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Abstract: With an increasing adoption of battery-electric bus (BEB) fleets, developing a reliable
charging schedule is vital to a successful migration from their fossil fuel counterparts. In this paper,
a simulated annealing (SA) implementation is developed for a charge scheduling framework for
a fixed-schedule fleet of BEBs that utilizes a proportional battery dynamics model, accounts for
multiple charger types, allows partial charging, and further considers the total energy consumed
by the schedule as well as peak power use. Two generation mechanisms are implemented for the
SA algorithm, denoted as the “quick” and “heuristic” implementations, respectively. The model
validity is demonstrated by utilizing a set of routes sampled from the Utah Transit Authority (UTA)
and comparing the results against two other models: the BPAP and the Qin-Modified. The results
presented show that both SA techniques offer a means of generating operationally feasible schedules
quickly while minimizing the cost of operation and considering battery health.

Keywords: battery-electric bus (BEB); charge scheduling; simulated annealing; position allocation
problem (PAP)

1. Introduction

With an ever-increasing interest in the electrification of vehicles in the push for green
transportation, many organizations and companies have been looking to adopt a fleet of
electric vehicles [1]. This transition includes battery-electric buses (BEBs) [2,3]. In particular,
agencies such as the Utah Transit Authority (UTA) have directed focus into replacing
their fleets with BEBs. Alongside all the benefits that are associated with BEBs come new
challenges that must be addressed prior to their integration into mainstream utilization.
The energy storage capacity of BEBs is typically significantly less than their combustion
counterparts while also having significantly longer refueling periods [2,4]. This is further
complicated due to the care that must be taken in prolonging the lifespan of the battery [5–7].
As another complication, BEB refueling is not a fixed cost (i.e., price per gallon multiplied
by tank size). Utility companies, in addition to charging for the total energy consumed over
a pay period, often charge a demand cost. The demand cost is based on the peak power
drawn during the pay period and can significantly impact the overall monetary cost of
maintaining the BEBs. To address these limitations, this work introduces a static scheduling
framework for a fleet of BEBs that aims to minimize charging costs while considering other
constraints pertinent for operation.

A host of strategies have been proposed to solve the BEB charger scheduling problem.
Strategies vary in terms of their basic formulation, primarily using variations of the vehicle
scheduling problem (VSP) which emphasize the generation of BEB routing schedules, but take
little consideration as to how the BEBs are assigned to chargers [8–14]. In [15,16], the work
directly addresses the charger scheduling problem by creating a mixed integer linear program
(MILP) that utilizes a network flow approach to generate static charging schedules given
a schedule of BEB routes. Similarly, Ref. [17] developed an MILP that generates a static
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charging schedule by utilizing a rectangle packing approach, referred to as the position
allocation problem (PAP). Some works assume that BEBs always charge to full capacity each
time they connect to a charger [8,9,14,18,19]. Other works allow for partial charging using a
linear battery charge model [13,16,20–22] or utilize a higher-fidelity, nonlinear battery model
[8,15,23–25]. Some works consider only fast chargers during planning [12,14,20–22,26–28],
while others assume that different types of chargers can exist in different locations [11,13].

When considering the utility rate schedules, two key elements must be considered:
the consumption cost and the demand cost. Most approaches consider a consumption
cost [9,10,16,18,23–26]. This is akin to the combustion engine fuel cost. Fewer works,
however, consider the demand cost [13,16,23–25]. The demand cost calculation requires a
fine sampling of the power usage at any given time. Approaches that assume a full charge
whenever the bus connects typically employ a coarse sampling of charger time periods
and may not be well suited to demand cost calculations. Furthermore, the assumption of
always using fast chargers is adverse to battery health [6,7,18].

To accurately calculate the demand cost, an inherent trade-off exists between the low
computation of a representative linear model and the high computation of a high-fidelity
nonlinear model. A linear, proportional model is used in this work as they have been
shown to be accurate below an 80% threshold [2]. This is considered sufficient for this work
as charging a battery nearly to capacity is detrimental to the health and can significantly
reduce the total charge cycles a battery may undergo [6,7]. Thus, staying within the linear
operating region is desirable for battery health.

The contributions of this work lie in the adaptation and enhancement of [17] to develop
a novel formulation by employing a simulated annealing (SA) framework that generates
static charging schedules and considers (1) different types of chargers at the same location,
(2) minimization of the consumption and demand utility costs, and (3) partial charging
through a representative linear charge model. Particularly, this work addresses the gap
in the literature by expanding the work of [17] by reimplementing the MILP, utilizing a
meta-heuristic approach and examining its performance while further considering demand
cost. These contributions are demonstrated via simulation and compared to two other
models: an implementation of the PAP for BEBs, denoted as BPAP, and what is known as
the Qin-Modified technique.

The remainder of this paper is as follows. Section 2 provides the problem statement
associated with this work. Section 3 provides a description of the input parameters and
decision variables, then introduces the structure of the formulation. In Section 4, the concept
and theory of SA is introduced. In particular, the algorithms and methods utilized for the
SA implementation for this work are discussed. Section 5 combines the previous sections
to introduce the particular pseudocode for the SA PAP. In Section 6, an example problem is
provided to demonstrate the capability of the work provided in this paper. The results are
then presented and discussed.

2. Problem Description

Consider a fleet of BEBs scheduled to perform a set of prescribed routes on a given
day. An individual BEB from said fleet begins and completes an individual route at the
same station from which it also receives its charge. During each route, the BEB’s state of
charge (SOC) is depleted by a certain amount. The charge supplied during its visit must
be enough to sustain the BEB’s SOC at an appropriate level so that it may complete its
next route. Provided there is a set of chargers at the station, the bus may be placed in any
single queue to receive its charge. Let the term “arrival” describe the time at which a BEB
reaches the station. Furthermore, let the term “visit” denote a BEB having arrived, awaited
its predetermined time (whether it has received a charge or not), and departed from the
station. Each BEB is allowed to have multiple visits throughout the working day.

Because each bus may visit the station more than once, let the previously considered fleet
contain nB BEBs that collectively visit a station nV times. At said station, let there exist a pool
of nQ charging queues from which a visiting BEB may be assigned. Upon arrival to the station,
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a bus is admitted to one of the nQ queues for charging. Each queue represents a charger
that supplies the bus with a charge at a particular rate or allows the bus to sit idle when no
charging is required (i.e., a charge rate of zero). The set of possible queue indices is denoted as
Q ∈ {1, . . . , nQ} ⊂ Z, where Z is the set of integers. It is assumed that charger q ∈ Q has an
associated charge rate, denoted as rq. Let the set of arrivals be written as I = {1, . . . , nV} ⊂ Z,
and let each BEB be prescribed an identification number from the set B = {1, . . . , nB} ⊂ Z.
As such, each visit can be represented by the tuple: (i, b, a, e, u, d, q, η, ξ), in which the elements
within the tuple denote the visit index, i ∈ I, BEB identification number, b ∈ B, arrival time
to the station, a ∈ R, departure time from the station, e ∈ R, time at which the BEB begins
charging, u ∈ R, time at which the BEB ends charging, d ∈ R, the charger queue for the BEB
to be placed into, q ∈ Q, the SOC upon arrival, η ∈ R, and the index of the next visit for
the currently visiting BEB, ξ ∈ I ∪∅. The null element, ∅, is used to specify when a BEB
has no future visits. Let the set of visits be denoted as I, where the ith visit is denoted is
Ii. Furthermore, let a particular item from the tuple for visit i be written as ·i. For example,
the arrival time for visit i is written as ai.

The amount of time a BEB is allowed to charge during visit i is dictated by the
scheduled arrival time and required departure time, [ai, ei]. Partial charging is allowed;
however, the SOC may not exceed the BEB battery capacity, κb, and the SOC is desired
to stay above some minimum percentage of the battery capacity, νb ∈ [0, 1]. The battery
dynamics in this work are modeled as linear, and remain accurate up to about an SOC
of 80% [22]. Note that excessively charging the BEBs is undesirable due to battery health
concerns, as at higher SOCs, overshoot becomes a concern and may also cause the battery
to undergo deep cycles, which may accelerate battery degradation [6,7].

Each BEB arrival, except for the last arrival for each BEB, has a paired “route” that
the BEB must perform after the visit. This route, as one would expect, causes the BEB to
discharge by some certain amount. Each bus route is assumed to have a fixed discharge.
Let the discharge of the route for visit i be denoted as ∆i ∈ R. Note that the last visit for
each BEB does not have an associated route, implying that there is no discharge after these
particular visits, i.e., ∆i = 0 for all i corresponding to a final visit.

3. Optimization Problem

The optimization problem outlined in this work is presented in form of an objective
function with constraints. The constraints ensure that candidate solutions are operationally
feasible. The variables of optimization are introduced in Section 3.1, followed by a discus-
sion of the constraints in Section 3.3. The objective function is employed to allow relative
comparisons between candidate solutions and is introduced in Section 3.2.

3.1. Variable Definitions

This section defines the input and decision variables used in this work. The definitions
used in this work are summarized in the Nomenclature section.

3.1.1. Input Parameters

Parameters are used to indicate values that are assumed to be known prior to opti-
mization. They will be presented in two sections: packing and discretization parameters,
then battery dynamic parameters. The spatiotemporal parameters are those that ensure
no scheduling overlap in either space or time. The discretization parameters describe the
parameters that discretize the time horizon, and the battery dynamic parameters are those
associated with the SOC of the BEB.

Spatiotemporal and Discretization Parameters

As previously introduced, ξi represents the next arrival index for bus bi. As an example
of its use, suppose the ID of each BEB is recorded in order of arrival as {2, 1, 3, 2}. Using a
starting index of 1, ξ1 = 4, as that is the next visit by bus 2. Each visit is prescribed arrival
and departure times, ai and ei, respectively. An associated cost is employed when a visit is
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assigned to a charging queue. Let the assignment cost be represented by ϵq. Lastly, the time
horizon is to be discretized to assist in computing the peak demand cost; let th denote a
discrete time step, and let dt denote the discrete time step dt = th − th−1.

Battery Dynamic Parameters

It is assumed that each bus begins the working day with an initial SOC percentage of
αb. Let the set of initial visits by each BEB be denoted as I0, where I0 ⊂ I and the cardinality
of the set is |I0| = nB. The initial SOC for bus bi can be represented as ηi = αbi

κbi
; ∀i ∈ I0

where κbi
is the battery capacity for bus bi. After each arrival, the BEB is assigned to a

charging queue. Let rq represent the power supplied from the charger in queue q ∈ Q.
Each visit, except for the final visit of each BEB, is paired with a subsequent route to be
executed with a corresponding energy requirement, ∆i. As alluded to earlier, there are no
routes after the last visit for each BEB. Thus, similarly to the set of initial visits, let the set of
final visits for all BEBs be denoted as I f . The discharge for the final visit of each BEB is then
defined as ∆i = 0; ∀i ∈ I f .

3.1.2. Decision Variables

Decision variables are those chosen by the optimizer. There are three direct decision
variables for each visit: the initial and final charging times, ui and di, respectfully, and the
selected charging queue, qi ∈ Q.

The remaining variables are slack variables, which are introduced to track the vehicle
charge and queuing position based on the parameters and direct decision variables. Recall
that the initial SOC for a visit is written as ηi, where i ∈ I \ I0. Further, recall that the
set of initial visits, I0, have an assumed known SOC. The charge for bus i’s next visit is
equal to the initial charge for visit i plus the charge added to it by charger qi over duration
si = di − ui minus the discharge accumulated after visit i, ηξi = ηi + rqi si − ∆i.

The variables σij and ψij are used to indicate whether a visit pair (i, j) overlap the
same space, as shown in Figure 1. These spatiotemporal variables uphold the following
relationships: for every visit, σij = 1 =⇒ that the start charge time of visit j is greater than
the end charge time of visit i. Similarly, ψij = 1 =⇒ the queue for visit j is of a greater
index than visit i. A value of zero for either of these variables conveys no information. The
variable C is the set that describes the availability for all chargers. That is, C is a set of nQ
sets that contain available charger times for each queue q ∈ Q. Let a set of available charge
times for queue q be defined as Cq.
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3.2. Objective Function

This work aims to minimize the total “cost” of utilizing a given charge schedule. Let
J(I) represent the objective function. The objective function for this problem has four main
considerations: an assignment cost, a penalty method for visits with insufficient SOCs,
consumption cost, and a demand cost, each of which will be discussed in turn throughout
the subsequent sections.

3.2.1. Assignment Cost

The assignment cost represents the cost of assigning a bus to a queue. Particularly,
the cost consists of summing a prescribed weight for the selected charger, ϵqi , multiplied by
the charge rate, rq. Formally, the cost is written as follows:

nV

∑
i=1

ϵqi rqi . (1)

This is effectively the cost of selecting queue qi. While any set of weights may be
selected, Section 6 uses a particular choice for the assignment cost to encourage the use
of slow chargers over fast for the sake of battery health. The charger queue indices are
ordered such that the first nB queues correspond to idle queues. This allows all BEBs to
simultaneously sit idle if needed. All nB idle queues have assignment costs of zero to
denote that there is no cost when not charging. The next group of chargers is assumed
to be the slow chargers subsequently followed by the fast. Letting P ∈ R, then the set of
slow and fast charging queues are of the form [P, 2P, . . . , nQP]. Concatenating these vectors
yields ϵ = [0, 0, . . . , P, 2P, 3P, . . .], where ϵ describes the vector of assignment costs, and the
first nB values are zero.

3.2.2. Penalty Method

A penalty method is to be implemented to provide a soft constraint on the lower bound
of the charge. Due to the uncertainty of the initial SOC for each visit, a soft constraint is
desired to increase the solution space while penalizing nonoperationally feasible solutions.
If a hard constraint were to be implemented, the constraint would restrict the set of
allowable schedules to only operationally feasible schedules. Let the piecewise function
that enables/disables the penalty method be of the form

ϕ(x) =

{
0 x ≥ 0
x2 x < 0.

(2)

Letting x be defined by the difference of the initial SOC for visit i, ηi, and the minimum
charge threshold, νbi

κbi
, applies a penalty proportional to the difference of the SOC and

the threshold squared. That is, x = ηi − νbi
κbi

. A scalar, zp, is added which can be
utilized either as a monetary conversion or a simple gain. This method is employed as a
means of encouraging that the schedule has enough charge for each BEB to complete its
next route. Therefore, the penalty method is written as

nV

∑
i=1

zpϕi(ηi − νbi
κbi

). (3)

3.2.3. Consumption Cost

In most cases, utility companies have a portion of the cost related to the total electricity
consumed over a billing period, referred to herein as the consumption cost. The consump-
tion cost is the summation of all the energy being used over all the active periods for
each charger in the time horizon. A scaling zc is applied as a weight on the summation
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(this could correspond to a monetary cost imposed by the utility). This is represented by
the summation

zc

nV

∑
i=1

rqi si. (4)

3.2.4. Demand Cost

Utility companies often charge a “demand cost” in an effort to reduce peak power use.
A particular example of peak demand is the fifteen-minute average energy usage employed
by Rocky Mountain Power Schedule 8 [29].

A method of calculating the demand charge is to calculate the average power consump-
tion over a given period of time. Let the average power used over an arbitrary interval, Tp,
be represented by

pTp(t) =
1

Tp

∫ t

t−Tp
p(τ)dτ. (5)

The largest average power usage over Tp is used as the demand cost for the billing
period. Therefore, let the cost of the peak power consumption be dictated by the max-
imum average power: pmax(t) = max

τ∈[0,t]
pTp(τ). Furthermore, a fixed minimum average

power is introduced that is intended to act as a base threshold before the cost begins to
increase. Let this fixed threshold be defined as p f ix, and the demand cost is calculated using
pd(t) = max(p f ix, pmax(t)). For the sake of implementation, the integral in Equation (5) is
discretized. Let dt denote the discretization time step and let ph denote the power for the
hth step. Equation (5) is approximated as pTp ,h = 1

Tp
∑h

k=h− Tp
dt +1

pk dt. The discrete demand

cost is expressed as pd = max(p f ix, pmax). Similarly to the consumption cost, a scaling zd
is applied. Again, this may be a monetary conversion or simply just a gain. The objective
function written in its entirety is

J(I) = zd pd +
nV

∑
i=1

[
ϵqi rqi + zpϕi(ηi − νbi

κbi
) + zcrqi si

]
. (6)

3.3. Constraints

While the objectives are used to compare solutions, constraints are introduced to ensure
that the solutions are operationally valid. Operational validity requires that allocated BEBs
do not overlap spatially or temporally. Furthermore, the SOC of a bus at a particular visit is
related to the charge from its previous visit by the amount of charging and discharging that
has occurred. Finally, buses must leave the charger before their scheduled departure time.
These constraints are represented as follows:

uj − di − (σij − 1)T ≥ 0 (7a)

qj − qi − 1− (ψij − 1)Q ≥ 0 (7b)

σij + σji ≤ 1 (7c)

ψij + ψji ≤ 1 (7d)

σij + σji + ψij + ψji ≥ 1 (7e)

si = di − ui (7f)

ηξi = ηi + rqi si − ∆i (7g)

κbi
≥ ηi + rqi si (7h)

ai ≤ ui ≤ di ≤ ei ≤ T (7i)

Equations (7a)–(7e) are denoted as “queuing constraints”. They prevent overlap both
spatially and temporally, as shown in Figure 2. The x- and y-axis of Figure 2 represent
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time and space, respectively. Along the y-axis, the dashed lines represent discrete queuing
locations. The shaded rectangles represent schedules BEBs to be charged. The vertical
position of each shaded rectangle represents the BEB’s assigned queue. The width of
the shaded rectangles represent the time to service the BEB. The vertical dashed lines
are associated with vessel D and represent the arrival time, initial charge time, charge
completion time, and departure time. Note that the arrival time may be before the initial
charge time and the completion time may before the departure time. In other words, the set
of constraints Equations (7a)–(7e) aim to ensure that these shaded rectangles never overlap.

Queues

Time

A B

D
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Arrival

Time

aD

Charge

Initiation

uD

Charge
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dD

Departure

Time

eD

Q
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2

Q
ue

ue
3

Figure 2. Graphical representation of the queue–time space. The shaded rectangles labeled A–D
represent an example spatiotemporal plot of four scheduled BEBs. The vertical dashed lines represent
the arrivial time, intitar charge time, final charge time, and the departure time for BEB D.

Constraint Equation (7a) states that the starting charge time for BEB uj must begin after
the previous BEB departs, di. A value of σij = 1 =⇒ bus i has detached from the charger
before bus j has begun charging. If σij = 0, then the constraint is of the form T + di > uj,
rendering the constraint “inactive”. Similarly, for Equation (7b), ψij determines the spatial
positioning of BEB i and j relative to one another. A value of ψij = 1 =⇒ BEB i is in a
queue index that is less than BEB j. If ψij = 0, then the constraint is deactivated. Constraints
Equations (7c)–(7e) enforce spatial and temporal ordering between each queue/vehicle
pair. Equations (7c) and (7d) ensure that BEB i is not placed before and after j spatially or
temporally as that is not possible. Equation (7e) enforces that at least one of the spatial or
temporal relationships between each visit is active. This ensures that there are no scheduling
conflicts (i.e., either charging sessions are ordered temporally or are in different queues).

Equation (7f) describes the service time of the bus. Equation (7g) calculates the
initial charge for the next visit for bus bi. Equation (7h) ensures that the bus is not being
overcharged. Equation (7i) ensures the continuity of the times (i.e., the arrival time is less
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than the initial charge, which is less than the detach time, which is less than the time the
bus exits the station, and all must be less than the time horizon).

4. Simulated Annealing

SA is a well-studied local search metaheuristic used to solve various optimization
problems [30,31]. The algorithm is often applied to problems that contain many local
solutions as it employs a stochastic approach that explores the solution space for an
approximate global optimum. This model is named after its analogized process, where
a crystalline solid is heated then allowed to cool at a slow rate until it achieves its most
regular possible crystal lattice configuration (i.e., lowest energy state) [31,32]. SA establishes
a connection between the thermodynamic process and the search for global optimum in
optimization problems. Within the SA process there are three key components: cooling
equation, acceptance criteria, and generation mechanisms [31,33].

The cooling equation describes the speed at which the figurative temperature is
decreased in a controlled manner over time. Throughout the SA process, many “candidate”
solutions are generated and compared to an “active” solution. The method by which the
solutions are accepted is determined by the acceptance criteria. The acceptance criteria is a
function of the system temperature that makes the decision whether the system will accept
an inferior solution in favor of exploring the solution space. The means by which candidate
solutions are generated are via the generation mechanisms. These generators modify the
solution by some singular discrete change [30]. Each of these components are elaborated in
the subsequent sections.

4.1. Cooling Equation

The cooling equation models the rate at which the temperature decreases over time
in the SA process. Initially, when the temperature is high, SA encourages exploration.
As the process begins to “cool down” (in accordance to the cooling schedule), it begins
to encourage local exploitation of the solution (rather than exploration) [32,34]. There are
three common basic types of cooling equations: linear, geometric, and exponential. The
geometric cooling schedule is most widely used in practice [33]. As such, it will also be
employed by this work. It is defined by the difference equation

tm = βtm−1. (8)

In Equation (8), β controls the cooling rate. Typical values of β are within the range
[0.8, 0.99] [32]. The variable tm represents the temperature at the mth step of the tem-
perature function. The total number of steps, M, is dictated by the initial temperature
and β.

4.2. Acceptance Criteria

In SA, the algorithm stores a solution that is continuously compared to newly gener-
ated solutions. Let the stored solution be referred to as the “active solution”. During each
iteration, a new “candidate” solution is generated and compared to the active solution to
determine if the candidate solution should replace the active solution. The method of deter-
mining whether the active solution should be replaced is defined by an acceptance criteria.
In an effort to encourage exploration, inferior candidate solutions have a probability of
being accepted. The probability of accepting an inferior candidate solution is determined
by the objective functions of the active and candidate solutions, J(I) and J(Ī), respectively,
and the current temperature, tm. Let ∆E ≡ J(I)− J(Ī) and let f (·) be the function that
describes the probability of accepting a candidate solution Ī. The probability of accepting a
candidate solution is, thus, of the form [33]

f (I, Ī, tm) =

{
1 ∆E > 0

e−
∆E
tm otherwise

. (9)
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4.3. Neighbor Generators and Wrappers

Generation mechanisms are used to create a neighboring candidate solution [30]. That
is, the generating function creates a solution that can be reached in a single iteration from
the active solution. In response to the problem statement made in Section 2, five primitive
generation mechanism are used: new visit, slide visit, new charger, wait, and new window.
The purpose of each of these generators is to assign new visits to a charger, adjust a bus
visits initial and final charge time within the same time frame/queue, move a BEB from
one charger to another with the same charge schedule, and move a bus to its idle queue.
Each generator will be discussed in more detail in Section 4.3.2.

These primitive generation mechanisms will, in turn, be utilized by two wrapper
functions. The charge schedule generator is to used create an initial candidate solution
for SA and the perturb schedule generator is used to take a candidate solution and alter it
slightly in an attempt to step toward a global or local minimum. The wrapper functions
will be discussed in Section 4.3.3. However, prior to discussing the primitives and wrapper
generating functions, their respective inputs and outputs must be defined.

4.3.1. Generator Input/Output

Each generator primitive accepts a tuple S ≡ (i, I,C), where i is the visit index being
manipulated, I is the set of visits, and C is the set that describes the availability for all
chargers q ∈ Q. The output of the generating functions is the same as the input, but with
changes applied to it by a generator. Let a modified variable be denoted with a bar, ·̄. Thus,
the modified input tuple is written as S̄.

4.3.2. Generators

The mechanism by which candidate solutions are generated are now introduced. For
the sake of ease in referring to the various variables associated with a visit, dot notation is
used. For example, suppose the arrival time is desired to be extracted from visit i. Given I,
the notation that describes extracting the initial charge time for visit i is written as ui ≡ Ii.u.

New Visit

The new visit generator defined in Algorithm 1 describes the process of moving a BEB,
b ∈ B, from a waiting queue, q ∈ B, to a charging queue, qi ∈ {nB + 1, . . . , nQ}, within its
arrival/departure time [ai, ei]. Let U{·} indicate that an element is selected randomly with
a uniform distribution from the set {·}. For example, U[ai ,ei ]

indicates that a value will be
selected between a and e with a uniform distribution. Algorithm 1 begins by extracting
variables. Lines 8 and 9 randomly select a charging queue and available time frame with
a uniform distribution, respectively. Line 10 attempts to assign the visit to the previously
selected time slice; if it succeeds, the updated visit is returned. Otherwise, the null value
is returned.

The function FindFreeTime is the algorithm that determines whether a visit’s time at
the station [ai, ei] can be placed in the time availability of charger q. Let the available time
for charger q for visit i be denoted as C ≡ Ci.q. Furthermore, let the lower and upper bound
of C be denoted as CL and CU , respectively. The algorithm checks whether the BEB time at
the station, [ai, ei], fits within the charger availability [CL, CU ]. If it does, a random charging
time frame is returned such that ai ≤ ui ≤ di ≤ ei. Otherwise, the null value is returned.
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Algorithm 1: New visit algorithm.
Input: S
Output: S̄

1 begin
2 i← Si ; /* Extract visit index */
3 I← SI; /* Extract visit tuple */
4 C← SC; /* Extract visit charger availability */
5 a← Ii.a ; /* Extract the arrivial time for visit i */
6 e← Ii.e ; /* Extract the departure time for visit i */
7 q← Ii.q ; /* Extract the current charge queue for visit i */
8 q̄← UQ ; /* Select a random charging queue with a uniform distribution */
9 C ← UCq̄ ; /* Select a random time slice from Cq̄ */

10 if (C̄, ū, d̄)← FindFreeTime(C, i, q̄, a, e) ̸∈ ∅ then /* If there is time available in C */
11 Īi.q ← q̄; /* Update visit tuple with new charge queue */
12 Īi.u ← ū; /* Update visit tuple with new inital charge time */
13 Īi.d ← d̄; /* Update visit tuple with new final charge time */
14 return (i, Ī, C̄) /* Return visit */
15 end
16 return (∅); /* Return nothing */
17 end

Slide Visit

This primitive generator is used for visits that have already been scheduled. Because of
the constraint Equation (7i), there may be some slack to manipulate [ui, di] within the win-
dow [ai, ei]. That is, two new values, ui and di, are randomly selected with a uniform
distribution that satisfy the constraint ai ≤ ui ≤ di ≤ ei. Algorithm 2 begins by extract-
ing variables. Line 5 purges the visit from the charger availability schedule. The Purge
function simply removes an assigned charge time from the set C. Without altering selected
queue, the charge time is randomly reassigned with a uniform distribution. Upon success,
the updated tuple is returned, otherwise the null value is returned.

Algorithm 2: Slide visit algorithm.
Input: S
Output: S̄

1 begin
2 i← Si ; /* Extract visit index */
3 I← SI; /* Extract visit tuple */
4 C← SC; /* Extract visit charger availability */
5 (i, I, C̄)←Purge(S); /* Purge visit i from charger availibility matrix */
6 C ← C̄i.q ; /* Get the time availability of the purged visit */

/* If there is time available in C */
7 if (C̄, ū, d̄)← FindFreeTime(C, i, Ii.q , Ii.a , Ii.e) ̸∈ ∅ then
8 Īi.u ← ū; /* Update visit tuple with new inital charge time */
9 Īi.d ← d̄; /* Update visit tuple with new final charge time */

10 return (i, Ī, C̄) /* Return updated visit */
11 end
12 return (∅); /* Return nothing */
13 end

New Charger

The new charger generator moves a visit Ii to a new charging queue while maintaining
the same charge time, [ui, di]. Algorithm 3 begins by extracting variables, and then purges
the visit from the charger availability set. A queue is selected at random with a uniform
distribution, then the new selection is checked for whether the charge time [ui, di] may be
assigned to the new queue.
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Algorithm 3: New charger algorithm.
Input: S
Output: S̄

1 begin
2 i← Si ; /* Extract visit index */
3 I← SI; /* Extract visit tuple */
4 C← SC; /* Extract visit charger availability */
5 (i, I, C̄)←Purge(S); /* Purge visit i from charger availibility matrix */
6 q̄← UQ ; /* Select a random charging queue with a uniform distribution */
7 if (C̄, ū, d̄)← FindFreeTime(C̄i.q , i, q̄, Ii.a , Ii.e) ̸∈ ∅ then /* If there is time available in Cq */

/* Return visit, note u and d are the original inital/final charge times. */
8 Īi.q ← q̄; /* Update visit tuple with new charge queue */
9 return (i, Ī, C̄)

10 end
11 return (∅); /* Return nothing */
12 end

Wait

The wait generator simply removes a bus from a charger queue and places it in its idle
queue, qi ∈ B. Algorithm 4 begins by purging the visit from the charger availability set;
the visit is then assigned to its idle queue for the duration of its time at the station.

Algorithm 4: Wait algorithm.
Input: S
Output: S̄

1 begin
2 (i, I, C̄)←Purge(S); /* Purge visit i from charger availibility matrix */

/* Update the charger availability matrix for wait queue C̄i.qi */
3 C̄′Ii.Γi

← C′ ∪ {[Ii.a , Ii.e ]};
4 Īi.q ← Ii.b ; /* Reassign bus to idle queue */
5 Īi.u ← Ii.a ; /* Set initial charge time to the arrival time */
6 Īi.d ← Ii.e ; /* Set the final charge time to the departure time */
7 return (i, Ī, C̄) /* Return visit */
8 end

New Window

New window, as shown in Algorithm 5, is a combination of Algorithm 1 (new visit)
and Algorithm 4 (wait). By this, it is meant that visit i is placed in its wait queue then added
back in as if it were a new visit. This implies that the BEB may be assigned to a different
queue with a new charging time frame. Upon success, the algorithm returns the updated
tuple; otherwise, it returns the null value.

Algorithm 5: New window algorithm.
Input: S
Output: S̄

1 begin
2 S̄←Wait(S); /* Assign visit to its respective idle queue */
3 if ¯̄S← NewVisit(S̄) ̸∈ ∅ then /* Add visit i back in randomly */
4 return ¯̄S /* Return visit */
5 end
6 return (∅); /* Return nothing */
7 end

4.3.3. Generator Wrappers

The generator wrappers provide the highest level of abstraction from which the SA
algorithm directly interacts. These wrapper functions utilize the primitive generators
previously described to either create a new charge schedule to initialize the SA algorithm,
or to modify an existing schedule.
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Charge Schedule Generation

The objective of Algorithm 6 is to introduce a method that provides the SA algorithm
with an initial charging schedule. The schedule generation is chosen to initialize the
algorithm in a greedy manner by looping through each visit and executing Algorithm 1 to
place visit i at a random queue with a random charge time.

Algorithm 6: Charge schedule generation algorithm.
Input: (I,C)
Output: (Ī, C̄)

1 begin
/* Select an unscheduled BEB visit from a randomly indexed set of visits */

2 foreach Ii ∈ I do
3 (i, Ī, C̄)← NewVisit((Ii , I, C)); /* Assign the bus to a charger */
4 end
5 return (Ī, C̄)
6 end

Perturb Schedule

Algorithm 7 describes the method by which the SA algorithm decides how to perturb
a given charge schedule. The method that will be employed to generate neighboring
solutions is as follows: Pick a visit, pick a primitive generator, and execute said primitive
generator once. LetWy

[·] denote a random selection with a distribution specified by a weight
vector y ∈ R. Lines 2–12 of Algorithm 7 generate a vector of weights for the visit index
selection. The weights have a default value of one. Each visit is then indexed in reverse
order. If the SOC of the visit is less than νbκb, then the weight for the visit is calculated as
shown on Line 10. The route for BEB b is then set as a “priority” on Line 9 to propagate the
previously calculated weight to earlier visits of BEB b, as shown in Line 5. This is performed
in an attempt to encourage the SA algorithm to “fix” the current or previous visits so that
the SOC stays above the minimum threshold. The algorithm then selects a visit index
with weighted distribution yv and selects a primitive with a weighted distribution, yp.
Letting nG denote the number of primitive generating functions, line 15 selects a primitive
generating function with a weighted distribution,Wyv

[1,nG ]
. The primitive is then executed,

and the results are returned.

Algorithm 7: Perturb schedule algorithm.
Input: (I,C)
Output: (Ī, C̄)

1 begin
2 p← [ f alse; nA ]; /* Create vector of booleans to track priority status */
3 yv ← [1.0; nV ]; /* Create weight vector for index selection */

/* Loop through the visits in reverse order */
4 for i← |I| TO 1 do

/* Check whether the current visit is part of a priority route */
5 if pIi.b = true then
6 yv

Ii
= yv

Ii.ξ
; /* Propagate the priority level to previous visit */

7 end
/* Prioritize if the current visit’s SOC falls below the allowed threshold */

8 else if Ii.η ≤ νIi.b κIi.b then
9 pIi.b = true; /* Indicate the current BEB’s routes are to be prioritized */

10 yv
Ii
= κIi.b + κIi.b (νIi.b κIi.b − Ii.η); /* Calculate the weight of the current visit */

11 end
12 end

13 i← Wyv

I ; /* Select an index with a weighted distribution */
14 yp ← [yp

1 , yp
2 , . . .]; /* Define the weight of each primitive generator */

/* Select a primitve generating function with weighted distribution */
15 PrimitiveGeneratingFunction← Wyp

[1,nG ]
;

16 (i, Ī, C̄)← PrimitiveGeneratingFunction((i, I, C)); /* Excecute the generator function */
17 return (Ī, C̄)
18 end
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4.4. Alternative Heuristic Implementation

As suggested by the works in [35,36], applying heuristics to the generating functions
can manipulate the searched neighborhoods in a way that may assist the SA algorithm
with convergence. As a test to assist in minimizing charger utilization, a simple heuristic is
applied to Algorithms 1 and 3 in the method such that they select new charging queues.
Rather than selecting a queue at random from q ∈ Q, the algorithm randomly selects
whether to place a BEB in a slow or fast charging queue with a weighted distribution
favoring slow chargers. Once the charger type has been selected, the algorithm will then
begin incrementally attempting to place the BEB in a queue of that type beginning from the
smallest index of that charger type. For example, if a BEB has been selected to be placed in
a queue with a slow charger, the algorithm begins by attempting to place the BEB in the
charger queue q = nB + 1. If it is unable to be placed in that queue, it then attempts to be
placed in the next queue q = nB + 2. This is performed incrementally until all the queues
have been exhausted. The objective of this alternative approach is to explore whether the
added up-front computation cost by including the heuristic will positively influence the
output of the results and to what degree.

5. Optimization Algorithm

This section combines the generation algorithms and the optimization problem into
a single algorithm (Algorithm 8). Generally, SA assumes that the generated candidate
solutions are within the solution space of the problem, S ∈ S, where S is the solution space.
In other words, the initialization and perturbations of a schedule must be verified to ensure
that the generated schedule is in the solution space. Therefore, the objective function and
constraints introduced in Sections 3.2 and 3.3, respectively, must be employed to verify that
the outputs of Algorithms 6 and 7 are in the feasible space, S.

As previously stated, the generating functions directly influence the values of the
assigned charge queue, charge initialization time, and charge completion time: qi, ui, and di,
respectively. Having generated those values, the rest of the decision variables may be
derived. Beginning with the packing constraints, Equations (7a) and (7b) are employed to
enable and disable σij and ψij and Equations (7c) and (7e) ensure the validity of the values.
Equation (7f) can be directly calculated and Equation (7i) is fully defined.

Changing the focus over to the dynamic constraints, similarly to what was seen with
the packing constraints, the battery dynamic constraints are also fully defined. Equation (7g)
is sequentially calculated after a given schedule has been created. Equation (7h) is eval-
uated to ensure that the BEB is not overcharged. The penalty method implemented in
Section 3.2 is set in place to allow the SOC to go below the specified threshold, νbi

κbi
,

but to punish the solution for doing so. Thus, over time, the candidate solutions will be
encouraged toward a solution that does not activate the penalty method (i.e., the solution
is operationally feasible).

The implementation of the SA PAP, outlined in Algorithm 8, will now be discussed.
The algorithm begins by creating a temperature schedule and creating an initial solution.
The algorithm then iterates through the temperature schedule (outer loop). For each
iteration of the outer loop, an inner loop is executed nK times. During this inner loop,
the solution is modified by a primitive generating function to create a candidate solution.
The candidate solution is then compared with the active solution, and updated according to
the acceptance criteria. These actions are performed until the cooling equation is exhausted.
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Algorithm 8: Simulated annealing approach to the position allocation problem.
Input: (I , C)
Output: (Ī, C̄)

1 begin
/* Generate vector of temperatures given cooling equation T and initial

temperature T0 */
2 t← T(T0)
3 S←ChargeScheduleGenerator((I, C))/* Generate an initial solution */

/* For each item in the temperature vector */
4 foreach tk ∈ t do

/* For each step in the constant temperature repitition counter */
5 foreach k ∈ {0, 1, . . . , nK} do
6 S̄← PerturbSchedule((I, C)) ; /* Generate a new solution */
7 ∆E = J(S̄I) - J(SI) ; /* Calculate the difference of fitness scores */
8 if Ī ∈ S and ∆E < 0 then
9 S← S̄

10 end
11 if Ī ∈ S and ∆E ≥ 0 then

12 S← S̄ with probability e
∆E
tk

13 end
14 end
15 end
16 return (I , C̄)
17 end

6. Example

An example is now provided to demonstrate the utility of the developed SA charge
scheduling technique. In Section 6.1, a description of the example scenario is presented,
followed by a brief introduction of the BEB implementation of the PAP (BPAP) and an
alternative threshold based strategy called the Qin-Modified technique. Section 6.2 presents
the results for each of the planning strategies. The results are then analyzed and discussed.

6.1. BEB Scenario

The test scenario was run over a time horizon of T = 24 h, with a total of nV = 338 vis-
its to the station shared between nB = 35 buses. Each BEB is assumed to have a battery
capacity of κb = 388 kWh that is required to stay above an SOC of νb = 25% (97 kWh). Each
bus is assumed to begin the working day with α = 90% charge (349.2 kWh). A total of
30 chargers are utilized, where 15 of the chargers are slow charging (30 kW) and 15 are fast
charging (911 kW). The gains of zp = 5000, zc = 1, and zd = 10,000 are used. As previously
introduced, to encourage slow charging for battery health, the values of ϵ in the objective
function are ∀q ∈ {1, 2, . . . , nB}; ϵq = 0 and ∀q ∈ {nB + 1, nB + 2, . . . , nQ}; ϵq = 10q. The SA
algorithm utilizes the geometric cooling schedule with an initial temperature of T0 = 9000
with β = 0.997, resulting in a total of nM = 3832 steps. Rocky Mountain Power utilizes
fifteen-minute intervals to calculate the demand cost [29]. To match the method by which
Rocky Mountain Power determines its demand cost, this work employed an interval of
Tp = 900 s in its demand cost calculation. A weight vector of [0.3333, 0.3333, 0.1667, 0.1667]
is used to influence the distribution of selecting the new charger, new window, wait,
and slide visit primitives, respectively. The algorithm also assumes a total of nK = 500 iter-
ations for the local search at a constant temperature with a time horizon discretization of
nH = 1140 steps. In total, that results in 1,916,000 configurations being searched in a total
runtime of 1532.8 s.

Section 4.4 introduced the idea of an alternative heuristic implementation for the
SA algorithm. To distinguish the heuristic implementation from the method derived in
Section 4.3, let this implementation be referred to as “heuristic” implementation and the
previous as the “quick” implementation due to the fact that it is designed to execute
more quickly. Using the same weights for randomly selecting the primitive generators,
the heuristic approach further implemented a weighted distribution vector of [0.75, 0.25] to
decide whether to select a slow or fast charger, respectively. The heuristic approach had a
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total runtime of 1916 s. The heuristic generators were expected to be slightly slower due to
its iterative approach.

The Qin-Modified is a threshold-based strategy that is also employed as a means of
comparison with the results of the SA BPAP. The Qin-Modified algorithm is a based on the
threshold strategy of [23]. The algorithm was modified slightly to accommodate the case of
multiple charger types without a heuristic search for the best charger type. The heuristic
is based on a set of rules that revolve around the initial charge of the bus at visit i. There
are three different thresholds: low (60%), medium (70%), and high (90%). Buses below the
low threshold are prioritized to fast chargers, then they are allowed to utilize slow chargers
if no fast chargers are available. Buses between the low and medium threshold prioritize
slow chargers first and utilize fast chargers only if no slow chargers are available. Buses
above the medium threshold and below high will only be assigned to slow chargers. Buses
above the high threshold will not be charged. Once a bus has been assigned to a charger,
it remains on the charger for the duration of the time it is at the station, or it reaches 90%
charge, whichever comes first.

Another method utilized to compare with SA PAP is the BEB implementation of the
PAP [17]. The BPAP implementation is utilized in this work as a benchmark for the other
schedules as it is implemented utilizing a commercial solver. The inputs to the system are the
same as those discussed above. It is of note that the BPAP does not implement the demand
cost in its objective function. In an attempt to compare the solution of the BPAP with the SA
output more directly, a similar solve time of 1900 s is utilized. The BPAP was executed using
the Gurobi MILP solver [37]. The previously described simulations were run on a machine
equipped with an AMD Ryzen 9 5900X 12–Processor (24 core) at 4.95 GHz.

6.2. Results

The schedules generated by each of the methods are presented in Figure 3. For the
sake of conciseness of the schedule plots, the waiting queues are excluded. Therefore,
rows 0–14 represent slow charging queues and rows 15–29 represent fast charging queues.
The hollow circles with an “X” represent the initial charge times, and the horizontal line
with the vertical tick signifies the region of time the charger is active. The Qin-Modified
schedule utilized two fast chargers and fourteen slow chargers, as can be seen in Figure 3a.
The BPAP framework generated a schedule that utilizes three fast charges and four slow
chargers, as shown in Figure 3b. The heuristic SA strategy created a schedule with nine slow
charger queues and one fast charging queue, as shown in Figure 3c. The quick strategy for
the SA algorithm created a schedule utilizing seven slow chargers and two fast chargers, as
is demonstrated in Figure 3d. That is to say, while each schedule emphasized the utilization
of slow chargers, the Qin-Modified required fast charging most frequently followed by
the BPAP, quick SA, and then heuristic SA. At the expense of incorporating more slow
chargers than the BPAP, the SA techniques chose to utilize fast chargers less frequently in
their respective schedules, showing an emphasis on battery health.

Table 1 tabulates the mean, minimum, and maximum SOC upon arrival for each visit.
The BPAP requires each BEB to stay above an SOC of 25%, while the quick and heuristic
SA approaches heavily penalize a schedule for allowing a BEB to go below the 25% SOC
threshold. The BPAP was able to successfully keep the SOC above the threshold while both
SA approaches were a few kWh below the threshold. The SOC of the quick SA approach
dropped to a minimum of 94.760 kWh and the heuristic had a minimum SOC of 91.265 kWh,
as shown in Table 1. Due to the threshold constraint being soft, the SA objective function
may find it better to allow a small deficit in the threshold penalty function in favor of
another action. As a remedy to ensure that the SA schedules stay above the threshold,
a safety factor could be introduced to artificially increase the threshold, S f νbi

κbi
, where

S f > 1; S f ∈ R.
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Figure 3. Various schedules generated by the different frameworks. Figure 3a is the Qin-Modified
schedule, Figure 3b is the BPAP schedule, Figure 3c is the heuristic SA schedule, and Figure 3d is
the quick SA schedule. The horizonontal line stemming from the nodes ending with a vertical tick
indicate the charge duration for that particular visit.
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Figure 3. Various schedules generated by the different frameworks. Figure 3a is the Qin-Modified
schedule, Figure 3b is the BPAP schedule, Figure 3c is the heuristic SA schedule, and Figure 3d is
the quick SA schedule. The horizonontal line stemming from the nodes ending with a vertical tick
indicate the charge duration for that particular visit.
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Figure 3. Various schedules generated by the different frameworks. Panel (a) is the Qin-Modified
schedule, (b) is the BPAP schedule, (c) is the heuristic SA schedule, and (d) is the quick SA schedule.
The horizontal lines stemming from the nodes ending with a vertical tick indicate the charge duration
for that particular visit.

The Qin-Modified schedule allowed the SOC for one of the BEBs to reach 0%, as shown
in Table 1. The Qin-Modified strategy, being a purely reactive model, does not have the
foresight to determine whether a set of routes has a particularly taxing route later in the
time horizon. As such, and in the case of the example scenario, the BEB that reached a
charge of 0% began with a sequence of short routes, much like the other BEBs. However,
rather than continuing this trend, these sets of routes had one or two longer routes, which
the Qin-Modified algorithm was unable to account for. Interestingly, despite having a bus
drop to zero charge, the Qin-Modified strategy had the highest mean SOC, followed by the
quick SA, heuristic SA, and then the BPAP.

Table 1. Table of mean, min, and max SOC (kWh) for each charging schedule.

BPAP Qin-Modifid Heuristic Quick

Mean 181.327 248.864 182.004 188.327
Min 97.000 0.000 91.265 94.760
Max 382.930 349.200 387.829 388.000

Figure 4 depicts the power utilized over the time horizon for each model. Referencing
Figure 4a, the Qin maintained long periods of steady slow and fast charger use. This is
again a symptom of the Qin-Modified strategy placing BEBs on chargers based solely on
the SOC upon arrival. The BPAP and SA techniques, having demand peaks in the first half
of the time horizon, were able to effectively maintain lower demand profiles during slower
moments throughout the day (the SA techniques more so than the BPAP). Figure 4 is also
of interest as it shows the peak power demand over the time horizon. The peaks for each
schedule are shown in Table 2. Both the quick and heuristic SA techniques were able to
maintain peak power use below 1130 kW, whereas the BPAP and Qin had peaks above
1900 kW, demonstrating significant demand cost reduction.
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Figure 4. Power demand for each schedule over the time horizon. Panel (a) plots the power demand
for the Qin and BPAP schedules, and (b) plots the power demand for the quick and heuristic
SA schedules.

Table 2. Table of mean and max power demand for each charging schedule.

BPAP Qin-Modified Heuristic Quick

Mean 176.550 394.130 180.858 186.858
Max 1910.000 2000.000 1150.950 1120.950

The total energy consumed by each schedule is shown in Figure 5. The ordering
of most energy consumed to least is as follows: Qin-Modified, quick SA, heuristic SA,
and the BPAP. The respective energy consumption for each technique is 9459.120 kWh,
4428.670 kWh, 4295.660 kWh, and 4237.200 kWh, with the heuristic SA consuming about
58.5 kWh more than the BPAP. While the quick and heuristic SA techniques were slightly
above the BPAP in energy consumption, it is expected that the BPAP would have the lowest
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consumed energy as it only considers consumption cost. Despite considering peak demand,
the SA methods had nearly the same consumption as the BPAP. Referencing Tables 1 and 2
for the mean SOC and mean demand, respectively, the descending order of consumed
energy is correlated to the descending order of the mean SOC and the descending order of
the mean power demand. This makes sense as a higher mean SOC implies the chargers
being active more often, similarly for the mean demand.
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Figure 5. Total accumulated energy consumed by the Qin-Modified, BPAP, quick, and heuristic SA
schedules throughout the time horizon.

The charger utilization over the time horizon for each method is shown in Figure 6.
Figure 6a shows that the Qin and BPAP employed between one and two fast chargers
during the first eleven hours of the working day. The Qin heavily utilizes two fast chargers
between hours five and eight to charge all the BEBs above the low threshold. Once the
BEBs rose above the low threshold, both the Qin and BPAP utilized the fast chargers more
sparingly throughout the working day. However, the difference between the BPAP and
the Qin use of the fast chargers is that the BPAP is able to utilize the fast chargers only
when required, such as when a long route is on the horizon and the BEB requires a higher
initial SOC for visit i (as seen with the Qin SOC reaching 0%). A similar result for both
the quick and heuristic SA technique can be seen in Figure 6b; however, both SA methods
only require one fast charger, albeit more frequently than the BPAP. After the twelfth hour,
neither quick nor heuristic SA methods require the use of fast chargers. This observation
is predominantly due to the addition of the demand cost and the fact that it is applied
throughout the entire working day. This becomes more clear when viewed in reference to
Figure 6c,d. Comparing the slow charger use of the BPAP and Qin versus the quick and
heuristic SA methods demonstrates that the charging completed by the fast chargers for
the BPAP and Qin was heavily subsidized by slow chargers in the quick and heuristic SA
techniques. The SA techniques, however, were still able to detect future demands and offset
BEBs to the fast charger only when required. This effectively allowed the consumption costs
to be reduced so that the SA techniques remained competitive with the BPAP (Figure 5),
but the included demand cost allowed both SA methods to perform better than the BPAP
with regard to peak demand (Figure 4).
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Figure 6. Number of slow and fast chargers utilized in parallel over the time horizon. Figure 6c plots
the slow charger count for the BPAP and Qin schedules and Figure 6d plots the slow charger count
for the quick and heuristic SA schedules. Similarly, Figure 6a plots the fast charger count for the
BPAP and Qin schedules and Figure 6b plots the fast charger count for the quick and heuristic SA
schedules.
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Figure 6. Number of slow and fast chargers utilized in parallel over the time horizon. Figure 6c plots
the slow charger count for the BPAP and Qin schedules and Figure 6d plots the slow charger count
for the quick and heuristic SA schedules. Similarly, Figure 6a plots the fast charger count for the
BPAP and Qin schedules and Figure 6b plots the fast charger count for the quick and heuristic SA
schedules.
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Figure 6. Number of slow and fast chargers utilized in parallel over the time horizon. Panel (c) plots
the slow charger count for the BPAP and Qin schedules and (d) plots the slow charger count for the
quick and heuristic SA schedules. Similarly, (a) plots the fast charger count for the BPAP and Qin
schedules and (b) plots the fast charger count for the quick and heuristic SA schedules.

As a final comparison, the scores for the Qin-Modified, quick SA, BPAP, and heuristic
SA are shown in Table 3. The Qin-Modified strategy naturally has the highest score as it
performed the worst in each metric of the objective function. Although the BPAP was able
to maintain the SOC of each BEB above the minimum charge threshold, due to large peaks
in the power demand in the BPAP schedule, both SA techniques were able to achieve lower
scores. In other words, although the SA techniques allowed small breaches in the minimum
SOC, the objective function found the quick and heuristic SA schedule configurations to
be more desirable than that of the BPAP. The quick SA was able to successfully obtain the
lowest score due to its substantial reduction in the demand cost and its smaller breach of
the minimum SOC threshold.

Table 3. Table of objective function scores for each of the schedules.

Schedule Score

BPAP 18,500,000
Qin-Modified 34,578,526
Heuristic 11,673,937
Quick 11,234,577

7. Conclusions

This work developed an SA implementation of the BEB charge scheduling problem
derived from the works of the position allocation problem [17]. The model was designed to
encourage the use of slow chargers for battery health, minimize the peak energy consump-
tion, and minimize the total energy consumed. The problem description was provided
along with the assumptions made about the structure of the BEB route schedule. The op-
timization problem was then introduced by describing the components of the objective
function and outlining the constraints utilized to ensure that candidate solutions are in the
solution space.

An example of the SA PAP algorithm was presented and compared against the BPAP,
which acted as a baseline for the other schedule. Another threshold-based strategy called
the Qin-Modified technique was also introduced as a means of comparing the schedules.
The SA PAP was run utilizing two different neighborhood searching techniques named
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the “quick” and “heuristic” techniques, respectively. The quick SA’s objective was to
randomly search a wide neighborhood while the heuristic technique was designed to
incrementally search a neighborhood by randomly selecting a fast or slow charging queue
and then stepping through the queues one at a time. The execution time compounds as the
number of iterations in the cooling function increases as shown by the respective quick and
heuristic execution times: 1532.8 seconds and 1916 seconds. The Qin-Modified strategy
favored the use of fast chargers due to its inability to identify when demanding routes
were on the horizon, whereas the other methods used fast charges sparingly. Particularly,
the SA techniques favored higher number of slow chargers with longer charge durations in
comparison to the BPAP.

Both of the SA techniques were unable to keep the SOC above the 25% SOC threshold,
with SOC falling to 23.5% for the heuristic SA and 24.4% for the quick SA. Due to the
minimum charge threshold being a soft constraint for the SA, the algorithm found other
actions to be more favorable at the expense of moderately breaching the threshold. The Qin-
Modified, on the other hand, had the SOC of one BEB fall to 0% SOC. The schedule that
consumed the least amount of energy is the BPAP (4237.2 kWh) followed by the heuristic
SA (4295.6 kWh). The difference between the two was about 8,532.8 kWh. The quick
SA energy consumption came in at a close third at 4428.7 kWh. Both the quick and SA
techniques were able to significantly reduce the peak power demand, having peaks below
1200 kW. The BPAP and Qin both had peak power demands above 1800 kW. The best scoring
schedule was the quick SA due to its significant reduction in demand cost, similar energy
consumption as the heuristic SA and BPAP, and its small minimum SOC threshold deficit.

Future areas of interest are to introduce real-time capabilities to allow dynamic adapta-
tion to the schedule. Furthermore, nonlinear battery dynamics are of interest to increase the
fidelity of the charging model. In addition, methods to include uncertainty to the model,
such as “fuzzifying” the initial and final charge times, are of interest to allow flexibility in
the arrival and departure times.
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Nomenclature
The following table provides definitions the pertinent variables utilized throughout the manuscript.
Values and units are provided when available:

Variable Value & Units Description
Constants
T 24 h Time horizon
nK 500 Number of iterations in the repetition schedule
nM 3832 Total number of steps created by initial temperature, T0, and

cooling schedule
nQ 30 Number of chargers
nV 388 Total number of visits
nH 1440 Number of discrete steps in time horizon

www.mdpi.com/xxx/s1
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nB 35 Number of buses in the fleet
Input Variables
∆i Discharge of visit over after visit i
αb 90% Initial charge percentage time for bus b
ϵq 0 or 10q ∀ q ∈ Q Cost of using charger q
κb 388 kWh Battery capacity for each BEB
ξi The next index bus b will arrive
ai Arrival time of visit i
ei Departure time for visit i
th Discrete step in time horizon
dt 60 s Step size dth = th − th−1
rq 30 kW & 911 kW Charge rate of charger q
tm Element of the temperature vector created by cooling equation,

tm ∈ t
νb 25% Minimum charge percentage allowed for each BEB
Direct Decision Variables
ui Initial charge time for visit i
di Final charge time for charger for visit i
qi Assigned queue for visit i
ηi Charge for the bus upon arrival for visit i
si Amount of time spent on charger for visit i
σij Binary variable determining temporal ordering of vehicles i and j
ψij Binary variable determining spatial ordering of vehicles i and j
pd Demand cost of the schedule
ϕi Charge penalty for visit i
C Set of available charging times
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