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ABSTRACT

Informed Intervention Design, Deployment, and Analysis For The Computer Science

Classroom

by

Jaxton J. Winder, Master of Science

Utah State University, 2024

Major Professor: John Edwards, Ph.D.
Department: Computer Science

Improving the computer science classroom is the goal of many educators and re-

searchers. Computing education researchers often do this through the introduction of tar-

geted interventions to the classroom. These interventions are used in an effort to improve

student learning and assist instructors in their teaching. Computing education researchers

frequently aim to support intervention design with research. Understanding the effects of

these interventions through continued research enables education researchers to improve

and share best practices with the scientific and education community. In this thesis, I will

be detailing novel research on computer science classroom interventions and related topics

that can support the informed design of continued interventions. One chapter of this thesis

details an intervention tackling student procrastination on software projects, with signifi-

cant success. Another chapter studies a practice that many computing educators assume

is good for students: incremental development. Through the practice of data mining using

an open source dataset of USU CS1 student keystrokes, we find evidence supporting this

practice correlating with positive student outcomes, supporting future computing education

researchers to develop interventions to teach students the practice of incremental develop-

ment. The last chapter details research and interventions aimed at teaching students the



iv

command shell. This chapter details a novel intelligent tutoring system for the UNIX com-

mand shell, the Shell Tutor, and includes an analysis of student perspectives on this tool,

which are overwhelmingly positive.

All together, this thesis demonstrates the successful deployment of interventions in

the computing education classroom. It also details research and the creation of tools that

enable educators and researchers to continue work towards improving the computer science

classroom.

(74 pages)
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PUBLIC ABSTRACT

Informed Intervention Design, Deployment, and Analysis For The Computer Science

Classroom

Jaxton J. Winder

Improving the teaching of computer science is a challenging task. Educators and com-

puting education researchers devote large amounts of time, energy, and resources towards

doing so effectively. One of the ways this is done is through research-informed design, de-

ployment, and analysis of targeted interventions to the classroom. This thesis will detail

research conducted at Utah State University targeting classroom interventions: centered

around their design, deployment, and analysis.

One of these interventions aims to tackle student procrastination through the offering

of “grace points”–forgiving a small amount of mistakes on a student’s assignment–for ana-

lyzing a homework assignment early. Through studying this intervention, we found evidence

supporting 1) the intervention caused students to start on their assignments an average of

two days earlier over a twelve day assignment period and 2) that starting earlier correlated

with a nearly 8-percentage point improvement on assignment scores.

The next section of this thesis details research that can support future intervention

design. It is a commonly held belief that students coding a little bit and testing their work

frequently–a process called incremental development–is a good practice. However, there was

a lack of research on this topic. Utilizing a tool to analyze student development behaviors,

we see that this practice of incremental development correlates with more efficient work on

programming assignments. In our study, CS1 students were able to complete homework

assignments in half the time and write half as much code, while still achieving the same

scores on homework assignments. This research supports educators and researchers in their
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work towards designing classroom improvements and interventions which may help student

complete assignments more efficiently.

Lastly, this thesis analyzes and details the impacts of a novel tool which helps students

learn the command shell. The command shell is a tool many early computer science students

struggle to learn. In the USU CS1440 course, we have introduced a new tool–the Shell

Tutor–which aims to tutor students through their learning of the command shell. This

thesis provides a detailed analysis of this tool and finds that students have overwhelmingly

positive opinions about this tool. We also identify ways which students believe this tool

may be better integrated into the classroom in the future.

All together, this thesis demonstrates the successful deployment of interventions in

the computing education classroom. It also details research and the creation of tools that

enable educators and researchers to continue work towards improving the computer science

classroom.
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CHAPTER 1

INTRODUCTION

Educators frequently aim to improve their classroom through various means. One of

these means is the introduction of targeted interventions in order to effect student behaviors,

support healthy work habits, and make the learning of challenging topics more accessible.

Interventions are often uniquely tailored to the fields of education they are deployed in,

and computer science education is no different. In this thesis, I will be detailing 3 research

projects centered around the informed design, deployment, and analysis of interventions for

the computer science classroom.

Chapter 2 details the analysis and deployment of an intervention focused on student

procrastination. Students submitting project milestones early correlates with better perfor-

mance on project submissions as a whole. In our study, these milestones correlate with the

creation of documentation for analyzing the project they are to work on. These milestones

are submitted at least 5 days before a project is due during a nearly 2-week assignment

period. There is statistical significance in positive correlation between assignment perfor-

mance and early submissions of these project milestones for analyzing a project’s require-

ments. Additionally, there is statistical significance that incentivizing students with “grace

points” for doing this early analysis changes student behavior, leading to earlier work on

projects.

Chapter 3 will outline the analysis and supporting research of a commonly accepted

“good practice” in computing education that has had a dearth of research supporting the

idea. This chapter reports an analysis of incremental development: the process in computer

science education where students code a small amount and run their code regularly, making

continual forward progress. We use a recently published measure of incremental develop-

ment to evaluate reconstructed submissions collected from CS1 students using keystroke

and IDE data. An element that was lacking in the original paper was an analysis of correla-
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tion of incremental development with academic outcomes, which our study does. We mark

submissions as incrementally developed or not and we then analyze the keystroke behaviors

between these submissions and final assignment performance. We also study if incremental

development is correlated with grades, number of assignment interaction events, time spent

on the assignment, number of coding sessions to complete the assignment, as well as other

metrics. We present evidence that incremental development is correlated with time spent

on the assignment, number of times the code was executed by the student, and similar mea-

sures. We do not find evidence that incremental development is correlated with assignment

score or final grade in the course. Our analysis is consistent with the belief that incremen-

tal development will help students complete programming assignments more quickly but it

does not support the idea that incremental development will result in better grades.

In Chapter 3, statistical significance is found correlating incremental development with

the number of assignment interaction events, time spent on the assignment, number of

times the code was executed by the student, and percentage of interactions done before

testing the code in a coding session. No significance is found correlating assignment score,

time between interactions, number of coding sessions, time between code executions, and

number of incrementally developed projects with a student’s final grade. This work supports

the notion that incremental development is a good practice for students, but for different

reasons than initially theorized by computing education researchers.

Chapter 4 discusses the design, deployment, and analysis of a novel intelligent tutoring

system developed at Utah State University called the “Shell Tutor.” The command shell

and Git are important tools for computer scientists to learn and is taught in many com-

puter science curricula. Many tools used by computer scientists are primarily interfaced

with through the command shell, such as Git. However, there have been few studies and

interventions designed to assist in understanding student behaviors in the command shell

and better teaching of it. This chapter aims to provide an overview and reflection of this

novel intelligent tutoring system we developed which assists in teaching students the com-

mand shell called the Shell Tutor. This chapter will also analyze features of this tool to



3

better understand student behaviors within the command shell while using this intelligent

tutoring system: a logging system which will enable researchers to better understand stu-

dent behaviors in using the tool and the command shell in general. A study done with

students who used this tool illuminates the perceived effects on student learning and their

perspectives of the tool, which are overwhelmingly positive.

In its entirety, this thesis will showcase research with a central theme of improving the

computer science classroom. It also demonstrates the successful deployment of interventions

in the computing education classroom and the creation of tools and research that could

enable future computing education researchers to continue work towards improving the

computer science classroom.
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CHAPTER 2

Early Submission of Project Analysis Milestones Correlates Positively With Student

Project Performance; Incentives for This Early Project Analysis Positively Changes

Student Behaviors

2.1 Introduction

Students procrastinating assignments is a tale as old as time. Well, at least as old as

the first ever homework or publication deadline. Procrastination on assignments oftentimes

leads to students missing key information about the assignment given in classes and tends

to be correlated with poorer assignment performance [1, 2].

We hypothesize that encouraging students to start on assignments early–at least to

the point of understanding what exactly the assignment entails and designing a brief plan

for the assignment–will improve outcomes. By starting early on assignments, students will

become more capable of connecting discussions in class with what they are asked to do on

the assignment. Additionally, having an early plan for the assignment will allow a student

additional time to adjust their plan for the assignment as they learn more. For software

projects, we suggest that early planning will also lead to more robust programs, better

documentation, and projects that meet more of the desired requirements.

In this paper, we report results of a study in which we incentivized the early completion

of a project analysis milestone. Incentives were offered by allowing students to recover points

missed on an assignment, dubbed “grace points.” Forgiving small amounts of mistakes on a

submission in exchange for students starting early may positively change student behaviors;

a worthy trade if it encourages students to make less mistakes and perform better overall

on the assignment.

This paper studies student submission behaviors in an early Computer Science course

taught at Utah State University (USU), titled CS1440: Methods of Computer Science
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and the applied grace points intervention for early project analysis milestone submissions.

We find that this intervention leads to considerable changes in student assignment behav-

iors both within the semester the intervention was deployed and when compared to other

semesters the course was taught. Additionally, we found that students completing these

project deadlines earlier does result in more robust programs, better documentation, and

projects that meet more of the desired requirements. Our research questions are: does

achievement of early project analysis correlate with better assignment perfor-

mance and does the proposed grace point intervention positively modify student

behavior?

This paper may impact the Computer Science education community by leading to

more informed design of course interventions. If it is shown that early completion of a

project requirements analysis milestone correlates positively with student performance, then

interventions can be designed to encourage students to achieve this milestone earlier in

the life-cycle of a software project. Additionally, if it is shown that the “grace points”

intervention positively influences student assignment behaviors, more interventions have

been identified such that student work ethics are positively influenced.

2.2 Related Work

It has been found that as procrastination increases, poor academic performance also

increases. This reference shows an adverse relationship between procrastination and aca-

demic performance [1, 2]. Conversely, this study shows that there is a positive correlation

between higher grade point averages and low academic procrastination [3]. Decreasing

student procrastination is a worthwhile target when designing course interventions.

Additionally, a model was defined that reliably predicts student success and failure in a

course based on assignment submission behaviors. The model was able to accurately predict

that students who spend a short time on the assignment and submit assignments later are

more likely to perform poorly in a course when compared to those that submit assignments

later but spend more time on the assignment. This seems to indicate that students starting

early on assignments lead to better course performance, even if they submit the assignment
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later in the assignment period [4]. A key aspect of our proposed intervention is that it does

not require early submission of the entire assignment, just the early completion of one phase

of it.

Other studies aim to identify low-cost and low-effort interventions that reduce student

procrastination, with some promising results [5]. An additional study found that incentives

for better work habits encourage students to develop these better work habits. Felker and

Chen state in their study on incentivizing work habits, ”Our results suggest that assigning

extra credit for completing parts of the assignment early can be an effective method to

encourage better work distribution and longer study time for both high and low performing

students” [6].

Case studies were conducted with undergraduate and masters level students creating

software projects and employing different paradigms for software development where it was

found that groups with plan-based or agile approaches to software development produced

software that met more functional requirements and were of higher quality from an ex-

ternal user perspective [7]. Another study found that the academic software development

education environment mirrors the software development industry and existing software

development paradigms within education mirrors the benefits of these same paradigms in

industry. [8]

A study was conducted which introduced students to the process of discovering software

requirements and served as an introduction to requirements engineering and analysis. This

was done in the context of the students’ final year project, thus the problems analyzed

by each students differed greatly. Through the process of creating a problem statement,

identifying the stake holders in such a project, documenting required functionality, and

writing a list of all functional requirements, notable benefits were found. This study found

that their approach assisted students in turning ill-defined problems into well-defined ones.

[9] The requirements analysis phase of the software development plan employed in the

CS1440 course emulates this process at a smaller scale.

All of these studies support various aspects of the authors’ hypothesis and show that
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there is clear value to be had in designing interventions that aim to change student assign-

ment behaviors.

2.3 Background Of Course Studied: USU CS1440

The USU CS1440: Methods Of Computer Science course is a course that aims to assist

students in developing the soft-skills needed to become a “good” software developer and

computer scientist. This course is taught in Python, but the programming language is not

the focus of this course. The course instead focuses on teaching principles and practices that

help students manage program complexity, improve software quality, and leverage existing

or new technologies. Students of this course are exposed to the Git version control system

and learn the basics of the Unix command line interface. Student project submissions are

done with Git by pushing projects to a self-hosted GitLab server with tracking capabilities.

The USU CS1440 course is taken after the CS1 course which is taught in Python. CS1

is a prerequisite for CS1440. The CS1440 course is typically taken in conjunction with a

CS2 course taught in Java. Students are not required to take CS1440 in conjunction with

CS2, and may take CS1440 any time after CS1.

The CS1440 course is required for computer science major and minor students at Utah

State University. However, many students enrolled in the course are using it to meet general

education requirements for other departments, and are not required to continue beyond this

course. The students of this course have very diverse academic backgrounds. The enrollment

in this course ranges between 100-200 students depending on the semester, oftentimes split

between two sections.

Students in this course produce programming projects roughly once every 2 weeks.

During a 15-week semester–accounting for holidays, the end of the semester, and an early

assignment that only focuses on the shell and Git fundamentals–students produce 7 pro-

gramming projects of increasing complexity and each with various focuses.
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2.3.1 Submissions In CS1440

Student submissions in this course are required to use Git, and are pushed to a self-

hosted GitLab server where the dates that certain commits are pushed are easily tracked.

Usage of Git enables the capability to track student project development over time by

analyzing different commits on the project and the files that change at each commit.

Students in the course are required to follow a course “software development plan”

which has 5 key phases: an analyzed phase, a designed phase, an implemented phase,

a tested phase, and a deployed phase. The analyzed phase consists of producing doc-

umentation that asks a student to analyze the problem at hand, restate the requirements

in their own words, and note key attributes of correct and incorrect solutions. This phase

is crucial for our study. The designed phase consists of producing documentation that

asks a student to “plan their attack”, producing pseudo-code and document design plans.

The implemented phase is where the student actually writes the code and note key de-

sign changes needed. The tested phase is where the student produces documentation of

their testing. Lastly, the deployed phase consists of the student ensuring their program is

“customer ready” and polishes off documentation, ensuring the project is ready for grading.

Students gain familiarity with Git and the expected software development plan struc-

ture on the first two project assignments. After that they are expected to create Git tags

which mark the commit that represents the end of each of these key phases. These key

phases then become project milestones, marking the state of the project where certain

“software development plan” phases are met. The students are given proper training of

how to produce Git tags and verify they did them correctly.

2.3.2 Assessment Of Submissions In CS1440

Student projects are assessed according to a few metrics. Documentation of the phases

mentioned above is a significant factor in project assessment. Additional developer and

end user documentation of the program created may be a factor for many of the projects

assigned. Project assessment is also based on the performance of the project created,

behavior under certain test cases, and design patterns followed. The student’s code is
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also directly analyzed for certain attributes that are not permitted, such as the usage of

eval/exec functions, importing of unapproved modules, hard-coding of absolute file paths,

and other code features that are deemed unacceptable. Students have access to a full list

of these disallowed code features that result in submission penalties.

Given the size of the course, submissions are analyzed by teacher’s assistants (TA’s),

with direction and guidance by the instructor and other TA’s with seniority. Rubrics are

provided that allocate point values to certain parts of a given project. Once the Git tag-

ging of various project milestones is required to note the completion of these milestones,

graders are instructed to analyze the existence of documentation at these milestones to

ensure students are following the software development plan. Graders for this course utilize

an interactive grading script tool that aims to assist them with their grading and ensure

uniformity of assessment, which ensures documentation at each phase is assessed.

2.4 “Grace Points” For Early Milestone Submission Intervention

To encourage students to avoid the pitfalls of procrastination, we designed an interven-

tion that encourages students to start analyzing and designing their project ahead of time.

For the assignments that require students to make Git tags marking the ends of the various

design phases, an incentive is given for students finishing the analyzed and/or designed tags

by the end of the weekend before the assignment is due. During the semester studied, these

early submission deadlines are usually 5 days before the assignment’s due date, with slight

variations due to the semester schedule. All assignments discussed in this paper have the

early submission deadlines 5-7 days before the assignment’s due date.

Incentives for these early submission deadlines are provided through the allocation

of “grace points.” Grace points allow a student to receive missed points back on their

submissions, without exceeding the maximum point value. These grace points produce a

small padding to students’ grades if small mistakes are made without awarding them points

beyond the scope of the assignment. They are only allocated on the assignment they are

received on. Students are eligible for 5 grace points if they finish the analyzed phase and

push the analyzed tag before this deadline. After completion of the analysis phase and
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pushing the analyzed tag, students are eligible for another 5 grace points if they finish

the designed phase and push the designed tag before this deadline as well. Project point

values vary, but students may earn back 8%-12% due to grace points.

2.5 Methods

To answer the research questions we break down the methodology into 3 key sections:

grace points analysis, data collection, and data analysis. We aim to track if students who

receive these grace points generally achieve better scores on the assignments when compared

to their peers that do not achieve these grace points, once the score adjustment for the

grace points is removed. Additionally, we aim to find if behaviors of students starting on

assignments is changed by the introduction of the grace points intervention.

2.5.1 Grace Points Analysis

Students in the CS1440 course achieve grace points for completing either the analyzed

or designed phases of their projects early. The completion of these phases can be found

by identifying the creation of the Git commits that are tagged noting the end of each of

these phases and the commit creation can be verified by analyzing the commit push logs of

the GitLab server, to control for students manipulating the commit creation timestamps.

Students Git repositories can be easily analyzed to ensure the correct work was completed

in each of these phases.

Students achieving these grace points on submissions are tracked during assignment

assessment. It is known exactly how many points are applied as grace points on each sub-

mission, and scores were adjusted to remove the score alteration by these grace points. This

data is marked in the Canvas Learning Management System used by the course. Submis-

sions that are marked as having received grace points are guaranteed to have completed the

project analysis documentation early.

2.5.2 Data Collection

Data collection on the performance effects of early project analysis was done with
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existing grade data for 2 sections of the CS1440 course in the Fall 2022 semester. Three

of the assignments were analyzed that were all eligible for grace points; Assignment 3:

Big Data Processing, Assignment 4: Bingo! Card Generator, and Assignment 5.0: Fractal

Visualizer - Refactoring. The assignments are described briefly in subsections below.

Data collection to understand the effects on students starting on submissions included

data from all sections of the CS1440 course in the Fall 2021 and Spring 2022 semesters. Data

was collected noting the time stamp of the first git commit made by a student, normalized

over the assignment window. Data for the Fall 2021 and Spring 2022 semesters included

the assignments noted earlier, as well as Assignment 6: Recursive Webcrawler, as this

assignment was eligible for grace points in the Fall 2022 semester. For another analysis

of just the Fall 2022 semester first commit timestamps, data for the assignments titled

Assignment 1: The DuckieCrypt Decrypter and Assignment 2: Text Tools were included, as

these assignments were before the grace points intervention was introduced to the students.

These additional assignments are not discussed in detail due to the only metric measured

is first commit times. All assignments were available over a roughly two week time-period.

For the Spring 2022 semester, time-data for Assignment 4: Bingo! Card Generator was

removed due to the time-period being 3 weeks due to spring break.

Additional Data Collection Notes For Performance Analysis

Data for each submissions performance was compiled and it was noted if students

received any form of grace points on a given assignment. Scores were adjusted to remove the

effect of receiving grace points on a submissions final results. Any other grade modifications

not relative to assignment performance was also accounted for and scores were adjusted.

Assignment data for students who did not make any new commits–indicating no work

was done–were removed. If a modification was made to the project and pushed to GitLab,

the submission was part of the data collected. Students may have started working on the

assignment at any time, but never end up creating the “final product,” and their work was

still graded and counted as part of the data collected. Both students receiving grace points

and students not receiving grace points fell into this group of students who did not “finish”
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the product, and partial points may be awarded based on documentation created and other

work done.

Additionally, certain attributes of submissions are strictly forbidden and clearly noted

to the students. Submissions with these attributes have their scores reduced to 0. Students

receiving grace points and students not receiving grace points accrued these penalties in

the assessed submissions included in this study.

Assignment 3: Big Data Processing

Students are tasked with parsing a large .csv file provided by the United States Bureau

of Labor Statistics (with small modifications by the instructor), and reporting on the data

present in the file. Students are required to read external documentation to understand the

format of this data, and are encouraged to make smaller data sets from this large data-set for

validation, with guidance from the instructor. Students initially perceive this assignment

to be very challenging, but frequently find that the implementation is fairly simplistic once

they understand the structure of the assignment. This project is the project that receives

the highest average scores of the semester.

Assignment 4: Bingo! Card Generator

Students are tasked with creating an Object Oriented program that allows a user to

interactively generate Bingo cards of various sizes and interact with them. There is required

documentation to be produced, such as a UML class diagram for developers and a user’s

manual for the end user of the product. Students are also tasked with crafting unit tests

for this program, with some unit tests given.

While it is not generally considered to be the hardest assignment in the course, it

can cause significant difficulties for students who are not comfortable with object oriented

programming in Python. This assignment has a notable increase in difficulty from the

previous assignment.
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Assignment 5.0: Fractal Visualizer - Refactoring

Students are given a poorly crafted–but working–program that creates images for vari-

ous fractals. They are tasked with cleaning up the code and maintaining the same function-

ality of the program. Additionally, students are required to produce a UML class diagram

documentation for developers and a user’s manual for end users.

This refactoring assignment is rated as one of the hardest assignments in the course,

and the hardest of the three in the performance analysis.

2.5.3 Data Analysis

To analyze performance data, the adjusted scores were transformed to be values in the

range of [0.0, 1.0] as a percentage of points received on a given submission.

To analyze submission start times, first commits that were made within the assignment

period were normalized on a scale of [1.0, 0.0], with 1.0 being the time the submission was

released and 0.0 being the moment the assignment was due. Submissions that were started

after the assignment due date were removed from this data, which was less than 3% of

submissions studied. All submissions analyzed were over a roughly two week period with

slight variation due to holidays and the semester schedule. On the scale, 0.4 was roughly the

start of the week an assignment was due, which correlates with the grace points deadline.

2.6 Results

2.6.1 Performance Analysis

All Assignments

For all assignments, we have n = 133 for submissions receiving grace points, and

n = 179 for submissions not receiving grace points. The average score of assignments

receiving grace points is 86.0%, and the average score for those not receiving grace points is

78.2%. For submissions receiving grace points, 63.2% scored a 90% or higher, with 38.3%

scoring 100%. For submissions not receiving grace points, 43.6% scored a 90% or higher,
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Fig. 2.1: Score distributions for all submissions, grouped by submissions that did or did
not receive grace points. n = 133 for submissions receiving grace points, n = 179 for
submissions that did not receive grace points. The mean score of submissions receiving
grace points was 86.0%, and for submissions not receiving grace points, 78.2%.

with 19.0% scoring 100%. The distribution of the two groups differed significantly,

(Mann-Whitney U=8785.5, n1 = 133, n2 = 179, p = 0.0001 two-tailed).

Assignment 3: Big Data Processing

For Assignment 3, we have n = 47 for submissions receiving grace points, and n = 63

for submissions not receiving grace points. We find that the average score of assignments

receiving grace points is 84.7%, and the average score for those not receiving grace points is

82.5%. For submissions receiving grace points, 64.8% scored a 90% or higher, with 44.7%

scoring 100%. For submissions not receiving grace points, 52.4% scored a 90% or higher,

with 23.8% scoring 100%. The distribution of the two groups did not differ significantly,

(Mann-Whitney U=1200, n1 = 47, n2 = 63, p = 0.0849 two-tailed).

Assignment 4: Bingo! Card Generator

For Assignment 4, we have n = 42 for submissions receiving grace points, and n = 60

for submissions not receiving grace points. We find that the average score of assignments
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Fig. 2.2: Score distributions for Assignment 3, grouped by submissions that did or did not
receive grace points. n = 47 for submissions receiving grace points, n = 63 for submissions
that did not receive grace points. The mean score of submissions receiving grace points was
84.7%, and for submissions not receiving grace points, 82.5%.
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Fig. 2.3: Score distributions for Assignment 4, grouped by submissions that did or did not
receive grace points. n = 42 for submissions receiving grace points, n = 60 for submissions
that did not receive grace points. The mean score of submissions receiving grace points was
82.8%, and for submissions not receiving grace points, 77.3%.
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receiving grace points is 82.8%, and the average score for those not receiving grace points is

77.3%. For submissions receiving grace points, 57.1% scored a 90% or higher, with 28.6%

scoring 100%. For submissions not receiving grace points, 35.0% scored a 90% or higher,

with 15.0% scoring 100%. The distribution of the two groups did not differ significantly,

(Mann-Whitney U=1013, n1 = 42, n2 = 60, p = 0.0922 two-tailed).

Assignment 5.0: Fractal Visualizer - Refactoring
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Fig. 2.4: Score distributions for Assignment 5.0, grouped by submissions that did or did not
receive grace points. n = 44 for submissions receiving grace points, n = 56 for submissions
that did not receive grace points. The mean score of submissions receiving grace points was
90.6%, and for submissions not receiving grace points, 74.2%.

For Assignment 5, we have n = 44 for submissions receiving grace points, and n = 56

for submissions not receiving grace points. We find that the average score of assignments

receiving grace points is 90.6%, and the average score for those not receiving grace points is

74.2%. For submissions receiving grace points, 68.2% scored a 90% or higher, with 40.9%

scoring 100%. For submissions not receiving grace points, 42.9% scored a 90% or higher,

with 17.9% scoring 100%. The distribution of the two groups differed significantly,

(Mann-Whitney U=714.5, n1 = 44, n2 = 56, p = 0.0003 two-tailed).
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2.6.2 Time Analysis

Comparing Fall 2022 To Previous Semesters
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Fig. 2.5: The comparison of first commit times between Fall 2022–the semester that the
intervention was introduced–and previous semesters on the same assignments. Submissions
from Fall 2022 and Spring 2022/Fall 2021 are compared. n = 401 for submissions with the
intervention, n = 748 for submissions before the intervention. On the relative scale, 1.0 is
when the assignment was released, 0.0 is the moment the assignment was due.

For the students in Fall 2022 on the submissions eligible for grace points, the mean

was 0.523, with 64.8% of students starting before 0.4 on the relative time-scale. For the

submission behaviors of students on the same set of assignments for Spring 2022 and Fall

2021–before the grace points were introduced–the mean is 0.355 with 34.6% starting before

0.4 on the relative scale. The distributions of the two groups differed significantly (Mann-

Whitney U=197130, n1 = 401, n2 = 748, p = 1.43e-18 two-tailed).

Comparing Assignments Before And After Intervention Within Fall 2022

We see that for the submissions on assignments that had the grace point intervention
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Fig. 2.6: The comparison of first commit times in Fall 2022, the semester that the inter-
vention was introduced, before and after the introduction of the intervention. n = 401 for
submissions with the intervention, n = 349 for submissions before the intervention. On the
relative scale, 1.0 is when the assignment was released, 0.0 is the moment the assignment
was due.
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possible, the mean was 0.523, with 64.8% of students starting before 0.4 on the relative

time-scale. We also see that for the submission behaviors of students on the assignments in

the semester before the grace points were introduced, the mean is 0.441 with 49.3% starting

before 0.4 on the relative scale. The distributions of the two groups differed significantly

(Mann-Whitney U=80527, n1 = 401, n2 = 349, p = 0.0004 two-tailed).

It is worth noting that some of this change could be explained by students at the

beginning of the course not having much familiarity with Git. However, there was an

assignment before the first assignment studied which allowed students to practice with Git

and encouraged good Git committing behaviors, reducing this effect. We do not believe the

change would be so drastic if the effect was only due to student’s bettering their Git habits.

When paired with cross-semester data, our belief of this strengthens, and we are seeing the

effects of the grace point intervention on student behaviors.

2.7 Conclusions

From the data, it is clear that there is a correlation between student assignment per-

formance and early completion of the project analysis milestone. Data for all assignments

aggregated together showed statistical significance, while one of the assignments had clear

statistical significance in it’s data alone. This data suggests that if students put in the

work to understand the assignment given to them early, they are placed in a position for

success on assignments. Additionally, it suggests that the effect increases as project diffi-

culty increases. It is clear that this is the case in the Computer Science course studied. It

is suspected that these results generalize beyond this course, and beyond the scope of the

field of computer science; especially so for project based assignments within other fields if

one is able to design an analog to the “requirements analysis” planning phase used in the

CS1440 course.

Additionally, it was found that the introduction of the grace points intervention caused

students to start working on their assignments earlier. With both of these hypotheses being

supported by our study, it is found that interventions which aim to encourage students to

analyze projects or assignments earlier can be done and provides a significant benefit to
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student project performance.

This study can inform education researchers in intervention design, as there is clear

assignment performance improvements shown by students understanding the expectations

and requirements of an assignment early on in the assignment’s release period. It is clearly

valuable for project-based work in the Computer Science course studied, and many courses

within other disciplines share numerous traits with.
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CHAPTER 3

Incremental Development and CS1 Student Outcomes and Behaviors

3.1 Introduction

Computer science educators frequently seek ways to encourage students to make con-

tinual forward progress on their assignments to increase success rates on an assignment and

reduce student burden. One suggested way is to use incremental development. This is where

students are encouraged to write small chunks of code and then test their new additions—

making continual forward progress—as opposed to large additions of code that require lots

of debugging time. Previous research has been done in developing a tool written in Python

to measure this incremental development [10]. This tool—which analyzes and compares the

source code of students’ projects each time the project is run—seeks to analyze if students

are making continual forward progression between runs or are stuck debugging the same

blocks of code. The tool assigns projects a Measure of Incremental Development (MID)

score, which can be used to classify if a submission is incrementally developed or not.

This tool was developed with the notion that incremental development is good for com-

puter science students. At this time, there have been few measurements made to indicate if

incremental project development positively correlates with student project outcomes, using

a definition of incremental development as “working early and often, incrementally checking

work via either interactive program launches or software test execution, and incrementally

writing software tests,” which differs slightly from the computable incremental development

metric defined in Shah et al. which our paper studies [10,11]. Additionally, the assignment

creation behaviors of students–such as time spent on the assignment, how many coding

sessions are required to complete the assignment, and how many times the code is tested–

have not been studied to understand if there is correlation with incremental development,

using the definition of incremental development provided by the MID score metric. When
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submissions are marked as “incrementally developed” by the MID score metric, are there

different behavioral trends observed when compared to students who do not develop their

projects incrementally?

Our study seeks to answer two key research questions related to this MID score metric

using previously collected keystroke data from students in a CS1 course at Utah State

University (USU).

RQ1: Does incremental development correlate with better assignment per-

formance?

RQ2: What trends are found in student behaviors when they perform in-

cremental development as measured by the MID scores?

With answers to these questions, more informed interventions may be designed and

deployed to assist CS1 students in their success. By better understanding the various

behaviors that correlate with incremental development, we will be able to analyze if various

assumptions about the benefits of incremental development are true. This information

can inform future development of the MID score tool in order to ensure that the MID

score correlates with submission and performance behaviors desired by the authors, and

potentially identify if any problematic behaviors are incentivized by the tool.

3.2 Background And MID Score

The majority of our work relates to the research paper Understanding and Measuring

Incremental Development in CS1 [10]. This paper defines a computable metric to mea-

sure incremental development. The paper defines this metric to classify projects as being

incrementally developed.

The authors of the paper created a package published to pypi, titled measure-incremental-

development [12]. This package is used to calculate the proposed incremental development

score, referred to as the MID score metric. This package is fairly new, and has little public

use beyond the scope of the initial research. The way this package computes MID scores is

defined formally in Shah et al. and briefly detailed in the remainder of this section [10].

https://pypi.org/project/measure-incremental-development/
https://pypi.org/project/measure-incremental-development/
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MID scores are calculated by categorizing code changes, observing struggles, and pe-

nalizing time spent making repeated debugging attempts after large changes. These code

changes are observed through various snapshots of student’s code throughout their devel-

opment. Meaningful code changes are classified into three different categories: forward

progress steps, adjustment steps, or test steps. Forward progress is adding new lines of

code. Adjustment is when a student only makes changes to existing lines of code. A test is

where a student adds print statements or otherwise does work to verify outcomes without

significantly affecting the program. For the most part, test steps are ignored by the MID

score.

The forward progress and adjustment step categories are used in a computation of

struggle for a given code change. For each forward progress step s, the number of later

adjustment steps affecting that forward progress step, as, affects the measure of struggle

for that given forward progress step.

struggle(s) =
(as)

2

as + 1

For a given forward progress step s with no associated adjustment steps, as = 0, the

struggle calculation produces 0; no struggle was detected in the project to accomplish that

forward progress step. If a forward progress step has a single adjustment step, as = 1, and

we have a struggle computation of 0.5. Two adjustment steps (as = 2) produces a struggle

computation of 1.3, and three adjustment steps (as = 3) produces a struggle computation of

2.25. As more adjustment steps are needed for a given forward progress step, the computed

struggle metric increases exponentially.

To penalize for large additions of code that are untested and require lots of adjustment,

the MID score factors in the size of a given forward progress step in its computation, defined

by the number of tokens in the step. Each forward progress step s is assigned a size metric,

proportional to the size of the whole project. Assuming numTokens(s) returns the number

of tokens for a given forward progress step s, the size is computed as:



24

size(s) =
numTokens(s)∑n
k=1 numTokens(k)

The MID score summarizes the entire development process of a student’s project,

collected in a sequence of snapshots, with each snapshot collected every time a student’s

code is compiled and executed. For n various forward progress steps in a given project, the

MID score computation is defined as:

MID =
n∑

s=1

size(s) · struggle(s)

The range of MID scores is [0,∞). If a project consists of no adjustment steps, the

returned MID score will be 0. As more adjustment is needed in a project, and larger untested

chunks of code are added at a time, the MID score increases. According to Shah et al.,

classifying projects with MID scores in the range of [0, 2.5] as incremental and projects with

MID scores greater than 2.5 as non-incremental. This classification cutoff resulted in 80%

to 85% agreement with human evaluators, depending on the project studied. Many of the

misclassifications were noted as being “close-calls,” with reviewers also struggling in their

classification of projects [10].

An important difference between this definition of incremental development and the

definition of incremental development used in a prior student outcome analysis– which

defined incremental development as “working early and often, incrementally checking work

via either interactive program launches or software test execution, and incrementally writing

software tests” [11]– is that this metric directly analyzes code changes instead of external

behaviors to categorize incremental development.

3.3 Related Work

To study student development habits in an effort to see if students achieve continued

forward progress and iterative improvements, others have analyzed student code version

control repositories [13, 14]. However, only having student code repositories can lead to
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known issues with project analysis. Namely, student commit behaviors are different, with

some committing to version control often and with every test, and others rarely committing

changes to version control. Analysis of version control does not always fully illustrate the

development and testing of student code [15]. Due to the fine grained data desired within

the scope of the small problems CS1 students encounter, we make the choice to forego code

repository analysis and instead seek out keystroke-level data, discussed later.

Prior work has been done to gather keystroke-level data and study student development

behaviors [16]. The study by Kazerouni studies student procrastination and incremental

development [11]. However, their study primarily focuses on incremental development and

procrastination; not a direct study of incremental development with other metrics such as

student performance or interaction events with an assignment. They utilize different mea-

sures of incremental development. Kazerouni et al. does note some ancillary findings from

one of their metrics for incremental development—the mean time of test writing compared to

the project deadline, which is part of an indicator for incremental development—correlates

positively with time spent on an assignment. Earlier test writing leads to longer time spent

on an assignment.

Incremental development in commercial software development has been adopted by

many companies, and has become one of the most common deployment strategies of modern

software. However, there has been an observed phenomenon called Incremental Develop-

ment Productivity Decline that indicates incremental development may not be the silver

bullet some desire it to be [17, 18]. Our research may determine if a similar phenomenon

is seen in early learners of computer science, as we can study time spent on an assignment

compared to educational outcomes as our measure of productivity within the framework of

incremental development.

Within the task of information seeking and retrieval, the researchers McGregor et al.

[19] define various measures of cost, effort, and load. Some of these measures that influence

their determination of a tasks cost, effort, and load include system interaction events and

time spent completing the task at hand. Reducing cost, effort, and load is beneficial to
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learners. Despite the fact that this study was done within the scope of information seeking

and retrieval, we suspect that these measures of cost, effort, and load are analogous and

generalize to computing education and programming tasks. We can study these metrics

to determine if incremental development is suspected to modify the cost, effort, and load

learners experience during a task.

3.4 Methods

3.4.1 Dataset

This analysis uses the keystroke data collected from CS1 students at Utah State Uni-

versity [20]. This data contains keystroke information, record of execution runs, student

information, and due dates for the assignments. All data was de-identified and made pub-

licly available with oversight from their ethics review board. It includes a collection of 41

students and 8 assignments, with all assignments being done in Python. Of those assign-

ments and students, there are 209 assignment records that were able to be reconstructed

correctly for the MID analysis. Each of these assignment records were used to determine

run states that could then be fed to the MID score tool.

The data was used to understand the MID score relating to: the assignment grade,

the student’s final course grade, number of runs, number of coding sessions, assignment

interaction events, the average time between events in a coding session, average time between

runs in a session, and the percentage of interactions made before testing code in a coding

session.

Overall, these analyses helped inform whether or not there is a correlation between

student grades and coding behaviors with a measure of incremental project development.

3.4.2 Submission Reconstructions

Within the keystrokes dataset, we reconstructed student assignment submissions using

the sequences of file edit events. Information of the cursor location and file name in the

project was known and a simple algorithm to add and remove text from a file as it is

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/BVOF7S
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/BVOF7S
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reconstructed was employed. This was based on a sample algorithm that was provided

inside the dataset [20]. We extended this algorithm to take “snapshots” of the project state

any time a student executed a run event so we can see the executable and tested states of

a student’s project over time. These snapshots were provided as the code state snapshots

for the MID score calculation.

In the data set, not all students had provided data for all assignments. Additionally,

some data corruption in the keystroke data set prevented some submissions from being

reconstructed correctly, and these submissions were removed from our analyses.

3.4.3 Dataset Filtering

As noted earlier, some submissions could not be reconstructed correctly due to dataset

corruption. Other submissions contained edits mislabeled as the wrong file. Because of these

issues, projects were checked after reconstruction to ensure they reconstructed correctly

before being used in our analysis. Additionally, any files that were automatically generated

by the student’s IDE were removed, as well as any files that were not intended to be source

code files (such as .txt files or files with names similar to plan the course’s convention for

documentation files).

To check if a reconstruction was successful, the final reconstructions of source code files

were executed with Python. If the source code executed successfully, it was marked as being

a successful reconstruction. If the source code had an error, it was inspected further. Of

the files that were deemed to be bad reconstructions, all had syntax errors. However, not

all submissions with syntax errors were due to bad reconstructions. Students who did not

complete assignments or made last minute changes that were unchecked before submitting

had syntax errors in their project. These reconstructions remained in our analysis. If any

files in a given project were reconstructed incorrectly, that submission was entirely removed

from our analysis.

MID Score Package Bug

The MID score package is fairly new and documentation is limited, resulting in the
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discovery of bugs within the package. When passing in the various project submission

states, newline characters were added to the end of each state to resolve a bug. This bug

was found as some reconstructions that did not end with newlines and had only one character

change would crash the package’s MID score computation function. It was verified that this

addition of a new line character did not affect the actual MID score computation, both

through experimentation and analysis of the source code. This slight modification to the

run states allowed all submissions with successful project reconstructions to be processed

and have a MID score assigned to it.

3.4.4 Metrics

Various metrics were defined in order to measure student behavior on assignments

within the keystroke data set. Many of these metrics defined were informed by previous

work on this same keystroke dataset [21].

MID Score

The definition of a MID score is briefly discussed in the section 3.2. It is defined in

Shah et al. [10] and is provided by the measure-incremental-development package [12].

Input to the measure-incremental-development software is a series of project snapshots

at each code execution event. Using the keystroke dataset, we reconstructed these code

snapshots at each code execution event. Each file in the student’s project was concatenated

together to represent the whole project at the given state before being given to the MID

score metric. Thus, the MID scores represent a rating of the whole project rather than

individual files or tasks in the project.

Final Score

The final score is the final class score including assignments, grace points, and exams.

Students were given a small amount of “grace” for missing points on assignments, and this

was applied uniformly and to all students over the semester. The final score also includes

assignments from earlier in the semester than the keystroke data set has information for.

https://pypi.org/project/measure-incremental-development/
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Assignment Interaction Events

Assignment interaction events are defined as IDE actions performed by a student during

development. Some of these actions include edit keystrokes, executing the assignment, and

switching between tabs of source code files. The keystroke data was filtered to remove any

events that are not directly interactive, such as a separate event representing the insert of

a character resulting from an already logged keystroke and any auxiliary events produced

automatically by the student’s IDE. Additionally, events where students close the IDE were

also removed from this measure.

Coding Sessions

A coding session is defined as continuous working time on an assignment. A new coding

session begins after a 5 minute period of no activity on the assignment. The decision of a

5 minutes of no activity being the threshold for a coding session was informed by a study

measuring the time on task while programming, which found that 5 minutes of no activity

indicates a greater than 50% chance that the student has become disengaged with the

task [22]. Activity is deemed as any interaction event, such as a test run or edit.

Length of time on Assignment

The length of time the student spends on an assignment is the sum of the time spent

during all coding sessions as suggested in [22]. Consideration for the amount of time to

complete an assignment and incremental development was a hypothesis from Shah et al [10].

This metric was especially important in studying this hypothesis.

Time Between Interactions

The time between interaction events was measured for all interaction events in the

same coding session. The time between interaction events that end a coding session and

start a new one were not measured, as that effectively would be a measure of break time

with our definition of a coding session.
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Runs Of Code

While the data set has run start events, and run end events, our study only utilized

the run start events. A run is counted as any attempt to execute their code, even if the

Python interpreter finds a syntax error and does not execute their code. The current state

of the student’s project was saved every time a run start event happens.

Time Between Runs Of Code

Much like the time between interactions metric, the time between runs of code was

measured for all runs in the same coding session. Two runs in different coding sessions did

not have their time between them measured, as that becomes significantly effected by the

time of students breaks between coding sessions.

Percentage Of Interactions Before Running Code In A Session

When a new coding session starts, all interactions that happen before an execution event

happens are tracked and compared to the total number of interactions on an assignment.

If a student does not execute their code during that coding session, all interactions in that

session are marked as interactions happening before a run. A low percentage of interactions

before running code indicates that students would start testing their code early on in their

coding sessions. A high percentage of interactions before running code in a session indicates

a student was likely not spending that coding session focused on debugging tasks.

3.4.5 Analysis Of Metrics

To analyze the defined metrics, we found common statistical information such as the

mean, median, and standard deviation, separated by a submission’s “incremental” or “non-

incremental” status using the MID score. To see if any differences in the mean, median, and

standard deviation found are statistically significant, Mann–Whitney U tests are applied.

To gain understanding into incremental development, multiple analyses were com-

pleted. The analyses compared MID to the following: final score, number of runs from
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assignment start to submission, and number of keystrokes from assignment start to submis-

sion. Other analyses included, the average time between runs in coding sessions and the

average time between interaction events.

Our work can be seen on GitHub.

3.5 Results And Discussion

Table 3.1: Reported results, grouped by measure, for the metrics studied. Details and
Mann-Whitney U results are reported in the relevant subsection. In the Group column, I
represents the group of assignments marked as incrementally developed and N stands for
the group of assignments marked as non-incrementally developed.

Measure Group Median Mean STD p

Assn. Score (3.5.1)
I 93.125 90.24 10.95

.97
N 91.05 91.18 6.88

# Interaction Events
(3.5.2)

I 3861.0 4289.3 3452.0
1.4e−5

N 6573.5 7228.3 4487.2

Event Time ∆ (3.5.3)
I 6.15 11.16 11.48

.14
N 4.52 7.26 7.26

Avg. Assn. Time
(3.5.4)

I 2.25 2.52 1.59
4.6e−6

N 3.94 4.02 2.00

# of Coding
Sessions (3.5.5)

I 12.0 13.92 8.88
.13

N 13.5 16.57 10.50

# of Assn. Runs
(3.5.6)

I 59.0 75.76 72.0
1.1e−6

N 113.5 147.83 111.61

Time Between Runs
(3.5.7)

I 106.25 123.15 91.09
.08

N 86.41 99.14 47.74

Event % Before Run
(3.5.8)

I 0.42 0.47 0.29
.03

N 0.31 0.37 0.22

3.5.1 Assignment Score

This difference in assignment scores between incrementally and non-incrementally de-

veloped projects was not statistically significant (Mann-Whitney U=4116, n1 = 154, n2 =

53, p = 0.926, two tailed). This can probably be explained by the fact that most assign-

ments have scores near 100. A dataset with more discriminating scores may yield more

interactions between assignment score and MID score.

https://github.com/jaxtonw/ACE2024-Incremental-Development-Analysis
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3.5.2 Number of Assignment Interaction Events

The difference in the number of assignment interaction events between incremen-

tally and non-incrementally developed projects was statistically significant (Mann-Whitney

U=2520, n1 = 155, n2 = 54, p = 1.37e-05, two tailed). Incrementally developed projects

required fewer keystrokes to complete.

There are two possible explanations for this. The first, that incremental development

results in shorter development times, which is consistent with conventional wisdom among

computer science educators. However, the effect may not be causitive—better students may

simply be more likely to use incremental development practices. A within-subjects study

in which incremental development behavior is modified over time could help determine

causation.

3.5.3 Average Time (seconds) Between In-Session Interaction Events

This difference in the average time between in-session interactions between incremental

and non-incrementally developed projects was not statistically significant (Mann-Whitney

U=4757, n1 = 155, n2 = 54, p = 0.135, two tailed). In other words, we have no evidence

that the frequency with which a student interacts with their code is correlated with incre-

mental development, indicating there is no found correlation between in-session pauses and

incremental development.

3.5.4 Assignment Time (hours)

This difference in time spent on assignments between incrementally and non-incrementally

developed projects was statistically significant (Mann-Whitney U=2430, n1 = 155, n2 = 54,

p = 4.555e-06, two tailed). This is a very similar finding to the number of assignment in-

teraction events measure, discussed in section 3.5.2, especially when one pairs it with the

findings of no statistically significant difference in time between in-session interaction events

3.5.3.

3.5.5 Number of Coding Sessions
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The difference in the number of coding sessions between incrementally and non-incrementally

developed projects was not statistically significant (Mann-Whitney U=3604, n1 = 155,

n2 = 54, p = 0.129, two tailed). Despite the fact that incremental developers are using

fewer events to complete their assignments, there is no evidence that they are doing so in

fewer coding sessions.

3.5.6 Number of Runs

This difference in the number of runs between incrementally and non-incrementally

developed projects was statistically significant (Mann-Whitney U=2322, n1 = 155, n2 = 54,

p = 1.14e-06, two tailed). We observe that students that developed incrementally had on

average half the number of runs. At first glance, it may be surprising that incremental

developers are using fewer run events than non-incremental devs. However, it makes sense

when we consider that incremental developers are using fewer total interaction events and

incremental development is hypothesized to require less time spent debugging.

3.5.7 Difference in Average Time Between Runs

The difference in time between runs on a submission between incrementally and non-

incrementally developed projects was not statistically significant (Mann-Whitney U=4500,

n1 = 144, n2 = 54, p = 0.08, two tailed). We hypothesized that there would be a statis-

tically significant difference. After all, colloquially we say incremental developers run their

code “more often.” However, our hypothesis was that incremental developers would have

the shorter time-frame between runs and our data suggests the opposite. We suggest one

or both of the following explanations.

First, incremental developers are fitting in less interactions in the time between run-

events. This seems unlikely, considering the fact that we are not able to show any difference

in temporal density of interactions (Section 3.5.3). The other explanation is that the dif-

ference is actually present despite the p-value exceeding our threshold of 0.05, and that

the shorter time span between runs seen by non-incremental developers is because they are

spending more time in bug fixing stages, running their code consecutively.
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3.5.8 Percentage of Events Before A Run In Coding Session

The percentage of events before a run in a coding session between incrementally and

non-incrementally developed projects was statistically significant (Mann-Whitney U=5030,

n1 = 155, n2 = 54, p = 0.027, two tailed). This may indicate that coding sessions are filled

with more forward progress and less debugging.

3.5.9 Incremental Development and Final Grade

The percentage of assignments completed that were marked as using incremental de-

velopment according to the MID score tool was computed for students with more than three

reconstructed assignment submissions. There was no statistically detectable correlation be-

tween the final score and the percentage of incremental development use as seen in Figure

3.1. This, together with the lack of finding that assignment score is affected by differences

in incremental development (Section 3.5.1), indicates that academic outcomes aren’t neces-

sarily affected by incremental development. If this is true, then educators should not make

statements such as “incremental developers will get better grades” within the context of

CS1 courses. A better claim would be, “incremental developers are more productive and

take less time on their assignments.”

3.5.10 Threats To Validity

The data set used contains only data from a small set of students enrolled in a CS1

course from Utah State University. This data set is limited in scope and the behaviors of

these students are not guaranteed to generalize towards students with different backgrounds

than those at Utah State University. In addition, the dataset does not include information

on whether a student had prior programming experience or not, which could have an effect

on their level of incremental development.

The MID score metric has a few limitations noted by Shah et al. [10]. An additional

possible shortcoming uncovered by our work is how instructor-provided starter code is

handled. It is unclear how this should influence the calculation of the MID score and its

classification. The effects of starter code are likely compounded when starter code gets
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Incremental Development in Relation to Final Score

Fig. 3.1: The figure shows the percentage of a student’s incremental development over the
course in relation to the student’s final grade. The percentage is the number of assignments
developed incrementally compared to the number of assignments a student completed over
the course. There is no discernible correlation.
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added into the project part way through the project’s life-cycle as a large single addition,

with some of this starter code intentionally being syntactically incorrect. Some starter code

expects students to edit existing lines of code, which the utilized MID score metric would

penalize as being an adjustment instead of forward progress. We recommend that future

versions of this tool include a way to provide starter code that a student may utilize such

that the MID score can be calculated only from the student’s changes.

3.6 Conclusions

For RQ1 we failed to find a measurable difference between scores for students who

developed using incremental development versus those who did not. Assignment scores of

projects marked as being incrementally developed did not have any statistically detectable

differences from the scores of assignments that were not marked as being incrementally

developed. Additionally, the percentage of a student’s projects that were incrementally

developed had no notable correlation with a student’s final score in the course.

For RQ2, this research has provided insight into how incremental development is of use

to students. There were strong measurable relationships between incremental development

and many of the metrics studied.

The number of interaction events generally correlates to more work being required to

complete a project. We can see that incremental development correlates with less interaction

events, and thus implies that incremental development correlates with less work required

to complete a project as well.

The amount of time spent on an assignment has negative correlation with incremen-

tal development. This also supports the earlier notion that incremental development of

projects correlates with less work required to complete a project. This shows that the

industry phenomenon of incremental development productivity decline does not apply to

early CS students, as students are performing work faster and receiving the same results

when developing incrementally [17, 18]. With both the number of interaction events and

time spent on an assignment being reduced when a learner uses incremental development

strategies, and with no change in outcomes, we speculate that learning requires less cost,
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effort, and load [19].

The number of program runs negatively correlates with incremental development. This

may suggest that projects which are marked as being incrementally developed require less

bug-fixing and adjustment,, which was something the authors of the MID score metric

desired to codify with the metric.

Lastly, the percentage of events in a coding session that happen before a run event

negatively correlates with classification of a project as being incrementally developed. This

suggests that projects which are classified as incrementally developed require less time spent

in bug-fixing and adjustment during coding sessions.

Our findings are consistent with the notion that instructors should be encouraging

students to use incremental development. We have found evidence to indicate that students

will spend less time on their assignments and require less testing of their code to achieve the

same results. We find no evidence that recommending to students that they incrementally

develop their projects changes their assignment creation behavior, nor that interventions

should not be designed to instill incremental development practices in early CS students.

Indeed, should future within-subjects studies show causality, these practices would be shown

to be highly beneficial.

3.6.1 Classroom Implications And Future Work

Some computing educators may wish to find ways to encourage incremental develop-

ment in the classroom. According to Ditton et al. [23], students who view visual “playbacks”

of their development have positive code review experiences and desire to make behavioral

changes when developing software again. The findings of Kazerouni et al. [11] show that

with keystroke level data, it is possible to produce visualization summaries that show de-

velopment progress over an assignment period as well as various measures of incremental

development on the project. They also theorize that these visualizations could be used to

both reduce student procrastination and encourage better incremental development prac-

tices. Both live code playback and of the various metrics determined over the lifetime of

a project could be used to help students be more aware of their incremental development
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practices.

Future work includes studying whether incremental development causes improvements

in time taken on assignments, correlation between perceived difficulty of assignments and

incremental development practices, direct measures of cognitive load when students de-

velop incrementally versus those that do not, differences in types of errors encountered by

students who develop incrementally, and if prior programming experiences correlates with

incremental development in early CS courses.
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CHAPTER 4

The Shell Tutor: An Intelligent Tutoring System For The UNIX Command Shell And Git

4.1 Introduction

Despite the overwhelming abundance of graphical user interfaces (GUIs) in modern

computing, the command shell1 is still frequently used in modern development. According

to the 2022 Stack Overflow developer survey, 29% of developers noted using Bash / Shell

scripting frequently during their development. In addition, 84% of developers who use

version control systems (VCS) note that they utilize the command shell in some way to

interact with their VCS [24]. The command shell clearly still has modern use among software

developers.

Git is another tool frequently utilized by modern developers. Git is a VCS that al-

lows developers to manage their code, track changes to the code base, and facilitate team

development [25]. Version control is considered to be a necessary tool for many modern

developers with high-adoption rates. According to the 2022 Stack Overflow developer sur-

vey, 96% of developers utilize some form of version control, and 94% of developers utilize

Git [24].

Because of this, many computing and software engineering educators teach both the

command shell and Git VCS in their courses, oftentimes early on in the curriculum. Teach-

ing of these tools can be challenging to do in a classroom setting, given the hands-on nature

of these tools. Computer science faculty at our institution have noted this difficulty.

We became acutely aware of these struggles in our Fundamentals of Software Engineer-

ing course: a required course for all computer science students taught immediately after

CS1. Starting the Summer of 2020, we devised and developed an intelligent constraint-

based tutoring system designed to assist in teaching students the UNIX-like command shell

1For this paper, we use the term “command shell” to refer to the usage of the command line to control
a system shell.
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and Git VCS [26]. This tool was first deployed in the Fall 2020 semester and was initially

very successful. We continued development of the Shell Tutor over the years, and have

noted success in deploying the tool in the course. We have even provided the Shell Tutor

to students in other courses we have taught for select students in need. Many students at

our institution have noted sharing the tool with friends outside of the program to assist

them in their learning of the command shell and Git, and other instructors have informally

shared the tool with the students of theirs who do not know Git and the command shell.

As of Spring 2024, this tool has been used by over 1100 students.

This paper aims to provide a review and reflection of this tool. Information is shared

regarding the tool, its technical compatibility and support, development features, features

available to lesson authors, and its logging features. Additionally, a study was conducted on

current students of the course and students who took the course previously after the tools

deployment. This study assists in gaining a better understanding of the perceived effects

that the Shell Tutor has on student learning, difficulty of the tool, student opinions on the

logging feature of the tool, and additional context around the tool, such as identifying what

issues students may have with the tool. We include questions focused on student opinions

about shell logging as it may be a controversial feature, but has the potential to enable this

tool to be used by future CS education researchers.

This survey focuses on the following questions. Do students believe the tool to assist in

their learning of the command shell and Git? What is the perceived difficulty of using the

Shell Tutor compared to the tools the Shell Tutor aims to teach? How do student feelings

on the Shell Tutor compare to their feelings on the command shell and Git? What negative

perceptions exist about the tool? How do students feel about the existence of a shell logging

feature?

This study was conducted to gain a better understanding of the effects of this tool on

student’s education and enable us to provide a reflection of the Shell Tutor. This reflection

will also assist in the continued development of the tool and guide researchers in future

studies of the tool.
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4.2 Background

4.2.1 Related Work

When it comes to teaching students the command shell and Linux, there are a few

similar tools that have been created and detailed in publications. The first being a sys-

tem called ShellOnYou which allows students to attempt exercises in the command shell

and gain feedback [27]. Another tool exists called TermAdventure, which aims to emulate

text based adventure games in a command line environment with the goal of teaching the

command shell [28]. A tool that is more similar to the Shell Tutor is called uAssign which

creates a web-accessible virtual environment in which students can access and learn the

command shell [29]. The uAssign tool was developed in conjunction with TuxLab, which

serves a similar goal [30]. Another similar system that has stopped being supported is called

LinuxGym, which creates an actual virtual environment (and associated exercises) that give

students access to a Linux system and command shell [31]. The Shell Tutor shares many

similarities with these tools, but is notably different in that it is entirely powered by the

student’s command shell on their computer. The Shell Tutor does not provide a simulated

environment for students to learn in; students will be learning–and modifying–on the same

system that they use every day. Beyond the tool’s educational purposes, it is well suited

for system setup and configuration tasks.

Very few studies have been done to investigate student behaviors while using the com-

mand shell. Those that have been done have only gathered limited information in specialized

contexts. To our knowledge, none of the teaching systems noted above have a similar level

of logging capabilities to the Shell Tutor system. One of the closest works we have found

details using a student’s shell .history file (a simple file detailing only the commands ran)

while conducting hands-on exercises [32]. A similar study was conducted using students’

shell .history files to study their behaviors on a programming exam [33]. Lastly, we’ve

identified a paper which creates a logging system to analyze student behaviors while learning

some cyber-security tools [34].
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4.2.2 Teaching Command Shell And Git In Class: Then Vs. Now

Before the introduction of the Shell Tutor in our course, the command shell and Git

were taught through in-person lectures with accompanying notes. To ensure students knew

basics of the command shell and Git, the first assignment in the course required students

to submit a sample Git repository, demonstrating that they knew how to do some of the

necessary beginner Git tasks required for success in the course. As the course progressed,

new commands and Git concepts would be introduced with accompanying materials. Some

of these Git concepts were required to be demonstrated on later assignments, like Git

tagging.

After the introduction of the Shell Tutor, teaching of the command shell and Git

changed. Students are still provided with lecture notes detailing important commands for

their success in the course. However, less class time was spent teaching these concepts

compared to previous semesters. This class time was significantly reduced initially, but

over time was increased to the point that nearly a whole lecture is spent introducing the

command shell and Git as the initial Shell Tutor assignment is introduced. As part of

the initial Shell Tutor assignment, students still create and submit a sample Git repository

demonstrating their completion of the Shell Tutor and associated completion files, with the

direct guidance of the Shell Tutor. In later semesters students were provided with multiple

Shell Tutor assignments after the initial assignment, teaching more advanced command shell

and Git concepts. All assignments in the course, before and after the introduction of the

Shell Tutor, are submitted through Git to an online repository that the instructor manages.

4.3 The Shell Tutor

4.3.1 Description Of Tool

The Shell Tutor is a constraint-based intelligent tutoring system which provides a stu-

dent with lessons [26]. Lessons are a sequence of steps, which are individual tasks for a

student to complete. When a student starts a lesson, the Shell Tutor “attaches itself”

to a students command shell, executing tasks in both the pre-command execution and
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Tutor: After your SSH key is created, you'll be shown its fingerprint and

Tutor: randomart image. They look weird, and are mostly harmless, so

Tutor: you can ignore them.

Tutor:

Tutor: Run ssh-keygen -t rsa -b 2048 to create your SSH key.

5-ssh-key.sh - Step 0 of 6 [------]

[student@Computer ~/shell-tutor]

$ ssh-keygen -t rsa -b 2048

Generating public/private rsa key pair.

Enter file in which to save the key (/home/student/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

[ Text Removed For Brevity ...]

Tutor: Let's navigate to the directory that contains your SSH key.

Tutor:

Tutor: Change directories into ∼/.ssh.

5-ssh-key.sh - Step 1 of 6 [+-----]

[student@Computer ~/shell-tutor]

$

Fig. 4.1: A demonstration of the Shell Tutor evaluating a students command, determining
it is a success, and moving to the next step. In this example, the student creates a new
SSH key.
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Tutor: Begin by saying "Hello World" the command-line way.

Tutor: In Python you would write:

Tutor: print("Hello, World")

Tutor:

Tutor: But here in the shell it looks like this:

Tutor: echo Hello, World

Tutor:

Tutor: Notice that the arguments Hello, and World are not quoted.

Tutor:

Tutor: Run this command now.

0-basics.sh - Step 2 of 17 [++---------------]

[student@Computer ~/shell-tutor/lesson0]

$ echo hello

hello

Tutor: You gave echo too few arguments

Tutor:

Tutor: Run echo Hello, World

0-basics.sh - Step 2 of 17 [++---------------]

[student@Computer ~/shell-tutor/lesson0]

$

Fig. 4.2: A demonstration of the Shell Tutor evaluating a students command, determining
it was incorrect, and providing targeted feedback based on the student’s action.

post-command execution phases, allowing the student full control of the shell in between.

Students submit “solutions” to a step by inputting a command to the command shell, at-

tempting to accomplish the task provided by the Shell Tutor. In the pre-command execution

phase, the command a student executes is captured, and additional context about the state

of the shell is gathered for logging. The command the student enters is then executed by the

system shell, rather than simulated as other systems do. In the post-command execution

phase, before the student receives the next prompt, the inputted command and its side

effects are evaluated. The student will be provided with feedback on their action and may

proceed to the next step if successful. Depending on the action a student takes, the system

may conduct tutor-performed actions to correct a mistake made by the student, such as

the deletion of a necessary file, or provide the student with hints and more instruction.

The tutor may also conduct setup actions for the next step during post-command execution

phase. Examples of a successful action can be seen in Figure 4.1 and a failed action can

be seen in Figure 4.2. This system adheres to the VanLehn two-loop model for intelligent
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tutoring systems, where the outer loop corresponds to the tasks involved in a lesson, and

the inner loop corresponds to the evaluation of the commands ran to complete a task [35].

No machine learning is used in this tool.

Upon completion of a lesson, log files and a file indicating lesson completion are saved.

After completing all lessons in an assignment, the final Shell Tutor lesson validates the

students completion of other lessons and assists them in submitting a Git repository with

a certificate and log files included, indicating their completion of the assignment. Students

are assigned a grade of full credit if completion of the lessons is done, and no credit if the

lessons were not completed. The instructor and TAs would assist students who experienced

significant difficulties or bugs with the system in this process.

The Shell Tutor has been developed to work with both the Bash and Zsh shells [36,37].

As of Fall 2023, it supports Bash versions >= 4.2 and Zsh versions >= 5.2. Most modern

Linux and Mac computers primarily utilize these versions of Bash or Zsh natively out of

the box, and Windows users can easily install tools to make these shells accessible, such

as Git For Windows (which comes bundled with Git Bash), Windows Subsystem for Linux

(WSL), or Cygwin.

The Shell Tutor library and current Shell Tutor lessons can be found on GitHub at the

iticse2024-shell-tutor repository2. After cloning the repository, a lesson may be started by

executing the relevant tutorial.sh or lesson file.

4.3.2 Development Of Lessons

Development of the Shell Tutor library is in native Bash and Zsh scripting, with some

dependencies on Git and its packaged tools. This decision was made to keep installation

work required by the user as minimal as possible, increasing accessibility of this tool. Be-

cause of this, the technical features of this tool are relatively limited to features of Bash and

Zsh scripting and Git features. Much can be done with this limited tool set. The initial

course, for which the tool was developed, primarily contains Python projects. Due to the

expectation students would have Python installed, some Shell Tutor lessons utilize short

2https://github.com/jaxtonw/iticse2024-shell-tutor

https://github.com/jaxtonw/iticse2024-shell-tutor
https://github.com/jaxtonw/iticse2024-shell-tutor
https://github.com/jaxtonw/iticse2024-shell-tutor
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Python scripts to increase compatibility or to assist in illustrating select shell concepts (such

as teaching a student about various output streams a program may print to). Python is not

required for the Shell Tutor standard library, but Shell Tutor functionality can be extended

by requiring other installed tools for a lesson, as we have done occasionally using Python.

The Shell Tutor requires code to be executed in both the pre-command and post-

command execution phases. This is a feature that is native to Zsh with the preexec

and precmd function hooks. The developers had to add the Bash-Preexec project to the

Shell Tutor to allow users of the Bash shell access to the preexec function hook. With

the existence of these features, the developers of the tool were able to create a “standard

library” that can be installed and used to create lessons in the Shell Tutor environment.

Lesson files add the library files to the system $PATH while the lesson is in progress, and

then select library features can be sourced to add their features to the tutor. A lesson

can then be defined and started by sourcing a specific file and running a library command

which declares the lesson order after functions for each lesson task are defined.

To define a single task in a lesson, authors are only required to write a prologue func-

tion and a test function to print directions and define the completion of a task. Additional

functions can be defined to add more functionality to a task. For example, lesson authors

can add a hint function to provide intelligent hinting based on student failures. A pre and

post function can conduct setup and cleanup tasks for a task. An epilogue function may

provide intelligent post-task completion feedback. Additional functions may be defined to

generate more in-depth logs for specific tasks. Authors may use parts of the Shell Tutor

“standard library” to assist in defining any of these functions. More documentation of this

can be found on our GitHub.

4.3.3 Logging Features

The Shell Tutor has optional features to enable logging of user commands. Each com-

mand a user runs has context such as the timestamp, current working directory, command,

exit code of the command, execution duration of the command, and Shell Tutor step logged.

Additionally, Shell Tutor lessons log the status of tutor tests that are run to determine if

https://github.com/rcaloras/bash-preexec
https://github.com/jaxtonw/iticse2024-shell-tutor
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a student succeeds at a step. Authors have the option to define a function which can be

executed to gather additional “state log” information: such as defining a function which

queries the state of a Git repository, or inspecting the existence and contents of select files.

Each time a new Shell Tutor lesson starts it generates a unique ID for the log session

and the logger collects information on the students home directory, the directory the lesson

started in, the time the lesson started, the system $PATH, operating system and shell infor-

mation, which lesson is being run, and which version of the Shell Tutor is being used at the

time.

All this information has enabled the ability to further study student behaviors in the

Shell Tutor. Preliminary analysis of this data has allowed researchers to begin studying

student struggle with select lesson steps, active-time spent on the lessons, time it takes

students to determine their first action on a step, different ways to complete select steps,

identify the “gaming” of the Shell Tutor hint system on certain lessons, which steps disen-

gage students more, and the identification of behaviors that indicate later poor-performance

in the associated course. Further research is being done on this that will be shared in future

publications. The logging tool that is used in the Shell Tutor is also being developed as a

standalone tool to enable further research independent of the Shell Tutor. Because of the

extensive nature of this logging, we worry there may be negative perceptions and concerns

from the end user. We study student perspectives on this logging, discussed later in Section

4.4.5.

4.4 Survey And Results

A survey was conducted in Fall 2023 to gauge student opinions about the Shell Tutor,

in accordance with our institution’s IRB protocols. There were 74 respondents from the

Fall 2023 semester, and 87 from students who took the course in prior semesters. This was

60% of Fall 2023 Shell Tutor users, and 15% of all Shell Tutor users at the time of the

survey.

Many questions were included on this survey to build a profile of the student, including

their prior use of the command shell. Students were asked to share their perceptions about
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Fig. 4.3: Results from all students regarding the Shell Tutor’s learning effects on the various
tools it teaches. Results are overwhelmingly positive learning effects for both tools, even
more so for the command shell. More info can be found in Section 4.4.1.
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Fig. 4.4: Results from all students regarding the difficulty to use each of the noted tools.
Students found the Shell Tutor significantly easier to use than the command shell and Git,
with Git being the most difficult to use. More info can be found in Section 4.4.2.

Sentiment By Tool

25 0 25 50 75 100 125 150 175
Responses

Shell Tutor

Command Shell

Git

Very negative
Negative
Somewhat negative
Neutral
Somewhat positive
Positive
Very positive

Fig. 4.5: Results from all students regarding feelings about each the Shell Tutor, command
shell, and Git. Students felt overwhelmingly positive about each tool, even more so about
the Shell Tutor. More info can be found in Section 4.4.3.
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Shell Logging Survey Responses
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Fig. 4.6: Perspectives on shell logging from the Fall 2023 students. In general, students
were vaguely aware of the shell logging and felt indifferent about its existence. More info
can be found in Section 4.4.5.

various tools related to the Shell Tutor, responding on a Likert scale. Additional free

response questions were provided to allow students to provide more detailed information as

needed.

4.4.1 Learning Of Command Shell And Git

All students were asked about their feelings on the Shell Tutors impact on their learning.

One question focused on learning the command shell, the other on learning Git. Responses

were on a 7-point Likert scale, as follows: (1) Very negative effect, (2) Negative effect, (3)

Somewhat negative effect, (4) No effect, (5) Somewhat positive effect, (6) Positive effect,

(7) Very positive effect.

Overall, students felt very positively about the Shell Tutors effects on their learning of

the command shell, as seen in Figure 4.3 (Mean: 6.32, Median 6). Students also felt very

positively about the Shell Tutor’s effects on their learning of the Git version control system

(Mean: 6.06, Median: 6).

4.4.2 Perceived Difficulty Of Shell Tutor, Command Shell, And Git

All students were asked to rank the difficulty of working with the Shell Tutor system,

the command shell, and the Git version control system. These responses were on a 7-point



50

Likert scale, as follows: (1) Very easy to work with, (2) Easy to work with, (3) Somewhat

easy to work with, (4) Medium difficulty to work with, (5) Somewhat hard to work with, (6)

Hard to work with, (7) Very hard to work with.

Over all sample groups, students on average found the Shell Tutor somewhere between

“easy to use” and “somewhat easy to use,” as seen in Figure 4.4 (Mean: 2.54, Median: 2).

The same students also had an average ranking of the difficulty of working with the com-

mand shell and Git as somewhere between “somewhat easy to use” and “medium difficulty

to use” (Command Shell Mean: 3.31, Median: 3; Git Mean: 3.66, Median 4).

Comparing these rankings of difficulty revealed a statistically significant difference,

indicating that students found the Shell Tutor far easier to use than the command shell

(Paired t-test t(161) = −7.06, p = 4.78 ∗ 10−11). Similarly, comparing the rankings of diffi-

culty between the Shell Tutor and Git reveals a statistically significant difference, indicating

students found the Shell Tutor easier to use than the Git version control system (Paired

t-test t(161) = −10.1, p = 5.47 ∗ 10−19).

When restricting to only students of the Fall 2023 semester who had prior experience

with the shell, with a sample size of 20 students, we find similar results. Comparing these

students rankings of difficulty also revealed a statistically significant difference, indicating

that even students with prior shell knowledge found the Shell Tutor easier to work with

than the command shell (Paired t-test t(20) = −3.13, p = .005). Similarly, comparing

the rankings of difficulty between the Shell Tutor and Git reveals a statistically significant

difference, indicating the students who took the course most recently and have prior shell

knowledge found the Shell Tutor easier to use than the Git version control system (Paired

t-test t(20) = −4.59, p = .0002).

4.4.3 Feelings About Shell Tutor Vs. Other Tools

Students responded to the questions, “How do you feel about the Shell Tutor in gen-

eral?”, “Please describe your feelings on the command shell and command line interface (not

the Shell Tutor),” and “Please describe your feelings on the Git version control system.”

To compare the feelings about these tools, paired t-tests were conducted between feelings
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on the Shell Tutor and the other tools. All responses were on the the same 7-point Likert

scale, as follows: (1) Very negative, (2) Negative, (3) Somewhat negative, (4) Neutral, (5)

Somewhat positive, (6) Positive, (7) Very positive.

General feelings on the Shell Tutor were also significantly positive, As seen in Figure

4.5 (Mean: 6.29, Median: 6). Feelings on the command shell were slightly less positive, but

still had a tendency towards positivity (Mean: 5.81, Median 6). Feelings on the Git version

control system were comparable to feelings on the command shell (Mean 5.78, Median 6).

Statistical significance was found indicating that students have more positive feelings on the

Shell Tutor than the command shell (Paired t-test t(161) = 4.61, p = 8.20∗10−6). Similarly,

statistical significance was found indicating that students have more positive feelings on the

Shell Tutor than the Git version control system (Paired t-test t(161) = 4.89, p = 2.51∗10−6).

4.4.4 Negative Perceptions

To better understand the negative perceptions about the tool, we directly analyzed

all responses that believed the Shell Tutor had a negative impact on their learning or had

general negative opinions about the Shell Tutor. We analyzed these survey responses as a

whole and built a model of the students with these experiences to better understand these

perceptions and identify what may contribute to a students poor perceptions of the Shell

Tutor.

One student’s response indicated that they had very negative opinions about the Shell

Tutor. This student had taken the course in a prior semester, and indicated that they had

significant prior proficiency with the shell. They indicated that the Shell Tutor did not have

any impact on their learning of the command shell or Git, they have very positive feelings

of the command shell and Git, and they frequently use the shell. In free response questions,

this student indicated feelings that the Shell Tutor system was too restrictive for a student

with shell proficiency of their caliber. They did not like that it forced them to accomplish

certain tasks, felt that there was too much text, and wished there were clearer summaries

of the lessons provided.

An additional student noted somewhat negative opinions about the Shell Tutor. This
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student had a similar profile and responses to the prior student and had prior experience

with the shell. They did note the Shell Tutor had a positive effect on their learning of

Git and noted that the Shell Tutor and its associated lessons were very easy to work with.

Unfortunately, this student did not leave any free responses allowing us to analyze their

perspectives on the tool more. From their other survey responses, we can infer that their

negative opinions about the Shell Tutor do not come from the Git related tasks or any

perceived difficulty of using the system. We infer their opinions about the Shell Tutor are

due to similar reasons as the prior student studied. However, this is only speculation, as

we lacked any elaboration in this student’s response.

Another student indicated that they believed the Shell Tutor to have had a negative

effect on their learning of the command shell. Interestingly, this student listed that they

have positive opinions of the Shell Tutor. They had positive opinions of both Git and

the command shell, and found the Shell Tutor to have “medium difficulty” to work with.

However, this student indicated that they are “unsure” if they understand the differences

between the command shell and Git. Investigating their free responses, the student indicated

that they believed the Shell Tutor made the other course assignments harder: assignments

which were independent of the Shell Tutor, but did require the use of Git and the command

shell. They provided yet another fascinating response in the free response, indicating that

using the Shell Tutor allowed them to feel as if they were learning and that it was helpful

outside of the class. This whole response seemed to have many contradictory and unclear

responses. This leads us to suspect that the student may have at times been confused

between the Shell Tutor, the command shell, and the Git version control system.

4.4.5 Feelings About Shell Logging

Students from the Fall 2023 cohort responded to questions about their feelings on

shell logging. The first question being, “Until this survey and any associated materials

for this survey, how aware were you of the command logging feature of the Shell Tutor

(for Assignment 1.1 and Assignment 2.1)?” These responses were on a 5-point Likert scale,

as follows: (1) I was entirely unaware of this, (2) I vaguely remember this feature, (3) I
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somewhat remember this feature, (4) I was mostly aware of this feature, (5) I was very

aware of this feature.

These students were also asked the question, “What are your feelings about the exis-

tence of this shell logging feature and the sharing of these logs with your instructor?” These

responses were on a 5-point Likert scale as follows: (1) Negative feelings, (2) Somewhat

negative feelings, (3) I feel indifferent about this feature, (4) Somewhat positive feelings, (5)

Positive feelings.

As seen in Figure 4.6, students tended to somewhat be aware of the existence of the shell

logging feature (Mean: 2.28, Median: 2). Regarding feelings about the logging, students

felt mostly indifferent about the feature (Mean: 3.34, Median: 3).

For the question of awareness, it is important to note that the survey was conducted

about a month after the last Shell Tutor assignment was complete. The instructor did

note that there was logging of the shell commands at the time, and students were required

to submit a compressed file of these logs with their submission, which required them to

manually git add the file, clearly named shell-logs.

In the free responses, many students requested to know more about the logging feature.

Some seemed confused and believed that these logs were purely the reported timer at the

end of a Shell Tutor session. Many students shared the opinion that the logging features

were good, and some suggested they be used to create a “report” that can be shared

with students to allow them to see their performance and struggles with the Shell Tutor.

However, these same students added the caveat that these logs should never be used to

influence a students grade on the Shell Tutor assignments. They suggested that the grades

remain entirely based on completion, and that the logs and observed behaviors do not

influence grade outcomes. One student expressed concern that if they were more aware of

the command logging feature, they would have been less likely to experiment in the Shell

Tutor, out of fear that the instructor may “judge” their performance.

4.5 Conclusions, Reflection, And Future Work

We found that students believed there to be a significant positive effect on their learning
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of both the command shell and Git, supporting the belief that the Shell Tutor is helpful for

student learning. We also found that students believe the Shell Tutor to be easier to work

with than the tools they are designed to teach. We believe this to indicate that our tool

provides a lower barrier to entry for learning both the command shell and the Git version

control system. Students are able to use this tool effectively as a first step to learn the

command shell and Git. We also found that students generally have better feelings about

our tool than the tools they teach. We believe these findings to be yet another indicator

that the tools development is in the right direction, and supports the belief that this tool

assists student learning.

Some negative perspectives exist about the tool. Notably, some students who have

more experience with the command shell can feel burdened by being required to use this

tool. Reflecting on this, we will work to identify ways to make select steps less rigid in

the solutions it accepts, and may even explore ways to “test out” of some Shell Tutor

assignments.

Despite our concerns that shell logging may be a controversial feature, we found that

students generally have a positive opinion about shell logging. Though, we believe there

should be more transparency about the logging, and assurance to the students that these

logs are not going to be used to “judge” their performance or effect their scores on the as-

signments. We intend to keep the shell logging features of this tool going forward, enhancing

the research capabilities of this tool.

Overall, we are very pleased with the Shell Tutor’s impacts on our students. We believe

our findings indicate that the Shell Tutor has been a resounding success for our students,

and we suspect it has the potential to assist many other students learning the command

shell and Git.

Future work will be done to better understand the log data collected, understanding

more of how students utilize the tool. We hope to use these logs to enable artificial intelli-

gence in the development of the tool and identification of student struggles. We also wish

to better understand perceptions of these logs and find the “sweet spot” between awareness
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of the logging tool–for transparency–and “over-awareness” that may influence behaviors.

Tools to generate better reviews of student performance on the Shell Tutor will be explored

as well. We hope to expand the suite of lessons the Shell Tutor provides to more advanced

topics in the future, and guide others in creating their own lessons with the Shell Tutor

library.

https://github.com/jaxtonw/iticse2024-shell-tutor
https://github.com/jaxtonw/iticse2024-shell-tutor
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CONCLUSIONS

In this thesis, we have seen a sequence of research projects focused on computer science

classroom interventions. Chapter 2 detailed the successful design, deployment, and analysis

of an intervention for student procrastination. Chapter 3 researches the generally accepted

“good practice” of incremental development, and provides evidence indicating its correlation

with efficient work for CS1 students. Chapter 4 analyzes the design and deployment of the

novel intelligent tutoring system, the Shell Tutor, in the USU CS1440 course. This chapter

will recap the conclusions of each research project detailed in these chapters.

When analyzing the correlation between early project analysis and better performance

on the project, Chapter 2 did find correlation between early project analysis and project

performance. As can be seen in Section 2.6.1, we see statistical significance 1 when all

assignment performances were aggregated together. We also see statistical significance

when restricting the analysis to only Assignment 5.0, the most difficult assignment of the 3

studied. For Assignment 3 and Assignment 4, we do not see individual significance according

to our chosen p-value threshold, though we do see trends indicating better performance for

those who analyze their projects earlier, with relatively low p-values2. With this research,

we feel that it is conclusive to state that early project analysis correlates with better project

performance, and the effect is more pronounced on more difficult assignments.

Looking towards the question of grace points affecting student behaviors in Chapter 2,

we also found significant evidence supporting the introduction of grace points as causation

for students starting assignments earlier. We see in section 2.6.2 that when looking at

student behaviors before introducing grace points, the mean time students started on the

assignment was with 35.5% of the assignment period remaining, roughly 4.3 days before

the assignment due date. However, in the semester grace points were introduced, the mean

1Significance is determined when following the conventional threshold of significance where p < .05.
2p = 0.0849 for Assignment 3, and p = 0.0922 for Assignment 4.
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time students started on the assignment was with 52.3% of the assignment period remaining,

roughly 6.3 days before the assignment due date. Additionally, within the semester the grace

points intervention was deployed, we compared the assignment starting behaviors before the

introduction of grace points and after. We see similar results, with the mean start time of

assignments with grace points as having 52.3% of the assignment period remaining (≈ 6.3

days remaining) and the mean start time of the assignments before grace points being

introduced as 44.1% of the assignment time remaining (≈ 5.3 days remaining). All of these

comparisons showed statistically significant differences between the groups, indicating that

the grace point intervention caused students to start on their assignments earlier.

Chapter 2 clearly shows that the intervention of grace points for early project analysis

in CS1440 was a success. It positively influenced student behaviors, encouraging them to

start on their projects earlier. We also found that earlier starting behaviors correlated

with success on the assignment, indicating that this intervention helped encourage student

success on their assignments in the course.

In Chapter 3, we study the effects that incremental development has on students.

We have two main research questions: 1) does incremental development correlate

with better assignment performance and 2) what trends are found in student

behaviors when they perform incremental development as measured by the MID

scores?

Within this chapter, we find that there was no evidence correlating incremental de-

velopment with better assignment performance, with two notable caveats. First, we only

utilize the MID score metric defined by Shah et al. [10] for our analysis, and this metric has

its own definition of incremental development coded into its creation, focused on student

edit behaviors. The definition of incremental development is not standardized, and other

works utilize slightly different definitions of incremental development, such as [11]. It is

possible that repeating our study with other analyses for incremental development, using

slightly different definitions, may produce different results. Additionally, our dataset had a

significant ceiling effect on the scores. A significant portion of the assignments in our study
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had scores above 90%, so a replication of our study using a dataset which contains more dis-

crimination between performances would enable better conclusions to be drawn regarding

this question. The study detailed in Chapter 3 found no correlation between incremental

development and assignment performance, using the MID score metric and the USU CS1

student keystroke dataset [20].

On the topic of student behavioral trends correlating with incremental development, we

found in Chapter 3 that incremental development correlates with select assignment creation

behaviors. We found correlation between incremental development and a fewer number of

interaction events3, a lower average assignment time4, fewer number of times students run

their assignments5, and a higher percentage of IDE events happening before running their

code in a given coding session6. We did not find any correlation between incremental de-

velopment average time between interaction events, number of coding sessions, and amount

of time between running code.

When paired with our findings of no discernible differences in assignment scores between

assignments developed incrementally and those that were not, we conclude that incremental

development correlates with more efficient work on assignments. The work in Chapter 3

does not establish any causation, and only establishes correlation. However, we strongly

suspect that there is causation, and this should be studied in future work. The work

in Chapter 3 establishes baseline research for future computing education researchers to

continue on, supporting the development of future informed interventions that may one day

encourage students to complete their assignments more efficiently.

Within Chapter 4, we detail the design, deployment, and analysis of the novel intelligent

tutoring system, the Shell Tutor. This tool was developed and deployed to help students

in the USU CS1440 class learn command shell and Git basics. We cover technical aspects

of the Shell Tutor and its design in a manner that could enable other computing educators

3Nearly half the number of interaction events, when compared to non-incremental assignments.
4Nearly half the time spent on assignments, when compared to non-incremental assignments.
5Nearly half the number of assignment runs, when compared to non-incremental assignments.
6An 11 percentage point difference. We suspect this metric correlates with more “forward progress” in

a given coding session, as we theorize that coding sessions with a higher percentage of code written after
code has been ran becomes primarily focused on debugging. This metric has not been validated, and the
results related to this metric should be interpreted with caution.

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/BVOF7S
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/BVOF7S
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to adopt it into their classroom. The way the course has changed in the wake of the Shell

Tutor’s deployment is also briefly discussed.

Lastly, we analyze student perceptions of the tool, which are overwhelmingly positive.

Students generally felt the Shell Tutor positively affected their learning of both the command

shell and Git, viewed the tool positively, and generally found it to be between “easy to

use” and “somewhat easy to use.” Additionally, we isolated the few responses of students

who had negative perceptions or experiences with the tool to find trends. We found that

students who had negative perceptions of the tool were commonly students who had prior

significant proficiency with the command shell, and felt that the Shell Tutor limited them

in their ability to complete exercises and disliked the requirement of using it to complete

select tasks. One of the negative responses had indications that a student may have been

confused as to what exactly the tool is, and we believe that the tool could be improved by

drawing clearer distinctions between itself, the command shell, and Git. We also observe

that students had primarily neutral-towards-somewhat-positive opinions about the Shell

Tutor logging features.

With our analysis of the Shell Tutor in Chapter 4, we see significantly positive opinions

and perceived impact on students of the CS1440 course. We also identify some specific ways

that the Shell Tutor could be improved in the future, and use this analysis as a means to

adjust the future development directions of the Shell Tutor. We find the results of this

analysis to be very pleasing, indicating that the development of the Shell Tutor has been

on the right track so far, and has been assisting the students of the USU CS1440 course in

their learning of the command shell and Git.

This thesis finds overwhelming success in the design, deployment, and analysis of the

various course interventions detailed. With this research, we have seen significant improve-

ments to the computer science classroom at Utah State University, and hope to take these

improvements beyond this institution. We also detail research that supports future work to-

wards classroom interventions, and hope that future computing education researchers may

build upon these foundations to continue improving the computer science classroom.
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