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ABSTRACT 
 
 

Advancing Quantitative Approaches for Estimating Avian Population Responses to  
 

Environmental Change Using a Data-Rich Species: The American White Pelican 
 

by 
 

Aimee M. Van Tatenhove, Doctor of Philosophy 
 

Utah State University, 2024 
 
 

Major professors: Erica F. Stuber, Ph.D. and Clark S. Rushing, Ph.D. 
Department: Wildland Resources 
 

Human-driven environmental change is impacting avian populations globally, and 

technological and analytical advancements are improving our understanding of how 

change drives population trends. However, estimating population dynamics and vital 

rates remains challenging for many species due to modeling limitations and sparse data. 

Improving methods to estimate these species’ responses to change first requires 

validating new approaches on well-studied species. The American White Pelican 

(Pelecanus erythrorhynchos), a Nearctic migratory waterbird, has been studied 

extensively due to conservation concerns and human-wildlife conflict. As a large-bodied, 

data-rich species, pelicans are ideal for testing novel analytical methods using new or 

underutilized data sources. Yet knowledge gaps remain for pelican survival and 

connectivity, threats, and reactions to environmental change. 

My research aimed to advance methods estimating avian survival, space use, and 

migratory connectivity, while improving understanding of pelican population drivers. In 

Chapter 2, I developed a joint recovery model to estimate regional connectivity and 
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survival using mark-recapture data. I applied this model to pelican banding data and 

found that pelicans often remain in the same region across seasons, with substantial 

variation in annual survival by region. In Chapter 3, I quantified environmental niche 

breadth and variability of pelicans. I found that pelicans do not track environmental 

conditions as a population, with notable variation in individual niches, suggesting that 

this population may be resilient to environmental change. Chapter 4 serves as a proof-of-

concept. Here, I used machine learning to extract a pelican radar signature from weather 

radar using locations of GPS-tagged pelicans, then used this signature to predict locations 

of untagged pelicans and generate a pelican-airplane strike index at a local airport. 

Finally, I formally linked local pelican population dynamics to environmental variables in 

Chapter 5, by applying a state-space model to colony count data, then generating colony 

abundance forecasts under various management scenarios. Results suggested that land 

bridge formation between the colony and mainland is likely a driver of local breeding 

population declines. My research highlights variation in pelican response to environment 

depending on population and landscape scales examined, and presents improved 

approaches for estimating survival, migratory connectivity, and space use in avian 

species. 

(215 pages) 
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PUBLIC ABSTRACT 

 
 

Advancing Quantitative Approaches for Estimating Avian Population Responses to  
 

Environmental Change Using a Data-Rich Species: The American White Pelican 
 

Aimee M. Van Tatenhove 
 
 

Advancements in wildlife data collection technology and analysis are helping us 

understand how human-caused environmental change is impacting bird species. Yet data 

collection for many species remains challenging, and often the data are difficult to 

analyze. Improved methods for collecting and analyzing avian data are needed to 

understand how species respond to environmental change. However, before applying new 

methods to poorly understood species, it is crucial to test methods on well-studied species 

to ensure their effectiveness. The American White Pelican is a well-studied species that is 

ideal for testing new analysis methods. Pelicans have been studied extensively due to 

conservation concerns and conflicts with humans. However, gaps still exist in our 

understanding of pelican survival and migratory destinations, threats, and reactions to 

environmental change. 

My dissertation used pelican data to improve methods that estimate avian 

survival, identify environments bird species use, and measure how likely individuals are 

to migrate between regions. In Chapter 2, I developed a mathematical model to estimate 

how many pelicans migrate between North American regions and their resulting survival 

probabilities. I found that pelicans often remain in the same region year-long, with 

substantial variation in survival depending on location. In Chapter 3, I measured 

environmental conditions favored by pelicans and how this varied between individuals. I 



 vi 
found that pelicans do not rely on specific conditions as a population, and that individual 

use varies substantially, suggesting population resilience to environmental change. 

Chapter 4 investigated the feasibility of extracting radar signatures of flying birds from 

weather radar using location data from GPS-tagged pelicans. Using this radar signature, I 

predicted locations of untagged pelicans across my study area and developed a pelican-

airplane collision risk index for a local airport. In Chapter 5, I used a mathematical model 

to estimate how environmental conditions affected pelican colony abundance, then 

estimated future abundance under various management scenarios. I found that land bridge 

formation between the colony and mainland is a likely cause of abundance declines. My 

research offers improved analytical methods for avian populations, and highlights that 

birds may respond to environmental change differently depending on the landscape and 

population scales examined. 
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CHAPTER I 

 
INTRODUCTION 

 
 

Human-driven environmental change is impacting avian populations globally, but 

these impacts differ across populations, years, and seasons (Dunham et al., 2021; 

Rushing et al., 2021; Sillett et al., 2000). Altered temperature and precipitation regimes, 

land-use changes, human-wildlife conflict, environmental contaminants, and disturbance 

drive avian population dynamics, space use, and demographics in complex ways, at 

varying spatial and temporal scales (Bateman et al., 2020; Donnelly et al., 2020; 

Eglington & Pearce-Higgins, 2012; Keith, 2005). However, avian response to 

environmental change—and the drivers underlying these responses—remain largely 

unidentified at scales relevant to management, conservation, and habitat protection for 

many species. Our ability to conserve struggling species depends on our ability to 

identify these diverse drivers and quantify and predict resulting changes in species’ 

population dynamics at appropriate management and conservation scales (Davis et al., 

2023). 

As avian tracking technology and statistical methods improve, so does our ability 

to identify drivers of population dynamics and to estimate population trends. New 

technologies are generating species-specific data of various types at unprecedented 

temporal and spatial resolutions (McKinnon & Love, 2018; Nathan et al., 2022). With 

this accumulating wealth of data, we can begin to infer links between observed changes 

in demographic rates, range shifts, and space use, and their respective underlying drivers 

with the expanding toolbox available to analyze these datasets (Zipkin et al., 2021). 

Improved integrative methods can expand the utility of data sources that may not yet 



 2 
offer useful insight as standalone products (Zhao et al., 2020). For example, machine 

learning can untangle non-linear effects of environmental conditions on populations 

(Cutler et al., 2007), and computational and modeling advancements have allowed 

application of Bayesian methods to large datasets (e.g., de Valpine et al., 2017). Spatial 

and temporal predictions are improving as well, as remotely sensed data increases in 

scope and resolution, further improving our understanding of avian population declines 

and informing targeted population management and conservation (Tredennick et al., 

2016). Considering we now have many well-studied avian species with increasingly large 

datasets available, data-rich species are ideal starting points with which to characterize 

population dynamics across multiple scales, relate demographics to underlying drivers, 

and to explore new ways of inferring population space use and demographic rates. 

The American White Pelican (Pelecanus erythrorhynchos; hereafter “pelican”) is 

a migratory waterbird species that has been the focus of long-term study and management 

efforts since the 1960s. Abundant data across years and sites exist for this species, 

including long-term breeding colony count datasets across its range, high-resolution 

location data across the full annual cycle, and over a century of band reencounter data. 

Breeding colony counts have revealed both dramatic localized population declines and 

recoveries over the past century (Keith, 2005; King & Anderson, 2005; Moulton et al., 

2018; Murphy, 2005), and location data have quantified predation on aquaculture and 

game fish species, daily activity budgets, and high-use wintering habitats (King et al., 

2016; King & Werner, 2001). Banding reencounters collected across North America have 

characterized breeding colony fidelity and delineated the boundary of an eastern and 

western metapopulation (Anderson & Anderson, 2005; Hendricks et al., 2002; Kijowski 
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et al., 2020). However, significant gaps still exist in our understanding of pelican 

population impacts from current and historical threats, regional survival, migratory 

connectivity, and expected reactions to rapid environmental change. 

Historically, hypothesized threats to pelicans included habitat loss, disease, and 

the widespread use of pesticides (including DDT, toxaphene, endrin, and other 

organochlorine pesticides), exposure to which resulted in reduced nest success and direct 

adult mortality (Anderson et al., 1969; Boellstorff et al., 1985; Hendricks et al., 2002). 

Conversely, proliferation of aquaculture within pelican wintering grounds has provided a 

steady food source for overwintering individuals in recent decades (King et al., 2010), 

while wetland restoration and organochlorine bans may underlie range-wide population 

growth (Murphy, 2005). Current concerns include breeding colony disturbance (Moreno-

Matiella & Anderson, 2005), human-wildlife conflict (Budy et al., 2022; Kijowski et al., 

2020), and desiccation of foraging, breeding, and stopover sites, especially in the western 

United States (Moulton et al., 2018). However, migratory behavior complicates our 

understanding of these threats and their effects on pelican populations. Band recoveries 

suggest that pelican metapopulations mix (Anderson & Anderson, 2005), but the extent to 

which mixing occurs and how it varies spatially remains relatively unknown. Population 

drivers in one location may affect only a portion of the pelican population or its entirety, 

depending on the extent of migratory connectivity, with significant implications for how 

we address conservation and management at local and population scales. 

Given that pelicans are long-lived and highly reliant on disturbance-free 

waterbodies for breeding and foraging (Knopf & Evans, 2020), investigating pelican 

population drivers can provide unique insights into the long-term health of imperiled 
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aquatic habitats across the continent. In particular, saline water bodies and the 

surrounding wetlands that the western pelican population relies on for breeding and 

foraging provide significant ecosystem services and host a large number of species 

throughout the year compared to other aquatic ecosystems (Bobbink et al., 2006; Utah 

Wetlands Interpretive Network, 2006; Wurtsbaugh et al., 2017). Saline lakes are facing 

catastrophic declines globally (Saccò et al., 2021; Wurtsbaugh et al., 2017), and research 

into species using these habitats, including pelicans, may provide insight into how losing 

these landscape features may impact avian populations at local, regional, and 

intercontinental levels (Audubon, 2018; Conover & Bell, 2020). Great Salt Lake, Utah, 

provides a timely example of how saline lake declines may drive avian population 

dynamics at larger scales. Mineral extraction, encroaching development, and agricultural 

and urban water consumption threaten Great Salt Lake and its surrounding wetlands, that 

pelicans and other water-reliant avian species (e.g., waterfowl, waterbirds, and 

shorebirds) depend on for breeding, foraging, and migratory stopover habitat (Conover & 

Bell, 2020; Kijowski et al., 2020). Great Salt Lake historically contained one of the 

largest, highly productive pelican breeding colonies in the western metapopulation, but 

near complete nesting failure and subsequent colony abandonment in summer 2023 

underscores the severity of environmental impacts to avian populations using Great Salt 

Lake’s resources. Rising salinity levels and historically low water levels are expected to 

continue to threaten pelican populations using Great Salt Lake, with implications for 

survival and population dynamics of the western pelican metapopulation, in addition to 

nearly 100 other water-reliant species Great Salt Lake hosts annually (Tavernia et al., 

2021). 
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As a data-rich species, pelicans are ideal candidates for quantifying effects of 

environmental change on population trends and to explore new data integration and 

analysis methods. In the following chapters, I leverage diverse data sources across 

multiple landscape scales to estimate pelican survival and migratory connectivity, 

quantify pelican niche and expected resilience to climate change, explore novel methods 

to estimate airspace use, and link declining pelican abundance to environmental drivers. 

This work fills significant knowledge gaps in our understanding of broad and fine scale 

pelican population dynamics and the environmental drivers underlying these trends. 

Furthermore, the methods detailed in the following chapters are applicable to species 

beyond pelicans, and may provide important stepping stones for future analyses of avian 

data. 

Specifically, I employ a novel multistate joint recovery model (Chapter 2), 

parameterized in continuous time with pelican band reencounter data, to estimate pelican 

migratory connectivity and characterize survival by migratory strategy, then identify 

potential drivers of these differences range-wide. This modeling framework is 

computationally efficient and uses all pelican banding data available since routine pelican 

banding began in the 1960s, including data from non-reencountered individuals, to 

estimate band reencounter probabilities, survival, and migratory connectivity between the 

breeding and wintering ranges. By including data from individuals never seen again, this 

modeling framework reduces model bias to provide accurate estimates of survival and 

migratory connectivity and improve our understanding of spatially-explicit conservation 

needs (Cohen et al., 2014; Korner‐Nievergelt et al., 2010). 
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Species environmental niche breadth and variability may underlie population-

level responses to intensifying climate change (Carscadden et al., 2020). Despite growing 

populations range-wide, pelicans’ heavy reliance on water resources for breeding and 

foraging may limit their ability to adapt to environmental changes. Niche breadth and 

niche variability at individual and population levels may buffer environmental impacts at 

the species level (Fandos et al., 2020), but how much niche use varies is unknown for the 

western metapopulation of pelicans. In Chapter 3, I quantify niche breadth and variability 

for pelicans across the Pacific Flyway to characterize expected pelican reactions to 

climate change. I use a multi-year GPS location dataset collected from multiple 

individuals across breeding and non-breeding ranges to calculate population- and 

individual-level niche characteristics. Furthermore, I compare my findings to a previous 

analysis conducted on the eastern metapopulation (Illán et al., 2022) to characterize 

differences between metapopulations, with implications for management and expected 

population trends under climate change. 

Broadscale weather radar is increasingly used as a tool to quantify avian 

migration, but has generally been restricted to species-agnostic measures (Guo et al., 

2023; Horton et al., 2019). In Chapter 4, I explore the feasibility of combining 

information from individual-level GPS location data with broadscale weather radar data 

to build a species-specific radar signature of pelicans. I use an ensemble machine learning 

algorithm to characterize pelican radar signatures from NEXRAD weather radar data, 

then use this radar signature to predict pelican occurrence within radar airspace. This 

research is focused on airspace above Utah’s Great Salt Lake, an important breeding and 

foraging site for pelicans within the western metapopulation. From these predictions, I 
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characterize spatial and temporal pelican airspace use above Great Salt Lake, to identify 

times and locations of high airspace use. I use these estimates to improve our 

understanding of habitat use throughout the breeding season and build a monthly pelican-

airplane strike hazard metric at the Salt Lake City International Airport, a high-traffic 

airport located near important pelican foraging grounds. 

Despite range-wide population growth, pelican breeding colony count data from 

across the Intermountain West suggests that pelican breeding populations are declining 

regionally. However, no attempts to formally tie population trends to environmental 

factors have been undertaken. Regional water limitations from a multi-decade drought 

(Williams et al., 2022; Zhang et al., 2021) and increasing agricultural and urban water 

consumption (Null & Wurtsbaugh, 2020; Wurtsbaugh et al., 2016) are hypothesized to 

have driven declines, but other local and regional conditions may influence observed 

population dynamics. Using a long-term colony count dataset, I formally link 

environmental drivers to population declines and forecast population under relevant 

environmental and management scenarios (Chapter 5). I use a state-space modeling 

framework to appropriately account for over- and under-counting associated with colony 

counts, and quantify effects of both local and broadscale environmental drivers to inform 

the scope and aims of conservation and management strategies for this declining 

population. Finally, in Chapter 6, I conclude with an overview of my results and their 

importance to ecology and conservation. 
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CHAPTER II 

 
MODELING SURVIVAL AND CONNECTIVITY OF A MIGRATORY WATERBIRD  

 
USING A CONTINUOUS-TIME, MULTI-STATE APPROACH 

 
 

 
ABSTRACT 
 

Survival may be driven by markedly different anthropogenic impacts and 

environmental conditions across the full annual cycle, including human development, 

habitat loss, pesticide use, drought, and disease. Understanding how and why survival 

rates vary spatially, and the degree of population interconnectivity between regions is 

crucial to crafting targeted conservation initiatives and for predicting future population 

dynamics. Even so, regional connectivity and variation in annual survival remain poorly 

understood for many species due to limited data or difficulties in analyzing existing 

datasets. One of these species, the American White Pelican (Pelecanus erythrorhynchos), 

is a large Nearctic waterbird that has experienced notable spatial variation in population 

trends across its range. Regional survival and connectivity are largely unexplored for this 

species despite the existence of long-term datasets from which survival and connectivity 

can be estimated. 

Here, I describe a novel continuous-time joint recovery model applied to 63 years 

of band recovery and resight data from the North American Bird Banding Laboratory to 

quantify migratory connectivity and survival between American White Pelican summer 

and winter ranges. Band recovery data are typically modeled in discrete time, but band 

recoveries may occur at any point throughout the year, making continuous-time models 

more appropriate and computationally efficient for these data types. My approach also 
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efficiently handles large numbers of undetected individuals, which vastly reduces 

computational time for large band recovery data sets. Results from this analysis indicate 

that a majority of individuals remained in the region they were banded in throughout the 

year. Annual survival varied by migratory strategy, likely due to spatial variation in 

environmental conditions and anthropogenic impacts. Mean annual survival was high 

(72.1% ± 0.9%) for individuals that were banded in and remained in the eastern United 

States throughout the year. Conversely, individuals that were banded in and remained in 

the western United States throughout the year experienced low survival (48.4% ± 2.5%). 

These results offer important context for understanding historical pelican population 

dynamics, and may be used to inform current and future management strategies for 

American white pelicans across North America. 

 
INTRODUCTION 
 

Estimating survival and movement is critical to conserving avian populations as 

they decline globally. Migratory species have faced population declines of > 25% over 

the past half-century (Rosenberg et al., 2019; Vickery et al., 2023), and are in clear need 

of conservation programs that target factors driving negative population trends. However, 

survival and movement of migratory species are inherently linked, complicating our 

understanding of what is driving these declines. Individuals may encounter differing 

environmental conditions, resource availability, disease, and disturbance between 

migratory regions (Klaassen et al., 2014; Paxton et al., 2017; Rushing et al., 2017), with 

implications for their survival depending on the set of conditions they encounter. 

Quantifying seasonal migratory connectivity—the degree to which areas within a species’ 

range are linked by migratory movements of individuals—can reveal how population 
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trends are influenced by spatially heterogeneous conditions depending on the strength 

and spatial makeup of connectivity across populations (Cohen et al., 2014; Cohen et al., 

2018; Robinson et al., 2016). By understanding what percentage of a population moves 

and where, we can estimate movement-specific survival rates to identify relevant 

population drivers (Arnold et al., 2018; Rushing et al., 2021), understand source-sink 

dynamics across populations (Brawn & Robinson, 1996; Tittler et al., 2006), and 

parameterize population models for use in conservation and management planning 

(Arnold et al., 2018; Davis et al., 2023).  

Bird banding has a rich history in North America and Europe, and band 

reencounters have provided an important source of survival and movement data over the 

past century (du Feu et al., 2016; Smith, 2013). Comprehensive banding programs, like 

that of the U.S. Geological Survey’s Bird Banding Laboratory (BBL), compile avian 

banding data from researchers across the United States and Canada, and subsequent 

reencounter date, geographic coordinates (regardless of global location), and live or dead 

status of reencountered banded individuals. Banding records from these banding 

programs contain substantial data with which to estimate parameters across many sites, 

often going back decades, and are freely available for research use. Banding data have 

been used to parameterize adaptive harvest management models for waterfowl (Nichols 

et al., 2007; U. S. Fish and Wildlife Service, 2021) and estimate survival and migratory 

connectivity across broad spatial and temporal scales, revealing conservation-relevant 

survival and movement patterns (e.g., Anderson & Anderson, 2005; Barker et al., 2005; 

Fernández-Ordóñez & Albert, 2023; Robinson et al., 2016). 
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Despite the wealth of information banding datasets contain, these data present 

considerable modeling challenges and are generally underutilized as a result (Korner‐

Nievergelt et al., 2010; Korner-Nievergelt et al., 2012). Long-term band reencounter 

datasets frequently contain tens to hundreds of thousands of individual encounter 

histories with numerous reencounters per individual, and therefore require 

computationally efficient modeling frameworks to analyze. Low and heterogeneous band 

reencounter probabilities inherent to these datasets may also make estimating regional 

survival and migratory connectivity difficult (Cohen et al., 2014; Korner-Nievergelt et 

al., 2012; Perdeck, 1977). Ecologists have long been seeking solutions for estimating 

these parameters from banding data, including through complex modeling frameworks 

and formulating band reencounter models within popular modeling software (e.g., Barker 

et al., 2005; Brownie et al., 1993; Robinson et al., 2016). Until recently, most software 

programs used to estimate survival from band reencounter data collected continuously 

through time (e.g., M-SURGE (Choquet et al., 2004), MARK (White & Burnham, 1999), 

and SURVIV (White, 1983)) were created to analyze VHF-based location data, which are 

often collected on a fixed temporal schedule. Creating custom analyses is often out of 

reach for many ecologists (Fouchet et al., 2016; Rushing, 2023). As a result, continuous-

time band data are frequently discretized for use in discrete-time frameworks by binning 

data into regular time periods (often seasons or years), defined a priori by researchers 

(e.g., Adams et al., 2006; Heupel & Simpfendorfer, 2002), which typically results in 

information loss. Discretizing continuous-time reencounters may also cause parameter 

bias (Barbour et al., 2013; Fouchet et al., 2016; but see Pautrel et al., 2023), especially 

when temporal bins are large, as individuals reencountered at the beginning of a bin are 
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modeled as having the same survival and reencounter probabilities as those 

reencountered at the end of a bin. 

Here I introduce a continuous-time, multistate joint recovery model that estimates 

survival rates, live and dead reencounter rates, and migratory transition probabilities from 

band resight and recovery data. This modeling framework regards time between 

detections as a random variable, allowing for estimation of survival from irregularly 

spaced live and dead detections. Detection rates of marked individuals may vary spatially 

by observer effort and density, and failure to account for spatial variation may lead to 

parameter bias (Cohen et al., 2014; Korner‐Nievergelt et al., 2010). Accordingly, I 

include data from both reencountered and non-reencountered individuals to estimate live 

and dead detection rates and migratory transitions by region. First, I use simulated 

banding datasets, generated from a range of ecologically plausible survival and detection 

probabilities, to demonstrate that the model produces unbiased estimates of survival and 

movement. I then apply the model to band reencounter data from American White 

Pelicans (Pelecanus erythrorhynchos; hereafter “pelican”), a Nearctic migratory 

waterbird species of research interest due to this species’ sensitivity to disturbance at 

breeding colonies and conflict with sport fisheries. Annual survival and regional 

transition probability estimates produced by this analysis are consistent with available 

published estimates and provide new estimates for regions previously lacking data. 

Together, survival and regional transition estimates reveal how spatially heterogeneous 

conditions across breeding and wintering grounds influence regional survival, and offer a 

roadmap to explore future research and conservation initiatives for the most beneficial 

effect on the overall population. 
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METHODS 
 
 
Model description 
 

This model considers individuals of any age that were captured alive and banded 

so that they may be subsequently identified as individuals at any point in time after the 

initial banding encounter. For each reencountered individual i = 1, 2, … , N, the time, 

state (alive or dead), and location of each encounter u are summarized as a history γi with 

length Ui. Time between encounters (Δti,u), in fractions of months, is modeled beginning 

at the individual’s initial banding encounter as ti,0 = 0 through the end of the study period 

T, the date of the most recent band reencounter in the dataset. Initial banding encounters 

can occur any time during the study period. Based on where an individual is banded and 

subsequently migrates to, each reencountered individual is assigned a migration strategy 

m. Migration strategies are defined as the combination of the region an individual was 

initially captured and banded in (“banding region”) and the region an individual migrates 

to (“migratory region”), where banding region j ∈ 1, 2, …, J and migratory region k ∈ 1, 

2, …, K. Individuals that are never reencountered or are only reencountered outside of 

focal seasons (e.g., an individual reencountered only in spring, when we aim to model 

summer to winter migration) are assigned an “unknown” migration strategy. 

I use a multi-state framework and follow conventional joint recovery model 

definitions for three states: “alive”, “recently dead”, and “long dead” (hereafter, “dead”). 

I use the two dead states to distinguish between individuals that have died recently and 

are still recoverable on the landscape (e.g., not yet decayed), and those where individuals 

have been dead long enough that they are very unlikely to be reencountered (i.e., they 

have decayed and their bands are lost; Kéry and Schaub, 2012). This distinction accounts 
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for the differing recovery probabilities of individuals that are dead but not decomposed 

beyond recognition—especially important for large, white birds like pelicans, which are 

relatively easy to reencounter when dead but intact—versus recovery probabilities of 

bands from individuals that have decomposed completely. Migratory strategy-specific 

mortality hazard rates hm (hereafter, “hazard rates”) govern the rate of transition between 

alive and recently dead states. Unlike discrete-time formulations of the model, in which 

individuals typically transition from the recently dead to the dead state after one interval, 

the continuous-time formulation allows individuals to make this transition at any point in 

time. I therefore also define a parameter ɸ that governs the transition rate from recently 

dead to dead and allow the model to estimate how long individuals remain in the recently 

dead state. I assume ɸ does not vary migration strategy. State transitions are governed by 

using 3 x 3 intensity matrix Q for each migration strategy: 

 

Qm = �
-hm hm 0
0 -ɸ ɸ
0 0 0

� . 

 

Individuals cannot transition out of the unobservable long dead state, and 

therefore the last row of Q is all zeros. 

Because detection rates are likely to vary spatially (Cohen et al., 2014; Korner‐

Nievergelt et al., 2010), and between states and tag type (e.g., metal leg bands only or leg 

bands and high-visibility auxiliary markers), live (p) and recently dead (r) detection rates 

are modeled as separate parameters, based on tag type status w and migratory strategy m 

of each individual. State-specific live and recently dead detection are modeled as 3 x 3 

intensity matrix 𝚲𝚲: 
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Λw,m = �
pw,m 0 0

0 rw,m 0
0 0 0

� . 

 

Long dead individuals (i.e., 𝚲𝚲 [3, 3]) are considered unobservable and therefore 

have a detection rate of 0. Note that p and r are encounter rates, not probabilities, and are 

interpreted as the expected number of encounters within one unit time (i.e., month).  

Finally, possible migration strategies are modeled as a J x K transition probability 

matrix Ψ: 

 

Ψ = �
ψ1,1 ⋯ ψ1,K
⋮ ⋱ ⋮

ψJ,1 ⋯ ψJ,K

� . 

 

On-diagonal elements represent the probability of remaining within a region, 

while off-diagonal elements represent the probability of transitioning from row region to 

column region. I assume that all possible transitions between regions are represented and 

that this is a closed population (i.e., no immigration into or emigration out of the study 

area by banded individuals occurs); therefore, Ψ rows must sum to 1. 

To reduce model complexity, I regard all individuals that were never 

reencountered as having been banded at the same time for a given year and region—

likely a reasonable assumption for species that are banded in large cohorts (e.g., colonial 

species). This sets the duration between banding date and the end of the study period to 

be identical for all individuals within a region and year, allowing the model to calculate a 
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single likelihood by annual cohort c = 1, 2, … , C for each banding region. I set each 

cohort’s banding date to equal the mean banding date for all individuals by region and 

year. 

 
 
Likelihood estimation 
 

By assuming Q and 𝚲𝚲 rates remain constant for individuals across the study 

period, rows of hazard rate matrix Q sum to 0 and Q elements are converted to 

probabilities over each Δt interval as exp{QΔt}(Rushing, 2023). Similarly, by assuming 

p and r remained constant, 𝚲𝚲 elements are converted from detection rates to probabilities 

over each Δt interval as exp{−𝚲𝚲Δt}𝚲𝚲. The likelihood of each reencounter u is: 

 

Γi,u = �exp�QΔti,u-ΛΔti,u�Λ�Ψj,k = �exp�(Q-Λ)Δti,u�Λ�Ψj,k , 

 

where 𝚪𝚪i,u is a matrix with elements indicating the state-specific probabilities of 

being reencountered at time Δti,u. An individual’s last detection to the end of the study 

period is similarly: 

 

Γi,T-Ui = �exp�(Q-Λ)Δti,T-Ui�Λ�Ψj,k , 

(2.1) 

where 𝛥𝛥𝑡𝑡𝑖𝑖,𝑇𝑇−𝑈𝑈𝑖𝑖 is the time between an individual’s last reencounter and the end of 

the study period T. 

In cases where an individual’s migration strategy is unknown, the model estimates 

missing migration strategies by marginalizing over all possible strategies, conditional on 
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the individual’s banding region. For example, the likelihood contribution for an 

individual banded in region j = 1 but without a known migration strategy would be 

modeled as: 

 

Γi,u = (exp{(Q-Λ)Δti,u}Λ)Ψ1,1 + ... + (exp{(Q-Λ)Δti,u}Λ)Ψ1,K . 

 

This individual’s likelihood from Ui to T is similar to Eq. 2.1, except marginalized 

over all possible regional transitions: 

 

Γi,T-Ui = �exp�(Q-Λ)Δti,T-Ui�Λ�Ψ1,1 + ... + �exp�(Q-Λ)Δti,T-Ui�Λ�Ψ1,K . 

 

Each individual’s contribution to the likelihood is: 

 

Li = fi �∏ Ωi,u
Ui+1
u=1 �1 , 

 

where fi is a vector indicating an individual’s initial live or dead state (here, all 

individuals were first encountered as alive), Ωi,u is a 3 x 3 matrix containing hazard, live, 

and dead detection probabilities for each reencounter, and 1 is a 3 x 1 matrix containing 

all 1s (Jackson et al., 2003). Because we cannot know an individual’s live or dead state 

past its last reencounter, I also defined 3 x 3 matrix 𝛀𝛀𝑖𝑖,𝑇𝑇−𝑈𝑈𝑖𝑖 that contained all possible 

hazard, live, and dead detection probabilities, based on the individual’s last observed 

state. 
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For individuals that were banded and never seen again, the model marginalizes 

over each possible migration strategy, conditional on banding region, to calculate the 

likelihood of not being encountered from the banding date T as: 

 

Γc,T-Uc = �exp�(Q-Λ)Δtc,T-Uc�Λ�Ψ1,1 + … + �exp�(Q-Λ)Δtc,T-Uc�Λ�ΨJ,K , 

 

where c is annual cohort 1, 2, … , C.  

The model calculates each non-reencountered cohort’s contribution to the total 

likelihood as: 

 

ℒc = fc �ΩUc�1 ✕ Nc . 

 

where 𝛀𝛀𝑈𝑈𝑐𝑐  is a 3 x 3 matrix containing hazard, live, and dead detection 

probabilities for each cohort and Nc is the number of individuals in each cohort. 

 
Simulations 
 

To assess model performance, I simulated 100 pelican banding datasets using a 

range of values for h, p, r, ɸ, and ψ. I then quantified bias and precision of model 

estimates by calculating the mean difference between estimated and simulated values, 

and root mean squared error (RMSE) for all parameters. Each dataset contained 

encounter histories for 1,000 individuals, including never reencountered individuals. I 

randomly removed one third of known migration strategies for individuals that were 

reencountered at least once to simulate missing migration strategies in real world data. 

Simulated h, p, and r parameters were generated using a random effects structure for each 
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dataset, under the assumption that these parameters were generated by the same 

underlying process across all migration strategies. Mean hazard rates h were randomly 

selected from a uniform(0, 0.06) distribution and mean values of p and r from uniform(0, 

0.01) distributions, which I considered ecologically realistic values (roughly approximate 

to annual h probabilities of 0.5 and annual p and r probabilities of 0.1; see Figure 2.2). 

Migration strategy-specific rates were then generated from a normal(log(μ), 0.5) 

distribution, where μ represents the mean rate for h, p, and r parameters. I drew ɸ values 

from a gamma(shape = 1, rate = 1) distribution, and I allowed ψ for each banding region 

to take on a range of values from 0–1, where all possible transitions must sum to 1. 

Diffuse gamma(1, 20) priors were used for all parameters. Some simulated encounter 

history datasets contained very few reencountered individuals and were difficult for the 

model to converge on parameter estimates. I therefore refit any models that did not 

converge to new encounter history datasets until I had a total of 100 converged models. 

 
Application to American White Pelican banding data 
 

Pelicans are a widespread North American migratory waterbird species with an 

extensive long-term band reencounter dataset. Pelicans have attracted considerable 

conservation and management interest since the 1960s, due to their sensitivity to 

disturbances and perceived impact on sport fish populations. From the 1960s onward, 

pelican populations have been impacted by severe drought and changing precipitation 

regimes (Williams et al., 2022; Zhang et al., 2021), agricultural water diversions (Null & 

Wurtsbaugh, 2020; Wurtsbaugh et al., 2016), predator disturbance (Moreno-Matiella & 

Anderson, 2005; Parnell et al., 1988), degradation of breeding habitat (Anderson & King, 

2005), and organochlorine pesticides (Keith, 1966, 2005). Pelican populations are 
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estimated to be increasing range-wide (Sauer et al., 2019), but range expansion eastward 

(King & Anderson, 2005) and population declines at large western breeding colonies 

(Moulton et al., 2018) suggest region-specific conditions may be driving populations in 

diverging ways. However, regional connectivity and survival of pelican populations 

remains poorly understood. 

I applied the modeling framework described above to 63 years (1960–2022) of 

U.S. Geological Survey BBL pelican band return data, totaling 163,888 uniquely banded 

individuals, with 7,691 reencounters of 6,681 individuals. Pelicans have been banded 

routinely since the 1960s across the breeding grounds (United States and Canada 

Intermountain West and the Prairie Pothole regions). Banding typically occurs at 

breeding colonies in the summer, on hatch-year pelicans that have reached adult size, but 

have not yet gained the ability to fly. Pelicans were banded predominantly as juveniles 

across both eastern and western regions (percent banded as juveniles east = 99.9%, west 

= 99.0%). All banded pelicans receive a federal butt-end leg band with a unique 

identification number, and some individuals also receive field-readable auxiliary markers 

(e.g., high-visibility leg bands and wingtags), depending on when and where banding 

activities were conducted. I assumed that individuals experienced no tag effects (tags 

weighed under 3% of an individual’s bodyweight) or tag loss. 

Bird Banding Lab datasets include information about how bands are acquired and 

the condition of the banded bird at time of band reencounter, if available. Bands may be 

discovered many years after an individual died or reported without information about 

where bands were initially recovered, so I excluded 1,381 band recoveries from dead 

individuals with unreliable time and location of death (e.g., bands were reported after 
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being purchased online or were found unattached to a bird). I also excluded individuals 

with missing or improbable reencounter dates (e.g., reencounter month was listed as > 12; 

n = 1,259), individuals that were reported as having an unknown alive or dead state at 

time of reencounter (n = 70), and one individual that was recovered greater than 26.4 

years after banding, which is the maximum recorded wild AWPE lifespan (Clapp et al., 

1982). Finally, I excluded two individuals with improbable reencounter locations (e.g., in 

the middle of the ocean) and three individuals with over 30 reencounters. Most of these 

encounters occurred over the course of 3–4 months in urban areas, and did not represent 

detection probabilities of other individuals within their respective regions. 

I delineated three migratory regions of interest based on previously-defined 

metapopulation boundaries and predicted spatial differences in mortality and detection 

rates (Anderson & Anderson, 2005; Anderson & King, 2005; Figure 2.1): “east”, “west”, 

and “south”. A majority of individuals were banded during the summer, so I estimated 

summer to winter migratory connectivity between banding regions and migratory regions 

by removing individuals banded outside of summer months (June–September) and 

assigning migration strategies to individuals with reencounters occurring in the winter 

(November–March; Knopf & Evans, 2020) based on which migratory region they were 

reencountered in. For each banding region (east and west), individuals could use one of 

three migration strategies (east, west, south), resulting in a total of six migration 

strategies m (east-east, east-west, east-south, west-east, west-west, west-south). No 

pelicans were banded south of the US-Mexico border during the breeding season, 

therefore I set transition probabilities originating in the southern region to 0. A majority 

of reencountered individuals were not observed during winter months (~67%; 4,476 of 
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6,681) and could not be assigned a migration strategy. I treated the migration strategy of 

these individuals as missing data, allowing the model to estimate missing migration 

strategies. Given nearly all individuals were banded as juveniles, assigning unknown 

migration strategies to those recovered dead outside of winter months likely reduced 

occasions where bands were recovered from individuals that died at the colony after 

banding. This approach likely helps avoid overestimating the probability of remaining 

within a region throughout the year. Nearly all (~98%; 163 of 167) individuals that were 

reencountered during multiple winters used the same migration strategy across years, so I 

further assumed that once an individual chose a migration strategy, they did not deviate 

from that migration strategy in subsequent years. 

I used the same random effects structure for h, p, and r parameters as in my 

simulations, under the assumption that survival and detection were generated by the same 

processes across migration strategies. Mean h, r, and p rates were modeled using gamma 

distributions (Table 2.1) and rates specific to each migration strategy were modeled with 

a normal(log(μ), σ2) distribution, where μ represents the mean rate across all migration 

strategies (and tag types, for p and r rates) and σ2 is the variance for each parameter. 

Large monthly rates approach 1 when converted to annual probabilities, so I used a low 

variance of 0.005 for h, p, and r to pull migration strategy-specific monthly rates toward 

mean population rate parameter values. 

I leveraged published estimates of pelican survival and reencounter probabilities 

to inform model parameters and to improve convergence. I incorporated these estimates 

into the model using informative priors for h, p, and r derived from previous studies of 

pelican survival and movement (Clark & DiMatteo, 2018; Hendricks et al., 2002; J. Neill, 
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UDWR, written communication, 2016; Kijowski et al., 2020; King & Grewe, 2001; 

Ryder, 1981; Strait & Sloan, 1975; see Table 2.1 for distributions). I translated published 

estimates to gamma priors by first converting annual survival, live resight, and dead 

recovery probabilities to monthly rates, then calculated the mean and standard deviation 

(sd) for each rate and converted these to gamma rate parameters as 1/(sd(h, p, 

r))2/mean(h, p, r). The goal of these gamma rate parameters was to pull particularly high 

rate estimates toward realistic values in cases where the model had little information to 

estimate parameter values with, because moderate uncertainty in monthly rate estimates 

may translate to large uncertainty (and unrealistic estimates) in annual probabilities. 

However, I set all gamma shape parameters to 1, which did not restrict the lower bounds 

of the gamma prior distribution (Figure 2.2). I did not have published information 

available on annual recently dead to dead rates, so I placed a weakly informative 

gamma(1, 30) prior on ɸ. 

All models were fit in Stan (Carpenter et al., 2017), using R package rstan 

(version 2.21.5; Stan Development Team, 2022) in R (v4.1.3 R Core Team, 2022), with 

200 warmup, 500 total iterations, maximum tree depth of 10, initial step length of 0.1, 

target average acceptance probability of 0.9, and thinning of 1. Model convergence was 

established using 𝑅𝑅� values (chains with 𝑅𝑅� < 1.1 were considered to have converged; 

Brooks & Gelman, 1998) and visual inspection of trace plots. 

 
RESULTS 
 

Bias in parameter estimates based on simulated data was generally low for all 

parameters (Table 2.2), with the exception of the dead recovery rate r. Estimates of r 
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were biased high compared to simulated r values (bias (± sd): 0.007 ± 0.011; RMSE: 

0.013), and bias increased as simulated r values approached zero (Figure 2.4). 

High-visibility auxiliary tags were distributed unevenly across migration 

strategies, leaving some migration strategies (Figure 2.3) with little associated data to 

inform h, p, and r parameters for those strategies. However, missing migration strategies 

were relatively evenly proportioned by banding region (3,189 of 4,586 individuals (70%) 

in the eastern region and 1,287 of 2,095 individuals (61%) in the western region). 

Mean mortality hazard rate h across all migration strategies was 0.038 (sd ± 

0.014; see Table 2.3 for migration strategy-specific rates). Converted to annual 

probabilities, mean annual survival probability across all migration strategies was 0.630 

(± 0.155). Annual survival probability was highest for the west-south migration strategy 

and lowest for the west-west strategy (Figure 2.5). Mean live resight rate p across all 

migration strategies was low (0.002 ± 0.003), resulting in a mean annual resight 

probability of 0.021 (± 0.030). There was high variation in p estimates associated with 

migration strategies for individuals tagged with high-visibility auxiliary markers (Table 

2.3). Having high-visibility markers was associated with notably higher estimated live 

detection rates for east-east, west-east, and west-west migration strategies. Mean dead 

recovery rate r estimates were relatively high (0.033 ± 0.02), where mean annual dead 

recovery probability was 0.324 (± 0.230). Estimates of r varied by migration strategy and 

did not seem affected by presence of high-visibility auxiliary tags (Table 2.3). Recently 

dead to dead rate ɸ was constrained to be equal for all strata. Estimated ɸ rate was 0.922 

(95% CI: 0.858–0.989), where individuals spent an average of 1.08 months in the 
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recently dead state and transitioned from recently dead to dead with an annual probability 

of 1. 

The probability of remaining within a banding region from summer to winter was 

high (east-east: 0.789 (95% CI: 0.769–0.807); west-west: 0.641 (95% CI: 0.618–0.663); 

Figure 2.5), followed by migratory transitions from west-south (0.249 (95% CI: 0.228–

0.270)) and east-south (0.202 (95% CI: 0.185–0.221)). Transitions from west-east regions 

were uncommon (0.111 (95% CI: 0.096–0.126)), and east-west transitions being 

extremely uncommon (0.009 (95% CI: 0.006–0.012)). 

I did not formally compare computational efficiency to discrete-time model 

formulations or to model formulations that considered every non-reencountered 

encounter history separately. However, model run time for simulations and pelican 

banding data were reasonable: average simulation run time was 9.15 (sd ± 6.31) minutes 

for capture histories of 1,000 total reencountered and non-reencountered individuals, and 

total model run time on pelican banding data was 2.18 hours. Simulations and the pelican 

band data model were run on a Windows 11 Pro 64-bit operating system with an 8-core 

AMD 3.8GHz processor and 64GB (2666 MHz) DDR4 memory. 

 
DISCUSSION 
 

I quantified migratory connectivity and spatial variation in annual survival using a 

novel continuous-time multistate joint recovery model, applied to 63 years of range-wide 

American White Pelican band reencounter data. The efficient formulation used in this 

analysis allowed me to quantify regional variation in survival associated with different 

migration strategies, which provided insights into regional threats experienced by white 

pelicans across the annual cycle. I found notable spatial variation in survival estimates by 
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migration strategy, indicating that the environmental conditions pelicans face in different 

regions during summers and winters may contribute to variation in survival, with 

implications for conservation and management by region and season. 

Annual survival estimates revealed low survival for individuals that were banded 

in the western region and remained within this region over the winter months (Figure 

2.1). Low survival in the western region may be due to poor wintering conditions, 

considering other migratory strategies originating in the west but wintering elsewhere had 

higher associated survival rates. The western United States has been subject to decades of 

drought and agricultural water diversions (Null & Wurtsbaugh, 2020; Zhang et al., 2021), 

which have disproportionately affected saline lakes like California’s Salton Sea 

(Audubon, 2018). The Salton Sea is a critical wintering site for up to 30% of the global 

American White Pelican population (Shuford et al., 2002), but has experienced declining 

water levels and corresponding declines in food resources used by pelicans (Audubon, 

2018). In contrast, west-south migratory connectivity was moderate, but survival 

associated with this migratory strategy was the highest across all migratory strategies. 

GPS data (Utah Division of Wildlife Resources [UDWR] unpublished data) suggest 

pelicans in western Mexico frequent large reservoirs with abundant roosting islands and 

foraging opportunities. These reservoirs are common throughout the region and ample 

favorable wintering habitat in the southern region may contribute to high west-south 

survival. 

Pelicans remaining in the eastern region throughout the year had a nearly 24% 

higher survival rate compared to individuals that remained in the west throughout the 

year. The range of American White Pelicans is expanding eastward (King & Anderson, 
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2005) and may signal improving habitat and climate conditions for pelicans across the 

eastern region. Eastern pelicans that wintered outside of the eastern region had lower 

associated annual survival probabilities than those that remained in the east throughout 

the year, suggesting that high-quality wintering habitat and/or favorable climate exists in 

the eastern region for wintering pelicans. Aquaculture is prevalent in important pelican 

wintering areas along the Gulf Coast, and previous research has found easy access to 

abundant prey at catfish farms in the eastern region significantly improves pelican body 

condition (King et al., 2010). Causes of low survival for individuals banded in the east 

and wintering in Mexico are currently unknown, and further research is needed to 

understand underlying drivers of survival for this migratory strategy. 

Regional migratory transition probabilities revealed that pelicans predominantly 

remain in the region they were banded in between summer and winter. High connectivity 

within banding regions is likely due in part to the size of these regions, which encompass 

portions of both breeding and wintering grounds. Individuals remaining in banding 

regions from summer to winter may migrate, but do not leave a region’s bounds (e.g., 

individuals banded at Great Salt Lake, Utah in the summer may migrate to the Salton 

Sea, California for the winter—both of which are located in the western region). Low 

connectivity between eastern and western regions supports the notion that the Continental 

Divide serves as a boundary between the eastern and western metapopulations of this 

species (Anderson & Anderson, 2005). Transition probabilities between eastern and 

western regions varied by the direction individuals migrated (i.e., east-west versus west-

east), where 11.1% of individuals banded in the western region migrated to the eastern 

region, but fewer than 1% of individuals banded in the east migrated to the west. 
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Previous pelican band analyses and GPS tracking data have found that some western 

individuals from breeding colonies along the western metapopulation’s eastern edge (e.g., 

Great Salt Lake and Yellowstone colonies) migrate along the eastern Rocky Mountains to 

the Gulf of Mexico, while the reverse (east-west migration) was rare (Anderson & 

Anderson, 2005; Diem & Pugesek, 1994; UDWR unpublished data). West-east 

connectivity is similar to that reported in a previous study that used BBL band 

reencounter data from 1921–1981 (10.6%; Anderson & Anderson, 2005), but east-west 

connectivity is much lower than previous estimates (3.7%; Anderson & Anderson, 2005), 

suggesting that pelicans were more likely to move westward before 1960, or that 

accounting for spatially heterogeneous reencounter rates has an appreciable effect on 

migratory connectivity estimates. 

Strong migratory connectivity within the western region and its associated low 

survival probability are cause for particular concern. Pelicans that remain in the western 

region throughout the year (~64% of the western population) have only a 48.4% annual 

survival probability. This estimate reflects combined juvenile and adult survival, and 

therefore is likely lower than expected compared to adult-only survival estimates. Even 

so, this estimate is 8% lower than the next lowest survival probability (east-south 

migratory strategy), and pelicans of any age class that remain in the western region 

throughout the year likely experience lower survival rates than those that take other 

migration strategies. Large breeding colonies across the western metapopulation (e.g., 

Anaho, NV and Gunnison Island, Utah colonies), have declined notably in recent years 

(Moulton et al., 2018), and declines at these colonies may be due in part to poor survival. 

The western metapopulation represents approximately 28% of the total American White 
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Pelican population (King & Anderson, 2005) and therefore declines in this region may 

impact both regional and range-wide population persistence as productivity declines at 

important breeding colonies, local adaptations are lost, and population genetic diversity 

shrinks (but see Oomen et al., 2011; Reudink et al., 2011). 

Estimating migratory connectivity and survival from band reencounter data is 

difficult for three primary reasons: 1) reencounter data are often collected across areas 

with spatially heterogeneous reencounter rates, which may severely bias model estimates 

if not explicitly accounted for, 2) reencounter data may not contain information about 

where an individual spent its breeding or non-breeding season, only that the individual 

survived to be reencountered at its present location, and 3) banding datasets are often 

large, requiring computationally efficient methods to analyze. My model addresses these 

three issues. First, the model incorporates information from all banded individuals 

(including individuals never reencountered after banding), then estimates migratory 

connectivity, albeit at coarse spatial resolution, and annual survival based on regional live 

and dead reencounter rates. Second, my model estimates unobserved migration strategies 

by marginalizing over all possible migration strategies and associated survival, resight, 

and dead recovery values an individual might experience based on its banding region. 

Finally, I combine information from non-reencountered individuals to reduce the number 

of individual encounter histories the model must consider, and formulate the model in 

continuous time, which eliminates the need to consider discrete time periods of non-

detections between detections when calculating survival likelihoods. Model estimates 

were generally unbiased when applied to a range of simulated parameter values (Figure 

2.4). Dead reencounter rates were the exception, with bias in estimates of r tending to 
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increase as simulated r values approached zero. These results are consistent with those of 

Weegman et al. (2020), who found that models that estimates of dead recovery 

probabilities from joint-recovery models are biased high, especially when live resight 

probabilities are less than 0.1. Given that I drew p values from a uniform(0, 0.01) 

distribution (approximately equivalent to annual live resight probabilities between 0 and 

0.1), most simulated p parameter values were well below 0.1. However, simulations done 

by Weegman et al. (2020) found minimal bias in survival estimates, despite potentially 

large bias in r, consistent with my simulation results. Thus, although estimates of dead 

recovery rates from my model may overestimate the true recovery rates of American 

White Pelican bands, I expect the survival and migratory connectivity estimates to be 

unbiased and comparable across regions. 

This modeling framework provides a computationally efficient method to 

estimate annual survival and migratory connectivity from large banding datasets with 

minimal bias, and results produced by my model, when applied to pelican banding data, 

offer important context for understanding how spatially heterogeneous conditions 

influence pelican survival and for managing populations of migratory species in the face 

of future threats across their annual cycle. Migratory connectivity was strong within 

banding regions, and conservation efforts focused on these regions may provide the 

largest benefits for improving and maintaining annual survival. Low annual survival 

within the western region may be driven by severe disease outbreaks and poor winter 

conditions at important non-breeding sites like the Salton Sea (Shuford et al., 2002, 

Keith, 2005). Disease mitigation and conservation efforts focused on improving western 

wintering sites may improve survival outlook for the western region as a whole. 
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Conversely, high annual survival and migratory connectivity within the eastern region 

indicate conditions are favorable for pelican survival, and identifying drivers of high 

eastern survival may benefit the pelican population range-wide. Further investigation into 

population drivers, and exploration of pelican survival at finer scales than those examined 

here may reveal relevant conservation avenues for local populations. Application of this 

modeling framework to other species will leverage an underutilized data source, and 

close critical knowledge gaps to improve species conservation. 
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TABLES AND FIGURES  
 
 
Table 2.1: Prior and hyperprior distributions for h (mortality), p (live resight), and r (dead 
recovery) rate parameters. Gamma rates for each parameter were defined using published 
estimates of American White Pelican survival, live resight, and dead recovery 
probabilities, converted to rates. The mean rate across all migration strategies (and tag 
type, for p and r) for a given parameter is denoted by μ. 
Parameter Distribution Reference 

h μh ~ gamma(1, 340) 
h1:6 ~ normal(log(μh), 0.005) 

Clark & DiMatteo, 2018; Hendricks et al., 2002; Ryder, 
1981; Strait & Sloan, 1975 

p μp ~ gamma(1, 1625) 
p1:12 ~ normal(log(μp), 0.005) 

Kijowski et al., 2020; J. Neill, UDWR, written 
communication, 2016 

r μr ~ gamma(1, 23040) 
r1:12

 ~ normal(log(μr), 0.005) 
Hendricks et al., 2002; King & Grewe, 2001 
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Table 2.2: Mean bias ± standard deviation and root mean squared error (RMSE) across 
all 100 simulations of banding encounter histories for mortality hazard (h), live resight 
(p), dead recovery (r), and recently dead to dead (ɸ) rates, and regional transition 
probability (ψ). Bias is calculated as the mean difference between estimated and 
simulated values. 
Parameter Bias RMSE 

h –0.006 ± 0.016 0.017 

p   0.000 ± 0.003 0.003 

r   0.007 ± 0.011 0.013 

ɸ –0.010 ± 0.064 0.065 

ψ   0.000 ± 0.051 0.051 
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Table 2.3: Mortality hazard (h), live resight (p) and dead recovery (r) rate estimates and 
95% credible intervals from American White Pelican banding data. Strata denote regional 
migration strategy1 for h, p, and r rates, and whether an individual was or was not tagged 
with a high-visibility auxiliary tag at time of banding for p and r rates. Population row 
denotes mean and CI posterior estimates of the population-level random effects process 
underlying each regional migration strategy for h, p, and r. Individuals column indicates 
number of individuals observed using each migration strategy. 
Strata Individuals h p  r 

Population 2,205 0.036 (0.034–0.039) 0.001 (0.001–0.001) 0.019 (0.017–0.021) 

EE - no tag 968 0.027 (0.026–0.028) 0.000 (0.000–0.000) 0.023 (0.021–0.025) 

EE - high vis tag 107 0.004 (0.004–0.005) 0.057 (0.049–0.066) 

EW - no tag 17 0.035 (0.030–0.040) 0.001 (0.001–0.001) 0.020 (0.016–0.025) 

EW - high vis tag 0 0.001 (0.001–0.001) 0.019 (0.015–0.024) 

ES - no tag 298 0.047 (0.041–0.054) 0.000 (0.000–0.000) 0.027 (0.023–0.030) 

ES - high vis tag 7 0.001 (0.001–0.001) 0.023 (0.018–0.030) 

WE - no tag 4 0.039 (0.034–0.045) 0.001 (0.001–0.001) 0.019 (0.015–0.023) 

WE - high vis tag 76 0.003 (0.003–0.004) 0.020 (0.016–0.024) 

WW - no tag 218 0.061 (0.056–0.065) 0.001 (0.000–0.001) 0.049 (0.044–0.055) 

WW - high vis tag 336 0.009 (0.008–0.010) 0.030 (0.025–0.033) 

WS - no tag 135 0.022 (0.020–0.023) 0.001 (0.000–0.001) 0.089 (0.075–0.105) 

WS - high vis tag 39 0.001 (0.001–0.001) 0.018 (0.015–0.022) 

1Strata abbreviations signify migration strategies between summer banding region (“east” 
or “west”) to wintering region (“east”, “west”, or “south”). For example, “EE” signifies 
“east-east” migration. 
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Figure 2.1: Boundaries of migratory regions encompassing all American White Pelican 
band returns from 1960–2022. The boundary between eastern and western regions was 
defined based on prior analyses of American White Pelican band returns (Anderson & 
Anderson, 2005; Anderson & King, 2005) and the northmost boundary of the southern 
region (along the US-Mexico border) represents differences in legal protections and 
expected observer effort between geopolitical regions. 
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Figure 2.2: Informative gamma prior distributions for mortality hazard (h), live resight 
(p), and dead recovery (r) rates, generated using published annual survival, live resight, 
and dead recovery probability estimates (Table 2.1). No annual probability estimates 
were available for recently dead to dead rates (ɸ), on which I placed a weakly informative 
gamma(1, 30) prior. 
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Figure 2.3: Number of reencountered pelicans by summer to winter migration strategy 
and whether individuals were fitted with a high-visibility auxiliary tag (e.g., wingtag or 
field-readable leg band) at time of banding. Migration strategy abbreviations signify 
strategies between summer banding region (“east” or “west”) to wintering region (“east”, 
“west”, or “south”). For example, “EE” signifies “east-east” migration. 
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Figure 2.4: Parameter estimates from 100 simulated datasets of 1,000 banded individuals, 
generated using known values of mortality hazard (h), live resight (p), dead recovery (r), 
recently dead to dead (ɸ) rates, and regional transition probabilities (ψ). Orange points 
are the simulated (x-axis) versus estimated (y-axis) parameter values for each model. 
 
 
 
 
 
 



 57 

 
Figure 2.5: American White Pelican annual survival (a) and summer to winter migratory 
connectivity (b) by migration strategy. Arrows indicate direction of migration from 
summer (June–September) to winter (November–March) and line weight indicates 
strength of migratory connectivity. Colored boundaries indicate migratory regions. No 
individuals were banded in the southern region, and therefore migration out of this region 
was not possible. 
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CHAPTER III 

 
MULTI-LEVEL ENVIRONMENTAL NICHE VARIABILITY OF THE AMERICAN  

 
WHITE PELICAN 

 
 
ABSTRACT 
 

Variation in the environments used by individuals and across populations can 

provide insights into a species’ potential response to environmental change. However, for 

most species, this variation in environmental (e.g., climate) conditions remains 

unquantified. For migratory species, measuring niche breadth (the range of environmental 

conditions within a niche) and variability (the degree of change in environmental 

conditions encompassed within a niche over time) between breeding and non-breeding 

seasons can reveal whether a species actively tracks its niche or displays seasonal 

plasticity. Migratory individuals tracking similar environments across seasons may be 

negatively impacted by environmental change unless they are flexible in their geographic 

range, whereas those that switch between environments may be more resilient. Similarly, 

populations with little variation in their realized niche may be negatively affected by 

environmental changes, while populations with greater variation in preferred conditions 

may be more buffered. 

The American White Pelican (Pelecanus erythrorhynchos; hereafter, "pelican") 

has shifted its median breeding colony latitude northward over the past 50 years. 

However, the causes of this range shift and how populations might respond to future 

environmental change are unknown. I quantified population-level climate niche using 

four climate-related variables across 11 individuals and individual-level climate niche for 

19 individuals within the Pacific Flyway using a multi-year GPS telemetry dataset. The 
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population showed moderate overlap between breeding and non-breeding range niches 

(Schoener’s D = 0.280), but this overlap was not significantly greater than expected by 

chance, indicating that pelicans may not track climate niche and that seasonal pelican 

distributions might be driven by other factors. 

A majority of individuals (68%) did not track climate niche between breeding and 

non-breeding regions, though there was high within-individual variation in niche overlap. 

This suggests that the population may be relatively resilient to environmental change. 

However, the breeding range niche breadth was more constrained than the non-breeding 

range niche, indicating that pelicans might not be fully utilizing available climate 

conditions within the breeding range, possibly due to an inability to shift range rapidly 

enough with to keep up with increasing temperatures. These findings underscore the 

importance of examining climate niche at both population and individual levels to 

understand potential resilience to environmental changes. 

 
INTRODUCTION 
 

Understanding species’ adaptability to environmental change is crucial to 

conserving animal populations as land use and climate change transform ecosystems 

globally. Species inhabiting areas undergoing dramatic environmental shifts must be able 

to adapt to these changing environments, move to new areas that offer environmental 

characteristics they require, or risk extinction. Previous research has quantified species-

level environmental niche breadth (i.e., the range of resources, habitats, or environments 

used by a species; Sexton et al., 2017) as a way to measure current and expected 

adaptability to changing environments (Carscadden et al., 2020; Castaño‐Quintero et al., 

2024; Thorup et al., 2017). Species with wide or seasonally variable environmental 
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niches (i.e., “generalists”) are expected to be more resilient to environmental change 

because altered environmental conditions are still likely to fall within their niche 

(Espindola et al., 2019; Forsman & Wennersten, 2016). On the other hand, species with 

narrow, inflexible niches (i.e., “specialists”; Carscadden et al., 2020) are expected to do 

relatively poorly in response to environmental change (Carscadden et al., 2020; Kelly et 

al., 2012). Quantifying species’ niche variability and breadth can provide important 

insights into which species may adapt to changing environments and those that must 

move with changing conditions or risk abundance, range, or demographic declines. 

Past research has primarily characterized environmental niches at the species level 

under the assumption that individuals within a species share the same niche breadth and 

variability (Carscadden et al., 2020). However, environmental niches may vary across 

subpopulations and even among individuals (Bastille-Rousseau et al., 2017; Fandos et 

al., 2020; Roughgarden, 1972), with implications for species persistence and speciation 

in changing environments (Carscadden et al., 2020; Linhart & Grant, 1996; Plummer et 

al., 2015). For instance, some individuals may display high levels of seasonal or inter-

annual niche variation, while mean population niche breadth may remain static (e.g., 

white storks (Ciconia ciconia; Fandos et al., 2020) and great black-backed gulls (Larus 

marinus; Maynard et al., 2021)). As a result, niche variability may be missed when niche 

is evaluated at the species level only, leading to underestimates of species potential 

resilience to environmental change (Carlson et al., 2021). Furthermore, examining niche 

across multiple population levels can contextualize species response to environmental 

change and inform species conservation at local and broad scales. 
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Migratory avian species may be subject to increasingly mismatched phenology 

and resource availability as climate change impacts different latitudes in diverging ways 

(Diez et al., 2012; Mayor et al., 2017; Rafferty et al., 2020). As a whole, migratory avian 

species are faring particularly poorly, with estimated population declines across North 

America of 28.3% (± 1.6%) since 1970 (Rosenberg et al., 2019), and the Afro-Palaearctic 

of 26.7% (± 5.2%) since 1980 (Vickery et al., 2023). Migratory species are often 

assumed to track a specific set of environmental conditions across seasons (“niche 

tracking”; Gómez et al., 2016; Plummer et al., 2015; Tingley et al., 2009; Zurell et al., 

2018). However, previous studies have shown that some migratory species may be 

predisposed to deal with environmental differences experienced in their seasonal niche, 

either through their wide niche breadth (e.g., Gómez et al., 2016; Laube et al., 2015) or 

niche variability between or within individuals (e.g., Martínez–Meyer et al., 2004; 

Nakazawa et al., 2004; Ponti et al., 2020). Even so, niche quantification remains largely 

unexplored for most migratory avian species, limiting our understanding of expected 

species-specific reactions to environmental change or distributional shifts (Espindola et 

al., 2019). 

Historically, year-round individual-level location data were limited for most avian 

species due to weight limits on tracking devices and poor understanding of non-breeding 

ground space use (Kramer et al., 2018; Webster et al., 2002). Recent advances in tracking 

technology have provided large, high-resolution location datasets for large-bodied avian 

species for both breeding and non-breeding grounds. Combined with a wealth of remote 

sensing data and high-resolution climate projections, it is now possible to quantify niche 

breadth and variability at both the population- and individual-level, and to forecast 
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species distributions into the future (Espindola et al., 2019; Fandos et al., 2020; King et 

al., 2022; Rodríguez-Rodríguez et al., 2020). However, few studies have focused on 

potential avian response to environmental change across multiple populations, despite the 

increasing feasibility and utility of quantifying niche breadth and variability for local to 

broadscale species conservation decision support (Bolnick et al., 2003). 

In this study, I aimed to quantify individual- and population-level niche variability 

between seasonal ranges and metapopulations of American White Pelicans (Pelecanus 

erythrorhynchos; hereafter “pelican”), a large-bodied migratory waterbird. Pelicans have 

shifted median breeding colony latitude northward over the past 50 years (Moulton et al., 

2018), but whether this shift is in response to environmental conditions and how this 

population might respond to future environmental change is poorly understood. I used 

three years of pelican GPS data collected from individuals within the Pacific Flyway to 

examine whether pelicans tracked climate niche between the breeding and non-breeding 

seasons at either the individual or population levels. I used individual-level data to 

estimate realized climate niche breadth and variability of niche use between individuals. I 

also pooled individual GPS data across all study years to estimate population-level niche 

breadth, thereby estimating upper and lower bounds of climate conditions inhabited by 

this species. Additionally, some individuals were tracked across multiple years, allowing 

me to quantify intra-individual climate niche variation between years, to better 

understand niche variability and potential resilience to regional environmental change. 

I hypothesized that pelicans within this study population would exhibit niche-

tracking behaviors at the population level. Pelicans are reliant on shallow open-water 

foraging sites, whose availability and quality may be influenced by spatial or temporal 
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variations in temperature and precipitation (Dodds et al., 2019; Donnelly et al., 2020). As 

a population, shared needs for similar sites may result in broadscale climate niche 

tracking. Conversely, I expected pelicans would exhibit inter- and intra-individual 

variation in niche overlap and tracking behavior. GPS tracking data from pelicans within 

the Pacific Flyway shows large variation in home range sizes between individuals (Utah 

Division of Wildlife Resources [UDWR], unpublished data), potentially driven by 

preference for fine-scale environmental conditions (Fandos et al., 2020) or habitat 

preferences and food availability (Ramos et al., 2015).  

 
METHODS 
 
Study area and species data 
 

American White Pelicans are a migratory North American waterbird species. 

Pelicans breed colonially across the Intermountain West and Prairie Pothole regions and 

winter across the southern United States, Mexico, and Central America. Prior band 

recovery analyses suggest that pelicans have display low dispersal across the Continental 

Divide (Anderson & Anderson, 2005). Populations on opposite sides of the Continental 

Divide likely encounter differing environmental conditions (Anderson & King, 2005; 

Moulton et al., 2018) and food availability (King, 2005; King et al., 2010), and have 

therefore been classified into two metapopulations (“eastern” and “western”; Anderson & 

King, 2005). In a prior analysis, Illán et al. (2022) examined environmental niche breadth 

and tracking behavior for GPS tagged pelicans within the eastern metapopulation. 

Consequently, I focused my analysis on the breeding and non-breeding regions of the 

western metapopulation (Figure 3.1) to quantify environmental niche use and tracking 
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behavior within this unexplored population, allowing for generalized comparisons 

between the two metapopulations.  

I used GPS locations from 19 after-hatch-year pelicans captured and tagged by the 

UDWR in wetlands around the eastern periphery of Great Salt Lake, Utah. Historically, 

Great Salt Lake contained one of the largest breeding colonies of pelicans west of the 

Rocky Mountains, and serves as an important migration staging and stopover site for 

pelicans within the western metapopulation (Kijowski et al., 2020). Individuals were 

captured between May and September 2016 to 2018 and fitted with GSM or ARGOS 

solar-powered GPS transmitters (Microwave Telemetry GPS/GSM 20-70), using custom-

fit Teflon ribbon backpack harnesses (Dunstan, 1972). The GPS transmitters collected 

latitude, longitude, and elevation above sea level for all individuals at approximately one-

hour intervals. All captures and transmitter attachments were conducted under IACUC 

protocol #2209, and U.S. Geological Survey Bird Banding Laboratory permit #21673. 

Following methods detailed by Illán et al. (2022), I delineated "breeding" and 

"non-breeding" regions of the western pelican metapopulation for use in quantifying 

differences in seasonal niche breadth (see Figure 3.1). Pelicans typically migrate twice 

annually between northern breeding areas and southern non-breeding areas, often 

regardless of individual breeding status. However, migratory phenology varies 

substantially by individual, likely dependent upon age, sex, body condition, and 

environmental factors (Illán et al., 2022; King et al., 2022). Thus, assigning these as 

“summering” and “wintering” regions (common for many migratory species) may not be 

accurate. Furthermore, pelicans may exhibit long distance exploratory behavior between 

colonies and foraging locations in both breeding and non-breeding regions (UDWR, 
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unpublished data), making the transition from migration to seasonal residence unclear for 

this species. I defined the breeding region as the area encompassing all known locations 

of current breeding colonies within the Intermountain West and possible movements 

between them (Moulton et al., 2018). For the non-breeding region, I defined the northern 

boundary as the southernmost latitude where pelicans display migratory behavior 

between breeding and non-breeding ranges. I used average net squared displacement 

calculated from GPS locations of pelicans tagged in the western metapopulation to define 

this boundary (Soriano-Redondo et al., 2020). Net squared displacement calculates the 

squared distance between an individual’s initial location and all subsequent locations. For 

migratory individuals, net squared displacement estimates typically follow a double-

logistic curve, increasing as the individual migrates from the non-breeding range to the 

breeding range, leveling at a maximum distance on the breeding range, then falling to 

zero or near-zero as an individual returns to their prior non-breeding location. Seasonal 

residence and migratory behavior are then differentiated based on percent of total 

movement an individual makes between breeding and non-breeding regions (R package 

migrateR, version 1.0.9; Spitz, 2019; Spitz et al., 2017). I defined the remainder of the 

non-breeding region based on a combination of prior metapopulation delineations 

(Anderson & King, 2005) and observed locations of GPS tagged pelicans. 

I subset available pelican GPS data to individuals that remained within western 

metapopulation bounds during 2016–2018, thereby restricting the analysis to the climate 

niche space of the western metapopulation. I also only included individuals that had GPS 

locations available within both the breeding and non-breeding regions and that exhibited 

clear seasonal migration activity between regions (i.e., did not remain as a resident on the 
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breeding or non-breeding grounds across multiple seasons). Finally, to avoid 

oversampling environmental space for individuals or periods with GPS sampling 

intervals greater than once per hour, I thinned the GPS dataset to include one GPS 

location per hour, if available, for each individual per day. 

Nineteen individuals were included in the individual-level analysis. Some 

individuals had GPS data spanning multiple calendar years, and I therefore classified 

GPS locations into migratory “bouts”, consisting of one season of breeding region 

locations and one season of non-breeding ground locations. Each bout began at the date 

of capture (or first arrival in the breeding region, if an individual had multiple seasons of 

data), and ended when an individual stopped transmitting or left the non-breeding region 

the next year. This ensured that individual analyses only contained GPS data from a 

single migration between the breeding region and non-breeding region, and allowed for 

comparisons of discrete migration events within individuals with multiple years’ worth of 

data. I also only included individuals with ≥ 150 GPS locations per migratory bout within 

each region, after temporal thinning, ensuring that each individual included was well over 

the minimum suggested presence points for the individual-level niche analysis (Guisan et 

al., 2017; Zurell et al., 2018).  

For the population-level analysis, I pooled GPS data from the 11 individuals with 

greater than 1,000 locations available in both the breeding and non-breeding regions 

across the study period. I randomly subset each individual’s total locations to be equal to 

the individual with the fewest number of locations available by region (n = 1,049 points 

per individual) to avoid overfitting the model to individuals with more data. 

 
Climate data 
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I used “Climatologies at High resolution for Earth’s Land Surface Areas'' 

(CHELSA; Karger et al., 2017, 2018) climate data available from the Swiss Federal 

Research Institute for Forest, Snow, and Landscape Research (https://chelsa-

climate.org/). The CHELSA database contains high-resolution (30 arc second, or 

approximately 1 km resolution) climate data rasters with global coverage beginning in 

1979. I used all monthly climate data variables available from the CHELSA 2.1 database 

(total monthly precipitation (mm), and mean, minimum, and maximum temperature (ºC), 

by month) from January 2016 to December 2018, which aligned with coverage of the 

pelican GPS dataset. Accumulated precipitation has been associated with local lake 

levels, wetland foraging habitat and water availability, and species richness of wetland 

organisms including pelican prey species, both spatially and temporally (Dodds et al., 

2019; Donnelly et al., 2020). Temperature may also influence water availability at 

important foraging sites through evapotranspiration (Donnelly et al., 2020). Temperature 

extremes may impact pelicans directly by surpassing physiological heat and cold 

tolerances (Bartholomew et al., 1953; Sovada et al., 2014), while low temperatures may 

result in the ice over of open water sources that pelicans require for foraging (Illán et al., 

2022). These variables were also those used in the analysis conducted by Illán et al. 

(2022) on the eastern metapopulation. I filtered available rasters to only those containing 

pelican GPS locations, then cropped each raster to the breeding and non-breeding region. 

 
Niche analysis 
 

I extracted CHELSA climate raster cell values at the location and month of each 

pelican GPS location to represent environmental niche space used by pelicans on the 

https://chelsa-climate.org/
https://chelsa-climate.org/
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breeding and non-breeding grounds. To represent environmental niche space available to 

pelicans for use in the population analysis, I extracted all CHELSA climate raster cell 

values across the entirety of the breeding and non-breeding regions for each month that at 

least one pelican was present in that region. For individual analyses, I subset available 

environmental niche space to only include months where an individual was present in a 

given region. I then conducted a principal component analysis (PCA) of region-wide 

values from my four climate covariates to capture variation in available environmental 

niche space across the study area, using the dudi.pca function from R package ade4 

(version 1.7-22; Dray & Dufour, 2007; Thioulouse et al., 2018). I retained the first and 

second principal components (PCs), then related environmental covariates at global, 

region-specific, and pelican location scales to each PC coordinate for use in describing 

used, available, and total environmental niche space. 

I used R package ecospat (version 3.5.1; Broennimann et al., 2023) to quantify 

population- and individual-level pelican climate niche. Ecospat first estimates species or 

individual occurrence densities spatially by mapping occurrences onto gridded 

environmental space during a season of interest. Ecospat then uses kernel smoothing 

methods to calculate occurrence densities for each grid cell within each study region. 

Environmental PCA values are also smoothed and rescaled for each grid cell. Finally, 

occurrence densities at each grid cell are divided by smoothed and scaled environmental 

values, which allows for direct comparisons of environmental niche across seasons, 

regions, and individuals, regardless of geographic extent (Broennimann et al., 2012). 

Following Illán et al. (2022), I used a grid cell size of 100 km x 100 km (i.e., 100:1 ratio 

relative to the raster cell size of my environmental covariates). 
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Ecospat corrects for use of rare environments by assigning uncommon 

environmental values greater weights than more commonly observed values 

(Broennimann et al., 2012), under the assumption that species use these areas less simply 

because they are rare. However, both the breeding (Intermountain West) and non-

breeding regions (western Mexico) are characterized by highly variable environments and 

climatic extremes (Frankson et al., 2022; Wise, 2012). Large grid cell sizes, like the 100 

x 100km cells used in this analysis, may not always accurately represent environments 

used by pelicans, despite these environments’ close proximity to pelican occurrences. 

Therefore, I thinned the environment considered during spatial gridding to exclude outlier 

environmental values outside of the 25th percentile (Guisan et al., 2017), thus ensuring 

that highly rare environments (i.e., uncommon environmental values) were not over-

represented within the analysis. 

Based on occurrence densities and corresponding environmental characteristics, I 

quantified observed population-level niche overlap and individual-level overlap between 

regions using the Schoener’s D overlap metric (Schoener, 1970). Schoener’s D values of 

0 indicate no niche overlap and 1 indicates complete niche overlap between breeding and 

non-breeding regions, corrected for occurrence density (Broennimann et al., 2012). For 

context, similar studies have found Schoener’s D of 0 to 0.75 between migratory regions 

(Fandos et al., 2020; Illán et al., 2022). I also calculated niche expansion (proportion of 

the breeding region niche that does not overlap with the non-breeding region niche), 

stability (proportion of the breeding and non-breeding region niches that overlap), and 

unfilling (proportion of the non-breeding region niche that does not overlap with the 

breeding region niche; Guisan et al., 2014), where 0 indicates no overlap and 1 indicates 
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complete overlap. I calculated expansion, stability, and unfilling at both the population 

and individual levels. 

To determine whether observed between-season niche overlap could be attributed 

to niche tracking, I conducted a niche similarity test (Broennimann et al., 2012; Di Cola 

et al., 2017; Warren et al., 2008). The niche similarity test evaluates whether information 

on one seasonal niche (e.g., breeding) provides information on the niche of another 

season (e.g., non-breeding) beyond what can be expected from a null model. In this case, 

our null model is one where the four climate variables investigated here have no 

influence on pelican occupancy. To simulate "random" niches that were not determined 

by my climate variables, I randomly distributed pelican occurrence points across the 

breeding and non-breeding ranges and extracted their climate covariate variables. 

Based on a simulation of 1,000 random niches, I calculated Schoener's D between 

each random niche and observed niches of the opposing season. If pelicans track their 

climate niche, then the Schoener’s D value should be significantly higher than random, 

simulated Schoener’s Ds (i.e., in the upper 5% of random, simulated Schoener’s Ds; 

Warren et al., 2008). Conversely, if seasonal distributions are caused by factors other 

than climate niche tracking, then the observed Schoener’s D will not be significantly 

different from those generated by simulating pelican occurrence densities randomly, with 

no relationship with climate. To quantify how observed individual- and population-level 

niche dynamics compared to random niches, I compared expansion, stability, and 

unfilling metrics for each simulated versus observed niche following the methods 

described above. I also conducted the niche similarity test directly on randomly sampled 

versus observed environmental variables across the study period, to obtain estimates of 
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niche D, expansion, stability, and unfilling across single environmental predictors: total 

monthly precipitation, and minimum, mean, and maximum monthly temperature. All 

analyses were performed in R (version 4.3.1; R Core Team, 2023). 

 
RESULTS 
 
Net squared displacement 
 

The net squared displacement analysis identified 34.8ºN as the northernmost edge 

of the non-breeding region. GPS locations occurring north of this latitude and south of 

the defined breeding region were considered to be outside of the breeding and non-

breeding ranges (i.e., migration range), and therefore were not considered in the analysis. 

 
Population-level analysis 
 

My population-level analysis was based on a total of 23,078 GPS locations from 

11 individuals (breeding region = 11,539; non-breeding region = 11,539; Table 3.1). The 

first two components from the climate niche PCA explained 98.93% of total 

environmental variation, with PC1 and PC2 accounting for 75.28% and 23.65% of 

environmental variation, respectively. PC1 primarily described variation in temperature, 

while PC2 described precipitation (Table 3.2). 

Observed Schoener’s D between the breeding and non-breeding grounds 

combining all years was moderately low (D = 0.280). The niche similarity test indicated 

population-level niche overlap was not significantly higher than that of random available 

niche space (D mean (± sd) random = 0.120 (± 0.108), p-value = 0.092), suggesting no 

statistically significant population-level niche tracking behavior (Figure 3.2, Figure 3.3). 

Therefore, we cannot reject the null hypothesis that seasonal pelican distributions are 
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driven by factors other than tracking climate niche. I found that observed niche expansion 

and stability were significantly different (Figure 3.3) from random simulations from the 

background environment (expansion observed = 0.040, random expansion (± sd) = 0.585 

(± 0.301), p-value = 0.001; stability observed = 0.960, random stability (± sd) = 0.415 (± 

0.301), p-value = 0.001), while unfilling was not (Figure 3.3; observed = 0.219, random 

unfilling (± sd) = 0.715 (± 0.317), p-value = 0.134). 

In addition to estimating niche variability with PCs, I also conducted the niche 

similarity test with each single environmental predictor to determine whether specific 

dimensions of the climate niche are tracked across seasons. Results suggested that 

pelicans did not track any one environmental variable alone (Table 3.3), but that 

expansion was significantly lower and stability was significantly higher than expected for 

minimum and maximum temperature compared to random simulations (p-values = 0.014 

and 0.009 respectively). However, I found no evidence that Schoener’s D or unfilling for 

minimum or maximum temperature were more different than expected (minimum 

temperature p-values: D = 0.119, unfilling = 0.101; maximum temperature p-values: D = 

0.131, unfilling = 0.105). 

 
Individual-level analysis 
 

I estimated annual breeding and non-breeding range niche overlap with 74,204 

GPS points from 19 individuals, for a total of 23 migratory bouts. Over all individuals, 

the climate niche PCA produced similar results to that of the population-level analysis 

(Table 3.2), with PC1 describing, on average (± sd), 75.42% (± 3.22%) of environmental 

variation, and PC2 describing an average of 22.27% (± 3.18%). PC1 represented 

temperature more so than precipitation, while PC2 reflected precipitation. Mean 
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Schoener’s D between breeding and non-breeding regions across all individuals was low 

(mean = 0.201 ± 0.182), while mean niche expansion (0.441 ± 0.348), stability (0.559 ± 

0.348), and unfilling (0.572 ± 0.301) were moderate, but with considerable inter-

individual variation. The niche similarity test suggested that overall, Schoener’s D was 

not significantly different from the random environment for a majority of individuals. 

However, six (32%) individuals displayed significantly greater climate niche tracking 

behavior than expected by chance (p-values < 0.05; Figure 3.2). 

 
Interannual niche comparisons 
 

Two individuals were tracked across two migratory bouts and one individual 

across three. The two individuals that were followed for two migratory bouts (“Hector” 

and “Loretta”) displayed niche tracking behavior for both and for one of two migratory 

bouts, respectively. The remaining individual did not track environmental niche between 

breeding and non-breeding regions for any migratory bout (Table 3.4). Environmental 

conditions (PCs) varied significantly between years at each individual’s used locations 

(all Wilcoxon rank sum test p-values < 0.001). 

 
DISCUSSION 
 

Using data from a multi-year American White Pelican tracking study, I show that 

pelicans in this study population do not appear to track the environmental niche between 

breeding and non-breeding seasons when the niche is quantified at the population level, 

but that the presence and degree of niche tracking behavior varies by individual. This 

study adds to a growing body of literature demonstrating that migratory species may 

display differing degrees of niche variability depending on the biological level examined, 
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and that care should be taken when drawing conclusions about niche variability and its 

implications for species-level response to rapid broadscale climate change when assessed 

at a single biological level. My findings of low niche expansion and high stability from 

the non-breeding to breeding region in relation to temperature suggest that temperature 

plays an important role in pelican niche breadth within the Pacific Flyway. This is in 

contrast to precipitation, despite this species’ reliance on water for foraging and breeding 

activities. My findings complement and contrast previous work conducted on the eastern 

pelican metapopulation (Illán et al., 2022), which, unlike the western population, found 

pelicans migrating between the Prairie Pothole Region and the Gulf of Mexico track 

temperature niche at the population level, but show similar niche tracking and switching 

behavior at the individual level as I found here. 

Contrary to my population-level hypothesis, I did not find evidence that migratory 

pelicans track their climate niche between their breeding and non-breeding ranges. 

Population-level environmental niche tracking behavior in migratory species has been 

found in numerous studies (e.g., Fandos et al., 2020; Nakazawa et al., 2004; Tingley et 

al., 2009), and has been used as an underlying explanation for population dynamics in 

response to shifting climate. However, the lack of niche tracking behavior at the 

population level does not necessarily imply that pelicans are switching niches between 

seasons. I found that niche expansion was significantly lower than expected, while niche 

stability was significantly higher than expected, based on the total environment available 

to pelicans. Conversely, niche unfilling was not significantly different from the available 

environment. Taken together, this suggests pelicans are not niche switching between 

breeding and non-breeding grounds, but instead are only occupying a portion of the niche 
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space available to them on the breeding grounds as compared to the non-breeding ground 

niche they occupy. True species expansions into new niche space appear to be relatively 

uncommon, and apparent niche shifts may instead be the result of niche unfilling 

(Strubbe et al., 2013). Unfilling of migratory species’ niches may be indicative of barriers 

to population dispersal or lags in colonization (Guisan et al., 2014), suggesting that 

variables beyond those explored here may be limiting habitats available to pelicans 

within the Pacific Flyway.  

When assessing each environmental variable separately, I found that population-

level niche expansion from the non-breeding to breeding region was significantly lower 

and stability was significantly higher than expected in relation to minimum and 

maximum temperature. This observed niche unfilling of the non-breeding niche in the 

breeding region indicates that in the breeding region, pelicans do not use the full range of 

favorable temperatures available. Given that pelicans are reliant on water resources, the 

arid landscape in the Intermountain West may restrict pelican breeding and foraging to 

specific locales and therefore specific temperatures occurring at these sites (Anderson, 

1991; Anderson & King, 2005; Moulton et al., 2018; Figure 3.4). Additionally, I found 

that for all three temperature covariates, the population occupied on average cooler 

temperature niches on the breeding grounds as compared to the non-breeding grounds, 

but occupancy on the breeding grounds tended toward the warmest available 

temperatures in this region (Figure 3.4). Temperatures are increasing across the 

Intermountain West as climate change impacts increase (Joyce & Talbert, 2018) 

including at pelican nesting and foraging sites. Median breeding colony latitude for the 

western metapopulation has shifted northward by 114 km between 1960 and 2010 
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(Moulton et al., 2018), and may indicate that pelicans are shifting their range northward 

to track suitable environmental conditions (i.e., temperature). However, tendency toward 

occupying the hottest available temperatures suggests that this population may not be 

able to colonize new areas fast enough to keep pace with rapid poleward temperature 

shifts (Román-Palacios & Wiens, 2020), resulting in reduced temperature niche breadth 

and mismatches between observed niche centroids and available temperatures on the 

breeding grounds. Thus, pelican populations at the southern edge of the western 

metapopulation’s range (e.g., Great Salt Lake and Pyramid Lake breeding populations) 

may be disproportionately impacted by projected near-future increases in regional 

temperature (Hall et al., 2021; Joyce & Talbert, 2018) as compared to more northerly 

populations, and may benefit from regular monitoring to detect decreases in colony 

health or abundance. 

I found notable variation in individual-level niche tracking behavior at 

comparable—albeit slightly lower—levels to the eastern pelican metapopulation, with 

32% (6 of 19) of individuals displaying niche tracking behavior during at least one 

migratory bout. Similarly, the eastern metapopulation analysis found 46% (6 of 13) of 

tracked individuals displayed niche tracking behavior. I also found limited evidence of 

intra-individual variability in degree of total niche overlap (Schoener’s D), with one of 

three individuals tracked across multiple years changing niche tracking behaviors 

between migratory bouts. Individual-level variation has been suggested as a crucial factor 

underlying population-level adaptability to climate change, where the degree of 

individual-level variation is more indicative of species resilience to shifting 

environmental conditions than is the population-level niche breadth of a species (Etterson 
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& Shaw, 2001; Forsman & Wennersten, 2016). Additionally, populations with high 

individual niche variability may be less prone to extinction and show less variability in 

abundance, suggesting population resilience to change (Forsman & Wennersten, 2016). 

Overall, the western metapopulation may fare relatively well in the face of 

climate change, either through individual variation in response to changing climate 

conditions or dispersal northward, but more detailed analyses may clarify species 

relationships with climate and other environmental conditions. This analysis examined 

niche using broadscale, remote-sensed temperature and precipitation data, but could 

benefit from additional variables relevant to pelicans, including water depth and prey 

abundance, when available, as these variables may more directly influence seasonal 

pelican distributions. Time-lagged effects of precipitation via snowmelt and water table 

recharge may impact conditions relevant to pelican use, including lake and wetland water 

levels (Wurtsbaugh, 2014), and inclusion of this information may benefit future analyses 

as well. Additionally, for species with a high degree of individual variation, like pelicans, 

drawing conclusions about niche breadth and variability from a handful of individuals 

may not accurately represent population-level niche. Leveraging tracking data from 

greater numbers of individuals will likely improve our understanding of population-level 

niche breadth and variability for pelicans and similarly variable species. Finally, 

accounting for habitat availability, biotic interactions, and diverging effects of climate 

change, which were not examined in this analysis, may provide greater detail about 

expected species’ response to future climate impacts.  

As species experience intensifying effects of climate change globally, clearer 

understandings of niche and expected resilience to environmental change are needed. 
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Conclusions from this analysis demonstrate the importance of quantifying niche at both 

population and individual scale when possible, and studies investigating niche variability 

and overlap between migratory regions should aim to quantify expansion, stability, and 

unfilling, in addition to Schoener’s D. Estimating niche variability solely from a single 

species at the population scale may provide incomplete conclusions to expected species 

responses to changing environments, as resilience to broadscale climate change is likely 

dependent upon individual niche variability as well as niche breadth at metapopulation 

and species levels (Fandos et al., 2020). For example, when examining Schoener’s D 

only, we might conclude that the western pelican metapopulation is highly resilient to 

broadscale environmental change due to high individual-level variation in niche and no 

significant niche tracking behavior at the population level. However, additional 

information provided by examining niche expansion, stability, and unfilling indicates that 

southernmost pelican populations across the Intermountain West may be limited in their 

ability to escape or adapt to unfavorable environmental conditions as climate and land 

use changes intensify (Null & Wurtsbaugh, 2020; Williams et al., 2022; Zhang et al., 

2021). Thus, leveraging multiple measures of niche across many biological scales may 

provide clearer understandings of species niche, and create accurate species distribution 

models, predict population dynamics, and create targeted conservation initiatives in the 

face of global losses in biodiversity.  
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TABLES AND FIGURES 
 
 
Table 3.1: Individual summaries of breeding and non-breeding region GPS location data, 
before thinning, by migratory bout. Each migratory bout consists of a single breeding 
region to non-breeding region transition, beginning at the date of capture (or first arrival 
in the breeding region, if an individual had multiple seasons of data), and ended when an 
individual stopped transmitting or left the non-breeding region the next year. Bolded 
individuals are those used for the population-level analysis. 

ID Capture Year Sex Migratory Bout 
Breeding Region 

Locations 
Non-breeding Region 

Locations 

Abigail 2016 F 2016 1222 3250 

Albus 2017 M 2017 1666 1288 

Bridgette 2017 F 2017 1511 550 

Cici 2017 F 2017 1506 2127 

Deidra 2017 F 2017 1585 274 

Eloise 2016 M 2017 1283 676 

Everett 2016 M 2016 782 2420 

Fiona 2017 F 2017 1469 1451 

Fudd 2017 M 2017 1871 2463 

Hector 2016 M 2016 1827 2627 

Hector 2016 M 2017 2278 215 

Jonah 2017 M 2017 1467 1049 

Loretta 2016 F 2016 567 3696 

Loretta 2016 F 2017 2707 2424 

Miguel 2017 M 2017 2187 1171 

Rachelle 2017 F 2017 636 1707 

Rosalie 2016 F 2016 300 3192 

Sylvester 2016 M 2016 1110 2781 

Uma 2016 F 2016 926 2993 

Uma 2016 F 2017 185 1085 

Uma 2016 F 2018 1148 1115 

Valerie 2017 F 2017 805 3584 

Zeus 2017 M 2017 2255 603 
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Table 3.2: Variable loading factors from population- and individual-level principal 
component analyses. PC1 refers to the principal component (PC) that describes the 
largest amount of variation within the environmental dataset across pelican breeding and 
non-breeding ranges, and PC2 refers to the PC describing the second largest amount of 
variation. Individual-level analysis represents mean (standard deviation) PC loading 
across all individuals. 

Component Variable 
Loading factor 

(population-level analysis) 
Loading factor 

(individual-level analysis) 

PC1 Total monthly precipitation   0.303   0.325 (0.237) 

Minimum monthly 
temperature –0.975 –0.792 (0.556) 

Mean monthly temperature –0.994 –0.817 (0.573) 

Maximum monthly 
temperature –0.990 –0.807 (0.562) 

PC2 Total monthly precipitation   0.953   0.913 (0.082) 

Minimum monthly 
temperature   0.168   0.182 (0.047) 

Mean monthly temperature   0.097   0.105 (0.062) 

Maximum monthly 
temperature   0.029   0.007 (0.080) 
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Table 3.3: Observed and estimated population-level niche overlap (Schoener’s D), 
expansion, stability, and unfilling by environmental predictor. P-values indicate whether 
observed niche metrics differed significantly from estimates produced by comparing 
randomized breeding and non-breeding region niches generated from available 
background environments across the study area. Bolded text denotes statistically 
significant findings. 

Predictor Metric 
Observed 

Niche 
Simulated Niche 

(mean) 
Simulated Niche 

(standard deviation) P-value 

Total monthly 
precipitation 

Schoener’s D 0.388 0.384 0.182 0.645 

Expansion 0.150 0.355 0.345 0.627 

Stability 0.850 0.645 0.345 0.627 

Unfilling 0.000 0.305 0.401 0.626 

Minimum monthly 
temperature 

Schoener’s D 0.442 0.120 0.179 0.119 

Expansion 0.192 0.768 0.286 0.014 

Stability 0.808 0.232 0.286 0.014 

Unfilling 0.448  0.857 0.243 0.101 

Mean monthly 
temperature 

Schoener’s D 0.383 0.171 0.215 0.215 

Expansion 0.220 0.685 0.325 0.071 

Stability 0.780  0.315 0.325 0.071 

Unfilling 0.426 0.744 0.331 0.213 

Maximum monthly 
temperature 

Schoener’s D 0.367 0.105 0.171 0.131 

Expansion 0.147 0.761 0.282 0.009 

Stability 0.853 0.239 0.282 0.009 

Unfilling 0.343 0.834 0.297 0.105 
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Table 3.4: Observed and estimated niche overlap (Schoener’s D) for individual pelicans 
tracked across multiple migratory bouts. P-values indicate whether observed niche 
overlap differed significantly from estimates produced by comparing overlaps between 
randomized breeding and non-breeding region niches generated from available 
background environments across the study area. Bolded text denotes significant findings. 
ID Migratory Bout Observed Schoener’s D Mean simulated Schoener’s D P-value 

Hector 2016 0.577 0.144 0.025 

2017 0.213 0.066 0.020 

Loretta 2016 0.013 0.007 0.186 

2017 0.423 0.149 0.036 

Uma 2016 0.131 0.066 0.196 

2017 0.019 0.005 0.103 

2018 0.097 0.131 0.482 
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Figure 3.1: Western American White Pelican metapopulation breeding and non-breeding 
region boundaries. Red points indicate locations pelicans were captured and tagged with 
GPS transmitters (north: Great Salt Lake, Utah; south: Strawberry Reservoir, Utah). The 
heavy black line delineates the boundary of the western metapopulation considered in this 
analysis, while thin colored lines indicate individual pelican GPS tracks between 2016–
2018. 
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Figure 3.2: Niche overlap estimates (Schoener’s D) between breeding and non-breeding 
regions. Estimates were based on environmental conditions at known used locations (blue 
diamonds) and 1,000 simulations where pelican “occurrences” were randomly generated 
without any relationship with climate variables (90% quantiles; black bars). Diamonds 
that do not overlap 90% quantiles indicate that observed (“used”) niche overlap between 
breeding and non-breeding regions was greater than expected by chance if pelican 
occurrence was not influenced by climate variables, and can be considered seasonal 
“niche tracking”. The vertical blue dashed line indicates the observed population-level 
mean niche overlap (D = 0.280). The y-axis indicates population-level (top row; double 
diamond) or individual-level niche estimates (single diamonds), with individual ID and 
migratory bout considered. Niche overlap estimates range 0–1, with 0 indicating no niche 
overlap and 1 indicating complete overlap between breeding and non-breeding regions. 
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Figure 3.3: Population-level Schoener’s D, expansion, stability, and unfilling compared 
to 1,000 simulated, random breeding and non-breeding region niches. Random niches 
were built from pelican “occurrences” that were randomly generated without any 
relationship with climate variables. Gray bars indicate frequency of calculated D, 
expansion, stability, and unfilling estimates from randomized niches and blue capped 
lines indicate observed population-level estimates for each metric. Schoener’s D is the 
total niche overlap between breeding and non-breeding regions, expansion is the 
proportion of the breeding region niche that does not overlap with the non-breeding 
region niche, stability is the proportion of the breeding and non-breeding region niches 
that overlap, and unfilling is the proportion of the non-breeding region niche that does not 
overlap with the breeding region niche. All metrics range 0–1, with 0 indicating no 
overlap and 1 indicating total overlap. 
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Figure 3.4: Occurrence density plots showing the shift of population-level niche centroid 
(solid arrow) and total available environment (dotted arrow) between the breeding (blue) 
and non-breeding (red) regions. Solid blue indicates realized pelican niche in the 
breeding region, solid red indicates realized pelican niche in the non-breeding region, and 
solid purple indicates observed niche overlap between regions. White areas outlined in 
blue and red indicate total available breeding region and non-breeding region 
environments, respectively. 
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CHAPTER IV 

 
LEVERAGING WEATHER RADAR AND TRACKING DATA TO ESTIMATE  

 
AIRSPACE USE OF A LARGE MIGRATORY BIRD 

 
 
ABSTRACT 
 

Population-level space use estimates are crucial for identifying important habitats 

and behaviors, and predicting population responses to global change. Space use estimates 

that are derived from individual-level tracking data may miss important movements and 

habitat use, depending on the particular individuals tracked. Weather radar has recently 

emerged as a potential valuable source of avian space use data across broad spatial areas 

and measures numerous individuals without the need for individual tracking. However, 

radar is predominantly used for multi-species analyses due to the challenge of extracting 

species-specific information from radar images, limiting its utility for species-specific 

conservation efforts. 

To improve our ability to estimate species-specific population-level space use 

from existing data sources, I developed a modeling workflow that combines individual-

level occurrence data and broadscale weather radar data. This workflow uses an ensemble 

machine learning algorithm trained on radar imagery at GPS locations collected from 

American White Pelicans (Pelecanus erythrorhynchos) above Great Salt Lake, Utah. The 

model uses radar-based information to predict pelican presence spatially within radar 

airspace to generate estimates of population-level space use by season. Given the 

significant bird-strike hazard posed by pelicans near Salt Lake City International Airport 

(SLCIA), I also developed a pelican-airplane strike hazard index based on hourly air 

traffic and radar data that identifies the hours most and least likely for a pelican strike to 
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occur. The modeling workflow achieved high prediction capability, with an Area Under 

the Curve of 0.982 and recall (true positive rate) of 0.739. Predictions from the best 

performing model suggested that pelicans are most likely to occur in Great Salt Lake 

radar airspace during the fall, once juvenile pelicans at the local breeding colony are old 

enough to fly. Pelican-airplane strike hazard was generated using an example month of 

airplane traffic data, and indicated that strike hazard was highest during afternoons, 

which coincided with peak daily airplane traffic. These findings have broad implications 

for utilizing archived radar data in avian population studies, enabling comparisons of 

population trends, high-use areas, and migration phenology across time periods. 

 
INTRODUCTION 
 

Population-level space use estimates have been crucial for defining our 

expectations of avian response to global change, from estimating species niche breadth 

(Illán et al., 2022), to predicting seasonal species distributions (Williams et al., 2017), 

and identifying critical nesting and stopover sites of sensitive species (McDuffie et al., 

2022; Schally et al., 2022). Individual-level tracking has become increasingly popular in 

avian research with improvements in tracking technology, and avian spatial ecology has 

benefited tremendously from the resulting data (e.g., McKinnon & Love, 2018; Tonra et 

al., 2019). However, population-level space use, especially in the case of cryptic or far-

ranging avian species, may be difficult to accurately quantify from individual tracking 

data due to low detection rates and high individual variation in movement paths (Hüppop 

et al., 2019). As a result, a primary challenge in avian ecology and conservation remains 

the population-level characterization of important movements and behaviors. 

Understanding connectivity between populations can inform critical disease mitigation 
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(de Seixas et al., 2022; Paolini et al., 2023) and conservation initiatives (Fraser et al., 

2017; Gregory et al., 2023; Rushing et al., 2021), while variability and plasticity of 

movements may improve predictions of species’ adaptability to climate and land use 

change (Beever et al., 2017; Gilroy et al., 2016; Sih et al., 2012). Furthermore, 

understanding population movements and space use may allow us to obtain a clearer 

understanding of the likelihood and severity of human-wildlife conflicts before they 

occur (Bauer & de Iongh, 2005; Warrier et al., 2021). 

Broad-coverage weather radar has emerged as a powerful remote sensing tool for 

characterizing landscape-scale avian space use. Airspace comprises a critical part of 

available habitat for flight-capable avian species (Diehl, 2013; Hüppop et al., 2019), and 

due to weather radar’s broad sampling extent, radar data provide a snapshot of birds in 

flight across a large volume of three-dimensional airspace that other remote sensing 

technologies cannot. Weather radar data have been used to generate continent-wide 

migration forecasts (Van Doren & Horton, 2018), estimate timing and volume of avian 

migration across seasons and decades (Dokter et al., 2018; Horton et al., 2019; Nilsson et 

al., 2019), and identify locations of communal bird roosts (Chilson et al., 2019; Russell 

& Gauthreaux, 1998, Perez et al., 2024). However, weather radar’s landscape-scale 

perspective and difficulty in truthing radar observations to the species level has limited 

the utility of radar data for species-specific space use studies (Gauthreaux & Diehl, 2020; 

Hüppop et al., 2019). Identifying species within weather radar images historically has 

been limited to expert knowledge about species-specific airspace-use characteristics and 

to instances of known species presence at a given time or location (Eschliman & Horton, 

n.d.; Gauthreaux & Diehl, 2020, Haas et al., 2022). Expanding the utility of weather 
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radar to species-specific space use studies, beyond the narrow range of species identified 

using expert knowledge, requires broadening the scope of automated methods for 

classifying radar data to species. 

Combining information from individual-level tracking data and broadscale 

weather radar data may improve the utility of weather radar for population-level species 

tracking. Radar imagery measures the physical characteristics of birds in airspace (e.g., 

shape, reflectivity, and velocity; Stepanian et al., 2016), while concurrent individual-level 

tracking data provide information about what species the radar is observing. For instance, 

GPS tags could provide precise location data that may serve as a ground-truthing data 

source for remotely sensed species detections. By leveraging both individual and multi-

species data, it may be possible to build species-specific radar signatures that can then be 

used to identify untracked individuals, especially when the species of interest is 

morphologically distinct from other species present. 

Here, I developed a modeling workflow that identifies species-specific radar 

characteristics, then predicts relative presence probability of individuals within radar 

airspace. I used a random forests machine learning algorithm trained on GPS location 

data collected from American White Pelicans (Pelecanus erythrorhynchos; hereafter 

“pelicans”), a large waterbird species, to predict presence and location of individual 

pelicans within weather radar airspace over Great Salt Lake, Utah. My results 

demonstrate the utility of broad-coverage, freely-available Next Generation Weather 

Radar (NEXRAD) radar data to generate species-specific predictions of space use 

patterns. Pelicans are a considerable strike hazard for commercial airliners due to their 

large size and concentration in large flocks. I further demonstrate that pelican airspace 
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use can be predicted from radar imagery to create a species-specific bird-strike hazard 

index by hour and month for airplane flight paths in and out of the high-traffic Salt Lake 

City International Airport (SLCIA). By considering hourly air-traffic activity, this 

method identified areas and times of high airspace use and bird-strike risk at temporal 

resolution relevant to flight traffic plans. These results have broad implications for 

weather radar studies using archived radar data, allowing us to compare population 

trends, high-use areas, and migration phenology across time periods. 

 
METHODS 
 
Presence/pseudo-absence and radar data 

 
American White Pelicans are a large migratory waterbird species with unique 

flight and behavioral characteristics, including large body size, congregation in large 

flocks, and high-speed flight (upwards of 110km/h; Utah Division of Wildlife Resources 

[UDWR] unpublished data), that make them well-suited for proof-of-concept radar 

studies. Pelican location data were collected from 74 satellite-tracked after-hatch-year 

pelicans captured and tagged by the UDWR. Pelican captures occurred in wetlands 

around the eastern periphery of Great Salt Lake during the breeding season (May–

September) from 2015 to 2019, and in 2023. Captured individuals were fitted with GSM 

and ARGOS solar-powered GPS transmitters (Microwave Telemetry GPS/GSM 20-70 

and Cellular Tracking Technology ES400W), using custom-fit Teflon ribbon backpack 

harnesses. The GPS transmitters collected latitude, longitude, and elevation above sea 

level for all individuals hourly between dawn and dusk for all individuals tagged between 

2015–2019, and every 20 minutes between dawn and dusk for all individuals tagged in 

2023. Pelican captures and transmitter attachments were conducted under IACUC 
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protocols #2209 and #12973, and U.S. Geological Survey Bird Banding Laboratory 

permit #21673. 

The NEXRAD weather radar network consists of 160 federally operated radar 

stations spanning the contiguous United States that collect 360º scans of airspace with 

high-resolution, dual-polarized Doppler radar. The sole NEXRAD weather radar station 

with coverage over Great Salt Lake and its peripheral wetlands (KMTX; Figure 1), 

overlooks Great Salt Lake from Promontory Point, a ridgeline approximately 730 meters 

above the lake’s surface. With a wide, relatively unobstructed radar viewshed available, I 

included the entirety of Great Salt Lake and the surrounding shoreline within the study 

area, for a maximum distance of approximately 100 km from the KMTX radar station 

(between latitudes 40.55 and 41.80 and longitudes -111.55 and -113.25; Figure 4.1). 

I downloaded archived KMTX NEXRAD radar station Level II radar scans 

available at Amazon Web Services (available at: https://noaa-nexrad-

level2.s3.amazonaws.com/index.html) for years 2015 to 2019 and 2023, using the 

download_pvolfiles function from R package bioRad (version 0.7.3; Dokter et al., 2019). 

Level II radar scans are minimally processed, with the highest spatial resolution currently 

achievable by NEXRAD (~250 x 250 m image pixels; Brodzik, 2020). Radar scans were 

collected once per ten minutes using “clean-air mode”, which uses both long and short 

radar pulses to optimize sensitivity when there is little observed precipitation (NOAA, 

2020). I chose scans at the minimum available radar beam angles (0.5º above horizontal 

for 2015–2019; 0º and 0.5º for 2023) at KMTX to capture a broad range of radar airspace, 

including low elevations, which I expected to contain the most pelican detections based 

on preliminary data exploration. 
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I processed radar scans into raster images of five radar variables useful in 

differentiating biological objects from precipitation in the atmosphere (Gauthreaux & 

Diehl, 2020; reflectivity factor (dBZ), differential phase (ΦDP), correlation coefficient 

(ρHV), radial velocity (Vr), and differential reflectivity (ZDR); see Table 4.1 for 

descriptions) using the vol2bird algorithm (Henja & Dokter, 2023). 

I removed areas with high-elevation terrain that obstructed the radar beam using 

radar beam angle (0º beam angle = < 1,624 m above sea level; 0.5º beam angle = < 1,852 

m above sea level) and an SRTM 90 m digital elevation model raster (Jarvis et al., 2008). 

I also used a radar detection area filter generated by the National Weather Service (NWS) 

to exclude air space that lay behind high-elevation terrain (NWS Salt Lake City 

[@NWSSaltLakeCity], 2020). Weather may mask animal presence in the airspace; 

therefore, I also used the depolarization ratio metric to filter out pixels suspected to 

contain weather (Kilambi et al., 2018). Finally, I filtered radar images to only those 

collected within ±2 minutes from pelican GPS location timestamps, to align as closely as 

possible with pelican observations. 

I filtered the GPS dataset to local pelican observations that were detectable by the 

radar beam. I first filtered pelican GPS locations to those occurring within the study area 

between April and October (n = 108,479 GPS locations), encompassing seasonal 

migration and the breeding season (Knopf & Evans, 2020). I then filtered GPS locations 

by elevation to those that occurred within the radar detection area during a radar scan. 

Radar beams expand as they travel away from the radar emitter, thus I generated a radar 

detection area by calculating the elevation of the radar beam’s center and the vertical 

width of the radar beam at a given location across the study area. I did so for both radar 
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beam angles and removed any GPS locations that occurred outside this area (0º beam 

angle: min = 1,533 m above sea level, max = 2,487 m; 0.5º beam angle: min = 2,010 m, 

max = 4,147 m). Most GPS locations lay outside (mostly below) the radar detection area 

or occurred in pixels excluded by weather and elevation filters, reducing the initial 

available GPS dataset to 93 pelican GPS locations within the radar detection area. 

Finally, radar scans may return missing values for some, but not all radar variables, 

depending on signal strength and scan type. The random forests algorithm used in this 

analysis cannot handle missing covariate values, so I further reduced the GPS dataset to 

only those GPS locations where no radar covariates were missing. This resulted in a final 

pelican GPS dataset of 23 presence locations from 16 individuals (male = 8, female = 8). 

Random forests requires both presence and absence (or pseudo-absence) data to 

predict species presence (Cutler et al., 2007). Pelican absence data were not available 

across the radar detection areas, so I generated pseudo-absence locations based on pelican 

space use patterns above Great Salt Lake. I first generated a population-level 99% 

autocorrelated kernel density estimate (AKDE) from all pelican GPS locations within the 

study area and study period with R (version 4.3.1; R Core Team, 2023) package ctmm 

(version 1.1.0; Fleming & Calabrese, 2023), which represents the geographic area used 

by the entire tagged population over the course of the study. I then randomly selected 10 

locations per observed pelican GPS location from areas outside the population 99% 

AKDE as pseudo-absences (n = 230). Each selected location was randomly assigned a 

time and date that occurred within the study period. Because pelican absences were not 

observed and were therefore pseudo-absences, pelican occurrence probabilities generated 

from this analysis are regarded as relative probabilities (Phillips & Elith, 2013). 
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Model covariates 

 
To distinguish pelican relative probability of occurrence, I extracted radar image 

pixel values for all five radar variables (Table 4.1) at the time and location of pelican 

GPS locations and at pseudo-absence locations (hereafter collectively, “presence-absence 

locations”). I also calculated mean pixel values of the eight pixels adjacent to each 

presence-absence location (i.e., neighborhood pixels) for each radar variable, to capture 

radar reflectivity data of pelicans that may have moved to an adjacent radar pixel between 

the time of GPS fix and the radar sweep or pelicans that occurred in a flock that spanned 

radar pixels. I included the following additional model covariates: scaled Julian date of 

each presence-absence location, time of day of each presence-absence location (rounded 

to the nearest hour), local annual pelican colony count, and annual tagging effort. Julian 

date and time of day were included to account for temporal variation in pelican 

movement and airspace use (Findholt & Anderson, 1995; King & Werner, 2001). To 

improve model interpretability, I scaled Julian dates to start on April 1st. Time of day 

was included at an hourly scale from 0–23, beginning at midnight. I included raw annual 

colony count data from the Great Salt Lake pelican breeding colony (Gunnison Island, 

Utah), collected by the UDWR, to represent the expected number of pelicans present 

within the study area by year. Previous combined counts of breeding and non-breeding 

individuals around Great Salt Lake suggest the total pelican population is on average four 

times the number of breeding individuals present (Paul and Manning, 2002), and colony 

counts are therefore not a direct measure of pelican abundance. However, counts may 

serve as a coarse index for the mean probability of detecting a pelican within radar 

airspace above Great Salt Lake. Annual tagging effort provided information about the 



 107 
number of pelicans expected in radar airspace per tagged individual, and was calculated 

by taking the number of GPS transmitters deployed on pelicans at Great Salt Lake each 

year, divided by the total number of tagged pelicans across the study.  

 
Random forests workflow 
 

I used a random forests algorithm to predict the relative probability of pelican 

occurrence within radar image pixels from radar, temporal, and species-specific 

covariates. Random forests is a supervised ensemble machine learning algorithm that 

uses the outcome of multiple decision trees to vote on the class (e.g., presence vs. 

absence) of a given observation, based on a random subset of model covariates. Random 

forests is well-suited to classification problems and prediction using small datasets, 

because its ensemble and bootstrapping methods avoid overfitting models—a common 

drawback of standard decision tree frameworks—and therefore may be particularly 

appropriate for radar data analysis (Gauthreaux & Diehl, 2020; Zewdie et al., 2019). 

Random forests is also useful in cases when relationships between data are non-linear, as 

can be the case with radar reflectivity data.  

I used R package randomForest (version 4.7-1.1; Liaw & Wiener, 2002) to 

predict relative probabilities of pelican presence for use in classifying pelican presence 

and absence in airspace above Great Salt Lake. I used 1,000 trees, terminal node size of 

one, three available input features (i.e., covariates) at each split, and custom probability 

cutoff thresholds to account for class imbalance. Unbalanced data classes may result in 

machine learning classification algorithms achieving a “low” prediction error rate by 

classifying all samples as the majority data class (i.e., pelican absence in this analysis; Ali 

et al., 2013; Elrahman & Abraham, 2013). To account for class imbalance, I calculated 
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and applied custom classification probability weights that adjust random forests’ default 

threshold of 0.5 (e.g., below 0.5 = absence, above 0.5 = presence) up or down, limiting 

the number of samples predicted to be the majority class based on model training data. I 

did so by iteratively adjusting how many model variables were considered at each split on 

samples of radar data, then calculating the best balance of receiver-operator error (Kuhn 

& Johnson, 2013). Relative pelican presence probability was then predicted using the 

resulting probability weights. 

I built a “baseline” model that included only radar and temporal covariates: 

 

Relative presence probability ~ pixel valuei + 

mean neighborhood pixel valuei + time of day + date , 

 
where 𝑖𝑖 denotes radar variables dBZ, ΦDP, ρHV, Vr, and ZDR.  

I also built a “count-effort” model, that included all components of the baseline 

model, as well as colony count and GPS tagging effort covariates: 

 

Relative presence probability ~ pixel valuei + 

mean neighborhood pixel valuei + time of day + date + colony count + effort . 

 

I ran the models 10 times on 80% training and 20% testing data randomly split at 

each model run, to obtain mean receiver-operating characteristic (ROC) area under the 

curve (AUC), F2 score, and recall, which I used to rank each model’s prediction 

capability on testing data. AUC measures the tradeoff between the model’s precision (i.e., 

out of all of the pelican presences the model predicted, how many were actually 
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pelicans?) and recall (i.e., out of all pelican presences in my data set, the number 

correctly identified as pelicans). AUC scores range 0–1, where scores above 0.7 indicate 

a model does acceptably well at prediction, and anything above 0.9 as outstanding 

(Hosmer et al. 2013). The F2 score also ranges 0–1, with higher scores indicating greater 

prediction capability. F2 is similar to the more common F1 score, which measures the 

harmonic mean between precision and recall, therefore providing a measure of how well 

a model can accurately capture pelican presence. However, the F2 score weights the 

importance of recall to twice that of precision, which is useful in cases where maximizing 

recall is preferred over precision. To avoid selecting a model that under-predicted pelican 

presences (especially in the context of bird-strikes) to use for pelican presence prediction, 

I defined the best model as the single model iteration with the highest recall. In case of a 

tie between models, I selected the model with the highest AUC score and F2 scores. I 

also ranked each radar covariate’s importance for model prediction capability by 

calculating the decrease in each model’s predictive accuracy on out-of-bag data, when 

values of each variable are shuffled (“mean decrease accuracy”; Breiman, 2001). 

 
Prediction case studies 

 
I conducted a broad extent analysis, predicting expected seasonal relative 

probability of pelican occurrence in airspace over the Great Salt Lake study area 

(between latitudes 40.50 and 41.45 and longitudes -111.50 and -112.50; Figure 4.1), I 

applied the best-performing model to 30 randomly selected radar image rasters for each 

hour of the day, seasonally (spring: April–May, summer: June–August, fall: September–

October; n = 2,160) across the study area. I then calculated the predicted median relative 

presence probability by season (spring, summer, fall). I also ground-truthed predictions 
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by predicting relative presence probability in radar pixels known to contain a GPS tagged 

pelican, and produced spatial estimates by season of relative presence probability across 

the study area.  

I also conducted a localized analysis of pelican airspace use above the SLCIA. I 

delineated commercial airplane flight paths in and out of the SLCIA (Federal Aviation 

Administration, 2022), then overlaid the radar detection area to generate a zone where the 

radar beam and flight paths intersected (Figure 4.2). Within this area, I applied the best-

performing model to 30 randomly selected radar image rasters for each hour of the day 

monthly across the study period (n = 5,040) to generate median relative presence 

probability by hour of the day and month. I also calculated an example hourly-by-month 

pelican-strike risk index at the SLCIA by dividing the estimated hourly number of flight 

arrivals and departures of any kind (e.g., commercial, cargo) by daily total flights, then 

multiplying by estimated hourly relative median pelican presence probability within the 

SLCIA radar detection area. In- and out-bound flight data at hourly resolution were only 

available from the SLCIA for January 2023, and I therefore used January flight data to 

estimate an example strike index for a single month (September) within the study period. 

Finally, I gathered total monthly airport traffic data (https://slcairport.com/about-the-

airport/airport-overview/air-traffic-statistics/) for use in calculating real-world monthly 

expected pelican-strike hazard. 

 
RESULTS 
 
Model performance 

 
Models were estimated based on a pelican presence/pseudo-absence dataset 

containing 23 pelican presence and 230 pelican absence locations, and radar and other 
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covariates. Custom classification probability weights were presence = 0.881, absence = 

0.119 for both models, effectively weighting tree votes toward the less prevalent data 

class (i.e., presence data; Kuhn & Johnson, 2013). 

Across all ten-fold model runs, both the baseline and count-effort models 

performed comparably. Both models performed well in terms of AUC (mean (± sd); 

baseline = 0.991 ± 0.009, count-effort = 0.991 ± 0.013), but moderately in terms of F2 

score (baseline = 0.440 ± 0.025, count-effort = 0.426 ± 0.033) and recall (baseline = 

0.674 ± 0.042, count-effort = 0.657 ± 0.048). The top performing baseline and count-

effort models, which were used for presence prediction (i.e., the highest performing 

model of ten runs), achieved AUC = 0.982, F2 = 0.464, recall = 0.739 (i.e., the model 

correctly predicts 73.9% of pelican GPS points) and AUC = 0.982, F2 = 0.489, recall = 

0.739, respectively. Including additional count-effort information increased model 

performance in the F2 score by ~5%. 

I ranked each covariate’s importance in model prediction capability by calculating 

mean decrease in model predictive accuracy for each variable. Of the best performing run 

of the baseline model, mean ρHV of neighborhood cells to GPS locations was the most 

important variable (Table 4.2), followed by mean Vr of neighborhood cells, then by mean 

ZDR of neighborhood cells. Julian date and mean ρHV of neighborhood cells were ranked 

highest for prediction capability for the count-effort model, followed by mean Vr of 

neighborhood cells. 

Median (± sd) radar cell values at pelican presence and pseudo-absence locations 

for each top-ranked radar model were: neighborhood ρHV (presence = 0.708 ± 0.155, 

pseudo-absence = 0.756 ± 0.163), neighborhood Vr (presence = 0.875 ± 6.342, pseudo-
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absence = 1.500 ± 5.001), and neighborhood ZDR (presence = 4.469 ± 3.243, pseudo-

absence = 5.348 ± 3.179). 

 
Case studies 
 

I used the best performing model across both model types (baseline and count-

effort) and all ten-fold model runs to predict pelican relative occurrence probability for 

both case studies. Seasonal predicted relative probability of pelican presence, averaged 

across all hours, was lowest in the summer (median (± sd) = 0.144 ± 0.041; Figure 4.3), 

followed closely by spring (0.148 ± 0.027), and highest in fall (0.173 ± 0.028). During 

the spring, predicted median pelican relative presence probability across the study area 

was high nearest to the KMTX radar station, wetlands east of KMTX near the Bear River 

Migratory Bird Refuge, and to the west between KMTX and the Gunnison Island pelican 

breeding colony (Figure 4.1, Figure 4.4). Activity near KMTX and Gunnison Island 

lessened during the summer while activity increased to the east and south of Great Salt 

Lake. In fall, areas to the south of Great Salt Lake and along the Wasatch Mountain range 

to the east of Great Salt Lake were predicted to have the highest relative pelican presence 

probability.  

The model correctly predicted pelican relative presence probability within pixels 

that were known to contain a GPS-tagged pelican (i.e., ground-truthed radar image 

pixels; Figure 4.5) 78.3% percent of the time, with a mean (± sd) predicted relative 

probability of 0.564 ± 0.106. 

Pelican presence estimates within SLCIA flight paths varied by month (Figure 

4.6), with the lowest median relative presence probability occurring in June (median (± 

sd) = 0.127 ± 0.016) and highest in August (0.195 ± 0.022). Pelican presence predictions 
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also varied hourly across months (Figure 4.7). The lowest relative pelican presence 

probability across SLCIA airspace occurred at 03:00 in June (0.105 ± 0.014), and highest 

at 17:00 in August (0.202 ± 0.020). 

Pelican-airplane strike hazard varied notably by hour across my example month 

(September, Figure 4.8a). High variability in air traffic across the day was a primary 

driver of strike risk, but peak air traffic roughly coincided with peak relative presence 

probability in the afternoons, further increasing strike risk during this period. Generally, 

across the day, the relative probability of striking a pelican in SLCIA airspace was the 

greatest between 08:00–11:00, 15:00–17:00, and 20:00–21:00. The lowest predicted 

strike hazard occurred at 01:00 with an estimated strike hazard of 0, as no in- or out-

bound flights occurred during this time, while the highest occurred at 16:00 (median 

strike hazard = 0.014). 

Monthly airplane traffic remained relatively stable across the study period (mean 

(± sd) monthly in- and out-bound flights = 26,588.71 ± 728.24), and therefore monthly 

strike hazard estimates did not differ greatly in magnitude from predicted pelican 

presence across SLCIA airspace (Figure 4.8b). The month with the lowest median strike 

hazard across the study period was June (median = 0.018 ± 0.002), and the highest was 

August (median = 0.029 ± 0.003). 

 
DISCUSSION 
 

I demonstrate that it is possible to achieve species-specific relative probability of 

occurrence within radar airspace, using a random forests algorithm trained on weather 

radar information and individual-level pelican GPS location data. My models achieved 

high AUC and reasonably high recall scores, but modest F2 scores, suggesting that the 
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models performed well at correctly identifying known pelican presence (i.e., true 

positives) in radar airspace, but may also classify non-pelicans as pelicans (i.e., false 

positives). However, because I only used pseudo-absences and not true absence data, it is 

unknown whether pseudo-absence locations predicted to contain a pelican were actually 

incorrect. Previous research has used weather radar data to identify airborne avian species 

(e.g., Gauthreaux & Diehl, 2020; O’Neal et al., 2010; Russell & Gauthreaux, 1998), but 

to my knowledge, this is the first study to combine GPS location data and weather radar 

data for species-specific classification. Additionally, my analysis automated species-

specific radar data extraction at known locations and generation of expected-absence 

data, removing the need for time-consuming hand-delineation of species presence and 

absence locations in radar images. 

Both of the models I tested (a “baseline” model including only radar and time 

variables, and a “count-effort” model that also included tagging effort and local colony 

count data) performed comparably. Of the two additional variables I included in the 

count-effort model, colony count appeared relatively more important than effort (Table 

4.2). However, including colony count information in my analysis improved the F2 score 

by < 5%, and obtaining colony count information (or other measures of population size) 

within radar study areas may be difficult or expensive to obtain for other avian systems. 

Depending on costs associated with gathering count data and the limited F2 score 

improvement, future studies may choose not to include such additional data. 

Neighborhood ρHV, which indicates the diversity of sizes and shapes of airborne objects, 

and Vr, which may be used to separate non-meteorological objects from precipitation, 

were the most important radar variables for predicting pelican presence above the Great 



 115 
Salt Lake basin. Birds and other biological scatterers often return lower ρHV values than 

precipitation (Gauthreaux & Diehl, 2020; Kumjian, 2013), whereas Vr may indicate 

speed and direction of birds in flight relative to a radar station. Species-specific 

characteristics of flight pattern, coupled with size and shape variation may enable us to 

identify species based on these distinguishing characteristics as captured in radar-based 

information. 

Predicted airspace use across the study area was highest in the fall and lowest in 

the summer, followed closely by spring (Figure 4.3), corresponding with local pelican 

migration and nesting phenology (Knopf & Evans, 2020; Paul & Manning, 2002). 

Relative probability of pelican occurrence within radar airspace above Great Salt Lake 

was most variable in the spring, likely owing to variation in annual spring temperatures 

and individual migratory phenology. Airspace use also appeared to shift spatially by 

season. Springtime use was greatest between the Gunnison breeding colony and the 

closest foraging sites to the breeding colony, while use increased during the summer and 

fall at sites along the Wasatch Mountains and southerly Farmington Bay. Low spring and 

summer airspace activity coincides with pelican nesting phenology, when up to 20% of 

the local population may be engaged in time-intensive breeding and nesting activities 

(Knopf & Evans, 2020; Paul & Manning, 2002), limiting movements beyond those 

required for self- and offspring-provisioning. Water surrounding the Gunnison breeding 

colony is too salty to support fish and other potential pelican prey items (Kijowski et al., 

2020; Wurtsbaugh et al., 2016), and as a result, the Bear River Migratory Bird Refuge 

and Willard Spur Waterfowl Management Area—state-managed wetlands just south of 

the Bear River Migratory Bird Refuge—serve as the nearest foraging grounds for adult 
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pelicans breeding at the Gunnison colony (Kijowski et al., 2020). Increased activity in 

eastern and southern wetlands in the summer and fall may reflect reduced reliance on 

wetlands near the Gunnison colony as chicks mature, dispersal of fledged juveniles, and 

pre-migratory staging in these areas (Paul & Manning, 2002). 

Quantifying bird-airplane strike hazard is becoming increasingly important as 

demand for air travel has increased. Pelicans have been involved in at least 33 plane 

collisions between 2004 and 2022 within the United States alone, costing airlines over 

$17 million in airplane repairs and risking human injury or mortality (Dolbeer et al., 

2023). Of these pelican collisions, 27% occurred at the SLCIA (Federal Aviation 

Administration, 2023). Currently, avian species are becoming increasingly reliant on 

Great Salt Lake as a migratory stopover site (Wilsey et al., 2017) and air traffic out of 

SLCIA is projected to increase (RS&H, 2022), likely resulting in increasing bird-plane 

strike risk through time. Monthly flight traffic in and out of SLCIA was fairly stable 

across study period months, and resultingly the strike hazard estimates mirrored seasonal 

pelican relative occurrence probability closely (Figure 4.8b), with August expected to be 

the worst month for potential strikes. Increased abundance of pelicans across the study 

area once chicks hatched at the Gunnison breeding colony have fledged (fall; Figure 4.3) 

and pre-migratory staging in eastern and southern Great Salt Lake wetlands near SLCIA 

(Figure 4.4; Paul and Manning, 2002) likely contribute to observed increases in strike 

hazard. Based on hourly flight data from January 2023, hourly pelican strike hazard was 

unsurprisingly largest during periods of high flight traffic, especially during afternoon 

hours when both flight traffic and relative probability of pelican presence was highest. 

Assuming hourly flight traffic remains similar across months, increased vigilance for 
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pelicans during the afternoon and evening hours is warranted, especially in high pelican 

abundance months of August and September. 

Few pelican GPS locations aligned with NEXRAD radar sweeps during the study 

period, which severely limited the amount of pelican presence/pseudo-absence data 

available to train the random forests model. Pelicans spend a majority of their daily 

activity budget loafing or foraging at ground level (King & Werner, 2001), and even with 

an initial dataset of greater than 100,000 GPS locations, nearly all were collected at 

altitudes below areas the KMTX radar station could detect. Additionally, random forests 

machine learning algorithms are unable to handle missing data, which can be common in 

NEXRAD data, depending on signal strength and signal-to-noise ratio of radar scans. 

Removal of missing values from the KMTX radar data reduced my available model 

training dataset further. Given these data limitations, the model predicted pelican 

presence at a considerably better rate than random, but it still performed worse than 

previous bird-radar analyses with greater amounts of data available. For example, 

Gauthreaux & Diehl (2020) achieved 91% recall when using random forests to classify 

known radar detections of purple martins (Progne subis) into purple martin and “other” 

categories using 47,620 known occurrences of purple martins within radar airspace. 

Limitations of my model were notable in some of my spatial predictions, where large 

“hotspots” of high relative occurrence probability existed across seasons in unexpected 

areas, including over urban centers and mountain foothills. Upon further inspection, these 

hotspots were likely the result of persistent radar artifacts (e.g., ground and water clutter 

or airborne particulate point sources) that the model could not parse from pelican 

presences. Misclassification may also extend to other avian species if similarities between 
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pelicans and other Great Salt Lake species are large (e.g., waterfowl). Future analyses 

that use only the few most important radar variables may reduce the number of radar 

pixels containing missing values without sacrificing model performance, and efforts to 

develop methods for accurate data imputation could help improve model prediction 

capability. Including additional pelican location data as more individuals are collared 

over time will also likely reduce classification errors. 

Pelicans are an ideal first species to explore whether extracting species-specific 

information from radar data is possible, but species-specific analyses are likely not 

limited to pelicans. Despite a small training dataset, my models achieved relatively high 

species-specific radar classification and prediction capability, which is promising for 

future applications of radar to avian GPS location data. Pelicans occur in high abundance 

around Great Salt Lake, and therefore my dataset of GPS locations within radar airspace 

may stand at the high end of what is currently available for most species. However, high-

frequency GPS trackers have been successfully deployed on many other large-bodied 

avian species to date, including waterfowl, cranes, and raptors (e.g., Overton et al., 2022), 

and known species occurrences within radar airspace are expected to grow over time as 

GPS trackers become increasingly capable of high-resolution fix rates. Furthermore, data 

collection for future GPS-radar analyses is likely easy to implement in near-future 

studies. Many new GPS transmitters can collect location data at the same frequency as 

NEXRAD radar sweeps (approximately once every 10 minutes). Aligning GPS fix rates 

with radar sweeps may reduce data loss and produce more detailed species-specific radar 

signatures, while still providing location data at frequencies relevant to research goals 

beyond GPS-radar analyses. 
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Given the proliferation of lightweight GPS tracking devices, planned NEXRAD 

improvements (National Weather Service, 2021), and increasingly sophisticated machine 

learning techniques, this chapter provides a glimpse into the future of radar’s growing 

importance to ecological and conservation research. Numerous avenues for future 

species-specific radar research exist, including automated real-time species-specific 

forecasts and airspace use estimates of species continent-wide. Species that possess 

enough GPS data to generate species-specific radar signatures could likely support such 

real-time avian forecasts. Real-time NEXRAD data is freely available online and could 

be automatically ingested into a workflow that applies a random forests model to each 

radar image, generating a species-specific forecast of presence/pseudo-absence or relative 

probability of occurrence. Such real-time forecasts could be immensely useful for 

estimating bird-airplane strike hazard, relating species behavior to fine-scale weather 

conditions, and determining optimal times to power down wind turbines or turn off urban 

lighting to reduce bird deaths from infrastructure collisions. Furthermore, NEXRAD has 

extensive coverage across the United States, and data are collected similarly across radar 

stations. Expanding GPS-radar analyses to include multiple NEXRAD stations could 

provide a more comprehensive view of species-specific avian space use on a broader 

scale, with relatively minimal effort. Application to foreign radar networks or non-

meteorological radar systems (e.g., aircraft surveillance radar) when possible may 

increase the utility of GPS-radar analyses further. Together, these future research avenues 

represent a significant step forward in understanding species-specific airspace use and 

abundance, and expansion and refinement of similar analyses warrants further 

exploration. 
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TABLES AND FIGURES 
 
 
Table 4.1: Descriptions and interpretations of dual polarized radar variables used for 
pelican presence prediction across Great Salt Lake radar airspace. 
Radar variable Abbreviation Description 

Reflectivity 
factor 

dBZ A logarithmic scale measuring the amount of transmitted power returned 
to the radar receiver from airborne objects. Provides information about 
the amount or reflectivity of objects in the air. Low values indicate few or 
low reflectivity objects, while high values indicate many or high 
reflectivity objects. 

Differential 
phase 

ΦDP A measure of how well synced horizontal and vertical radar waves are as 
they reflect from airborne objects. Provides information about the shape 
and concentration of objects in the atmosphere. Values increase with 
concentration and size of airborne objects. 

Correlation 
coefficient  

ρHV The coefficient between power and phase of horizontal and vertical radar 
waves reflecting from airborne objects. Provides information about the 
diversity of size and shape of airborne objects. Lower values indicate 
variability, while higher values indicate uniformity in object size and 
shape. 

Radial velocity Vr Velocity of airborne objects relative to the radar beam. Provides 
information on the speed and direction of airborne objects. Negative 
values indicate objects are moving toward the radar beam emitter, values 
near zero indicate movement perpendicular to the radar beam, and 
positive values indicate movement away from the radar beam emitter. 

Differential 
reflectivity 

ZDR The ratio between reflectivities measured by horizontal and vertical radar 
waves returning from airborne objects. Provides information about 
relative shapes of objects in the atmosphere. Negative values indicate 
objects are taller than they are wide, while positive values indicate 
objects are wider than they are tall. 
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Table 4.2: Variable importance to predicting pelican presence across Great Salt Lake 
radar airspace. Model performance for each variable was calculated by the observed 
decrease in prediction accuracy the model achieved when values of a given variable were 
shuffled (“mean decrease accuracy”). Greater values of raw performance decrease 
indicate greater variable importance to model prediction accuracy. “GPS” refers to radar 
variable values from pixels containing a GPS-tagged pelican and “neighborhood” refers 
to mean radar variable values from pixels adjacent to pixels containing a GPS-tagged 
pelican. Only the top six variables are shown. 
 Best performing model run Mean across all model runs 

Model Variable 
Raw performance 

decrease Variable 
Raw performance 

decrease 

Baseline ρHV (neighborhood) 11.720 ρHV (neighborhood) 10.653 

Vr (neighborhood) 10.121 Vr (neighborhood) 10.019 

ZDR (neighborhood) 8.690 Vr (GPS) 8.362 

Vr (GPS) 7.683 ZDR (neighborhood) 8.331 

Julian date 6.948 ρHV (GPS) 8.138 

ρHV (GPS) 6.780 Julian date 7.034 

Count-effort Julian date 12.421 Julian date 12.256 

ρHV (neighborhood) 10.266 ρHV (neighborhood) 9.931 

Vr (neighborhood) 8.848 Vr (neighborhood) 9.171 

Colony count 8.184 ZDR (neighborhood) 8.101 

Vr (GPS) 7.929 Vr (GPS) 7.411 

ρHV (GPS) 7.874 ρHV (GPS) 6.962 
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Figure 4.1: Radar detection area and points of interest across the Great Salt Lake basin. 
The KMTX NEXRAD weather radar station (blue star) overlooks Great Salt Lake from a 
ridgeline approximately 730 meters above the lake’s surface. Pelicans nest colonially on 
Gunnison Island (red circle) and forage along the eastern periphery of Great Salt Lake at 
locations including the Bear River Migratory Bird Refuge (purple triangle) and 
Farmington Bay (yellow pentagon). The Salt Lake City (SLC) International Airport 
(green triangle) is a high-traffic airport that has experienced nine pelican-airplane strikes 
since 2004. 
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Figure 4.2: Intersection of airspace visible to the KMTX NEXRAD radar station and 
flightpaths in and out of the Salt Lake City International Airport (SLCIA). Orange 
polygons signify airspace within airplane flightpaths that are sampled by the radar station 
using a beam with 0.0º elevation above horizontal, and the off-white polygon signifies 
airspace sampled using a beam with 0.5º elevation above horizontal. The red dot indicates 
the SLCIA, and the blue dot indicates the KMTX NEXRAD station. 
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Figure 4.3: Median relative predicted American White Pelican (AWPE) presence 
probability across Great Salt Lake radar airspace by season across all study years. 
Predictions were produced using the best model run of ten from the count-effort model, 
but both models produced similar estimates. 
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Figure 4.4: Spatial predictions of median relative pelican presence probability across 
Great Salt Lake radar airspace during the a) spring (April–May), b) summer (June–
August) and c) fall (September–October) across all study years. Predictions were 
produced using the best model run of ten from the count-effort model, but the basic and 
count-effort models produced similar estimates. 
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Figure 4.5: Examples of relative predicted pelican presence within 250 x 250 m radar 
pixels known to contain a GPS-tagged pelican. Images included here were produced 
using the best model run of ten from the count-effort model, but both the basic and count-
effort models produced similar estimates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 137 

 
Figure 4.6: Median relative predicted American White Pelican (AWPE) presence 
probability across Salt Lake City International Airport (SLCIA) in- and out-bound 
airplane flight paths within radar airspace. Estimates are by month across all study years. 
Predictions were produced using the best model run of ten from the count-effort model, 
but both models produced similar estimates. 
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Figure 4.7: Median relative American White Pelican (AWPE) presence probability, 
predicted across Salt Lake City International Airport (SLCIA) in- and out-bound airplane 
flight paths within radar airspace (Figure 4.2). Bars represent median relative presence 
probability by hour across a 24-hour day, beginning at hour 0 (midnight). Concentric grid 
lines indicate the probability plot axis, beginning at 0 (plot center) and ending at 0.25 
(outermost grid line). Estimates are by hour and month across all study years. Orange 
bars indicate hours with available model training data (i.e., pelicans occurred within the 
radar detection area during these hours; “in-sample”), while gray bars indicate hours 
without data available (“out-of-sample”). Predictions were produced using the best model 
run of ten from the count-effort model, but both models produced similar estimates. 
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Figure 4.8: Median predicted American White Pelican (AWPE) bird-airplane strike 
probability across Salt Lake City International Airport (SLCIA) in- and out-bound 
airplane flight paths within radar airspace. Estimates were created by multiplying 
predicted pelican presence by in- and out-bound flight traffic for each time period. 
Hourly flight data were not available for all months, and therefore hourly estimates a) 
were produced using January 2023 hourly flight data and median predicted pelican 
presence for September across all years of the study period and are intended as an 
example only. Monthly estimates b) were produced using monthly 2023 flight data from 
SLCIA and median pelican predicted presence across all years of the study period. 
Predictions were produced using the best model run of ten from the count-effort model, 
but both models produced similar estimates. 
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CHAPTER V 

 
SCALE-DEPENDENT POPULATION DRIVERS INFORM AMERICAN WHITE  

 
PELICAN MANAGEMENT IN A SHRINKING SALINE LAKE ECOSYSTEM1 

 
 
ABSTRACT 
 

Shrinking saline lakes provide irreplaceable habitat for waterbird species globally. 

Disentangling effects of wetland habitat loss from other drivers of waterbird population 

dynamics is critical for protecting these species in the face of unprecedented changes to 

saline lake ecosystems, ideally through decision-making frameworks that identify 

effective management options and their potential outcomes. Here, I develop a framework 

to assess effects of hypothesized population drivers and identify potential future 

outcomes of plausible management scenarios on a saline lake-reliant waterbird species. I 

use 36 years of monitoring data to quantify effects of environmental conditions on the 

size of a regionally important breeding colony of American white pelicans (Pelecanus 

erythrorhynchos) at Great Salt Lake, Utah, USA, then forecast colony abundance under 

various management scenarios. I found that low lake levels, which allow terrestrial 

predators access to the colony, are probable drivers of recent colony declines. Without 

local management efforts, I predicted colony abundance could likely decline 

approximately 37.3% by 2040, though recent colony observations suggest population 

declines may be more extreme than predicted. Results from population projection 

scenarios suggested that proactive approaches to preventing predator colony access and 

 
1 Van Tatenhove, A.M., Neill, J., Norvell, R.E., Stuber, E.F., Rushing, C.S. In press. 
Scale-dependent population drivers inform avian management in a declining saline lake 
ecosystem. Ecological Applications. 
 



 141 
reversing saline lake declines are crucial for the persistence of the Great Salt Lake pelican 

colony. Increasing wetland habitat and preventing predator access to the colony together 

provided the most effective protection, increasing abundance 145.4% above “no 

management” projections. Given the importance of water levels to the persistence of 

island-nesting colonial species, proactive approaches to reversing saline lake declines 

could likely benefit pelicans as well as other avian species reliant on these unique 

ecosystems. 

 
INTRODUCTION 
 

Across the globe, saline lakes and their peripheral wetlands are rapidly being lost 

due to water diversions, prolonged droughts, and rising temperatures (Wurtsbaugh et al., 

2017). Because they often occur in already water-stressed regions, saline lakes provide 

rare concentrations of water in otherwise arid landscapes, and their declines have 

outsized effects on the health of species reliant on these ecosystems (Moulton et al., 

2018; North American Bird Conservation and Initiative, 2022; Saccò et al., 2021). In the 

United States alone, over half of saline lakes have decreased in surface area by > 50% 

since the late 1800s (Wilsey et al., 2017). These dramatic lake level declines have shrunk 

aquatic habitats and exposed fragile lake beds, resulting in toxic dust storms (Goudie, 

2014), billions of dollars in ecological clean-up costs (Ramboll Environ, 2016), and 

hemispheric-scale biodiversity loss (Conover & Bell, 2020). Shrinking saline habitats 

have been directly detrimental to plant and wildlife populations by destroying fisheries 

and extirpating plant and vertebrate species from critical habitats (Eimanifar & Mohebbi, 

2007; Micklin, 2007). Despite growing interest in protecting these ecosystems, slowing 
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or reversing their declines will likely take years to achieve (Jacobs Engineering Group, 

2019), further endangering the species that depend on them. 

Colonial waterbirds that rely on saline lake ecosystems are particularly at risk of 

population declines as saline lakes shrink. Many of these species are well-adapted to 

saline habitats, and rely on saline lakes and their peripheral wetlands as stopover, 

breeding, and foraging sites (Saccò et al., 2021; Wurtsbaugh et al., 2017). Globally, 

shrinking saline lakes have been tied to population declines or local extirpation of 

numerous colonial avian species, including greater flamingos (Phoenicopterus roseus) in 

Iran’s Lake Urmia (Sima et al., 2021), and at least ten species in central Asia’s Aral Sea 

(Joger et al., 2012). Migratory species may be impacted most severely by saline lake 

habitat loss, because these areas often serve as final breeding or wintering destinations 

(e.g., Wilson’s phalaropes (Phalaropus tricolor) in Laguna Mar Chiquita, Argentina), or 

serve as critical staging or refueling areas during seasonal migration (e.g., eared grebes 

(Podiceps nigricollis) in Great Salt Lake, USA). 

Great Salt Lake is the largest saline lake in North America, and its location in the 

arid Great Basin, Utah, makes it an irreplaceable resource for migrating and breeding 

birds in the western hemisphere (Wurtsbaugh et al., 2017). The lake and peripheral 

wetlands harbor large invertebrate and fish populations that feed up to ten million birds 

annually (Baxter & Butler, 2020). An estimated one-third of breeding and migrating birds 

in the western United States visit Great Salt Lake at some point in the year (Paul & 

Manning, 2002), including species of state and regional conservation concern (Sorensen 

et al., 2020). Great Salt Lake water levels have shrunk dramatically since their peak in 

the 1980s, primarily due to agricultural water use (Wurtsbaugh et al., 2016). These lake 
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level declines have compromised an estimated 40% of habitat used by invertebrate 

populations within the lake itself (Wurtsbaugh et al., 2016), and have desiccated more 

than 80% of peripheral wetlands containing invertebrates, fish, and critical bird nesting 

habitat (Wurtsbaugh & Sima, 2022). 

Decreasing water levels are frequently a primary driver of avian declines in saline 

lake ecosystems (Herbst & Prather, 2014; Micklin, 2007; Wurtsbaugh et al., 2017), but 

for species of conservation concern, understanding how water levels and other drivers 

(environmental or otherwise) affect these populations is crucial to managing species 

appropriately. Water level declines may shrink breeding and foraging habitat directly 

(Diem & Pugesek, 1994; Moreno-Matiella & Anderson, 2005) or may allow predators 

access to previously isolated island breeding colonies (Moreno-Matiella & Anderson, 

2005). Local weather and regional climate conditions may affect nest success, cause 

direct mortalities, or alter prey populations (Madden & Restani, 2005; Sovada et al., 

2014). Additionally, lagged effects of environmental conditions on a population through 

recruitment and survival may underlie interannual or long-term population dynamics 

(Evans et al., 2023; Cornford et al., 2023). For migratory species, conditions on the 

breeding or wintering grounds may produce carryover effects that also impact population 

dynamics across the full annual cycle in complex ways (Fayet et al., 2016; Sillett et al., 

2000). With many possible competing hypotheses, decision-making frameworks that first 

quantify effects of threats that are within management control, then identify what actions 

may be most effective prior to enacting management on these species are ideal (Runge et 

al., 2011). 
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Here, I investigate factors hypothesized to have contributed to American White 

Pelican (Pelecanus erythrorhynchos; hereafter “pelican”) population declines within the 

shrinking Great Salt Lake ecosystem, including declining lake levels, colony access by 

predators, and regional and local environmental conditions. I use long-term monitoring 

data from a population of pelicans that nest colonially within the shallow, hypersaline 

north arm of Great Salt Lake. Great Salt Lake pelican colony abundance has been 

declining since the late 1980s, but no formal assessment of its population drivers has 

been conducted to date. I also develop a population viability analysis (PVA) framework 

to forecast population abundance under alternative environmental and management 

scenarios, and apply it to Great Salt Lake pelican colony count data. 

 
METHODS 
 
Study site and colony counts 
 

The Gunnison Island pelican breeding colony (Gunnison Island State Wildlife 

Management Area, Box Elder County, Utah, USA; Figure 5.1) is among the largest 

pelican colonies in western North America. At a peak count of approximately 20,000 

breeding individuals, this population likely acts as a primary contributor to the western 

metapopulation of this species (Kijowski et al., 2020), and is therefore important to the 

metapopulation’s persistence. Pelicans nest in small, dense subcolonies on benchlands 

around the island. Due to high water salt content and subsequent lack of forage fish near 

the breeding colony, pelicans nesting on Gunnison Island must travel > 45 km to forage 

in shallow wetlands in the U.S. Fish and Wildlife Service Bear River Migratory Bird 

Refuge and near the Salt Lake City International Airport along the eastern periphery of 

Great Salt Lake (Figure 5.1). 
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The Utah Division of Wildlife Resources (UDWR) began conducting colony 

counts opportunistically in 1963, and has conducted standardized fixed-wing aircraft 

counts of the Gunnison Island pelican population, beginning sporadically in 1976 and 

annually from 1980 to present. Counts were conducted in approximately the third week 

of May, during the pelican incubation period (J. Neill, UDWR, written communication, 

2016). 

 
Break-point analysis 
 

Gunnison Island has experienced numerous and changing factors potentially 

influencing pelican abundance, including human disturbance and drought, and has 

displayed dramatic growth and interannual changes in abundance since colony counts 

began (Figure 5.2). I therefore expected that population drivers may act differently on 

colony abundance under different growth dynamics. I used a break-point analysis (Bahlai 

& Zipkin, 2020) conducted on all years of count data since regular, annual surveys began 

(i.e., 1980–2020) to identify the change in population trajectory between exponential 

growth and stable dynamics. The break-point analysis uses iterative model-selection to 

detect parameter value shifts in a population time-series by breaking time-series data into 

all possible subsets of four or more consecutive data points and fitting a population 

growth model to each. The analysis then evaluates all tested models using the Akaike 

information criterion for small sample sizes (AICc; Akaike, 1974) and identifies the best 

performing model (i.e., the model that contains the most explanatory break point 

combinations). I defined study period years as those years occurring after the best 

performing exponential-stable dynamics breakpoint. 
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Environmental covariates 
 

I developed a set of environmental drivers hypothesized to influence pelican 

population dynamics (see Table 5.1 for full description of hypotheses). I hypothesized 

that local water levels may drive colony abundance by influencing availability of wetland 

foraging habitat and by facilitating predator access to colony habitat, especially in low 

water years (Anderson, 1991; Kijowski et al., 2020). Extremely high water levels may 

also reduce available foraging area by making water too deep for pelicans to forage in 

(Anderson, 1991). However, within the study period, water levels in nearly all years were 

conducive to pelican foraging habitat (Artmann, 2017; Tarboton, 2017), and low water 

levels were expected to impact pelicans in future years, given overall regional water 

scarcity during this period. Therefore, I expected colony counts and water levels to have a 

linear relationship. I hypothesized that local spring temperatures may affect nest success, 

relating to chicks’ cold stress limits (Evans, 1984). I also expected that negative density 

dependence indicates breeding gap years or dispersal to other nesting sites following 

years of high colony density, whereas positive density dependence reflects conspecific 

attraction and natal colony fidelity as first-time breeders choose breeding sites. 

Furthermore, I hypothesized that large-scale fluctuations in long-term temperature and 

precipitation regimes may influence breeding population dynamics through their 

influence on pelican survival and fecundity (Holmgren et al., 2001; Sillett et al., 2000; 

Stenseth et al., 2002). 

I obtained environmental data from sources with continual coverage across the 

study period as defined by the break-point analysis. I calculated annual mean breeding-

season (April–July) water levels from monthly water level data at the U.S. Geological 
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Survey water level gage nearest to Gunnison Island (Great Salt Lake Near Saline, UT, 

USGS station no. 10010100, https://waterdata.usgs.gov/monitoring-location/10010100/) 

(U.S. Geological Survey, 2023). I derived a ‘land bridge presence’ indicator (an index of 

whether terrestrial predators have access to the island; Baskin & Turner, 2006; J. Neill, 

UDWR, written communication, 2016; Kijowski et al., 2020) in years when Great Salt 

Lake water levels were below 1,278.5 m (measured in meters above sea level). I 

calculated mean minimum temperatures during April–July from monthly minimum 

temperature summaries collected at the Salt Lake City International Airport weather 

station (https://w2.weather.gov/climate/xmacis.pp?wfo=slc). I calculated mean annual 

Pacific Decadal Oscillation (PDO) index, an index of sea-surface temperature anomalies 

across the north Pacific Ocean, and Southern Oscillation Index (SOI), a climate index 

based on sea level air pressures in the tropical Pacific Ocean, from monthly indices 

(PDO: retrieved from the National Centers for Environmental Information, URL: 

https://www.ncei.noaa.gov/pub/data/cmb/ersst/v5/index/ersst.v5.pdo.dat; ERSST v5; 

SOI: retrieved from the NWS Climate Prediction Center, URL: 

https://www.cpc.ncep.noaa.gov/data/indices/soi). Pacific Decadal Oscillation and SOI 

have been implicated in continent-wide climate anomalies at annual and decadal scales 

(Mantua & Hare, 2002; Rasmusson & Wallace, 1983). I used annual colony size as a 

proxy for population density, as available nesting habitat stays relatively constant from 

year to year, despite fluctuating Great Salt Lake water levels changing the total exposed 

area of Gunnison Island. 

Environmental covariates may act on a population immediately (e.g., direct 

mortality), or may have lagged effects on population dynamics (e.g., carryover effects). I 

https://waterdata.usgs.gov/monitoring-location/10010100/
https://w2.weather.gov/climate/xmacis.pp?wfo=slc
https://www.ncei.noaa.gov/pub/data/cmb/ersst/v5/index/ersst.v5.pdo.dat
https://www.cpc.ncep.noaa.gov/data/indices/soi
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therefore included same-year effects (excluding density dependence, which depends on 

abundance of previous years) as well as one-, three-, and four-year lagged effects of all 

covariates in the model. Time lags were chosen based on pelican life history, where a lag 

of one year represents adult response to conditions in the previous year, while lags of 

three and four years represent recruitment of first-time breeders into the colony (Table 

5.2). 

 
Model description and fitting 
 

I used a state-space modeling (SSM) framework to estimate latent true colony 

abundance as a function of current and time-lagged environmental covariates and density 

dependence, while accounting for over- and under-counting colony size (Auger‐Méthé et 

al., 2021; Newman et al., 2014). I explored time-lagged effects by shifting covariate data 

toward the present by n lag years, while leaving count data associated with the years in 

which the data were collected (e.g., 𝑁𝑁𝑡𝑡 reflects conditions at time t-n; Eq. 5.1). I first 

conducted a variance inflation factor (VIF) analysis on a model containing all covariates, 

to quantify multicollinearity in my predictors. All covariates had VIFs of less than five 

(James et al., 2013), and I therefore included all covariates in my analysis. Due to the 

large number of hypothesized covariates (n = 33) and limited years of data (n = 36), I 

conducted a univariate screening procedure to reduce the number of covariates within my 

final (“global”) model. For the univariate screening, I ran individual models containing a 

single environmental covariate with all associated time lags (i.e., zero-, one-, three-, and 

four-year lags). My goal was to eliminate predictors with no effect on pelican counts, 

rather than to select only the strongest predictors (Grosbois et al., 2008), and therefore I 
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set the inclusion level to any predictors with 80% credible intervals (CIs) not overlapping 

zero. 

The co-occurrence of temporal trends in both population size and environmental 

covariates can lead to the detection of spurious relationships in regression-based analyses, 

where detected relationships between variables are a result only of overall trends and not 

of variation within these trends (Graham, 2003; Grosbois et al., 2008). To strengthen 

inference about whether the environmental processes influence colony dynamics at an 

annual scale, I first removed temporal trends from covariate time-series by regressing 

each environmental covariate against year, then used model residuals as the annual 

covariate values in the SSM, so that values represent deviations from the mean trend and 

not the trend itself (Grosbois et al., 2008; Rushing et al., 2016). 

Colony counts were log-transformed to linearize density-dependent terms (Auger‐

Méthé et al., 2021; Royama, 1992), and covariates were modeled with the following 

process formulation: 

 

log(Nt) = β0 + (1+βN1)log(Nt-1) + βN3 log(Nt-3) + βN4 log(Nt-4)  + βX1X1,t-0 + ... + 

βXiXi,t-n + zproct
σproc , 

(5.1) 

 
where 𝑁𝑁𝑡𝑡 represents annual abundance at time t, 𝛽𝛽0 represents a global intercept 

term, 𝛽𝛽𝑁𝑁 terms represent density dependent slope coefficients expressed as a linearized 

autoregressive process (Royama, 1992), and 𝛽𝛽𝑋𝑋 terms represent environmental covariate 

slope coefficients. 𝑋𝑋𝑋𝑋 represent environmental covariates i, indexed by year t, with a time 

lag of n years, where n = (0, 1, 3, 4). I modeled process variance using 𝑧𝑧𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 a 
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decomposition of process variance into an annually indexed normal distribution centered 

on zero multiplied by the standard deviation of process variance, which resulted in better 

convergence than alternative parameterizations. 

I used the following observation model: 

 

log(yt) ~ Normal(log(Nt), σ²obs) , 

 
where 𝑦𝑦𝑡𝑡 is the observed colony count in year t and 𝜎𝜎²𝑜𝑜𝑜𝑜𝑜𝑜 is the observation error. 

Environmental covariate terms were given zero-mean normal priors, 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0, 1.75), 

𝑧𝑧𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡was modeled with a 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0, 1) prior, and variance terms were given 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(0.1, 0.1) priors. 

The univariate screening procedure resulted in the following global model: 

 

log(Nt) = β0 + (1+ β1)log(Nt-1) + β2log(Nt-4) + β3waterlevelt-1 + β4temperaturet +  

β5temperaturet
2 + β6bridget-1 + β7yeart + zproct-4σproc , 

 

where 𝑁𝑁 represents annual abundance at time t, 𝛽𝛽0 represents the global intercept, 

and 𝛽𝛽𝑛𝑛 terms represent environmental covariate slope coefficients. 

All models were estimated in R (version 4.3.1; R Core Team, 2023) with the 

package NIMBLE (de Valpine et al., 2017; NIMBLE Development Team, 2022), using 

three chains with 100,000 iterations each, after 10,000 iterations of burn-in to achieve 

model convergence. To avoid influencing model outcomes from outside of the non-

exponential growth phase determined by the break-point analysis, I did not consider 



 151 
count data from prior to 1985. Therefore, incorporating density dependence time lags in 

the model left model years one through four without associated count data. I estimated 

these missing years of count data (i.e., 𝑙𝑙𝑙𝑙𝑙𝑙(𝑁𝑁1:4)), as well as parameter estimates 

 𝑧𝑧𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, and 𝜎𝜎²𝑜𝑜𝑜𝑜𝑜𝑜, using NIMBLE’s default random walk sampler. I used 

NIMBLE’s automated factor slice Markov chain Monte Carlo (MCMC) sampler 

(“AF_slice”; Tibbits et al., 2014) for all slope parameters to improve convergence. Model 

convergence was established using 𝑅𝑅� values (chains with 𝑅𝑅� < 1.1 were considered to 

have converged; Brooks & Gelman, 1998) and visual inspection of trace plots. Data, 

projected environmental covariates, and associated novel code used in this analysis are 

available in USGS data and software releases (Van Tatenhove et al., 2024a; Van 

Tatenhove et al., 2024b). 

I evaluated the global model’s predictive performance using temporal holdout 

validation (Auger‐Méthé et al., 2021), using the first 28 years (80% of data; 1985–2012) 

as training data to estimate the model parameters, and the remaining eight years (2013–

2020) as test data. To quantify model fit, I calculated root mean squared percentage error 

(RMSPE; Shcherbakov et al., 2013) of predicted versus observed data in the test set and 

generated 95% prediction intervals (i.e., the interval within which 95% of future 

observations are expected to fall, accounting for both the uncertainty in estimating the 

mean and the variability of individual predictions around that mean). 

 
Population Viability Analysis (PVA) and future environmental scenarios 
 

I conducted a PVA using posterior samples generated by the fitted global model 

to project colony abundance to 2040 under five possible management scenarios (see 

Table 5.3 for description of all tested scenarios), where each year’s latent true abundance 
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is estimated concurrently as the model samples, resulting in an estimated colony 

abundance time-series for each model iteration (total iterations minus burn-in = 90,000). 

Expected future water level and temperature trends, assuming no adjustments in local 

water resource management or significant changes in climate (i.e., “status-quo”) were 

generated by regressing observed 1985–2020 data for each continuous covariate against 

year, and extrapolating the estimated trend 20 years into the future. The land bridge was 

designated as “present” for any projected water levels below 1,278.5 m above sea level. 

To explore how individual environmental covariates might affect colony abundance, I 

also investigated scenarios where I held future water level and temperature values 

constant at the 1985–2020 mean. Incorporating expected natural fluctuations in projected 

covariates would likely provide more realistic projections of future pelican abundance. 

However, this approach provides a clearer picture of how each covariate alone affects 

future colony abundance. Furthermore, constant covariate values can be interpreted to 

represent management actions to stabilize water levels lake-wide or hypothesized effects 

of greenhouse gas reductions on local temperatures. Finally, to project colony response to 

removing the land bridge (e.g., installation of fencing or predator removal), I set all 

projected land bridge data to zero (i.e., not present). These forecasts do not account for 

changes in environmental conditions outside the scope of the global model or 

immigration and emigration dynamics. 

 
RESULTS 
 
Break-point analysis 
 

The break-point analysis identified three points of population dynamics change in 

the time-series: 1985, 2012, and 2019 (Table 5.4). The latter two years were well outside 
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of the exponential growth phase identified by the break point analysis (Figure 5.2), and I 

therefore restricted the analysis to only years within the non-exponential growth phase 

(1985–2020). I chose to retain count data from years 2012–2020, even though 2012 and 

2019 were identified as break-points, as they likely represent other potential ecological 

“breaks” besides exponential-stable dynamics. 

 
Global model 
 

After performing variable screening, I retained density dependence, land bridge 

presence, spring temperature, and water levels (Table 5.5, Table 5.6) in the global model. 

The model demonstrated high predictive performance (RMSPE = 0.677; Figure 5.3) in 

eight-year temporal holdout data. 

I found strong evidence for a negative effect of land bridge presence at a one-year 

lag, negative density-dependence at one-year lag, and positive density-dependence at 

four-year lag (Table 5.6). I estimated that the colony declined approximately 20.5% 

following years where a land bridge was present (log mean = –0.229; 95% CI: –0.447, –

0.014) compared to years without the land bridge. Colony abundance displayed negative 

density dependence with a one-year lag, with abundance expected to decline by an 

average of 0.8% (log mean = –0.838; 95% CI: –1.114, –0.503) for every one percent 

increase in colony size in the previous year. Conversely, I found strong evidence of 

positive density dependence at a four-year lag, with abundance expected to increase by 

approximately 0.6% (log mean = 0.621; 95% CI: 0.317, 0.868) for every one percent 

increase in colony size four years prior. I found moderate evidence for a positive 

relationship between abundance and both minimum spring temperature and water levels. 

After accounting for temporal trends in colony abundance, my model estimated colony 
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abundance would increase on average by 5.8% (log mean = 0.056; 95% CI: -0.008, 

0.122) for each degree Celsius of minimum spring temperature increase. Similarly, for 

each meter of Great Salt Lake water level increase, I would expect the population to 

increase by 9.7% (log mean = 0.093; 95% CI: –0.044, 0.236). 

 
Population Viability Analysis (PVA) 
 

Between 1985 and 2020, the Gunnison Island colony declined by a median value 

of 1.5% per year, with high interannual variability, resulting in a cumulative population 

decline of 17.9%. Under the PVA “status-quo” scenario (Table 5.3), the colony is 

predicted to further decline by 37.3% by 2040, to an estimated 5,062 individuals (95% 

CI: 1,490, 9,131; Figure 5.4). Under the “stabilizing spring temperatures” scenario, the 

population is projected to decrease 47.9% below 2020 levels (a further 17.1% decrease 

from “status quo” PVA estimates; Figure 5.4a to 4,201 individuals (95% CI: 954, 8,638). 

However, under the “land bridge elimination” scenario (Table 5.3), the pelican 

population is expected to increase to 9,993 individuals (95% CI: 3,411, 18,962) by 2040, 

an increase of 23.8% from 2020 estimates, and a 97.4% increase from the 2040 

prediction for the “status quo” (Figure 5.4a). Pelican populations are expected to increase 

the most when both the land bridge is eliminated and water levels are returned to their 

1985–2020 average, to an estimated 12,423 individuals (95% CI: 5,973, 19,638; a 53.9% 

increase from 2020 estimates and 145.4% increase from “status quo” PVA estimates; 

Figure 5.4b). 
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DISCUSSION 
 

Using long-term monitoring data, I quantified effects of hypothesized population 

drivers on a declining colonial American white pelican population within a shrinking 

saline lake ecosystem. I also projected population abundance into the future under 

potential environmental and management scenarios to suggest possible management 

approaches for protecting this species into the future. This developed workflow may be 

translated to other avian species in declining saline lake ecosystems to quantify effects of 

hypothesized population drivers and identify future outcomes of plausible management 

scenarios. My case-study analysis indicates a direct link between Great Salt Lake 

declines and the decline of a regionally important American White Pelican colony, and 

highlights potential consequences of continued water level declines for the viability of 

this iconic species. The strong influence of local conditions on colony dynamics has 

important implications for the management of this species, suggesting that managers may 

be able to mitigate recent declines through local actions. However, without rapid 

management intervention, the PVA indicates that the Gunnison Island colony may go 

extinct within the 21st century. 

I found strong evidence that land bridge presence is negatively related to colony 

abundance, supporting my hypothesis that Great Salt Lake’s declining water levels 

impact population dynamics, likely by allowing terrestrial predators access to the 

previously predator-free island. Terrestrial predators, including red fox (Vulpes vulpes) 

and coyotes (Canis latrans) have been detected on Gunnison Island since 2017 (Kijowski 

et al., 2020). Predator presence may dissuade waterbirds from nesting and often 

contributes to colony abandonment across colonial waterbird species (e.g., Parnell et al., 
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1988), including pelicans (Moreno-Matiella & Anderson, 2005). I also found evidence of 

strong negative density dependence with a lag of one year, supporting my hypothesis that 

pelicans are likely limited by food or nesting sites, and therefore disperse from Gunnison 

Island to other breeding colonies or take breeding gap years following years of high 

colony density. Furthermore, I found evidence for positive density dependence with a 

time lag of four years. The mechanisms here are less clear but may be due to synergistic 

effects of natal colony fidelity (where pelicans hatched on Gunnison Island are likely to 

return to the colony as first-time breeders, reflecting colony abundance and nest success 

of their hatch year) and conspecific attraction common in colonial species like pelicans, 

influences Gunnison Island population dynamics. 

While water levels were not a strong driver of colony abundance beyond their 

influence via land bridge presence, my PVA scenarios indicate that if Great Salt Lake 

water levels are increased in tandem with colony protection from predators, abundance 

could rebound toward historical levels faster than through management of either of these 

population drivers in isolation (Figure 5.4b). Alone, colony separation from the mainland 

(e.g., fencing or fladry installation) and/or predator control may offer a more immediate 

and relatively cost-effective solution to reversing population declines than refilling Great 

Salt Lake, a task requiring legislative, agricultural, and municipal cooperation across the 

Great Salt Lake watershed amid drought conditions and increasing human water use. 

However, a two-pronged approach could provide comprehensive protections for the 

breeding colony, wetland foraging habitat, and critical migratory stopover habitat that the 

Gunnison Island pelican population and other species rely on, well into the future. 
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Recent events at the Gunnison Island colony underscore the need for rapid 

management actions to address colony declines, and to view the PVA population decline 

estimates as conservative. While conducting a shorebird monitoring flight over Great Salt 

Lake in late June 2023, UDWR officials noted the near-complete abandonment of 

Gunnison Island by nesting pelicans. Previous colony abandonment or near-

abandonments have occurred at Gunnison Island (Kijowski et al., 2020), but the current 

2023 abandonment is the first recorded instance where factors beyond human disturbance 

to the colony appear to have caused colony-wide nesting failure. This single-season 

abandonment may not represent complete colony extinction, but it does imply that the 

PVA may underestimate declines, which indicates that without management, colony 

abundance could decline by 37.3% by 2040. The PVA may underestimate these declines 

due to unexpected environmental shifts not captured in projected environmental 

covariates and emerging conditions not included within the model. Great Salt Lake is 

experiencing unprecedented changes as climate variability increases and human 

population growth further stresses water systems. Compounded effects of increasing 

water diversions and evaporation from Great Salt Lake as regional temperatures climb 

may cause future water levels to decline more quickly than projected (Hall et al., 2021). 

Shifts in prey availability and increased predator activity may also lead to unexpected 

population dynamics like those observed in 2023. Unmodeled factors including disease 

and lake level management may impact population dynamics in unexpected ways as well. 

Since its widespread introduction into wild bird populations in 2021, highly pathogenic 

avian influenza (HPAI) infections have devastated colonially nesting bird species 

globally, including numerous pelican species (Alexandrou et al., 2022; Lo et al., 2022; 
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Ministerio de Salud, 2022). Highly pathogenic avian influenza has not been detected at 

the Gunnison Island colony, but has been confirmed in pelicans within Utah (Utah 

Division of Wildlife Resources Avian Influenza Dashboard, 2023), with the potential to 

affect nesting populations in the future. Finally, salinity level management for brine 

shrimp production may uncouple water levels within the lake’s north arm from those in 

the south arm (Marden et al., 2020), where most Great Salt Lake wetland habitat is 

located. In February 2023, a berm was placed across the causeway breach to prevent 

hypersaline water from flowing into the south arm and threatening Great Salt Lake’s 

brine shrimp fishery. Until the berm is removed or other causeway breaches are 

constructed, water level gage measurements in the north arm of the lake, which were used 

in analyses presented here, may no longer represent conditions in the south arm, 

including at important pelican foraging sites. 

Improving saline lake protections is expected to benefit avian biodiversity at a 

global scale. Given the recent record declines and expected continued anthropogenic 

impact on saline lake ecosystems globally, there is an urgent need to quantify how these 

ecosystems can be managed to conserve the biodiversity that relies on them. Ecological 

collapse of saline lakes occurring within high-use avian migration corridors, like Great 

Salt Lake in the Pacific Flyway, may have rapid, outsized impacts on species’ survival 

and abundance, leading to flyway collapse (Conover & Bell, 2020; Micklin, 2007). 

Global initiatives are beginning to focus on these shrinking habitats (e.g., the recent 

National Park designation of Laguna Mar Chiquita, Argentina (Castellino, 2022) and the 

Saline Lake Ecosystems in the Great Basin States Program Act (2022)), but for large 

saline lakes like Great Salt Lake, the logistical and legal complexity of this process 
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means it will likely take years before measurable on-the-ground progress is made (Jacobs 

Engineering Group, 2019). Considering many of these ecosystems are facing imminent or 

ongoing habitat loss (Wurtsbaugh et al., 2017), we may lose substantial hemispheric 

avian biodiversity unless immediate actions are taken to protect saline lake-reliant 

species. Restoration of desiccated saline lakes has shown promise in restoring migratory 

bird habitat and fisheries, and mitigating blowing toxic dust (Los Angeles Department of 

Water and Power, 2016; Micklin, 2016). However, proactive approaches to protecting 

saline lakes could limit irreversible biodiversity loss, reduce human and wildlife health 

impacts, and dramatically lower the cost of conserving the unique ecosystems these lakes 

harbor. 
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TABLES AND FIGURES 
 
 
Table 5.1: Hypotheses and predicted relation of potential environmental American White 
Pelican population drivers at the Gunnison Island colony, Great Salt Lake, Utah, from 
1985–2020. 
Driver Scale Hypothesis Relationship Citations 

Colony 
abundance 

Local N decreases when previous year’s N is 
large, due to individuals abstaining from 
breeding or moving to less crowded 
breeding colonies; N increases when N 
three or four years prior is large, reflecting 
the return of first-time breeders to the 
colony in numbers corresponding to hatch 
year cohort size 

-/+ Moulton et al., 2018 

Mean annual 
Great Salt Lake 
water level 

Local N increases with increasing water levels as 
wetland foraging area increases 

+ Doxa et al., 2012 

Land bridge 
presence 

Local N decreases with land bridge presence, 
due to terrestrial predator presence 

- Bunnell et al., 1981; 
Kijowski et al., 
2020; 
Moreno-Matiella 
and Anderson 2005 

Minimum spring 
temperature 

Local N increases as minimum spring 
temperatures increase, due to nestling 
intolerance of cold, then decreases due to 
nesting intolerance of extreme heat (i.e., a 
quadratic effect) 

-𝑥𝑥2 Evans 1984; 
Madden and Restani 
2005; Sovada et al., 
2014 

Pacific Decadal 
Oscillation 
(PDO) 

Broad N decreases with positive PDO indices, 
which are indicative of colder, wetter 
conditions across multiple years 

- DeRose et al., 2014; 
Wang et al., 2010 

Southern 
Oscillation Index 
(SOI) 

Broad N decreases with positive SOI indices, 
which are indicative of drier conditions 
across multiple years 

- Stagge et al., 2023; 
Wang et al., 2010; 
Wise 2010 
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Table 5.2: Hypothesized mechanisms underlying time lagged environmental drivers of 
American White Pelican population dynamics at the Gunnison Island colony, Great Salt 
Lake, Utah, from 1985–2020. 
Time lag (years) Mechanism Citations 

0 Driver affects 𝑁𝑁𝑡𝑡 via annual fecundity or breeding 
conditions in year t 

Rodenhouse et al., 1997 

1 Driver affects 𝑁𝑁𝑡𝑡+1 via adult choice whether to breed at 
colony bases on colony conditions or food availability in 
year t 

Tavernia et al., 2021 

3 & 4 Driver affects 𝑁𝑁𝑡𝑡+3 or 𝑁𝑁𝑡𝑡+4 via natal colony fidelity of N 
chicks fledged in year t 

Tavernia et al., 2021 
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Table 5.3: Population management scenarios and forecast environmental covariate data 
used to project population trajectories of American White Pelican colony abundance at 
the Gunnison Island colony, Great Salt Lake, Utah, between 2020 and 2040. 
 Forecast environmental covariates 

Scenario Water levels Minimum spring temperatures Land bridge 

Status quo Current trajectory continues Current trajectory continues Current 
status 

Land bridge eliminated Current trajectory continues Current trajectory continues Absent 

Stable temperature and 
land bridge eliminated Current trajectory continues Constant at 1985–2020 mean 

(5.21ºC) Absent 

Stable temperature Current trajectory continues Constant at 1985–2020 mean 
(5.21ºC) Present 

Stable water levels and 
land bridge eliminated 

Constant at 1985–2020 mean 
(1279.51m) Current trajectory continues Absent 
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Table 5.4: Break point analysis of pelican count data at the Gunnison Island colony, 
Great Salt Lake, Utah, from 1980–2020, using Bahlai & Zipkin’s (2020) dynamic shift 
detector. A population growth model is fit to years between each break (i.e., all possible 
subsets of 4 or more consecutive colony counts), from which AICc values (Individual 
AICc column) are calculated, then summed across the entire time-series (Total AICc 
column). The top performing model (bold) is the model with the lowest AICc. 

Set of best performing models (lowest AICc) 
Breaks Individual AICc Total AICc 
1985, 2012, 2019 104.344, 515.811, 126.234 752.389 
1985, 2006, 2019 104.344, 398.690, 244.429 753.463 
1985, 2011, 2019 104.344, 497.413, 146.255 754.012 

Breaks tested 
Breaks Break weights Corrected weights 
1983 0.042 0.053 
1984 0.102 0.127 
1985 0.385 0.480 
1986 0.064 0.080 
1987 0.028 0.034 
1989 0.001 0.001 
1990 0.001 0.001 
1991 0.008 0.010 
1992 0.004 0.005 
1992 0.001 0.001 
1994 0.003 0.004 
1999 0.002 0.002 
2000 0.035 0.044 
2001 0.009 0.011 
2002 0.009 0.011 
2003 0.012 0.015 
2004 0.007 0.008 
2005 0.028 0.035 
2006 0.155 0.194 
2007 0.037 0.047 
2008 0.029 0.036 
2009 0.010 0.013 
2010 0.005 0.006 
2011 0.104 0.129 
2012 0.205 0.256 
2013 0.051 0.064 
2014 0.019 0.024 
2015 0.094 0.117 
2019 0.802 1.000 
 
 
 



 175 
Table 5.5: Univariate screening results and posterior state space model estimates (mean 
and 80% CIs) of Gunnison Island pelican count data and hypothesized population drivers. 
Bold rows indicate 80% CIs that did not overlap zero. Year was included in the global 
model to represent a year effect for all covariates. Spring temperature quadratic effect 
with a time lag of 1 year was not included because the main effect 80% CIs overlapped 
zero. 
Covariate Time lag Mean Lower 80% CI Upper 80% CI 
Density dependence 1-year lag -0.754 -1.224 -0.324 
Density dependence 3-year lag 0.026 -0.314 0.379 
Density dependence 4-year lag 0.418 0.009 0.797 
Density dependence Year -0.498 -0.967 -0.047 
Land bridge presence 0-year lag 0.028 -0.177 0.236 
Land bridge presence 1-year lag -0.320 -0.512 -0.099 
Land bridge presence 3-year lag 0.097 -0.143 0.288 
Land bridge presence 4-year lag -0.177 -0.405 0.111 
Land bridge presence Year 0.072 -0.673 0.780 
Minimum spring temperature 0-year lag 0.050 0.013 0.082 
Minimum spring temperature2 0-year lag  -0.004 -0.020 0.011 
Minimum spring temperature 1-year lag -0.013 -0.043 0.016 
Minimum spring temperature2 1-year lag  -0.016 -0.031 0.000 
Minimum spring temperature 3-year lag 0.006 -0.026 0.037 
Minimum spring temperature2 3-year lag  0.008 -0.006 0.024 
Minimum spring temperature 4-year lag -0.025 -0.058 0.003 
Minimum spring temperature2 4-year lag  0.012 -0.006 0.028 
Minimum spring temperature Year -1.194 -1.766 -0.523 
PDO 0-year lag 0.027 -0.059 0.114 
PDO 1-year lag -0.081 -0.166 0.003 
PDO 3-year lag 0.014 -0.080 0.109 
PDO 4-year lag -0.010 -0.114 0.096 
PDO Year -1.013 -1.660 -0.367 
SOI 0-year lag -0.040 -0.154 0.074 
SOI 1-year lag 0.082 -0.023 0.188 
SOI 3-year lag 0.005 -0.099 0.109 
SOI 4-year lag 0.098 -0.011 0.206 
SOI Year -1.141 -1.765 -0.507 
Water levels 0-year lag -0.032 -0.083 0.020 
Water levels 1-year lag 0.082 0.028 0.137 
Water levels 3-year lag -0.040 -0.099 0.020 
Water levels 4-year lag 0.018 -0.064 0.099 
Water levels Year -1.372 -2.074 -0.660 
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Table 5.6: Mean (log scale) state space model estimates and 95% credible intervals (CIs) 
of covariates included in the global model. Bold covariates indicate 95% CIs did not 
overlap zero. 
Variable Lag (years) Mean Estimate 95% CI 

Intercept - 2.067 -0.923,  5.069 

Year - -0.152 -1.007,  0.696 

Density Dependence 1 -0.838 -1.114, -0.503 

Density Dependence 4 0.621 0.317,  0.868 

Land bridge presence 1 -0.229 -0.447, -0.014 

Minimum spring temperature 0 0.056 -0.008,  0.122 

Minimum spring temperature2 0 0.029 -0.036,  0.094 

Water level 1 0.093 -0.044,  0.236 
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Figure 5.1: Notable features of Great Salt Lake, Utah, including locations of water level 
(Saline, Utah) and temperature gages (Salt Lake City International Airport), as well as 
foraging grounds nearest to the Gunnison Island pelican colony (U.S. Fish and Wildlife 
Service Bear River Migratory Bird Refuge). Photos depict (b) the land bridge that forms 
between Gunnison Island and the mainland when Great Salt Lake water levels fall below 
approximately 1,278.5 m above sea level, and (c) the railroad causeway berm that can be 
raised or lowered to adjust salinity and water levels of Great Salt Lake's north and south 
arms. Great Salt Lake bathymetry model credit: Tarboton (2017), digital elevation model 
credit: Jarvis et al. (2008), and photos credit: J. Neill, UDWR. 
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Figure 5.2: Observed counts from 1963–2020 (black dots) and estimated abundance from 
1985–2020 (mean and 95% credible interval; orange) of the Gunnison Island pelican 
population. Only years from 1985–2020 (post-exponential growth) were included in the 
analysis, as the effects of population drivers may differ under different population growth 
dynamics. 
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Figure 5.3: Predictive performance of the global state-space model. Performance was 
measured by fitting the model on 80% training data (years 1985–2012), then projecting 
the trained model onto remaining test years (years 2013–2020) to compare performance 
with a model fit on all years (orange). The global model fit only with training data (dark 
gray) had high predictive performance in hold-out data, with low error (RMSPE = 0.677), 
and was largely contained in the prediction interval (light gray). 
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Figure 5.4: State-space model estimates of historical colony counts (“study period”, 
1985–2020) and 20-year population viability analysis (“forecast”, 2021–2040) of the 
Gunnison Island American White Pelican breeding colony under selected environmental 
and management scenarios (Table 5.3). Thick opaque lines represent mean posterior 
estimates, while thin transparent lines are individual posterior estimates. Gray indicates 
estimated population trajectories if no management actions are taken (Table 5.3: “status 
quo”) and orange indicates population trajectories based on management scenarios listed 
in Table 5.3. 
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CHAPTER VI 

 
DISCUSSION 

 
 

Quantifying avian response to environmental change, and its underlying drivers, 

is difficult. Migratory species present an exceptional challenge, as these species may use 

heterogeneous landscapes across the full annual cycle, which are subject to differing 

environmental and anthropogenic conditions based on seasonality, climate, and local 

environmental laws. For migratory species with multiple populations, connectivity 

between these populations may be strong or weak, with implications for how 

heterogeneous conditions affect vital rates across multiple landscape scales (Cohen et al., 

2014; Cohen et al., 2018). Furthermore, we often examine avian population response to 

environment at single biological scales: individual, sub-population, or population. These 

findings are crucial for describing avian response to climate and land-use change, but 

may not accurately describe avian response at all population levels (Carlson et al., 2021). 

We may therefore miss important dynamics and context, limiting the impact and 

efficiency of conservation and management plans in the face of global population 

declines. My work attempts to build upon prior research addressing these issues, and 

explore improved avenues with which to quantify avian survival, migratory connectivity, 

and space use across multiple biological levels and landscape scales. This dissertation 

focused on American White Pelicans (Pelecanus erythrorhynchos), but the methods and 

conclusions drawn in the preceding chapters are applicable to many species beyond 

pelicans. 

In Chapter 2, I advanced our understanding of how spatially-varied environmental 

conditions and migratory connectivity may influence species survival across a species’ 
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range. I estimated regional annual survival and migratory connectivity from pelican band 

reencounter data, leveraging an existing, underutilized data source (Korner‐Nievergelt et 

al., 2010; Korner-Nievergelt et al., 2012). I did so in a Bayesian joint recovery 

continuous-time framework, which incorporates information from individuals never 

reencountered after banding and estimates missing migration strategies, in order to utilize 

the most information possible from this dataset (Rushing, 2023). My findings 

demonstrate that pelican survival varies dramatically depending on what regions 

individuals reside in and migrate between, with important implications for how we 

manage pelican populations going forward. Pelican populations that remain in the 

western United States through the winter had up to 24% lower annual survival rates than 

those banded in the eastern region, perhaps due to poor conditions at overwintering sites 

like California’s Salton Sea (Audubon, 2018; Shuford, 2002). The population that 

remained in the eastern region throughout the year, however, had the highest estimated 

annual survival of any migration strategy. High survival within this population may be 

the result of super-abundant food at aquaculture farms that has been linked to improved 

pelican body condition during winter months (King et al., 2010). In addition to survival, I 

characterized migratory connectivity between summer and winter sites, and found that 

migratory connectivity was strong within banding regions (i.e., east and west). 

Considering nearly 64% of all pelicans banded in the western region remained in the 

western region over the winter, low survival rates associated with this migration strategy 

suggest local populations may be at risk of declines. Exploring potential causes of low 

survival rates associated with this migration strategy are crucial to proactively managing 

pelican populations in this region. 
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Chapter 3 explored niche breadth and variability of pelicans within the Pacific 

Flyway, with implications for expected pelican resilience to changing environmental 

conditions. I examined pelican occurrence across monthly precipitation and temperature 

conditions between the breeding and non-breeding grounds for this region, at both the 

individual and at the metapopulation level. I then compared these results to previous 

research conducted on the eastern metapopulation (Illán et al., 2022). I found that 

individuals within the Pacific Flyway population (i.e., the western metapopulation) track 

climate niche between breeding and non-breeding grounds to varying degrees, but that 

the metapopulation as a whole does not appear to track climate niche. Few studies to date 

have examined niche across population levels (Carscadden et al., 2020), and results from 

my research provide important context to how we conceptualize species niche breadth, 

variability, and expected response to climate change. Furthermore, I found that the 

western metapopulation did not occupy the full climate niche available in the breeding 

grounds, suggesting that this population may be limited in the areas it uses on the 

breeding grounds or that it may be experiencing barriers to dispersal and colonization of 

new sites, despite presence of favorable climate conditions across the breeding region. 

This effect was most noticeable in regard to temperature, indicating that this population 

may not be retreating northward fast enough to keep pace with poleward shifts in 

increasing temperature region-wide (Román-Palacios & Wiens, 2020). My findings add 

further support to the argument that pelicans in the western metapopulation may be 

disproportionately affected by climate and land-use changes as drought and water 

diversions increase across this region (Null & Wurtsbaugh, 2020; Williams et al., 2022), 

especially at the southern edge of this population’s range (Moulton et al., 2018). 
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Linking avian space use and phenology to environmental drivers across broad 

scales requires improved tools to detect species presence and absence (Gauthreaux & 

Diehl, 2020; Stepanian et al., 2016). In Chapter 4, I explored new methods to quantify 

pelican airspace use and phenology by combining information from pelican GPS location 

data with broadscale NEXRAD weather radar reflectivity data. To my knowledge, this is 

a method that has not been explored previously, but represents a promising avenue with 

which to estimate avian space use, phenology, and abundance. I characterized a pelican 

radar signature using ensemble machine learning, then used outputs from this model to 

predict pelican occurrence within radar airspace over Great Salt Lake, Utah. The model 

performed well, given extremely limited GPS location data within radar airspace. From 

the resulting predictions, I estimated relative seasonal pelican presence probability above 

Great Salt Lake. I found that predicted relative probability of pelican occurrence within 

radar airspace above Great Salt Lake was most variable in the spring, likely owing to 

variation in annual spring temperatures and individual migratory phenology. Predicted 

occurrence was highest overall in the fall, when chicks have gained the ability to fly and 

pelicans are staging in Great Salt Lake wetlands before fall migration. I also conducted a 

fine-scale analysis at the high-traffic Salt Lake City International Airport, where I 

predicted hourly pelican-airplane strike hazard for in- and out-bound air traffic. Twenty-

seven percent of recorded pelican-airplane strikes in the United States have occurred at 

the Salt Lake City International Airport (Federal Aviation Administration, 2023), and air 

traffic is projected to increase with planned airport expansions as early as fall 2024 

(RS&H, 2022; Wyatt, 2022), underscoring the need to mitigate pelican strike hazard at 

this location. I found that relative predicted pelican strike hazard was highest in the 
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afternoons and during fall months, and increased vigilance by airport wildlife crews or 

changes to flight schedules, if possible, to reduce flights during these times may reduce 

potential pelican-airplane strikes. 

Finally, in Chapter 5, I formally linked population declines at Utah’s Gunnison 

Island pelican breeding colony to environmental conditions. Population declines at this 

colony have been anecdotally linked to water level declines, predator disturbance, and 

food availability (Kijowski et al., 2020), but my findings directly tie observed declines to 

formation of a land bridge from the mainland to the Gunnison Island colony and probable 

predator disturbance as a result. I found a strong effect of both positive and negative 

density dependence on interannual population variation, which has important 

implications for how we contextualize interannual changes in abundance (Doxa et al., 

2010; Moulton et al., 2018) and suggests a link between natal colony conditions and 

abundance of first-time breeders returning to the colony. Furthermore, I projected species 

abundance into the future under various environmental and management scenarios, 

providing a roadmap for managers to use to conserve the pelican population at the 

Gunnison Island pelican breeding colony. Projections indicated that protecting the 

Gunnison Island colony from terrestrial predator access (e.g., via installation of fencing 

or fladry, or direct predator control measures) was beneficial to increasing colony 

abundance. Raising overall Great Salt Lake water levels (e.g., through regional water-

saving measures, legislative initiatives, or water donations) in addition to colony 

protection measures provided the most benefit to colony abundance, likely through a 

combination of nesting site protection from predator disturbance and increases in 

available foraging area at important wetland foraging sites around Great Salt Lake. 
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My overarching goal for the research presented here was to improve our 

understanding of avian response to environmental change across spatial scales and 

heterogeneous landscapes, and in the process, improve and explore new tools with which 

to do so. American White Pelicans are an ideal system to study population responses and 

explore new methods given the large amount of data we have regarding their movements, 

habitat use, and abundance. My findings are largely in agreement with previous research 

on pelicans range-wide, but they provide additional, important context to population 

trends we are observing, and future expected responses to climate change. Moreover, my 

results underscore the clear need for continued study of this species in the face of rapidly 

changing environmental conditions, especially in the western metapopulation. American 

White Pelican populations are increasing as a whole, but the western metapopulation may 

be especially susceptible to increasing temperatures and drought, given its reliance on 

few, large breeding sites and possible limitations in its ability to make range shifts to 

keep up with changing favorable climate conditions. Future research and management of 

this iconic species should focus on understanding differences in population trends, range 

shifts, and survival between metapopulations, preventing terrestrial predator disturbance 

at breeding colonies, and increasing availability of high-quality wetland habitat year-

round. 
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Award, Radio–Environment 

Van Tatenhove, A.M. 2021. Doughy Details: the science behind sourdough. Utah 
Public Radio. [link] 

Van Tatenhove, A.M. 2021. Researchers track Utah's tiny hummingbirds. Utah 
Public Radio. [link] 

Van Tatenhove, A.M. & Cornachione, H. 2021. A look at the impacts of insect 
decline, ways to counteract it. Utah Public Radio. [link] 

Van Tatenhove, A.M. 2020. Christmas Bird Count: listening for owls. Utah Public 
Radio. [link] **Won: Society of Professional Journalists 2nd Place Award, 
Radio–Best Use of Sound 

 
TEACHING EXPERIENCE                                                                                             . 
2020 Teaching Assistant - Utah State University 

Applied Avian Ecology (WILD 5560; 3cr) led by Dr. Frank P. Howe 
 
Designed from scratch and taught “Intro to population dynamics” and “Habitat 
distribution modeling with Maxent” labs; taught mark-recapture with emphasis 
on avian marking methods lecture; provided essay and quiz grades and 
feedback; provided support leading field trips 

 
WORKSHOPS ATTENDED                                                                                             . 
2023 Introduction to Movement Ecology 

Utah State University - one week course led by Dr. Kezia Manlove 
 
Covered movement data set-up and cleaning, animal movement models, home 
range estimation methods, habitat selection, path segmentation (e.g., hidden 
Markov models for behavioral states), and methods for inferring connectivity. 

2022 Introduction to GLMs and GLMMs for Life Science Grad Students 
Utah State University - three day course led by Dr. Kezia Manlove 
 
Covered link functions, likelihoods, prediction, model assumptions and 
performance, multilevel models, and implementation in a frequentist framework 
in R. 

 
GRANTS AND FELLOWSHIPS                                                             Total: $137,055 
2024 Travel Grant ($500) 

American Ornithological Society 

https://www.upr.org/programs/2021-11-16/wild-about-utah-the-quiet-importance-of-brine-flies
https://www.upr.org/utah-news/2021-10-20/doughy-details-the-science-behind-sourdough
https://www.upr.org/post/researchers-track-utahs-tiny-hummingbirds
https://www.upr.org/post/look-impacts-insect-decline-ways-counteract-it
https://www.upr.org/post/christmas-bird-count-listening-owls
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2023 Research Grant ($1650) 
Utah Division of Wildlife Resources 

2023 Travel Grant ($500) 
Waterbird Society Conference and General Meeting 

2022 Travel Grant ($700) 
Waterbird Society Conference and General Meeting 

2022 Travel Grant ($730) 
American Ornithological Society 

2022 Research Grant ($5000) 
Utah State University Ecology Center Research Award 

2022 Research Grant ($1000) 
Great Salt Lake Audubon Grant Program 

2022 Research Grant ($1000) 
Tracy Aviary Conservation Fund 

2019 - 2023 Fellowship ($125,000) 
Fritz L. Knopf Doctoral Fellowship in Avian Ecology and Conservation  

2019 Travel Grant ($375) 
Waterbird Society Conference and General Meeting 

2019 Travel Grant ($600) 
Utah State University Ecology Center 

 
ACADEMIC AWARDS                                                                                                     . 
2022 Student Presentation Award - The Waterbird Society 

Waterbird Society Annual Meeting, Corpus Christi, Texas, USA. 

2022 Student Presentation Award - AOS Council 
American Ornithological Society Meeting, San Juan, Puerto Rico, USA. 

 
PROFESSIONAL SERVICE                                                                                             . 
Professional Memberships 

American Ornithological Society 
Ecological Society of America 
Pacific Seabird Group 
The Waterbird Society 

Reviews Provided 
Ornithological Applications 
The Waterbird Society 
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Journal of Field Ornithology 
Ecology and Evolution 

 
PROFESSIONAL SKILLS                                                                                                . 
Software & coding 

R, JAGS, Nimble, Stan, unmarked, Maxent, ArcGIS Pro, MARK and RMark 

Modeling 
Bayesian state space models, multistate survival and movement models, ensemble 
machine learning 

Field 
Avian banding (passerines and pelicans), avian mist net extraction, point counts, 
nest searching, GPS backpack transmitter attachment, foothold trap deployment and 
use, bow net deployment and use, outboard motor operation, all-terrain vehicle 
operation, 4x4 vehicle operation 

 
FIELD RESEARCH                                                                                                           . 
2021 - 2023 Crew leader - American white pelican GPS-GSM transmitter 

deployment 
Utah State University, Logan, Utah, USA 
 
Led and trained volunteer field crew in capture of American white 
pelicans, attached GPS transmitters to pelicans, organized volunteer 
schedules, recruited volunteers, maintained trapping and transport 
equipment, organized trapping permissions on state and federal 
property 

2019 - 2020 Banding assistant - passerines 
Utah State University, Logan, Utah, USA 
 
Extracted birds from mist nets for banding and light-level geolocator 
deployment, banded select passerine species with federal identification 
bands and RFID bands, maintained RFID equipped bird feeders, set up 
and took down mist nets 
 
Total birds banded: 98; total birds extracted: 176 

2018 Research assistant - alcid and procellariid productivity 
U.S. Fish & Wildlife Service, Homer, Alaska, USA 
 
Nest searched for petrel burrows, performed regular nest checks, 
collected repeat morphological measurements from petrel chicks, 
serviced nest cameras, mist netted for adult petrels, identified murre 
hatch dates from photos, digitized notebook data 
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2018 Crew leader - avian point counts 
Smithsonian Migratory Bird Center, Hubbard Brook Experimental 
Forest, New Hampshire, USA 
 
Trained crew of four people in conducting avian point counts along 
transects, organized employee schedules based on weather and hiking 
conditions, trained employees in data entry, advised on safe practices 
while working alone outdoors 

2017 Research assistant - streaked shearwater ecology 
Oxford and Hokkaido Universities, Awashimaura, Niigata Prefecture, 
Japan 
 
Nest searched, conducted regular nest checks on active burrows, 
captured adult shearwaters from burrows for GPS tag 
deployment/removal, assisted with GPS transmitter 
deployment/removal, serviced trail cameras, marked adult shearwaters 
for mark-recapture pilot study, collected moonlight level and colony 
attendance data 

2016 Research assistant - Kittlitz's murrelet nesting ecology and near-
shore marine bird surveys 
U.S. Fish & Wildlife Service, Kodiak, Alaska, USA 
 
Nest searched on rocky (up to 45º) slopes, maintained four remote field 
camps and associated gear in bear-dense area, assisted with murrelet 
banding, deployed and maintained nest cameras, recorded nest 
locations, conducted vegetation surveys at nest sites, digitized field 
notebook data, conducted near-shore transect counts of seabirds by 
species 
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