Planar Detectors as Radiometric Standards using Carbon Nanotube Absorbers

rad

Malcolm White

National Institute of Standards and Technology 325 Broadway, Boulder, CO 80305-3228 *m.white@boulder.nist.gov*

> Calcon 2017 Logan, Utah

Radiometry R&D: John Lehman Michelle Stephens Ivan Ryger Thomas Gerrits Nathan Tomlin Malcolm White Chris Yung Igor Vayshenker Zeus Ruiz Gutierrez

Outline

Chip Design

Integration

Results

Physical Measurement Laboratory

Motivation – new radiant power standards

- open beam
- 850 nm
- 1310, 1550 nm

Carbon nanotube detector

Chip Design – close up of patterning

Position of Nb TESs and Vanadium superconducting leads

Physical Measurement Laboratory

Chip Design – side view of lithographic pattern

Layers:

- Silicon substrate: 375 μm
- SiO₂ insulator: 150 nm
- W heater: 44 nm
- Nb TES sensor: 93 nm
- V wiring: 146 nm
- SiN_x passivation layer: 170 nm
- Catalyst: 10 nm Al₂O₃ + 1 nm Fe
- Si deep etch
- VACNT growth: 400 μm

W	CNT Absorber	SiN _x Vanadium	← Nb TES sensor
	Silicon Dioxide		
		Silicon	

Chip Design – nanotube growth

Chip Design – post growth processes

Chip Design – post growth processes

Chip Design – post growth processes

Chip design – absolute reflectance LASP

Credit: Karl Heuerman, LASP

Laser based reflectometer - measure absolute total hemispherical reflectance from 406 nm to 1625 nm and 10.6 µm

Can raster scan the sample

Chip design – absolute reflectance scan @ 1310 nm

O₂, 200 W, 60 s, don't break vacuum CF₄, 30 W, 40 s

830 nm 102 ppm 1310 nm 197 ppm 1625 nm 304 ppm

Chip design – sensor & superconducting wiring

N.A. Tomlin, M. White, I. Vayshenker, S.I. Woods, J.H. Lehman, Metrologia 52, 2, 376 – 383 (2015). http://dx.doi.org/10.1088/0026-1394/52/2/376

Integration – fibre radiometer (ESR)

- Operation at $300 \,\mu W$
- 850 nm
- 1310, 1550 nm

Integration – open beam radiometer (ESR)

• Operation at 200 μW

J. Lehman, A Steiger, N.A. Tomlin, M. White, M. Kehrt, I. Ryger, M. Stephens, C. Monte, I. Mueller, J. Hollandt, M. Dowell Optics Express, 24, 23 (2016) https://doi.org/10.1364/OE.24.025911

Integration – RC filters & thermal stability

Example: the 3 dB cutoff frequency f_c for a filter with an *RC* of 180s is 0.88 mHz. This attenuates the 1.4 Hz temp. fluctuation of the cryocooler by 1000 x or 30 dB.

Integration – damper materials

For a periodic time dependent thermal fluctuation $\Delta T(x) = \Delta T(0)\exp(-x/\delta_{th})$, where x = distance, δ_{th} the thermal penetration depth; that depth at which the amplitude has dropped to 1/e of its initial value, defined as: $\delta_{th} = \sqrt{\frac{\alpha}{\pi f}}$ α = thermal diffusivity of the material and *f* the frequency of the driven temp. oscillation.

Integration – RC filters

Thermal stability achieved with 2 pole Butterworth filter, 20 dB / decade - optimised design

g

Integration – effectiveness of filtering

- Temperature and Resistance noise spectrum of thermal system
- Commercial AC resistance bridge, sampled at 5Hz, 10 mV excitation, constant current

Effectively 50 dB of attenuation of the 1.4 Hz signal; from 200 mK pk-pk to 2 uK (5 μ K)

Integration – thermal profile @ 1 mW

1 mW input power: 0.55 K temp rise across 1st stage RC filter, 0.2 K across 2nd stage

Results – uncertainties

Planar Detectors as Radiometric Standards using Carbon Nanotube Absorbers

Results – offset

- 0.1 % offset in power

+ 0.4 % offset in power

- FC / APC fibre tip heating up at 4 K and being absorbed by chip detector
- Refractive index of fibre changes at 4 K typically 0.2 % increase

Results – actual setup

- Chip detectors' reflectance measured at LASP
- Offset measured in cryogenic radiometer, detector mounted in fibre system
- Beam-splitter ratio determined

Results – actual setup

g

Results – beamsplitter ratio @ 1310 nm

Std dev < 0.01 % over 12 hours, monitoring output with InGaAs detectors, airside

Results – CNT detector offset uncertainty

Component of Uncertainty	${}^{1}\delta_{i}(\%)$	Distribution	Туре	Std Unc (%)	
CNT detector absorptance	0.0100	rectangular	В	0.0060	
Brewster window transmittance	0.0012	rectangular	В	0.0007	
Alignment	0.0017	rectangular	В	0.0010	
Heating inequivalence	0.0050	rectangular	В	0.0030	
Trap traceability to primary standard	0.0200	normal	В	0.0100	
Beam scatter losses	0.0040	rectangular	В	0.0025	
NIST electrical power measurement	0.0005	rectangular	В	0.0003	
Repeatability of measurement $(N = 9)^2$	0.0100	normal	А	0.0033	
Combined Standard Uncertainty:				0.012 %	
Expanded Uncertainty $(k = 2)$:					

Uncertainty components of CNT chip detector offset compared to a trap detector @ 633 nm

¹± δ_i represents the limits of the estimated uncertainty of the measurand ²Standard uncertainty expressed as δ_i / \sqrt{N} = standard error of the mean (SEOM)

Results – beamsplitter uncertainty

Component of Uncertainty	$^{1}\delta_{i}(\%)$	Distribution	Туре	Std Unc (%)
Chip detector offset	0.025	normal	В	0.012
NIST electrical power measurement	0.0005	rectangular	В	0.0003
Beamsplitter polarisation dependence	0.100	rectangular	В	0.058
Beamsplitter ratio stability	0.015	rectangular	В	0.010
Lab std spectral resp. 1310 & 1550 nm	0.020	rectangular	В	0.012
Laser spectral bandwidth	0.020	rectangular	В	0.012
Detector calibration ²	0.380	rectangular	В	0.220
Repeatability $(N = 9)^3$	0.050	normal	А	0.017
Combined Standard Uncertainty	0 23 %			

Measurement uncertainties in determining the absolute beam-splitter ratio

Combined Standard Uncertainty:	0.23 %
Expanded Uncertainty $(k = 2)$:	0.46 %

 ${}^{1}\pm\delta_{i}$ represents the limits of the estimated uncertainty of the measurand

²Detector calibration could be improved to 0.05 % by direct cal. against cryogenic radiometer ³Standard uncertainty expressed as δ_i / \sqrt{N} = standard error of the mean (SEOM)

Highlights & the future

- Demonstration of a planar detector that is efficient, fast, and versatile with specs at least equal to that of cavity detectors
- Establishment of a new family of laser power standards at NIST using planar detectors
- Capability to be further developed into linear and two dimensional arrays for spectral and imaging applications

Photo courtesy Blue Canyon Technologies, Boulder

Photo courtesy Nathan Tomlin, NIST

THANK YOU

