

System Vicarious Calibration of Sentinel-3 OLCI

Nicolas Lamquin, Ludovic Bourg, Christophe Lerebourg, ACRI-ST François-Régis Martin-Lauzer, ARGANS Ewa Kwiatkowska, EUMETSAT Steffen Dransfeld, ESA

CALCON Technical Meeting Utah State University, Logan, UT, USA August 23rd 2017

Disclaimer

The work performed in the frame of this contract is carried out with funding by the European Union. The views expressed herein can in no way be taken to reflect the official opinion of either the European Union or the European Space Agency.

CALCON Technical Meeting, Aug 23rd 2017

outline

Context

- System vicarious calibration (SVC) Objectives and Methodology
- SVC Implementation and Results
- Validation using Level 2 data
- Validation using Level 3 data
- Conclusion

- Context
- Sentinel-3A (S3A), carrying the Ocean and Land Colour Instrument (OLCI), was successfully launched on February 16th 2016
- OLCI dedicated to land and ocean colour, continuity with MERIS, inheriting algorithmic evolutions from MERIS 4th reprocessing, this talk only on ocean SVC
- It is essential to ensure product quality prior public release for operational services such as Copernicus Marine Environment Monitoring Service
- Radiometric validation results demonstrate that OLCI absolute radiometric calibration is comparable with its heritage instrument, MERIS, and that OLCI has a positive bias of about 2 to 3 percent, OLCI being too bright. Actions are in place to achieve OLCI radiometric compliancy (2% absolute accuracy < 900 nm).
- As for any ocean colour mission, proper system vicarious calibration (or "adjustment") must be made using fiducial reference measurements (i.e. high quality targets) at surface level
- "Adjustment" stands here for sensor (residual L1 calibration) + L2 processor adjustment

System Vicarious calibration Objective & fundamental equations

General principle :

Fiducial reference (FRM) in situ + exploitable satellite measurements of marine reflectance $\rho_w(\lambda)$ $\rho_{TOA}(\lambda) = t_g(\lambda) \cdot (\rho_{path}(\lambda) + t_{up}(\lambda) \cdot t_{down}(\lambda) \cdot \rho_w(\lambda))$

 $\Rightarrow \text{ compute theoretical TOA signal, } \rho_{TOA}^{T}(\lambda): \\ \rho_{TOA}^{T}(\lambda) = t_g(\lambda) \cdot \left(\rho_{path}(\lambda) + t_{up}(\lambda) \cdot t_{down}(\lambda) \cdot \rho_{w}^{T}(\lambda)\right) \text{ using in-situ } \rho_{w}^{T}(\lambda)$

→ individual gain per matchup: $G(\lambda) = \frac{\rho_{TOAi}^{T}(\lambda)}{\rho_{TOAi}(\lambda)}$

Compute gains from time series through a weighted average $\bar{G}(\lambda) = \frac{\sum_{i=1}^{N} \frac{1}{\overline{O}_{Gi}} G_i}{\sum_{i=1}^{N} \frac{1}{\overline{O}_{Gi}}}$

with

$$\sigma_{G_i} = \sqrt{\sigma_{sat}^2 + \sigma_{IS}^2}$$
, σ_{sat} being local standard deviation of ρ_w and σ_{IS} being 5% of ρ_w^T

System Vicarious calibration VIS/NIR two step procedure

- Historical approach decoupling VIS/NIR adjustment (Franz et al. 2007, Bailey et al 2008)
- NIR gains are firstly computed in the NIR to calibrate atmospheric correction bands
 - Make use of oligotrophic regions of the ocean (traditionally the South Pacific Gyre and the South Indian Ocean)
 - No need of actual in situ measurements as a the ocean is assumed to be representative of the pure water signal in the NIR
- Visible gains are then computed on a dataset already calibrated for NIR bands.
 - For this step FRMs are required, BOUSSOLE and MOBY have been used for past missions.
 - Matchup selection being very stringent for SVC, we do not reach enough **BOUSSOLE** and **MOBY** match-ups yet

→ A methodology based on in-situ + climatological radiometry (**GlobColour**) at oligotrophic sites has been implemented.

SVC implementation: NIR gains

Different methodologies tested

- 1. SeaWiFS (predefined aerosol and unit gain at 1 NIR band)
- 2. MERIS (free theoretical aerosol, 2 NIR bands at unit gain)
- 3. OLCI (free theoretical aerosol, log-log linear regression of ρ_a in [709, 885] nm against λ)
 - no fixed gain assumption
 - comparing well with other methodologies
 - 1020 nm excluded from regression as strong outlier

$$\checkmark \rho_{TOA}^{T}(\lambda) = \rho_{aer}^{T}(\lambda) + \rho_{rayleigh}(\lambda) + t(\lambda) * \rho_{purewater}^{NIR}(\lambda)$$
$$\rho_{aer}^{T}(\lambda) = e^{a * log(\lambda) + b}$$

With a and b the slope and intercept respectively of the linear fine between $log(\rho_{aer}^T(\lambda))$ and $log(\lambda)$, $\lambda = [709, 754, 779, 865, 885]$

→ OLCI method retained and SeaWiFS (NASA) method used for comparisons

SVC implementation: NIR gains

Results:

OLCI method on SIO/SPG

site/band	709	754	779	865	885	1020
SIO	0.996	1.003	1.005	1.000	0.996	0.912
(std)	(0.002)	(0.003)	(0.003)	(0.003)	(0.004)	(0.050)
SPG	0.996	1.003	1.004	1.000	0.996	0.916
(std)	(0.003)	(0.004)	(0.003)	(0.004)	(0.004)	(0.05)
ALL	0.996	1.003	1.005	1.000	0.996	0.914
(std)	(0.003)	(0.003)	(0.003)	(0.004)	(0.004)	(0.050)

NASA method on SPG (aerosol model constrained by relative humidity)

site/band	709	754	779	865	885	1020
SPG	0.995	1.001	1.005	1.000	0.996	0.911
(std)	(0.020)	(0.016)	(0.013)	(0.000)	(0.007)	(0.040)

\rightarrow same gains but higher uncertainty in NASA method \rightarrow OLCI method retained

- For visible bands, the objective is to reconstruct a $\rho_{TOA}^{T}(\lambda)$ signal based on in-situ measurements
- A combination of in situ measurements $(\lambda = 400$ nm, $\lambda > = 620$ nm) and climatology (412 $\leq\lambda\leq$ 560nm) was used to derive the gains
- GlobColour 4km daily climatology over the 1997-2012 ** time period (11 days sliding average).

500

550

wavelength [nm]

600

Ref.

 σ_{g}

λ

Gain

Mission Performance Centre

OCR VALIDATION USING LEVEL-2

Produced by Sentinel-3 Mission Performance Centre

Acknowledgment to AERONET-OC and Giuseppe Zibordi giuseppe.zibordi@ec.e

,

Used flags:

INVALID, CLOUD, CLOUD_AMBIGUOUS, CLOUD_MARGIN, SNOW_ICE, SUSPECT, HISOLZEN, SATURATED, HIGHGLINT, WHITECAPS, AC_FAIL, OC4ME_FAIL, ANNOT_TAU06, RWNEG_[02-08] + ANNOT_MIXR1

Acknowledgment to :

Mission Performance

Centre

G. Zibordi, D. Antoine and V. Vellucci, K. Voss, Y.-J. Park and H.-Y. You, S. Belanger and T. Jaegler, B. Jones and C. Davis, A. Weidemann, B. Gibson and R. Arnone, D. Van Der Zande

Used flags:

INVALID, CLOUD, CLOUD_AMBIGUOUS, CLOUD_MARGIN, SNOW_ICE, SUSPECT, HISOLZEN, SATURATED, HIGHGLINT, WHITECAPS, AC_FAIL, OC4ME_FAIL, ANNOT_TAU06, RWNEG_[02-08] + ANNOT_MIXR1

Acknowledgment to :

1

Mission Performance

Centre

G. Zibordi, D. Antoine and V. Vellucci, K. Voss, Y.-J. Park and H.-Y. You, S. Belanger and T. Jaegler, B. Jones and C. Davis, A. Weidemann, B. Gibson and R. Arnone, D. Van Der Zande

Level-2 validation

Case 1 and Case 2 sites

 BOUSSOLE, MOBY, IML4, IML6, IML10, AAOT, Galata, Gloria, leodo, UscSEAPRISM, WaveCIS, Zeebrugge

 $|RDP| = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{|y_i - x_i|}{x_i} \right)$

No vicarious cal.

lambda	Ν	RPD	RPD	MAD	RMSE	ubRMSE	slope	intercept	r2
400	42	47%	48%	0.0084	0.0106	0.0066	0.829	0.013	0.790
412	195	105%	105%	0.0077	0.0092	0.0050	0.929	0.009	0.798
443	200	55%	56%	0.0050	0.0062	0.0037	0.956	0.006	0.827
490	214	27%	30%	0.0032	0.0046	0.0034	0.960	0.004	0.885
510	99	22%	26%	0.0023	0.0035	0.0026	1.087	0.001	0.869
560	193	15%	19%	0.0015	0.0034	0.0030	1.055	0.001	0.966
665	70	16%	30%	0.0005	0.0048	0.0047	0.928	0.001	0.880

Vicarious cal.

lambda	N	RPD	RPD	MAD	RMSE	ubRMSE	slope	intercept	r2
400	34	6%	22%	-0.0002	0.0057	0.0057	0.837	0.005	0.835
412	88	1%	30%	-0.0012	0.0055	0.0054	0.829	0.002	0.802
443	116	-3%	22%	-0.0011	0.0040	0.0039	0.866	0.001	0.814
490	173	-2%	15%	-0.0005	0.0032	0.0032	0.917	0.001	0.901
510	74	-1%	15%	-0.0001	0.0021	0.0021	1.060	-0.001	0.909
560	157	0%	11%	0.0002	0.0031	0.0031	1.052	-0.001	0.968
665	35	-3%	24%	0.0002	0.0061	0.0061	0.919	0.001	0.879

$$RDP = \frac{1}{N} \sum_{i}^{N} \left(\frac{y_i - x_i}{x_i} \right)$$

$$RMSE = \sqrt{\frac{1}{N} \sum_{i}^{N} (x_{i} - y_{i})^{2}} \qquad ubRMSE = \sqrt{\frac{1}{N} \sum_{i}^{N} ((x_{i} - \bar{x}) - (y_{i} - \bar{y}))^{2}}$$

Level-2 validation

Case 1 sites BOUSSOLE MOBY

No vicarious cal.

lambda	Ν	RPD	RPD	MAD	RMSE	ubRMSE	slope	intercept	r2
400	42	47%	48%	0.0084	0.0106	0.0066	0.829	0.013	0.790
412	42	45%	46%	0.0079	0.0098	0.0058	0.836	0.012	0.796
443	42	34%	34%	0.0054	0.0067	0.0041	0.807	0.010	0.739
490	42	29%	29%	0.0040	0.0047	0.0026	0.650	0.009	0.472
510	42	33%	34%	0.0029	0.0036	0.0021	0.003	0.013	0.000
560	41	37%	39%	0.0015	0.0020	0.0013	0.344	0.005	0.173

Vicarious cal.

lambda	Ν	RPD	RPD	MAD	RMSE	ubRMSE	slope	intercept	r2
400	34	6%	22%	-0.0002	0.0057	0.0057	0.837	0.005	0.835
412	34	-4%	21%	-0.0022	0.0055	0.0050	0.837	0.003	0.839
443	35	-4%	17%	-0.0015	0.0038	0.0035	0.842	0.002	0.786
490	36	2%	13%	0.0001	0.0022	0.0022	0.701	0.005	0.554
510	35	3%	14%	0.0002	0.0016	0.0016	0.005	0.010	0.000
560	29	6%	15%	0.0002	0.0009	0.0009	0.494	0.003	0.267

$$RDP = \frac{1}{N} \sum_{i}^{N} \left(\frac{y_{i} - x_{i}}{x_{i}} \right) \qquad |RDP| = \frac{1}{N} \sum_{i}^{N} \left(\frac{|y_{i} - x_{i}|}{x_{i}} \right) \qquad RMSE = \sqrt{\frac{1}{N} \sum_{i}^{N} (x_{i} - y_{i})^{2}} \quad ubRMSE = \sqrt{\frac{1}{N} \sum_{i}^{N} (x_{i} - \bar{x}) - (y_{i} - \bar{y})^{2}}$$

Bio-Argo floats

Chlorophyll, backscattering, CDOM and irradiance measurements on profiling floats.

Level-2 validation

Level-2 validation

Bio-Argo floats

Chlorophyll, backscattering, CDOM and irradiance measurements on profiling floats.

OCR VALIDATION USING LEVEL-3

~11 months

~11 months

- Historical principles of ocean color sensors vicarious adjustment adapted to recently launched OLCI sensor
- NIR adjustment performed through an interband calibration (relative consistency of NIR bands wrt log-log spectral shape over clear waters)
- VIS adjustment performed over both IS data and climatological matchups to handle lack of temporal coverage of IS
- Validation on IS shows improvment of bias and standard deviation of waterleaving reflectance
- Validation on climatology shows bias removal on water-leaving reflectance
- L2 OLCI and SLSTR Products are available for public distribution since the 6th of July 2017, SVC used for production

THANKS FOR YOUR ATTENTION