + 0.02(temp) + 0.001(sed) + 0.002(SH) ** 0.002 0.47 -781 -7.74 

Percent Pools 21.8 + 11.8(sin)  – 7.4(grad) – 0.45(slope)  – 0.11(forest) – 3.7(drainage) + 21.9(precip) + 2.4(temp) + 0.1(ign) + 0.11(sed) 
 

0.41 1185 
 

24.7 + 12.0(sin)  – 7.4(grad) – 0.47(slope)  – 0.11(forest) – 3.1(drainage) + 20.1(precip) + 2.3(temp) + 0.11(ign) + 0.12(sed) – 0.1(MIM) 0.131 0.42 1184 -0.42 

24.2 + 11.8(sin)  – 7.4(grad) – 0.47(slope)  – 0.11(forest) – 3.0(drainage) + 20.3(precip) + 2.3(temp) + 0.11(ign) + 0.12(sed) – 0.21(Mod) 0.134 0.42 1184 -0.38 

21.5 + 10.5(sin)  – 7.2(grad) – 0.46(slope)  – 0.11(forest) – 3.6(drainage) + 20.6(precip) + 2.3(temp) + 0.11(ign) + 0.11(sed) + 0.10(SH) 0.301 0.41 1186 0.87 

Percent fine 
sediment < 6 
mm 

 15.4 – 4.0(bf) + 23.5(sin) – 0.92(slope) – 1.5(road) + 15.0(precip) + 4.9(temp) 
 

0.36 827 
 

 8.4 – 3.7(bf) + 23.2(sin) – 0.90(slope) – 1.6(road) + 16.6(precip) + 5.1(temp) + 0.15(MIM) 0.189 0.37 827 0.15 

 8.7 – 3.7(bf) + 23.4(sin) – 0.90(slope) – 1.5(road) + 16.9(precip) + 5.1(temp) + 0.33(Mod) 0.182 0.37 827 0.09 

 16.3 – 4.0(bf) + 21.7(sin) – 0.91(slope) – 1.4(road) + 13.7(precip) + 4.9(temp) + 0.10(SH) 0.569 0.36 829 1.65 

D50 (m)  0.07 + 0.003(bf) – 0.03(sin) + 0.0005(slope) + 0.0002(forest) – 0.02(precip) – 0.005(temp) – 0.0001(ign) – 0.0002(sed) 
 

0.39 -1050 
 

 0.08 + 0.003(bf) – 0.02(sin) + 0.0005(slope) + 0.0002(forest) – 0.02(precip) – 0.005(temp) – 0.0001(ign) – 0.0002(sed) – 0.0001(MIM) 0.152 0.39 -1051 -0.22 

 0.08 + 0.003(bf) – 0.03(sin) + 0.0005(slope) + 0.0002(forest) – 0.02(precip) – 0.005(temp) – 0.0001(ign) – 0.0002(sed) – 0.0003(Mod) 0.170 0.39 -1050 -0.05 

 0.07 + 0.003(bf) – 0.02(sin) + 0.0005(slope) + 0.0002(forest) – 0.02(precip) – 0.005(temp) – 0.0001(ign) – 0.0002(sed) – 0.0001(SH) 0.455 0.38 -1049 1.39 

** Indicates the added disturbance indicator was significant, improved model fit, and had a lower AIC value. 
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Appendix B.  Figures 
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Figure 1.  Map of Interior Columbia River Basin (IRCB) study area, displaying the 
distribution of referenced (triangles) and grazed (circle) reaches by year: evaluated in 
both 2010 and 2011 (filled symbol), evaluated in 2010 (hollow symbol), and evaluated in 
2011 (circle with a dot). 
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Figure 2.  Frequency and distribution of geo-climatic attributes for evaluated sites in the 
study area including elevation.  bankfull width, gradient, and index of sinuosity of the 
evaluated reaches; percent slope, percent forested, road density of the segments; and area,  
precipitation, temperature, drainage density, and percent geology (sedimentary, igneous, 
metamorphic, unconsolidated) of the upstream watershed catchments. 
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Figure 3.  Monitoring quadrat frames for three rapid assessment protocols for evaluating 
streambank alteration: Modified MIM (Mod, left), Multiple Indicator Monitoring (MIM, 
center), Single Line Alteration (SLA, right).  The amount of streambank alteration varies 
depending on the method and quadrat frame used.   
 
 
 
 
 

 
 
Figure 4.  Line intercept method for evaluating streambank alteration.  Diagram of a 2 m 
portion of the streambank: the length of alteration that is located directly below the 
measuring tape is 30 cm. 
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Figure 5.  Median stubble height was recorded for herbaceous vegetation composing at 
least 25% cover in the first 10 x 20 cm section of the quadrat frame closest to the handle 
(left); if vegetation didn’t cover 25% of the first subplot, the observer then recorded the 
median height of vegetation in the nearest 10 x 20 cm subplot on the greenline side of the 
quadrat frame that did have 25% cover (right). 
 
 
  

 

Figure 6.  Aerial view of the plot area for woody browse evaluations.  Woody Browse 
was recorded within a 2 m wide plot centered on the greenline extending 2.75 m from the 
quadrat handle to the next consecutive quadrat handle.  Percent browse was record for the 
first woody plant nearest the quadrat handle for each of the shrub types.  In this diagram 
percent woody browse would be evaluated on shrub A, B, and C (Burton et al. 2011). 
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Figure 7.  The nonlinear relation between the Multiple Indicator Monitoring (MIM, 
dependant variable) and the Modified MIM (Mod, independent variable) method for 
evaluating streambank alteration.   
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Figure 8.  The nonlinear relation between the Single Line Alteration method (SLA, 
dependant variable) with Multiple Indicator Monitoring (MIM, grey, independent 
variable) and the Modified MIM (black, independent variable) methods for evaluating 
streambank alteration.   
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Figure 9.  The nonlinear relations between the Line Intercept method (independent 
variable) with Multiple Indicator Monitoring (MIM, grey, dependent variable) and the 
Modified MIM (black, dependent variable) methods for evaluating streambank alteration.   
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Figure 10.  Locally weighted regression (LOESS) relations among stubble height, woody 
browse (independent variables) and four streambank alteration protocols (dependent 
variables): Multiple Indicator Monitoring (MIM), Modified MIM (Mod), Single Line 
Alteration (SLA), and Line Intercept (LI). 
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Figure 11.  Locally weighted regression (LOESS) relation between stubble height 
(independent variable) and woody browse (dependent variable). 
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Figure 12.  The linear relationships of changes to livestock disturbance indicators with 
three end-of-season variables: time, total precipitation (precip) at the reach, and volume 
of precipitation to the watershed catchment (dependent variable) among changes 
(difference).  Disturbance indicators (independent variables) include: streambank 
alteration Multiple Indicator Monitoring (MIM; n = 34) and Modified MIM (Mod; n = 
34), stubble height (SH; n = 34), and woody browse (WB; n = 27).   
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Figure 13.  Repeat photographs of providing evidence that livestock grazing livestock 
grazing continued after the first evaluation.  Photographs Silver Creek, Boise National 
Forest, ID taken on 16 September 2011 (top) and 13 October 2011 (bottom).   
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Figure 14.  Repeat photographs of providing evidence of increased stage height between 
two end-of-season evaluations.  Photographs of Willow Creek, Boise National Forest, ID   
taken on 17 September 2011 (top) and 12 October 2011 (bottom).   
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Figure 15.  Repeat photographs of providing evidence of effects of time (seasonality) and 
precipitation resulting in alteration that was less evident at the second evaluation.  
Photographs of Crooked Creek, Payette National Forest, ID taken on 15 September 2011 
(top) and 15 October 2011 (bottom).   
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Figure 16.  Repeat photographs of Crooked Creek, Payette National Forest, ID providing 
evidence of erosion to displaced and disturbed soils along the streambank.  Top 
photograph depicts current year disturbance including hoofprints, shears, and displaced 
soils (15 September 2011).  Bottom photograph depicts erosion to the disturbed 
streambanks with hoofprints, shears, and displaced soils being absent or difficult to 
identify as current year (15 October 2011).   
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Figure 17.  Repeat photographs of providing evidence that hoofprint alterations were less 
defined at the time of the second evaluation.  Photographs of Pine Creek, Boise National 
Forest, ID taken on 18 September 2011 (top) and 13 October 2011 (bottom). 
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Figure 18.  Monthly distribution of precipitation by water year for the 63 reaches that 
were evaluated in 2010 and 2011.  October (Oct*) is not include in the water year but was 
included in the graph.   
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Figure 19.  The linear relations between livestock disturbance indicators and grazing 
intensity (percent of days with ungulates within the riparian area, dependent variable).  
Disturbance indicators (independent variables) include: streambank alteration Multiple 
Indicator Monitoring (MIM; n = 10) and Modified MIM (Mod; n = 10), stubble height (n 
= 10), and woody browse (n = 9). 


	Understanding the Relationship Between Livestock Disturbance, The Protocols Used to Measure that Disturbance and Stream Conditions
	Recommended Citation

	Microsoft Word - 341635-text.native.1368468517.docx

