Assessing Long Term Stability of Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI

CALCON 2017 – Logan, UT
August 22-25, 2017

Esad Micijevica, Nischal Mishrab, Md. Obaidul Haquea and Dennis Helderc

aSGT, Inc., contractor to the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, Sioux Falls, SD
bSSAI, NASA Langley Research Center, Hampton, VA
cSouth Dakota State University, Brookings, SD

esad.micijevic.ctr@usgs.gov, +1 (605) 594-2801
Outline

- Introduction / background
- Landsat Collection 1 radiometric updates
- Stability trending updates
- Comparison of OLI and ETM+ PICS trends
- Temporal uncertainties
- Summary
• Long term stability of L5 TM and L7 ETM+ was characterized in 2011 using image statistics from various Pseudo Invariant Calibration Sites (PICS)
 ◆ For ETM+, degradation of up to -0.21% per year was observed in all bands
 • This led to an update of L7 ETM+ calibration in 2012
 ◆ For TM, drifts of -0.27 and -0.15% per year were observed in Blue and Red bands
 • L5 TM calibration was updated in 2007 based on the PICS trends, cross calibration with L7 ETM+ and prelaunch calibration
 • Therefore, another calibration update was due
Introduction

- Performance of OLI is continuously monitored using well defined sets of on-board calibrators, operated at various time intervals:
 - Three stim lamp sources
 - Two solar diffusers
- From the on-board calibrator trends, a steep decline followed by a gradual decrease of about 0.1% per year observed in Coastal Aerosol (CA) band
 - Other bands stable to within ~0.3%
- Vicarious sources, such as Moon and PICS, are used to complement the on-board calibrators
Landsat Collection 1 Radiometric Updates

- Landsat data archive has been restructured into a formal tiered data Collection (Collection 1)
 - OLI, ETM+ and most of TM data reprocessing completed in Spring 2017
- OLI relative and absolute gains (up to ~1.5% worst case)
- TM life-long gain adjustment (effect of ~2.1%)
 - Adjustment of cross calibration gain between L5 TM and L7 ETM+ for all bands, due to update in L5 TM bias estimation method in 2012
 - Original exponential+linear gain model replaced with a double exponential model
- Reflectance based cross-calibration
 - Reflectance-based calibration transferred from L8 OLI to previous Landsat sensors
 - Up to 5% change in estimated TOA reflectance for TM and ETM+ data
- All the PICS radiometric trends were updated to include Collection 1 changes
 - More than 1000 scenes from Libya 4, Libya 1, Sudan 1, Egypt 1 were reprocessed
PICS Based Stability Monitoring

- Responses of TM, ETM+ and OLI over North African PICS are continuously trended for stability monitoring
 - For TM and ETM+, PICS based method acts as a primary method for stability monitoring
 - Couple years after launch, the on-board calibrators were found unreliable for long term stability monitoring
 - For OLI, PICS based method acts as a backup to on-board calibrators
- Drift (percent change per year) is calculated using linear regression
- Processed through Landsat Image Assessment System (IAS) to Top-Of-Atmosphere (TOA) reflectance and trended for stability monitoring
 - Band averages over the standard Regions of Interest (ROIs)
 - Filtered for clouds
 - Bidirectional Reflectance Distribution Factor (BRDF) correction
 - Empirical model based on linear regression of the solar zenith angle and TOA reflectance
L5 TM PICS Trends Update

- L5 TM PICS statistics were updated to reflect the update in TM gain model
 - Old Exponential+Linear model replaced with double exponential model
- L5 TM has very limited PICS coverage outside Libya 4
 - Various ROIs within Libya 4 were used to validate the updated model
 - Algeria 3 was also used for validation, but there are much fewer scenes than for Libya 4

- Update in the absolute gain model in blue and red band improves the temporal stability of L5 TM over PICS
 - Remaining residual drifts under further investigation
PICS Trending for L5 TM, Blue Band

\[Y = -8.48 \times 10^{-4} X + 0.252 \]

% Drift per year = -0.34% ± 0.1 (2-sigma)

Temporal Uncertainty = 1.74%

L5 TM TOA Reflectance, Blue Band, Libya 4

Pre-Collection

L5 TM TOA Reflectance, Blue Band, Libya 4

Collection 1

\[Y = -3.71 \times 10^{-4} X + 0.252 \]

% Drift per year = -0.15% ± 0.1 (2-sigma)

Temporal Uncertainty = 1.32%
PICS Trending for L5 TM, Red Band

L5 TM TOA Reflectance, Red Band, Libya 4

Pre-Collection

Collection 1

Y = -8.57E-04*X + 0.449

% Drift per year = -0.19\% \pm 0.06 (2-sigma)

Temporal Uncertainty = 0.98\%

Y = -3.01E-04*X + 0.463

% Drift per year = -0.07\% \pm 0.06 (2-sigma)

Temporal Uncertainty = 0.84\%
Drift Analysis for L5 TM

- The updated gain model reduced drifts in the lifetime gain trends to about 0.15% per year
- The residual drift in the trend is believed to be related to inconsistent data processing
- Modeling will be repeated when more PICS data become available

<table>
<thead>
<tr>
<th>LANDSAT 5 TM</th>
<th>% CHANGE/YEAR ±2-SIGMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLUE</td>
<td>-0.15±0.10</td>
</tr>
<tr>
<td>GREEN</td>
<td>0.03±0.08</td>
</tr>
<tr>
<td>RED</td>
<td>-0.07±0.06</td>
</tr>
<tr>
<td>NIR</td>
<td>-0.13±0.11</td>
</tr>
<tr>
<td>SWIR-1</td>
<td>SATURATES</td>
</tr>
<tr>
<td>SWIR-2</td>
<td>-0.10±0.18</td>
</tr>
</tbody>
</table>

Estimate of TM Gain Change Over Libya4 PICS
(1/1/2000 - End of Mission, 2011)
L7 ETM+ PICS Trends Update

- The temporal gain model was derived in 2013 using data from 2000-2012
 - The CPF extrapolates the model for forward processing
- All the L7 ETM+ trending updated with Collection 1 data
 - Includes the new ESUN values to calculate TOA reflectance
 - The stability estimates essentially have not changed
 - Sites include Libya 4, Libya 1, Sudan 1, Egypt 1, Niger 1 and Niger 2
- Overall, the instrument looks stable to about ±0.05% per year

- L7 ETM+ trending after 2013 is then compared to L8 OLI trending to assess sensors’ stability estimates over the same time period
ETM+ Radiometric Trending

- On-board calibrators (2-lamps and a diffuser) were deemed unreliable after few years since launch

Landsat-7 ETM+ Lamp, Diffuser And PICS Reponse (Blue Band)

Landsat-7 ETM+ Lamp, Diffuser And PICS Reponse (SWIR-1 Band)
Update of L7 ETM+ PICS Trends

- Over the mission of the instrument (~18 years), ETM+ bands are very stable (generally within ±0.05% per year)
L7 ETM+ Stability Estimate

- Stability across all solar reflective bands is about 0.05% per year
L8 OLI Trend Update

- Collection 1 update
 - Correction for the decay in Coastal-Aerosol band calibration trend
 - Accounts for ~0.2% short-term step increase in trends of VNIR bands (attitude anomaly followed by safe hold, September 2013)
 - Detector relative gains in all bands

- Coastal Aerosol Band Validation
 - Collection 1 updates were validated using several PICS
 - For comparison with On-board calibrators, pre-collection calibration parameters were used
Collection-1 processing indicates changes in the CA band PICS trends of \(~0.2\%\) per year, which is consistent with the desired update.
On-board calibrators and lunar observations are much more precise than PICS.

PICS tend to indicate larger drift than on-board calibrators and moon across all the bands.
Landsat 8 OLI Stability Estimate

- For comparison purposes, the updated gain for the C/A band not applied in the PICS calculations

- On average, PICS estimates differ from the on-board calibrators and moon by 0.35%
 - PICS tend to disagree more with each other in the C/A & blue bands and the uncertainties in the estimates are higher too
 - A previous analysis with ETM+ data indicated that about 6-8 years of data were needed for gain estimate to start converging
Comparison of ETM+ & OLI Trends

- Similar trends over Libya 4 for the same time period
Comparison of ETM+ & OLI Trends

- Similar trends over Libya 4 for the same time period
Comparison of ETM+ and OLI PICS Trends

- The gain change estimates for ETM+ and OLI are similar and differ from the on-board calibrators’ based calibration by about 0.35%
 - For a reliable estimate, more than 4 years of PICS data are needed
Comparison of ETM+ and OLI PICS Trends

<table>
<thead>
<tr>
<th>Landsat Bands</th>
<th>Gain change (%/year ±2-Sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L8 OLI (2013-2016)</td>
</tr>
<tr>
<td>Blue</td>
<td>-0.62±0.21</td>
</tr>
<tr>
<td>Green</td>
<td>-0.51±0.16</td>
</tr>
<tr>
<td>Red</td>
<td>-0.42±0.16</td>
</tr>
<tr>
<td>NIR</td>
<td>-0.30±0.12</td>
</tr>
<tr>
<td>SWIR-1</td>
<td>-0.21±0.14</td>
</tr>
<tr>
<td>SWIR-2</td>
<td>-0.47±0.32</td>
</tr>
<tr>
<td></td>
<td>L7 ETM+ (2013-2016)</td>
</tr>
<tr>
<td>Blue</td>
<td>-0.59±0.21</td>
</tr>
<tr>
<td>Green</td>
<td>-0.56±0.19</td>
</tr>
<tr>
<td>Red</td>
<td>-0.45±0.19</td>
</tr>
<tr>
<td>NIR</td>
<td>-0.52±0.4</td>
</tr>
<tr>
<td>SWIR-1</td>
<td>-0.3±0.28</td>
</tr>
<tr>
<td>SWIR-2</td>
<td>-0.58±0.54</td>
</tr>
<tr>
<td></td>
<td>L7 ETM+ (1999-2016)</td>
</tr>
<tr>
<td>Blue</td>
<td>-0.02±0.04</td>
</tr>
<tr>
<td>Green</td>
<td>0.010±0.03</td>
</tr>
<tr>
<td>Red</td>
<td>0.02±0.04</td>
</tr>
<tr>
<td>NIR</td>
<td>0.04±0.05</td>
</tr>
<tr>
<td>SWIR-1</td>
<td>0.05±0.02</td>
</tr>
<tr>
<td>SWIR-2</td>
<td>0.04±0.06</td>
</tr>
</tbody>
</table>
Temporal Uncertainty

- Temporal uncertainty estimated from PICS data is due to two components: sensor uncertainty and calibration site uncertainty.
- We can try to decouple the site uncertainty from OLI PICS data by assuming:
 - The components are independent.
 - Sensor uncertainty includes the on-board calibrator uncertainties.
- Using ‘known’ site uncertainties, we can then estimate the L5 TM and L7 ETM+ sensor uncertainties.

<table>
<thead>
<tr>
<th>Band</th>
<th>Temporal uncertainty (percents)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Landsat 8 OLI</td>
</tr>
<tr>
<td>Coastal Aerosol</td>
<td>0.07</td>
</tr>
<tr>
<td>Blue</td>
<td>0.11</td>
</tr>
<tr>
<td>Green</td>
<td>0.09</td>
</tr>
<tr>
<td>Red</td>
<td>0.07</td>
</tr>
<tr>
<td>NIR</td>
<td>0.05</td>
</tr>
<tr>
<td>SWIR 1</td>
<td>0.04</td>
</tr>
<tr>
<td>SWIR 2</td>
<td>0.07</td>
</tr>
</tbody>
</table>
Summary

- PICS trends indicate L5 TM to be stable to around 0.15% per year
 - Absolute gain model in some bands may need a re-visit if more data become available to fill gaps in PICS trends
- L7 ETM+ is extremely stable, within 0.05% per year across all bands
- The stability of OLI is monitored primarily using the on-board lamps and diffusers
 - After the calibration update, all bands are stable to within 0.05% per year
- PICS based stability estimates for OLI do not agree well with on-board calibrators and the moon
 - Differences of ~0.35% per year, on average
 - OLI and ETM+ show similar trends across PICS over the same time period indicating the changes in site behavior rather than the sensors
- Temporal uncertainties for TM and ETM+ estimated to better than 2% over the instruments’ lifetimes