Monopropellant Micro Propulsion system for CubeSats

By Chris Biddy

174 Suburban Rd Suite 120
San Luis Obispo CA 93401
(805) 549-8200
chris@stellar-exploration.com
Introduction

- High Performance CubeSat Propulsion will open up many opportunities
 - Decoupling of secondary payload (CubeSat) with primary payload orbit
 - Quick deployment of global constellations
- Goal is to develop 1U propulsion system to be integrated in 3U satellite
Why Monopropellant?

• Significantly higher performance (delta V) compared to cold gas

• Larger Thrust vs. Electric Propulsion
 – Needed for Orbit transfer

• Mature technology
 – Hydrazine is a known and mature hazard
 – New “Green” propellants still require analysis for range safety

• Less complicated than Bipropellant
 – Two separate tank and plumbing systems for fuel and oxidizer

• More volume efficient than Bipropellant
Requirements

• Meet CubeSat Standard
 – <1kg/unit
 – Aluminum 6061-T6, 7075 recommended
 – 75% of length must have rails with hard anodized surface
 – Not endanger primary payload

• Low Cost
 – ~$250k complete unit

• Address Range Safety constraints up-front
 – Small Propellant Quantity
 – Low operational pressure enables P-POD containment
 – Off site fueling/ Defueling as single integrated P-POD

• High Performance
 – Large delta V (~ 400m/s)
 – Thrust to weight ratio of 0.25
Design Philosophy

• Start with COTS components
 – Test and modify if necessary/possible
• Simplify
• Start with Thruster valve and design around it
• Develop cubic tank and cylindrical tank structure
 paper design in parallel
 – Compare theoretical performance of each
 – Continue design with best theoretical performance

Safety to personnel is highest priority
Micro Propulsion Details

- Miniature solenoid valve used for thruster valve
- 2 port design with a #10-32 threaded interface
- Mass = 37g
Micro-Propulsion Unit

- Attachment Point for additional Units
- Propellant Tank
- P-POD Guide Rails
- Drain and Fill Valves (Schrader)
- Thruster Micro-Solenoid Valves
- Thruster Combustion Chamber and Nozzle
Propulsion System Details

- CNC machined tank and cap
- P-POD rails integrated into tank structure
- Mounting Flange protrudes 6.5mm from tank edge
Propulsion System Details

- Tank and cap interface sealed with EDPM O-ring
- Stainless stud with laser drilled hole provides fluid path to thruster valve
- Stud uses EDPM o-ring to seal

Underside of cap with o-ring installed
Stainless stud with EDPM o-ring
Underside of cap with stud installed
Propulsion System Details

• Thruster valve mounts to stud and seats against cap boss (middle)
• Schrader valve mounted to cap used for fill/drain (right)
Propulsion System details

• Thruster made from stainless steel
 – Prototype (heavy) thruster shown (left)

• Catalyst made from platinum mesh and platinum/iridium wire “screens”
 – Screens are stacked and held by stainless fasteners
 – Number of screens can be varied during testing
Propulsion System Details

- Dry mass fraction for propulsion system unit = 0.45
- Expected delta V up to 400m/s
Test Plan

• Tank Burst Test
 – Investigate Failure Mechanism

• P-POD Integration
 – Verify smooth operation

• Hot Fire Test
 – Catalyst Function and integrity
 – Pressure range for proper thruster operation
 – Thrust measurements
 – Isp measurements

Micro Propulsion Module and P-POD test fit

Valve Cycling test under pressurization
Test Results

• Initial fit test successful
• Tank burst test revealed o-ring failure (Leak-Before-Burst)
 – Three tests performed using Nitrogen
 – Bolts yielded allowing main o-ring to be forced out of the groove at 2310 kPa, 2206 kPa, 2027 kPa
 – Consistent failure all three tests
 – Factor of Safety for leakage = 1.9, 1.8, 1.7

Micropropulsion system with o-ring failure
Test Results

• Stellar developed catalyst requires heating for proper decomposition
• Hot fire test revealed incomplete decomposition
• New catalyst design ready for testing
Future Work

• Propellant Management Device
 – Work in Progress
 – Testing needed
• Thruster Standoff Bracket
• Control and Navigation System
• Qualification Testing
Any Questions?

Chris Biddy
174 Suburban Rd Suite 120
San Luis Obispo CA 93401
(805)549-8200
chris@stellar-exploration.com