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Motivation — new radiant power standards

* open beam
e 850 nm
e 1310, 1550 nm

Carbon nanotube detector
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Chip Design — close up of patterning

Position of Nb TESs and Vanadium superconducting leads

CNT Absorber

e —— === \

W Heater

G— heatlink

Nb TES

2.0x0.375 x 0.4 mm wide

<«— \/ Leads
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Chip Design — side view of lithographic pattern

. CNT Absorber

Silicon Dioxide

<«— Nb TES sensor

Layers:

e Silicon substrate: 375 um

e SiO, insulator: 150 nm

e W heater: 44 nm

* Nb TES sensor: 93 nm

* Vwiring: 146 nm

e SiN, passivation layer: 170 nm

* Catalyst: 10 nm Al,O;+ 1 nm Fe
* Sideep etch

* VACNT growth: 400 pm
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Chip Design — nanotube growth

AccY SpotMagn Det WD |
2 500kv 20 1055x TLD 48 NIST
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Chip Design — post growth processes
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Chip Design — post growth processes

10000 —©— As grown

—6- 0, plasma
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Chip Design — post growth processes
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Chip design — absolute reflectance LASP

Credit: Karl Heuerman, LASP

Laser based reflectometer - measure absolute total hemispherical
reflectance from 406 nm to 1625 nm and 10.6 pm

Can raster scan the sample
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Chip design — absolute reflectance scan @ 1310 nm

830 nm 102 ppm
1310 nm 197 ppm
1625 nm 304 ppm
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Chip design — sensor & superconducting wiring

Niobium TES Resistance vs

Vanadium Resistance vs Temperature

C Temperature
— cC
o 6 - 3
o 13 K (5.3 K) S 7.6 K (9.2 K)
o =
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O 3
e 2
©
§ 2 E 1
> z

0 0

13 12 11 10 7.65 7.62 7.59 7.56
Temp / K Temp /K

N.A. Tomlin, M. White, I. Vayshenker, S.I. Woods, J.H. Lehman, Metrologia 52, 2, 376 — 383 (2015). http://dx.doi.org/10.1088/0026-1394/52/2/376
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Integration — fibre radiometer (ESR)

* Operation at 300 pW

e 850 nm
e 1310, 1550 nm
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Integration — open beam radiometer (ESR)

* QOperation at 200 uW

- )

J. Lehman, A Steiger, N.A. Tomlin, M. White, M. Kehrt, I. Ryger, M. Stephens, C. Monte, I. Mueller, J. Hollandt, M. Dowell Optics Express, 24, 23 (2016) https://doi.org/10.1364/0E.24.025911
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Integration — RC filters & thermal stability

Example: the 3 dB cutoff frequency f. for a filter with an RC of 180s is 0.88 mHz. This attenuates the 1.4
Hz temp. fluctuation of the cryocooler by 1000 x or 30 dB.

Thermal Capacitor C, (J/K)

Thermal Impedance R (K / W)

1 1.4 Hz

fc = mRC =0.884 mHz => 10 x log 884 x10-4 =32dB
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Integration — damper materials

Volumetric Heat Capacities at low temp (J/cm3-K)

0.7
« 0.6 ss
't 0.5 —G10
$° ot Lead | —nyon
: 0.4 : /\\//\ g — Lead
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ol / / / ——Nickel
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0.1 -

;
0 A —
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Temp / K

For a periodic time dependent thermal fluctuation AT (x) = AT(0)exp(— x/6:,), Where x = distance, d;j, the thermal
penetration depth; that depth at which the amplitude has dropped to 1/e of its initial value, defined as:
a o =thermal diffusivity of the material and f the frequency of the driven temp. oscillation.

Oth = f
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Integration — RC filters

Pl control, 0.5s, 4.5K, 6 = 5.5 pK, 5 hours

I 4.50004

4.50002
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Thermal stability achieved with 2 pole Butterworth filter, 20 dB / decade - optimised design
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Integration — effectiveness of filtering

 Temperature and Resistance noise spectrum of thermal system
e Commercial AC resistance bridge, sampled at 5Hz, 10 mV excitation, constant current
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Effectively 50 dB of attenuation of the 1.4 Hz signal; from 200 mK pk-pk to 2 uK (5 pK)
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Integration — thermal profile @ 1 mW

3.65K

Lacatian: 4

X ¥, Z Location: [0.66,-0.0142,2,92 in &
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1 mW input power: 0.55 K temp rise across 15t stage RC filter, 0.2 K across 2" stage
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Results — uncertainties
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Results — offset

open beam system dual fibre system

beam

- 0.1 % offset in power + 0.4 % offset in power

e Reflectance measured at room temp but used at 4 K. Morphological change?
Have seen R increase by 10 %

e FC/APC fibre — tip heating up at 4 K and being absorbed by chip detector

e Refractive index of fibre changes at 4 K - typically 0.2 % increase
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Results — actual setup

e Chip detectors’ reflectance measured at LASP
e Offset measured in cryogenic radiometer, detector mounted in fibre system
e Beam-splitter ratio determined
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Results — actual setup

beamsplitter

i
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Results — beamsplitter ratio @ 1310 nm

Std dev < 0.01 % over 12 hours, monitoring output with InGaAs detectors, airside
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Results — CNT detector offset uncertainty

Uncertainty components of CNT chip detector offset compared to a trap detector @ 633 nm

Component of Uncertainty 15; (%) Distribution Type Std Unc (%)
CNT detector absorptance 0.0100 rectangular B 0.0060
Brewster window transmittance 0.0012 rectangular B 0.0007
Alignment 0.0017 rectangular B 0.0010
Heating inequivalence 0.0050 rectangular B 0.0030
Trap traceability to primary standard 0.0200 normal B 0.0100
Seam scatter losses . rectangular B .
NIST electrical power measurement 0.0005 rectangular B 0.0003
Repeatability of measurement (N = 9)2 0.0100 normal A 0.0033 *-:
Combined Standard Uncertainty: 0.012 % I
Expanded Uncertainty (k = 2): 0.025 % I3
g
L=
1+3, represents the limits of the estimated uncertainty of the measurand =
2Standard uncertainty expressed as &/« = standard error of the mean (SEOM) 5
g
=
S
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Results — beamsplitter uncertainty

Measurement uncertainties in determining the absolute beam-splitter ratio

Component of Uncertainty 18, (%) Distribution Type  Std Unc (%)
Chip detector offset 0.025 normal B 0.012
NIST electrical power measurement 0.0005 rectangular B 0.0003
Beamsplitter polarisation dependence 0.100 rectangular B 0.058
Beamsplitter ratio stability 0.015 rectangular B 0.010
Lab std spectral resp. 1310 & 1550 nm 0.020 rectangular B 0.012

B

B

Laser spectral bandwidth 0.020 rectangular 0.012
Detector calibration? 0.380 rectangular 0.220
Repeatability (N = 9) 0.050 normal A 0.017

Combined Standard Uncertainty: 0.23 %
Expanded Uncertainty (k = 2): 0.46 %

1+3, represents the limits of the estimated uncertainty of the measurand
?Detector calibration could be improved to 0.05 % by direct cal. against cryogenic radiometer
3Standard uncertainty expressed as &./vV = standard error of the mean (SEOM)
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Highlights & the future

** Demonstration of a planar detector that is efficient, fast, and versatile with specs at least equal to
that of cavity detectors

¢ Establishment of a new family of laser power standards at NIST using planar detectors

¢ Capability to be further developed into linear and two dimensional arrays for spectral and imaging
applications

i

Photo courtesy Blue Canyon Technologies, Boulder Photo courtesy Nathan Tomlin, NIST
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