Pre-launch Testing and Post-Launch Performance
Monday June 18, 2:25 PM MDT

Preflight Characterization of the OCO-3 Imaging Spectrometer

Robert Rosenberg
Gary Spiers, Richard Lee, Lars Chapsky, Shanshan Yu, Annmarie Eldering - NASA JPL / Caltech
Stephen Maxwell - NIST

Introduction / Outline

- Orbiting Carbon Observatory Missions 2002-2022
- Atmospheric state retrievals from 3 narrow NIR spectral bands
- OCO-2 Science Highlight
- From OCO-2 Spare Spectrometer to OCO-3 Payload
- OCO-3 Test Program
 - Ground Support Equipment Overview
 - Radiometry and sphere calibration with NIST
 - Heliostat spectra & verification with TCCON
- Inflight Calibration Strategies
- Conclusion: Expected launch 2/19
OCO, OCO-2, and OCO-3

- Orbiting Carbon Observatory approved within the Earth System Science Pathfinder program in July 2002
- Launched on February 24, 2009 but did not achieve orbit due to launch vehicle failure

- Work on OCO-2 began in March 2010
- Launched into A-Train successfully from Vandenberg Air Force Base in California on July 2, 2014

- Following the successful OCO-2 launch, work began on converting the spare spectrometer into OCO-3
- Launch to ISS scheduled for February 2019, planned duration 3 years
Measurement Basics

- Three-channel grating spectrometer with common entrance optics
 - 758-772, 1594-1619, 2045-2081 nm
- High spectral resolution
 - $\lambda/\Delta\lambda = 17000-20000$
- Infer several atmospheric properties from the depths of the absorption lines
 - Surface pressure
 - Aerosols
 - Clouds
- 24 Soundings acquired per second
 - Onboard averaging in spatial dimension compresses 160 rows into 8 footprints (~2.5 km² on ground)
Notable OCO-2 Science

Large-Scale Anthropogenic Emissions (Hakkarainen et al, GRL, 2016)

Quantifying Power Plant Emissions (Nassar et al, GRL, 2017)

Global SIF Measurements (Sun et al, Science, 2017)

The technical data in this document is controlled under the U.S. Export Regulations, release to foreign persons may require an export authorization.

OCO-3 Thermal Vacuum Testing

• The OCO-2 spare spectrometer was stored after testing in May 2013

• Intermediate tests in 2016 and 2017 to confirm performance and evaluate new entrance optics

• The OCO-3 payload completed its final thermal vacuum test in May 2018
 – Two weeks of optical testing with additional thermal tests
 – Derived spectral and radiometric calibration coefficients for launch

• Additionally, verified dozens of requirements including:
 – Field of View
 – Slit Alignment
 – Focus
 – Saturation
 – Bad Pixels
 – Polarization extinction
OGSE was inherited from OCO, OCO-2 and was used for previous OCO-3 TVACs

- Heliostat M1/M2
- Heliostat M3/M4
- Laser Rack
- Integrating Sphere
- Collimator
The technical data in this document is controlled under the U.S. Export Regulations, release to foreign persons may require an export authorization.
The technical data in this document is controlled under the U.S. Export Regulations, release to foreign persons may require an export authorization.

Spectral Calibration (ILS & dispersion)

- ~40 laser scans allows ILS determination/interpolation for 1016 spectral channels, eight footprints, and three bands, yielding 24,384 individual ILS functions.

- Initial laser based dispersion also determined from these ~40 laser scans.

- The laser based ILS & dispersion further optimized by comparing solar spectra recorded simultaneously on the ground by the OCO-3 flight instrument and a collocated high-resolution Fourier transform spectrometer (FTS).
Preflight Radiometric Calibration with NIST

- 5% absolute performance requirement
- Sphere has dedicated ASD spectroradiometer
- NIST ASD in chamber before and after testing transfers calibration from standard sources and helps to correct artifacts

Integrating sphere has 10 external halogen lamps with filters, one has a variable attenuator
Example Gain Fits: SCO2 FP 3

- Cubic gain polynomial for every spectral sample with constant term set to zero because dark correction is performed separately.
Inflight Calibration Chain

- Uncalibrated Level 1A Signal
- Dark Signal (TVAC & updated in flight)
- \textit{“ZLO”} stray light (unilluminated pixels)
- Preflight Gain (Sphere in TVAC)
- Gain Degradation (change since in orbit checkout)
- Calibrated Level 1B Radiance

Degradation primarily from on board calibrator lamps. OCO-2 uses solar diffuser and makes lunar measurements 2x/month. Adjusted less frequently based on vicarious cal & comparisons to other satellites.
Conclusion

• OCO-2 has demonstrated that atmospheric X_{CO_2} can be measured from space with precision of better than 1 ppm

• OCO-3 will continue global CO$_2$ measurements focused on regional sources and sinks of CO$_2$

• OCO-3 measurements can be combined with evapotranspiration and biomass measurements also taken from the ISS to study process details of the terrestrial ecosystem.