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ABSTRACT 

QUANTIFYING PLOT-SCALE EVAPOTRANSPIRATION IN NORTHEAST UTAH 

by 

W. Sheridan Stewart, Master of Science 

Utah State University, 2024 

Major Professor: Dr. J. Burdette Barker 

Department: Civil and Environmental Engineering 

 The aim of this study was to quantify evapotranspiration on a plot scale in 

Northeastern Utah. The plot scale is often used for crop and irrigation management. In 

this study, ground-based canopy sensing stations and the Two-Source Energy Balance 

were used to model to quantify evapotranspiration in an alfalfa-grass mix hay field under 

a wheel-line irrigation system. The plot chosen was adjacent to an eddy covariance tower, 

against which the modeled data were validated. Data collection occurred in the growing 

seasons of 2022 and 2023. Two sensing stations were assembled and maintained for both 

years. Station 1 remained stationary during the study. Station 2 remained stationary for 

2022 and was moved throughout the field in 2023. Both stations included infrared 

radiometric thermometers for land surface temperature, red and near-infrared 

radiometers, and canopy photography. Station 1 also included sensor instrumentation for 

measuring air temperature, relative humidity, barometric pressure, and wind speed, gust, 

and direction. Leaf area index measurements were collected throughout 2023. Crop 

height was measured every time a researcher was at the site. The eddy covariance tower 
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provided incoming solar radiation. These data were sufficient to run the Two-Source 

Energy Balance model. The Two-Source Energy Balance model requires inputs of canopy 

biophysical properties. A code was developed to find fraction of vegetative cover from 

canopy photography. This method was validated against existing relationships 

documented between the Normalized Difference Vegetation Index and fraction of 

vegetative cover. Leaf area index was modeled using a relationship with fraction of 

vegetative cover and was validated against observed measurements taken in 2023. Crop 

height was modeled from a relationship with the Soil Adjusted Vegetation Index and 

validated against observed measurements. All four energy balance fluxes were compared 

against the eddy covariance fluxes. Estimated evapotranspiration was evaluated against 

the eddy covariance tower evapotranspiration. Several different data inputs into the 

model were investigated, including different timesteps, modeled vs. eddy covariance 

calculated soil heat flux, and time of day. The results of the study were mixed. Station 

implementation and modeling efforts were accomplished on a continuous plot scale. 

Evapotranspiration was biased high. Evapotranspiration responded to seasonal patterns 

seen in the eddy covariance tower evapotranspiration. The eddy covariance tower does 

not force energy balance closure whereas the Two-Source Energy Balance model does. 

This may explain some bias. 

(81 Pages) 
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PUBLIC ABSTRACT 

Quantifying Plot-scale Evapotranspiration in Northeast Utah 

W. Sheridan Stewart 

Evapotranspiration, the combined movement of water from the earth's surface and 

plants to the atmosphere, is a component of the energy balance of the land surface 

atmosphere continuum. Often, irrigation is used to replace water removed from the soil 

through evapotranspiration. Water management for irrigation is often done at the plot or 

field scale. Due to the smaller footprint size and the large upfront costs, evaluating 

evapotranspiration at such a small scale can be difficult to justify. The aim of the study 

was to quantify evapotranspiration at the plot scale. An energy balance model that 

evaluates energy from two sources, the soil surface and the vegetation surface, was used 

to model the energy balance in an alfalfa-grass mix field in Northeastern Utah. Two 

canopy sensor stations used to collect data for this model were deployed throughout the 

growing seasons of 2022 and 2023. The stations were in proximity to an eddy covariance 

tower. The eddy covariance method is widely regarded as one of the best ways to sense 

actual, not modeled, evapotranspiration. The canopy sensing stations’ energy fluxes were 

compared against the eddy covariance tower. During 2022, canopy Stations 1 and 2 were 

stationary. During 2023, Station 1 remained stationary, while Station 2 was moved 

around throughout the season. Some properties of the vegetation canopy were needed for 

the two-source model. Those primarily include fraction of vegetative cover, leaf area 

index, and crop height. These represent the percentage of viewing area that is covered by 

vegetation, the ratio of plant leaf area to ground area, and the height from the soil surface 
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of the crop. These vi properties were modeled with success from various methods. The 

model produced estimates of all four components of the energy balance, net radiation, 

sensible heat flux, soil heat flux, and latent heat flux (which is energy used in 

evapotranspiration). These components were then compared against the eddy covariance 

tower components. Latent heat fluxes were converted into evapotranspiration rates. 

Results were mixed. Stations were operated and continuously collected plot-scale data. 

Station evapotranspiration responded well to seasonal changes. However, station 

evapotranspiration was biased high through the entire growing season.  
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CHAPTER 1. INTRODUCTION 

 Water conservation in the Western United States has been a longstanding concern. 

The region's rapid population growth, coupled with the challenges posed by climate 

issues, has significantly heightened the urgency of addressing water availability across 

diverse use sectors. As water resource allocation continues to be a subject of 

investigation, particular attention is being directed towards reducing agricultural 

irrigation water use. In many areas, the need to reduce consumptive water use, including 

crop evapotranspiration (ET), is of primary interest. 

The quantification of crop ET holds advantages for both research and 

management within the realm of irrigation practices. Aligning irrigation with the actual 

water consumed through ET is a common approach for ensuring efficient water use. 

Consequently, quantifying crop ET is important in furnishing information and aiding 

irrigation management decisions. 

Concentrated efforts have been made to quantify ET with the intent of water 

optimization. Quantification efforts have generally focused on the basin or sub-basin 

scale or specific crop types. While this information is advantageous, farmers’ and 

growers’ irrigation management decisions are often made at field or plot-scales. Thus, 

quantifying ET specifically at a plot-scale is of interest for management and research 

purposes. 

Quantifying ET directly (measuring) has a specific set of issues. Direct ET 

measurements involve knowledge and equipment, such as eddy covariance and weighing 

lysimeters, that can be difficult and expensive to obtain. When scaling down to the plot 
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scale, costs can become more difficult to justify. For these reasons, often quantification 2 

efforts can take a less direct approach and estimate ET from a modeling process. Some 

ET models are discussed further in the literature review section. 

One such model is the Two-Source Energy Balance (TSEB) model (Norman, 

1995). This model has been used over a wide variety of applications. The advantage of 

the TSEB model is how it calculates the energy balance. It partitions the surface into 

representative soil and crop portions when modeling the energy balance. Modeled crop 

latent heat flux can be used to calculate daily ET. 

Modeling efforts have allowed for furthering research on plot-scale ET. These 

efforts have usually been based on aerial or satellite imagery. Collecting data for models 

poses its own set of challenges. The temporal scale of aerial and satellite platforms is 

chief among those. Continuous monitoring is desirable for both research and management 

decisions. Aerial imagery is constrained by fly times, which can be done frequently but 

not continuously. Satellite imagery is constrained by satellite flyover (orbit) time. One 

technology platform that has shown promise for ET continuous modeling, is ground 

based remote sensing. Ground-based remote sensing platforms allow for the continuous 

monitoring of ET at the plot-scale. This provides insight into real-time ET requirements 

of the observed crop of the surface. 

Research Objectives 

 The aim of this research was to accurately model plot-scale ET using TSEB with 

continuous ground-based remote sensing.  
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CHAPTER 2. REVIEW OF RELATED LITERATURE 

 A significant body of work exists for different methods of determining ET. This 

literature is discussed in the proceeding sections. Emphasis has been placed on those 

methods that are appropriate for determining plot-scale ET. 

Water Balance 

 The water balance method is a common way of estimating ET primarily for 

irrigation management purposes (Simić, 2023). The method relies on the conservation of 

mass. The water outputs (ET, runoff, and deep percolation) must equal the water inputs 

(precipitation, irrigation, and run-on) plus the change in storage within the system’s 

boundary volume. ET is found in the differences between the changes in storage and the 

other terms. Some components that pose a challenge in water balance calculations are 

discussed further. Common challenges with the water balance methods include 

quantifying runoff, subsurface lateral flow, deep percolation, and capillary rise (Bosch, 

2005; Colaizzi, 2012b; Colaizzi, 2014; Katimbo, 2022a, b; Tunica, 2023; Marek, 2023; 

Laing, 2018; Trout, 2018; Mohammed; 2022; Hunsaker, 2005; Simić, 2023).  

Lysimeters 

 Weighing lysimeters are an instrument that find ET by measuring changes in the 

weight of a control volume. Weight losses can be related to ET (Collaizi, 2014). This can 

be a desirable way of measuring evapotranspiration for multiple irrigation treatments 

(Sun, 2012). Microlysimeters can be used to find ET at the plot or field scale. This can 

find plot-scale ET directly or indirectly. Each plot or a set number of plots can have its 

own microlysimeter (Song, 2016). Due to the high cost of lysimeter installation and 4 
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maintenance, one large lysimeter can take the place of many microlysimeters in plot-scale 

research. A lysimeter can be placed at the end of the end of the plot areas if runoff and 

subsurface flow are desired to be found (Duncan, 2017). This can be advantageous for 

plot-scale research when using water balance methods. 

Eddy Covariance Towers  

An eddy covariance tower measures the vertical turbulent fluxes of momentum, 

heat, water vapor, and gases between the surface and the atmosphere. Eddy covariance 

towers are one of the most established methods of measuring ET (Denager, 2020). It can 

often be thought that eddy covariance towers underestimate ET, because the energy 

balance is not forced closed. Studies have shown that over longer periods (multiple years) 

eddy covariance latent heat fluxes can be similar to that of the water balance (Denager, 

2020). 

Surface Remote Sensing for Evapotranspiration 

Surface Remote Sensing for Evapotranspiration  

Surface remote sensing of ET generally involves measuring emitted and reflected 

long-wave irradiance and reflected short-wave irradiance. There are a variety of methods 

to measure these irradiances. Common methods for remotely sensing irradiances and 

common methods of estimating ET from those are discussed further, with emphasis 

placed on their adaptability to plot-scale research.  

Satellites 

 One technology that has gained popularity within the last several decades is 

satellite remote sensing. Satellite remote sensing has several desirable advantages. Fast 
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data processing time is a key advantage, another is automation and labor intensity 5 

(Steven, 1993). 

When research is conducted on a small scale (e.g., plot), spatial resolution of 

many satellite products can be an issue. The most recent Landsat satellite has spatial 

resolutions of 15, 30, and 100 m, depending on the spectral band (Montanaro, 2022). 

Often times plot-scale research is smaller than 10-meters. To address this issue, 

downscaling satellite data and upscaling data collected from a source with a smaller 

footprint size to validate data against satellite data has been investigated with positive 

success (Anderson, 2004). Other attempts to investigate this issue have used satellite 

image sharpening, sharpening an image with a larger pixel size and finer spectral or 

temporal resolution with an image with a smaller pixel size coarser spectral or temporal 

resolution. This has shown some positive results but has so far underestimated 

transpiration (Bellvert, 2020). Another issue when evaluating satellite-collected data for 

plot-scale research can be the timing. Satellite data is bound by the Satellite's fly-over 

(orbit) time. When critical time points or continuous monitoring are desired to be 

investigated, the researchers are subject to the timing of the satellite orbit. Research into 

temporal resolution scaling has been investigated using hybrid gap-filling methods and 

pulling data from multiple satellite sources. This has demonstrated low bias. (Bellvert, 

2020; Guzinski, 2023).  

 Another issue when evaluating satellite-collected data for plot-scale research can 

be the timing. Satellite data is bound by the Satellite's fly-over (orbit) time. When critical 

time points or continuous monitoring are desired to be investigated, the researchers are 

subject to the timing of the satellite orbit. Research into temporal resolution scaling has 
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been investigated using hybrid gap-filling methods and pulling data from multiple 

satellite sources. This has demonstrated low bias. (Bellvert, 2020; Guzinski, 2023).  

It is noteworthy that some satellites have more frequent flyover times and very 

high spatial resolutions. However, as of this writing, the data from those satellites have a 

fee to access and use. 

Unmanned Aireal Vehicles (UAVs) 

 Another common data collection method is the use of unmanned aerial vehicles 

(UAVs or drones). As the availability of UAVs has risen, so has the customizability of the 

remote sensing instrumentation that can be mounted on a UAV platform (Neito, 2018). 

UAV remote sensing can provide data with a quick turnaround time (Berni, 2009). This is 

desirable when making irrigation management decisions. UAV sensing can be 

resourceful. Overlapping flight paths can help to ascertain accurate sensing, particularly 

for pixels on thermal images (Tunica, 2023). This can be helpful for plot-scale ET 

evaluation when plot areas are clearly defined.  

Ground-Based Remote Sensing Equipment 

 Another data collection platform is ground-based remote sensing. Ground-based 

remote sensing can have many different approaches. Approaches can have a measurement 

footprint size of hundreds of square-meters down to less than 1 m2. This can have many 

advantages for plot-scale research. Another advantage of ground-based approaches is that 

continuous monitoring can be available. This is desirable when compared to satellites and 

UAV platforms that are bound by orbit and fly times. This is desirable for management 

purposes.  
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Real-time ET can be continuously estimated from ground-based platforms. For 

example, from canopy temperatures derived from infrared sensors (Katimbo, 2022a, b). 

Continuous monitoring and quick data turnaround time can be advantageous for making 

real-time management decisions (Colaizzi, 2012). 

Models 

Many models exist to find ET through remote sensing inputs. This is often done through 

the energy balance. The energy balance is the equation describing the energy exchange 

between the land surface-atmosphere continuum. It consists of net radiation (RN), soil 

heat flux (G), sensible heat flux (H), and latent heat flux (LE). Many involve modeling H, 

RN, and G. The LE (used to calculate ET) is then found from the residual. Some of the 

more common models used in that area appropriate for plot-scale research are discussed 

below. 

SEBAL and METRIC 

 Surface Energy Balance Algorithms for Land (SEBAL) (Bastiaanssen, 1998) is a 

satellite-based image-processing model that calculates ET as a residual of a surface 

energy balance (Allen, 2011). SEBAL was developed with surfaces with a large 

hydrological contrast in mind (Bastiaanssen, 1998). Mapping ET at high resolution with 

internalized calibration (METRIC) is based on the SEBAL model (Allen, 2007). Both 

models focus on finding “hot” and “cold” pixels to anchor the calculation process. 

METRIC estimates ET based on the residual surface energy balance. The surface energy 

balance is calibrated internally against reference ET (Allen, 2007). 
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 SEBAL and METRIC hold several advantages. Primarily, in both models, the 

near-surface temperature gradient is estimated as an indexed function of radiometric 

surface temperature. This eliminates the need for air temperature measurements and 

extremely accurate land surface temperatures (Singh, 2008).  

The main data input for both models is land surface temperature (LST) images 

from satellite-collected data. Due to satellite spatial resolution limitations discussed 8 

earlier, the pixel size resolution is limited to that of LST images. Therefore, the plot-scale 

size is limited by LST resolution size. This can make plot-scale research difficult using 

these models. However, scaling methods such as those discussed in the satellite section 

can be used for plot-scale research. 

Reflectance-Based Crop-Coefficients  

 Reflectance-based crop coefficients have been used to estimate ET for decades. 

Crop coefficient models use a crop-specific coefficient (Kc) multiplied by a reference ET 

value to estimate crop ET (Trout, 2018). Different versions of crop coefficient models 

have been developed. One of the more prominent of those is the basal crop coefficient, 

which estimates transpiration through a non-stressed crop and slow diffusive evaporation 

through a dry soil surface (Bausch, 1987; Trout, 2018). Basal crop coefficient methods 

have been found to work best for early-stage plant growth for closed canopy crops (Trout, 

2018). 

 Much of the research to date has used large plots on hundreds to thousands of m2 

(Douglas, 2005; Bausch, 1994). These methods have shown promise for large-scale plots. 
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Multiple ET Quantification Models  

Research has been conducted using multiple methods to quantify ET and ET 

uncertainty. This type of research often attempts to determine the accuracy and bias of 

existing ET estimation methods or inter- and intra-ET model comparisons. Kustas (2012) 

compares ET estimation methods within the same model. Researchers such as Laing 

(2021) and Katimbo (2022b) investigated ET estimation between two models. Barker 

(2018) investigated the hybridization of two models.  

While some of these works and others do not focus on ET at the plot-scale, they 9 

provide valuable insight into the results of ET estimation from multiple sources. Kustas 

(2012) looked at the unity between estimated ET using the TSEB model and a dual-time 

difference model. While the uncertainty is not calculated, agreement between the two 

models is found to be acceptable. 

TSEB 

 The TSEB was developed in 1995 by Norman et. al. The model was one of the 

first to explore latent and sensible heat fluxes from two sources (soil and vegetation). The 

model uses a relationship between brightness, temperature gradient, and weather data to 

partition the energy balance components into soil and vegetation sources. Although at a 

single view angle, only composite temperature is available, partitioning temperature can 

be done through fraction of vegetative cover.  

The TSEB model has been used in numerous applications. One important group 

of studies was done at the U.S. Department of Agriculture’s Agriculture Research Service 

Conservation and Production Research Laboratory in Bushland, Texas. Several 

modifications of the TSEB model were evaluated there. This research included testing of 
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the TSEB model against lysimeter measured ET. This has been an uncommon occurrence 

(Colaizzi, 2016). The original TSEB model uses the Priestly-Taylor approximation to find 

the canopy temperature of the soil-vegetation surface. Some of the work in Bushland was 

included in evaluating the TSEB model using the Penman-Monteith approximation 

(Colaizzi, 2012b; Colaizzi, 2014). Other methods at Bushland consisted of nonspatial 

vegetation distribution was evaluated as elliptical hedgerows instead of the traditional 

semi-empirical clumping index for row crops with partial canopy covers (Colaizzi, 10 

2012a).  

The TSEB model is appropriate at any spatial scale and has been applied to many. 

Some of the inputs TSEB are more sensitive to include, leaf area index (LAI) and fraction 

of vegetative cover (FoC), which tend to be more homogenous for close-seeded crops on 

the plot-scale. Measurements and modeling of these inputs is of great importance for 

TSEB based research. 
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CHAPTER 3. MATERIALS AND METHODS 

PyTSEB 

 This research used the PyTSEB code (Python-coded TSEB model, open-source 

code written by Neito et. al.) implementation of the TSEB model. PyTSEB requires 

several inputs. When using PyTSEB over a timeseries several inputs are required at each 

time step. The broad input categories required are local weather data and crop biophysical 

properties. These are discussed in their appropriate sections below. Several site-specific 

options also need to be specified. These are discussed in detail in its representative 

section.  

Research Site and Weather Data Collection 

 To evaluate accuracy, a few sites near an eddy covariance tower were considered 

to conduct the research. Of the sites available, the most desirable for potential future 

applications beyond this project was on the Utah State University Uintah Basin – Vernal 

Campus’s agriculture field in Vernal, Utah. This field was chosen to conduct the research. 

The site produced an alfalfa-grass mix hay crop. The crop is irrigated under a side roll 

(wheel-line) irrigation system. The research was conducted at this site throughout the 

growing seasons of 2022 and 2023. 

 Two canopy sensing stations were used throughout the research. In 2022 both 

stations were stationary. Both stations were located approximately 33 m to the east of the 

eddy covariance tower. Station 1 was located approximately 17 m to the South of Station 

2. Both stations included canopy sensors. The proximal infrared temperature radiometer 

and the red-near infrared radiometers faced nadir. Station 1 included weather data sensors 
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12 as well. A summary of each station’s sensors is described in Table 1. Sensor 

observations were sampled every 10 seconds with an average recorded every 15 minutes.   

Table 1  

Station Sensor Instrumentation 

Sensor Sensor Make and Model Station(s) 
Proximal infrared 

temperature radiometer 
Apogee Instruments SI-411-SS 1 and 2 

Red-near infrared 

radiometers 
Apogee Instruments S2-411-SS and S2-412-SS 1 and 2 

Relative humidity 

Probe 
Apogee Instruments EE08-SS with Apogee Instruments 

TS-120-SS V Shield as the aspirated shielding 
1 

Barometric Pressure Campbell Scientific CS106 1 
Wind speed Meter Group ATMOS 22 1 

Further, incoming shortwave radiation is needed for the TSEB model input. 

Before research commenced an order for a net radiometer sensor was placed. The sensor 

was on back order for the duration of this research. Due to the backorder, this data were 

collected from the nearby eddy-covariance tower. Figure 1 and Figure 2 are images of the 

locations of the stations within the research field and the sensory setup of Station 1 

respectively.  
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Figure 1  

Utah State University Uintah Basin - Vernal Campus Research Field Right 

 

Note: The left image is the entire field. The right image is the eddy covariance tower, 

station 1 2022, 2023; and station 2 2022 location. Image sourced from ESRI, 2011.  
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Figure 2  

Station 1 2023 Canopy and Weather Instrumentation During Set Up 

 

 In 2022, data collection began on June 13th and ended on November 5th. In 2023, 

data collection began on April 29th and ended on November 9th. The 2023 setup of 

Station 1 was identical to the 2022 setup. To evaluate performance on different portions 

of the field, and to determine the viability of future deployment, Station 2 was moved to 

various locations throughout the testing period. The location time periods are listed in  

Table 2. 

  A few site constraints limited Station 2’s mobility. To reduce labor for the grower, 

the station’s location was limited in the East/ West directions by the joints in the irrigation 
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wheel-line system. Primarily, when the irrigation system moved past a station, the 

pipeline had to be taken apart at a joint and manually wheeled around the station 

equipment. This joint was about 62 m West of the system riser locations. A few other 

location constraints existed. These constraints are depicted in Figure 3. 

Table 2 

Station 2, 2023 Location Time Periods. 

Location Time Period 

A 05/08/23 – 05/20/23 

B 05/20/23 – 06/01/23 

C 06/01/23 – 06/27/23 

D 06/27/23 – 07/11/23 

E 07/11/23 – 08/02/23 

F 08/02/23 – 08/17/23 

G 08/17/20 – 08/30/23 

H 08/30/23 – 09/30/23 

I 09/30/23 – 11/05/23 

Note: Letters correspond with those in Figure 3. 
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Figure 3  

Research Field Features Approximate Locations 

 

Note: The vertical line represents the primary East/West Constraint. The diamond shapes 

represent the approximate riser locations, spaced 60 m apart. The letters represent the 

location of Station 2. Image sourced from ESRI, 2011. 

The crop is a multiple harvest (cutting) per-season hay crop. The research field 

grower’s equipment could not fit in some of the areas surrounding Stations 1 and 2, and 

the eddy covariance tower. To simulate cuttings for the areas under the measurement 

sensors, a researcher performed a manual cut within one week after the rest of the field 

was cut. The researchers cut the crop to the same length as the surrounding crop. The 
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crop was then gathered (raked) and placed into an adjacent windrow. Times while the 

researcher was within the footprint of the equipment were recorded, and the 

corresponding data were discarded. 

Bio-Physical Properties  

Fraction of Vegetative Cover 

 The fraction of vegetative cover (FoC) is a crop biophysical input in the TSEB 

model. FoC was estimated using two methods based on canopy photographs and 

shortwave reflectance measurements, respectively. Camera photography and a developed 

clustering code were used as the observed calibration data. Each station was equipped 

with a canopy RGB camera. Camera photographs were recorded every hour. Established 

relationships between a vegetation index, derived from incoming red and near-infrared 

reflectance values, and FoC served as the calibration data. 

When developing the code for finding daily FoC from the camera RGB images, 

multiple methods were considered to determine. Existing software packages to cluster the 

canopy images into vegetation and non-vegetative pixels were evaluated. Arc-Pro GIS, 

Arc GIS, and Canopeo were among those. 

Ultimately, code was written with the researchers’ specifications. The code 

masked the RGB camera images to the same size and location as the proximal infrared 

radiometer footprint. The masked image was then clustered according to pixel color via a 

K-means clustering algorithm. The number of clusters was based on the within-cluster 

sum of square values plotted against the number of K clusters. The point of diminishing 

values gained by adding one cluster was identified and used as the number of clusters. 



18 

 

This is often referred to as the “elbow” method (Umargono, 2019). An upper limit of ten 

clusters was used. 

After clustering, the user was prompted to decide to place each cluster into one of 

five groupings. The groups were “vegetation,” “non-vegetative,” “shaded vegetation,” 17 

“shaded non-vegetative,” and “shadow.” The code saved the total pixel counts for each 

group to a CSV file. Some issues occurred with dew formation on the camera lenses. To 

combat this, desiccant packs were attached to each camera. 

FoC was then calculated by dividing the number of vegetative pixels by the total 

number of pixels. It was ultimately decided to ignore shaded pixels as they were not 

representative of the surface the shadow was on. To limit shadow, solar noon images 

were selected for daily FoC. If solar noon had occurred within two hours of precipitation, 

or an irrigation event, had dew on the camera lens, or was unavailable due to camera 

malfunctions; images within two hours of solar noon were evaluated. Preference order 

was given for one hour before, then one hour after, then two hours before, and two hours 

after solar noon. If no image was available within two hours of solar noon, PyTSEB was 

not calculated during those days. 

For comparison data, red and near-infrared reflectance values were calculated 

from the radiometers. The Normalized Difference Vegetation Index (NDVI) was 

calculated from the reflectance values. FoC was calculated from the relationship set forth 

by Choudhury et al. (1994) equation 11. This will be referenced as equation 1 within this 

paper. VImin and VImax are the maximum and minimum vegetation index values within 

the dataset. Fc is the calculated FoC. n is a calibrated exponent, often called the 

Choudhury exponent. The exponent was calibrated using the minimization of the sum of 
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square differences during the 2022 data. The exponent was then validated using fit and 

biases for the 2023 data. 

𝐹𝐶 = 1 −  [
𝑉𝐼𝑚𝑖𝑛 − 𝑉𝐼

𝑉𝐼𝑚𝑎𝑥 − 𝑉𝐼𝑚𝑖𝑛
]𝑛

 
(1) 

Leaf Area Index 

 LAI was measured using a Plant Canopy Analyzer 2200 (LI-COR, Lincoln, 

Nebraska) in 2023. Collection dates were June 1, June 27, August 17, August 30, and 

October 14. The LAI data were split into calibration, Station 1, and validation, Station 2 

datasets. Because of Station 2’s mobility, two data points were sometimes collected on 

each data collection date (one point at the old location, one at the new). This gave Station 

2 a more robust dataset with which to validate.  

It is well-established that FoC and LAI are related to each other (Li, 2005). 

Camera-generated FoC was fit to observed LAI. The relationship between the two for 

Station 1, calibration, was validated against Station 2. Crop Height 

Crop Height 

Crop height at both stations was observed in 2022 and 2023. Each time a 

researcher was at the site, crop height measurements of grass and alfalfa were made. A 

composite crop height was calculated. The data were split into validation and calibration 

datasets. The 2022 data served as the calibration, and the 2023 data served as the 

validation. Relationships between FoC, LAI, NDVI, and crop height were evaluated. No 

apparent relationship existed. When crop height was compared to SAVI, a reasonable 

relationship was found. 
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Site Specific Inputs 

 There are several site-specific inputs in the TSEB model. Some of those were 

measured directly at the site. Those were the GPS coordinates, elevation, and sensor 

heights. Site spectral and canopy properties are also site-specific inputs. Spectral 19 

properties were evaluated from commonly known ranges for our site's general 

description, ultimately the model’s default inputs were used. The canopy properties were 

also evaluated and ultimately the default values were also used.  

There are a few different versions of the model available to the user. These deal 

with how temperature is partitioned within the model and the resistance model which 

deals with estimating the canopy boundary and soil resistances to heat and momentum 

transport. The options selected were the Priestly Taylor model with the Kustas-Norman 

resistance model (Kustas, 1999). The values used in the site-specific inputs are listed in 

Table 3. 
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Table 3  

Site Specific PyTSEB Values 

Input Value 

Latitude 40.46 

Longitude  -109.56 

Altitude (m) 1665.43 

Temperature Measurement Height (m) 2.25 

Wind Speed Measurement Height (m) 2.4 

Leaf Visible Reflectance Parameter 0.07 

Leaf Visible Transmittance Parameter 0.08 

Leaf Near Infrared Reflectance Parameter 0.32 

Leaf Near Infrared Transmittance Parameter 0.33 

Soil Visible Reflectance Parameter 0.15 

Soil Visible Transmittance Parameter 0.25 

Soil Near Infrared Reflectance Parameter 0.98 

Soil Near Infrared Transmittance Parameter 0.95 

Maximum Canopy Transpiration 1.26 

Soil Roughness  0.01 

G to RN Flux Ratio 0.35 

G Amplitude 0.35 

Stations One and Two TSEB 

 PyTSEB was used to estimate energy fluxes for the canopy sensing data. The 

latent heat flux was used to calculate daily ET values. PyTSEB was run using the Jupyter 

Notebook platform. Station 1 and 2 data had input time steps of quarterly hours.  

20 For data accuracy evaluation, Station 1 and 2 TSEB results were summed into 

hourly data and compared to the eddy covariance results. The eddy covariance tower is 

more appropriate to average on the hourly scale. Daily ET was then compared between 

the TSEB and eddy covariance results as well.  

The data were broken into protected and unprotected sets. 2022 served as 

unprotected data. After running TSEB, several options were considered within this data. 

The ratio of soil heat flux to RN was altered, the albedo was lowered, and times of day, 

and seasonality were explored more independently. Ultimately the default values for the 
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soil heat flux to RN ratio and albedo were kept. Seasonality and time of day were found 

to play a factor within the TSEB results; however, it was decided to keep the dataset 

intact. Time of day and seasonality are discussed in the conclusion.  

Landsat 

 The stations' sensor instrumentation and the eddy covariance tower had different 

footprint sizes. The proximal infrared temperature radiometer footprint was 0.79 m2 . 

Station 1 was very close to the tower, but never within its footprint. Station 2 was only in 

the tower’s footprint at certain locations in 2023. To address the footprint size mismatch, 

PyTSEB was evaluated for Landsat imagery. Landsat has a pixel size between the 

stations and the eddy covariance footprint sizes and thus can serve as an intermediary. 

Pixels can also be evaluated in the wind direction to assess wind effects on the ET values.  

The Jupyter Notebook platform was again used in the local image notebook. 

Local weather data were sourced from Station 1 and the eddy covariance tower for 

incoming solar radiation. FoC was calculated using Equation 1, NDVI was found using 

the Landsat bands for red and near-infrared. LAI was calculated using the derived 21 

relationship between FoC and LAI. Crop height was evaluated from the found 

relationship to SAVI. SAVI was calculated from the Landsat red and near-infrared bands. 

Other site-specific options were left the same as for Station 1 and 2. 
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CHAPTER 4. RESULTS AND DISCUSSIONS 

Bio-Physical Properties Results 

Fraction of Cover 

 Data from 2022 were used as the calibration FoC dataset. Data from 2023 were 

used as the validation data. The 2022 Equation 1-derived FoC was compared to the 2022 

camera-derived FoC. Data fit, and biases are listed in Table 4. The biases and overall 

goodness of fit were encouraging. The mean bias error (MBE, bias) in the calibration 

year was 3% high as a percentage of the mean. The overall fit (R2) was 90%. In 2023, the 

validation year, the bias was 3% again but this time it was low. The overall goodness of 

fit improved to 93%. The root mean square error (RMSE) was low in both magnitude and 

as a percentage of mean. Unity between the two methods are shown in figures Figure 4 

and Figure 5. 

Table 4  

2022 Calibration FoC Statistical Biases and Fit 

Bias 2022 (Calibrate) 2023 (Validate) 

 Value (wm-2) % of mean Value (wm-2) % of mean 

RMSE 0.03 4% 0.08 11% 

MBE 0.03 3% -0.02 -3% 

R2 90%  93%  

Note: RMSE is Root Mean Square Error. MBE is Mean Bias Error. 
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Figure 4  

2022 FoC Calibration Comparison 

 

Note: The solid line represents unity (1:1). 
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Figure 5  

2023 FoC Validation Comparison 

 

Note: The solid line represents unity (1:1). 
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after the drop off from the cutting the FoC still went down for a few days until a local 

minimum, or the “bottom of the u” was reached. FoC then started to rise again. This is 

shown in Figure 26 through Figure 29 in the Appendix.  

 The camera method of determining FoC has the potential to eliminate the need for 

the red and near-infrared radiometers on the stations. This helps with station costs and 

implementation. Reducing the price point of the station is desirable for both management 

and research applications. 

Leaf Area Index 

 The LAI relationship based on camera-generated FoC was evaluated against the 

measured LAI. Station 1 served as the calibration data to find the relationship. The 

Station 2 dataset was more robust and was used as the validation set. The relationship 

between the camera-generated FoC and LAI is displayed in Figure 6. This relationship is 

described in Equation 2.  
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Figure 6  

Station 1 LAI Equation Development 

 

Note: The dashed line represents data linear best fit. 

𝐿𝐴𝐼 = 6 ∗ 𝐹𝑜𝐶 (2) 

The mean bias error was negative for the calibration and validation datasets. This 

is evidence that the estimation of LAI through Equation 2 is lower than the observed. 

However, the MBE and the respective percentage of mean are low in magnitude.  

The validation dataset had a larger bias in magnitude. It is important to note that 

the validation data represents Station 2 in 2023. In that year, Station 2 was moved to 

different locations. Due to the site-specific nature of Equation 2, larger biases and poorer 

fit are expected for the validation data. Table 5 is a list of the summary of the biases and 

fit for LAI, Figure 7 is a plot of modeled vs. measured LAI for the validation data. 
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Table 5  

LAI Biases and Fit 

Bias Calibration Validation 

 Value (wm-2) % of mean Value (wm-2) % of mean 

RMSE 0.15 3.5% 0.77 16% 

MBE -0.024 -0.55% -0.40 -8.3% 

R2 99%  77%  

 

Note: RMSE is Root Mean Square Error. MBE is Mean Bias Error. 

Figure 7  

Leaf Area Index Validation Comparison 

 

Note: The sold line represents unity (1:1). The dotted line represents data linear best fit.  
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Crop Height 

 Crop height was estimated from a relationship found between observed 

measurements and SAVI. The 2022 data were used as the calibration dataset, and the 

2023 data were used as the validation dataset. This is displayed in Figure 8. Equation 3 

was then used to calculate crop height for the entire timeseries and compared against the 

measured heights. 

Figure 8  

Crop Height Equation Development 

 

Note: The dotted represents data exponential best fit. 

Crop Height (m) = 0.08e8.2SAVI (3) 
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Equation 3, this is to be expected. Validation modeled and measured values are presented 

in Figure 9. 

Table 6  

Crop Height Biases and Fit 

Bias Calibration Validation 

 Value (wm-2) % of mean Value (wm-2) % of mean 

RMSE 0.02 7% 1.20 14% 

MBE 0.003 1% 0.07 -1% 

R2 99%  95%  

 

Note: RMSE is Root Mean Square Error. MBE is Mean Bias Error. 

Figure 9  

Crop Height Validation Comparison 

 

Note: The solid line represents unity (1:1). The dotted line represents data linear best fit.  
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PyTSEB 

Unprotected 

 PyTSEB finds the flux for each of the four components of the energy balance: 

RN, G, H, and LE. The unity for those four components of the unprotected data is 

displayed in Figure 10 through Figure 13. The statistical biases and overall fit are in Table 

7. 

Table 7  

Calibration Data Biases and Fit 

Bias RN H 

 Value (wm-2) % of Mean Value (wm-2) % of Mean 

RMSE 104 29% 64 -4181% 

MBE 24 7% -35 2288% 

R2 75%  31%  

Bias G LE 

 Value (wm-2) % of Mean Value (wm-2) % of Mean 

RMSE 40 85% 159 50% 

MBE 12 25% 101 32% 

R2 16%  63%  

 

Note: RMSE is Root Mean Square Error. MBE is Mean Bias Error. 
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Figure 10  

2022 Modeled and Measured RN 

 

Note: The solid line represents unity (1:1). 
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There is some scatter away from unity in the RN. The scatter is both low and high, but 

there is a larger amount of data points scattered high.  

Figure 11  

2022 Modeled and Measured G 

 

Note: The solid line represents unity (1:1). 
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When eddy covariance G was used with hourly canopy sensing data, the LE and 

ET values had negative bias low. This is evidence that G as a constant percentage of Rn 

throughout the day produces a low estimate of G. Great percentages of G to RN were 

calculated. These had negligible effects on LE, indicating model G was biased low but 

inconsistently so. 

Figure 12  

2022 Modeled and Measured H 

 

Note: The solid line represents unity (1:1). 
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biases is a more appropriate method of analysis. The bias is low by 35 W m-2. The RMSE 

value is 64 W m-2. 

Figure 13  

2022 modeled and measured LE 

 

Note: The solid line represents unity (1:1). 
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This has fewer shadow effects on the sensors. Data near solar noon were extracted and 

evaluated by themselves. This resulted in improvements in bias and fit for Rn, H, and G. 

The fit and bias for LE were less desirable than the entire timeseries dataset. Biases and 

fit of solar noon are listed in Table 8. A comparison of modeled and measured energy 

fluxes near solar noon calibration unity is in Figure 14. 

Table 8  

Solar Noon Calibration Data Biases and Fits 

Bias RN H 

 Value (wm-2)  % of Mean Value (wm-2) % of Mean 

RMSE 79 15% 77 1398% 

MBE 40 8% -58 -1046% 

R2 79%  41%  

Bias G LE 

 Value (w/m2) % of Mean Value (wm-2) % of Mean 

RMSE 37 57% 193 43% 

MBE -0.1 -0.1% 165 37% 

R2 18%  60%  

Note: RMSE is Root Mean Square Error. MBE is Mean Bias Error. 



37 

 

Figure 14  

Station 1 and 2 2022 Solar Noon Calibration Energy Summary 
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comparison plot but had negligible effects on the bias and fit. Hourly RSO calculations 

and incoming shortwave timeseries are in Fig. 31 in the Appendix.  

The model was rerun after averaging the quarter-hourly input data into hourly 

values for comparison with the eddy covariance data. The LE bias had only a slight 

change in magnitude. Hourly data were evaluated with G as an input from the eddy 

covariance tower instead of using the modeled values. This again resulted in only minor 

improvements in the magnitude of the LE bias. Hourly LE fluxes with eddy covariance G 

are shown in Figure 32 in the Appendix.  

Weather input data were also evaluated between Station 1 and the eddy 

covariance tower. Weather data were compared for different times of day and seasonality. 

No significant deviations were found in this comparison. Plots of Station 1 versus eddy 

covariance system air temperature and vapor pressure are shown in Fig. 34 and Figure 35 

respectively.  

For the purpose of footprint size comparisons, the energy fluxes modeled from the 

available Landsat imagery were compared against those from Station 1, Station 2, and the 

eddy covariance data at the same time points. The comparison statistics for this analysis 

are in Table 9 and Figure 15. Significant improvement in H and G biases and H fit is 

noted.  
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Table 9  

Landsat biases and fit to eddy covariance tower 

Bias RN H 

 Value (wm-2) % of mean Value (wm-2) % of mean 

RMSE 91 16% 41 146% 

MBE 86 15% -30 -108% 

R2 54%  64%  

Bias G LE 

 Value (wm-2) % of mean Value (wm-2) % of mean 

RMSE 47 60% 204 45% 

MBE 13 17% 187 41% 

R2 0.021%  50%  

Note: RMSE is Root Mean Square Error. MBE is Mean Bias Error. 
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Figure 15  

Modeled Calibration Dataset Energy Fluxes for Landsat, Stations 1 and Station 2
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underneath the station for maintenance were also filtered out. Data gap filling occurred 

when a day had daytime hourly data with gaps 2 hours or less. Reference ET was 

calculated for the data gaps. A ratio of the TSEB to Reference ET values for the timestep 

before and after the gap was applied to the reference ET value of the gap. Even with these 

points filtered out, the ET values follow the general trend of the ET values from the eddy 

covariance tower. 

 Eddy covariance technology does not force closure on the energy balance (RN = 

H+G+LE). The TSEB model forces closure. This can make a significant difference in the 

comparisons. The research team which ran and maintained the eddy covariance tower 

calculates daily closure on the energy balance after the energy balance has been 

processed every year. It is not necessarily appropriate to compare the closed and unclosed 

values. The closure ratio was applied to the ET values for the eddy covariance tower 

results before comparison.  

The ET biases and fit are displayed in Table 10. The timeseries between the two 

stations' ET values is explored in Figure 16 and Figure 17. The vertical lines represent the 

cutting dates. The overall fit was 86%. One interesting trend the researchers observed was 

that the end of season ET was responsible for the majority of the bias. In October, the 

bias responded in a similar pattern to the eddy covariance values but was biased high. We 

were unable to identify the cause of this increased bias. Camera-generated FoC tended to 

be higher than the equation 1-generated FoC, near the end of the growing season. This 

was explored as a possible explanation. No correlation was found. Further refinement 

will be the focus of future research. The unity is displayed in Figure 18. 
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Table 10  

Daily ET Values Biases and Fit 

 Station 1 Station 2 

 Value (wm-2) % of Mean Value (wm-2) % of Mean 

RMSE 0.9 22% 0.9 22% 

MBE 0.6 15% 0.6 15% 

R2 86%  86%  

Note: RMSE is Root Mean Square Error. MBE is Mean Bias Error. 
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Figure 16  

2022 Station 1 ET Timeseries 

 

Figure 17  

2022 Station 2 ET Timeseries 
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Figure 18  

2022 Modeled and Measured ET 
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Protected 

 The 2023 data were protected from any of the aforementioned methods of 

reconciling bias. The 2023 data were analyzed the exact same way the 2022 data were 

ultimately done. The biases and fit of the 2023 data are displayed in Table 11. The energy 

summary unity is displayed in Figure 19 through Figure 22. 

Table 11  

2023 Data Biases and Fit 

Bias RN H 

 Value (wm-2) % of mean Value (wm-2) % of mean 

RMSE 120 34% 57 1193% 

MBE 0.3 0.1% -28 -577% 

R2 69%  26%  

Bias G LE 

 Value (wm-2) % of mean Value (wm-2) % of mean 

RMSE 42 129% 178 56% 

MBE -5 -16% 107 33% 

R2 14%  47%  

Note: RMSE is Root Mean Square Error. MBE is Mean Bias Error. 
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Figure 19  

2023 Modeled and Measured RN 

 

 

Note: The solid line represents unity (1:1). 
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Figure 20  

2023 Modeled and Measured H 

 

Note: The solid line represents unity (1:1). 
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Figure 21  

2023 Modeled and Measured G 

 
Note: The solid line represents unity (1:1). 
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Figure 22  

2023 Modeled and Measured LE 

 
Note: solid line represents unity (1:1). 
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timeseries are displayed in Figure 23 and Figure 24. The daily Unity ET is displayed in 

Figure 25. 

Table 12  

Validation daily ET biases and fit. 

Bias Station 1 Station 2 

 Value (wm-2) % of Mean Value (wm-2) % of Mean 

RMSE 2 37% 2 40% 

MBE 1 31% 2 37% 

R2 66%  75%  

Note: RMSE is Root Mean Square Error. MBE is Mean Bias Error. 
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Figure 23  

2023 Station 1 and Eddy Covariance ET Timeseries 

 

Figure 24  

2023 Station 2 and Eddy Covariance ET Timeseries 
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Figure 25  

2023 Modeled and Measured ET 
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Chapter 5. CONCLUSIONS 

Research Objective Tasks  

Data Collection 

 The implementation of the canopy sensing station prototypes was deemed viable 

for this task. As with any prototype, this was not without challenges.  

Biophysical properties 

 The biophysical properties modeled for the TSEB process had promising results. 

Modeling FoC from camera photography reduces the need for the red and near-infrared 

radiometers. This decreases station price point and maintenance needs. The accuracy of 

FoC from the stations' photography compared well against Equation 1 methods.  

LAI modeling from FoC can reduce the station's need for LAI data collection 

visits. This can also reduce the labor and price point of the station. This method validated 

well against observed LAI. The TSEB model is very sensitive to LAI, so LAI validation 

is of utmost importance. It is good to note that the LAI equation was site specific so for 

future implementation, LAI data would need to be collected in order for the exact 

relationship for that application to be found (Gao, 2022).  

The station crop height was validated well using the relationship found between 

SAVI and observed measurements. This requires the use of red and near-infrared 

radiometers. Methods to calculate crop height that do not require the red and near 

infrared radiometers are discussed in the future applications section. Overall, the part of 

this sub-objective dealing with modeling the biophysical properties was deemed viable.  
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TSEB and ET 

 TSEB modeling had mixed results. In the protected and unprotected hourly data, 

RN had low biases and tight fit. This is similar to other work using the TSEB model 

(Colaizzi, 2014; Liang, 2021). LE was biased high for the hourly data. This bias was 

larger than desired. One recognizable trend was that LE tended to be low in the morning 

and late evenings but high in the middle of the day. Coupling this with the solar noon 

calibration data, where LE had greater bias, seems to indicate that LE is overestimated 

around solar noon.  

ET values follow the general trend of the eddy covariance ET. This is evidence 

that TSEB modeled the interseason relative differences correctly. Forcing closure on ET 

for the eddy covariance tower reduced bias from the LE flux to the ET calculations. This 

reduction in bias is expected to be similar for the protected 2023 data. This indicates that 

the TSEB model is performing better than the flux data indicated. However, the bias is 

still high  

Research Objective 

 The research objective of accurately modeling plot-scale ET using the TSEB 

model with continuous ground based remote sensing technology had some components 

that were successful, some that were unsuccessful, and some that need further evaluation. 

The modeling of ET using the TSEB model with continuous ground based remote sensing 

methods was a success. The continuous portion of the research objective was 

unsuccessful. However, there were less gaps in the data in 2023. Indicating that as 

methods become more refined, continuous monitoring is possible. The model was 50 
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extremely accurate in some places and significantly differed from the eddy covariance 

tower results in other places. 

Future Applications and Recommendations 

 This station setup has the potential to be used to estimate ET at a low cost and a 

manageable scale. Further work with similar stations is planned. Stations also included 

soil moisture and matric potential sensors that were not used in this research. Further 

work involving a comparison between water balance and TSEB-calculated ET is 

possible.  

Recommendations and improvements for several aspects of the research exist. 

Using multiple cameras, photogrammetry can be used to calculate crop. Thus, eliminating 

the need for the red and near-infrared radiometers. The time required to process the 

images to find FoC through the code written is extensive. Machine learning and memory 

could be adapted into the code so classifications are remembered and can be predicted 

with training.  

There exist possibilities for management applications for the stations. 

Implementation in field plots for treatment analyzing is a possibility. Analyzing real time 

ET for plots of high value crops or areas of production issues is another possible 

application that has been discussed. 
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Figure 26  

Station 1 2022 FoC Timeseries 

 

Figure 27  

Station 2 2022 FoC Timeseries 
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Figure 28  

Station 1 2023 FoC Timeseries 
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Figure 29  

Station 2 2023 FoC Timeseries 

 

Figure 30  

Hourly daytime RSO and Incoming Shortwave 

 

Fig. 31. Hourly daytime RSO and incoming shortwave. 
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Figure 32  

Hourly LE Fluxes with Eddy Covariance G 

 

Figure 33  

2022 Air Temperature Unity 

 

Fig. 34. 2022 air temperature unity. 
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Figure 35  

2022 Vapor Pressure Unity 
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