
23rd Annual AIAA/USU Conference on Small Satellites
Logan, Utah, USA
10th – 13th, August, 2009

Y. Aoyanagi, S. Satori - Hokkaido Institute of Technology, JAPAN
T. Totani - Hokkaido University, T. Yasunaka – Uematsu Electric Co., Ltd
Table of Contents

1. Introduction
 • The hyperspectral remote sensing program
 • Micro-Satellite “TAIKI” with the Hyperspectral sensor HSC-III

2. Satellite Bus-subsystems
 1. On-orbit demonstration of small bus subsystem using Pico-Sat
 2. Outline of each bus-subsystem

3. LCS: Laser Communication System
 1. Terrestrial laser communication experiment
 2. Pointing control device for laser beam

4. HSC-III: Hyperspectral sensor
 1. Outline
 2. Result of Breadboard model of each module

5. Conclusion
Hyperspectral Remote sensing missions

- Hyperspectral sensors acquire more spectral information from objects with a high spectral resolution compared with Multispectral sensors.
- Hyperspectral sensor enables to distinguish a targeted object with a high accuracy, and give us lots of important information.
- Hyperspectral remote sensing has capabilities to innovate lots of practical applications.

Application area using hyperspectral technology

- Agriculture (Hyperion Validation Report)
- Geology (©EnMap homepage)
- Forest (©EnMap homepage)
- ©Examples of information products derived from hyperspectral data at CCRS
TAIKI: Hyperspectral Remote sensing Satellite

Item Requirement
- **Spacecraft mass**: 50 kg (including Mission payload)
- **Size**: 50 cm × 50 cm × 50 cm
- **EPS**: Body mounted solar cell panels, Power generation: = 50 to 100W
- **ACS (Attitude Control Subsystem)**: 3-axis stabilization, Attitude accuracy: ± 2.0 deg
- **C&DHS**: 32bit RISC microprocessor (SH-4)
- **COM**: Downlink: 10Mbps / Uplink: 9.6kbps, LCU (Laser Communication system)
- **Mission components**: HSC-III (Hyperspectral Camera-III)

[Mission objectives]
- To provide Hyperspectral image for **agricultural remote sensing in order to innovate the space industries**
- To acquire Visualization of the effect of climate change on plant distribution by measuring NDVI (Normalized Differential Vegetation Index)

Diagram
- **HSC-III**: Hyperspectral Camera
- **Laser Communication Unit**
- **Mission components**
 - HSC-III (Hyperspectral Camera)
 - Sun acquisition sensor
 - Magnetic Torquer (3-axis)
 - Momentum Wheel
 - Magnetometer (3-axis)
 - Gyroscope (3-axis)
 - Solar Panels
 - Secondy Battery
 - DC/DC Converter
 - 32bit RISC MPU (SH-4)
 - Real Time Clock
 - FPGA
 - Mission Data
 - Laser Transmitter
 - Ku Band Transmitter
 - VHF Band Communication Unit
 - Telemetry & Command
 - Data Recorder
 - DHU
 - Router
Concepts of the Spacecraft bus-subsystem

• To develop the spacecraft as manufactured products

• To keep cost within 1 million $ (including mission payloads) in order to demonstrate the space business model

• To use lots of COTS (Commercial-Off-The-Shelf) components demonstrated by Pico-satellite HIT-SAT shown after this slide

• To employ attitude control subsystem providing an attitude accuracy within ±2 degrees

• To downlink by high-speed transmission (> 100Mbps) for high-quality hyperspectral data
Pico-satellite “HIT-SAT”

Table: Specification of the HIT-SAT

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>2.7 kg</td>
</tr>
<tr>
<td>Size</td>
<td>12×13×12 cm³</td>
</tr>
<tr>
<td>Power</td>
<td>2.0 W</td>
</tr>
<tr>
<td>Orbit</td>
<td>Sun-synchronous, 277-633 km</td>
</tr>
<tr>
<td>Attitude control</td>
<td>Spin stabilization (3-axis MTQ)</td>
</tr>
<tr>
<td>Communication</td>
<td>Tx: 430MHz, Rx: 145MHz</td>
</tr>
<tr>
<td>Launching vehicle</td>
<td>M-V#7 by ISAS/JAXA</td>
</tr>
</tbody>
</table>

- HIT-SAT was developed as an experiment model of the TAIKI bus-subsystem and launched successfully on Sep. 23, 2006 as a sub-payload of M-V#7 launch vehicle (ISAS/JAXA).
- The very small bus subsystem including lots of COTS components have been demonstrated in orbit.
- We conducted the satellite by Armature radio frequency.

TAIKI spacecraft is equipped with these COTS components.
EPS: Electrical Power Subsystem

- Bus voltage must be kept $5[V] \pm 100[mV]$
- To realize a very compact electrical circuit
- PCU (Power Control Unit) performs the PPT (Peak Power Tracking) control by a 16 bit microprocessor and DC/DC converter

<table>
<thead>
<tr>
<th>Item</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar panel</td>
<td>Body mounted solar panels</td>
</tr>
<tr>
<td></td>
<td>GaInP2/GaAs/Ge</td>
</tr>
<tr>
<td></td>
<td>Triple Junction Solar Cells</td>
</tr>
<tr>
<td></td>
<td>Efficiently: 26.8%</td>
</tr>
<tr>
<td>Power generation</td>
<td>Approx. 50-100W</td>
</tr>
<tr>
<td>Secondary Battery</td>
<td>Lithium Ion Polymer</td>
</tr>
<tr>
<td></td>
<td>Nominal voltage: =7.4V (@ 2series)</td>
</tr>
<tr>
<td></td>
<td>Nominal capacity: = 4.55Ah (@ 5 parallels)</td>
</tr>
<tr>
<td>PCU</td>
<td>16 bit Microprocessor (H8/3048F)</td>
</tr>
<tr>
<td></td>
<td>Flash memory (EEPROM)</td>
</tr>
<tr>
<td></td>
<td>DC/DC converter (bus voltage: +5V)</td>
</tr>
</tbody>
</table>

Fig. Breadboard model of DC/DC converter

Fig. Lithium Ion Polymer Secondary Battery on-orbit demonstrated by HIT-SAT
COM: Telecommunication Subsystem

Downlink for Mission data

- To downlink high-volume hyperspectral data the satellite is equipped with **Ku-band transmitter**
- It employs **BPSK modulation** at 10Mbps, and the output power is 200mW
- The transmitter has been developed in **Micro LAB, Co., Ltd at Kagoshima in Japan**.

For Command and H/K telemetry

- The data transmission rate is 9.6kbps by **GMSK modulation (VHF transmitter)**
- The RF output power of the satellite is 150mW, and the output power of the grand station is 50 W.
- The basic technologies of the components were proven by the HIT-SAT in orbit

<table>
<thead>
<tr>
<th>Item</th>
<th>Uplink</th>
<th>Downlink</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>150MHz</td>
<td>20GHz</td>
</tr>
<tr>
<td>Band width</td>
<td>16kHz</td>
<td>12MHz</td>
</tr>
<tr>
<td>Transmitting Gain</td>
<td>16.15dB</td>
<td>19.6dBi</td>
</tr>
<tr>
<td>Receiving Gain</td>
<td>2.15dBi</td>
<td>38.74dB</td>
</tr>
<tr>
<td>Transmitting Power</td>
<td>50W</td>
<td>0.2W</td>
</tr>
<tr>
<td>Propagation Distance</td>
<td></td>
<td>1000km</td>
</tr>
<tr>
<td>Receiver noise</td>
<td></td>
<td>23dBK</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td>30dBK</td>
</tr>
<tr>
<td>G/T</td>
<td></td>
<td>4dB</td>
</tr>
<tr>
<td>Link Margin</td>
<td></td>
<td>4dB</td>
</tr>
<tr>
<td>C/N</td>
<td>60.515dB</td>
<td>96.862dB</td>
</tr>
</tbody>
</table>

Copyright(c) T-Tokifuji

Copyright(c) NISHI MUSEN KENKYUSYO
ACS: Attitude Control Subsystem

System requirements

- Attitude accuracy: ±2.0 degrees
- Simple & Miniaturized configuration

Sensors

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Requirement</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-axis Magnetometer</td>
<td>Band width</td>
<td>1 [kHz]</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>40 [μgauss] to 2 [gauss]</td>
</tr>
<tr>
<td>Gyroscope</td>
<td>Range</td>
<td>±500 [deg/s]</td>
</tr>
<tr>
<td>Earth Sensor (ES)</td>
<td>Accuracy</td>
<td>±0.06 [deg] (3σ)</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>±5.5 [deg]</td>
</tr>
<tr>
<td>Sun Acquisition sensor</td>
<td>Field of View</td>
<td>±45 [deg]</td>
</tr>
</tbody>
</table>

Actuators

<table>
<thead>
<tr>
<th>Actuator</th>
<th>Requirement</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic Torquer (MTQ)</td>
<td>Dipole moment</td>
<td>±6 [Am²]</td>
</tr>
<tr>
<td>Momentum Wheel (MW)</td>
<td>Max torque</td>
<td>0.012 [Nm]</td>
</tr>
<tr>
<td></td>
<td>Bias wheel momentum</td>
<td>0.84 [Nms]</td>
</tr>
</tbody>
</table>
(1) **Network Architecture**
- Bus type network
 - *Space Wire* or *Fire Wire* (IEEE1394)
 - Configuration using Router
- To have shared data recorder for each module
- To realize flexibility bus-subsystem by using network type architecture

(2) **Hardware configuration**
CPU
 - 32bit RISC microprocessor
 - SH4 (Renesas tech. Co.)
 - 300MIPS
 - This processor has been evaluated the radiology examination @ Takasaki Advanced Radiation Research Institute

Fig: Radiology examination

Analyzed result by CREAM
- SEL event probability: 2.87E-07 [SEL/bit/day]
- SEU event probability: 9.81E-05 [SEU/bit/day]

This processor is expected to an experience SEU during 3 month in orbit
Table of Contents

1. Introduction
 • The hyperspectral remote sensing program
 • Micro-Satellite “TAIKI” with the Hyperspectral sensor HSC-III

2. Satellite Bus-subsystems
 1. On-orbit demonstration of small bus subsystem using Pico-Sat
 2. Outline of each bus-subsystem

3. LCS: Laser Communication System
 1. Terrestrial laser communication experiment
 2. Pointing control device for laser beam

4. HSC-III: Hyperspectral sensor
 1. Outline
 2. Result of Breadboard model of each module

5. Conclusion
Laser communication

- Hyperspectral data requires high-volume mass memory of several Giga bytes
- To need technique of high speed transmission

Downlink by a Laser Communication

ADVANTAGE of LASER COMMUNICATION
- High bit rate data transmission
- Small size and low electrical power
- Large volume Remote sensing data
 - Hyperspectral data, High resolution observational data, etc…
- Space business and academic applications
LCS: Laser Communication System

Parameter	**Requirement**
Laser diode | Wavelength: 830nm
Output power: 1.5 W
By using Array of Single-mode LD
Beam divergence: 1.0 mrad
Transmitting diameter: 8mm

Receiver in Ground station | Device: APD (Avalanche photo diode)
Amplifier type: Transimpedance amp.
Quantum efficiency: 0.75
Multiplication factor: 600
Antenna diameter: 1.0m

Signal format | NRZ (Non-Return Zero)
Time Division Multiplex

Modulation | IM/DD
(Intensity Modulation/Direct Detection)

Bit rate | **100Mbps** (BER < 10^-6)

Transmitter instrument | Instrument mass: 3kg
Electrical power consumption: 4W

Tracking accuracy | 250μrad(σ)
Terrestrial laser communication experiment

[Outline]
To verify the breadboard model of LCS
High-volume video is transmitted by terrestrial laser communication
JR tower @ Sapporo to Rakuno Gakuen University: Propagation distance = 15km

<table>
<thead>
<tr>
<th>Item</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser wavelength</td>
<td>655 nm</td>
</tr>
<tr>
<td>Output power</td>
<td>0.03 W</td>
</tr>
<tr>
<td>Beam diameter</td>
<td>5 mm</td>
</tr>
<tr>
<td>Beam divergence</td>
<td>0.1 mrad</td>
</tr>
<tr>
<td>Receiving antenna diameter</td>
<td>130 mm</td>
</tr>
<tr>
<td>Bit rate</td>
<td>100 Mbps</td>
</tr>
<tr>
<td>Propagation distance</td>
<td>15 km</td>
</tr>
<tr>
<td>Visible distance</td>
<td>20 km (fine weather)</td>
</tr>
<tr>
<td>Back noise</td>
<td>10 nW</td>
</tr>
<tr>
<td>Detector</td>
<td>APD</td>
</tr>
<tr>
<td>Modulation</td>
<td>IM/DD</td>
</tr>
</tbody>
</table>
Terrestrial laser communication experiment

Table: Link budget result for “STAR on the Ground”

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_t: Transmitting antenna gain</td>
<td>81.5 dB</td>
</tr>
<tr>
<td>P_t: Laser output power</td>
<td>0.03 W</td>
</tr>
<tr>
<td>L_t: Optical lens loss</td>
<td>-1.0 dB</td>
</tr>
<tr>
<td>L_f: Free space loss (propagation distance: 15km)</td>
<td>-229.2 dB</td>
</tr>
<tr>
<td>G_r: Receiving antenna gain</td>
<td>112.9 dB</td>
</tr>
<tr>
<td>L_{at}: Atmospheric loss ($D = 15$km, $V = 20$km)</td>
<td>-10.0 dB</td>
</tr>
<tr>
<td>P_r: Receiving signal power</td>
<td>-59.1 dB ($= -29.1$dBm)</td>
</tr>
</tbody>
</table>

Link budget result
Received signal power: -29.1dBm

Measurement result
Received signal power: -27.9dBm
Table of Contents

1. Introduction
 • The hyperspectral remote sensing program
 • Micro-Satellite “TAIKI” with the Hyperspectral sensor HSC-III

2. Satellite Bus-subsystems
 1. On-orbit demonstration of small bus subsystem using Pico-Sat
 2. Outline of each bus-subsystem

3. LCS: Laser Communication System
 1. Terrestrial laser communication experiment
 2. Pointing control device for laser beam

4. HSC-III: Hyperspectral sensor
 1. Outline
 2. Current status

5. Conclusion
Hyperspectral sensor Development Road Map

<table>
<thead>
<tr>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory models
To verify the spectrometer</td>
<td>Airborne models
To decided a standard concept</td>
<td>Spaceborne models
To demonstrate on orbit</td>
</tr>
</tbody>
</table>

Hyperspectral camera (HSC1.0)
Laboratory model in 2003

The key technology to realize a very small hyperspectral sensor was demonstrated.

For compact spectrometer is equipped with the transmitting grating.

Airborne Hyperspectral sensor

The technology has been demonstrated by the airborne hyperspectral sensor.

It has successfully observed the ground surface to analyze the plant distribution by NDVI.

Spin-off product model

HSC1700 released by Hokkaido Satellite, Inc.

The HSC1700 is specified by the spectral range from 400 nm to 800 nm, 81 spectral bands, and image size of 640×480 pixels, radiometric resolution of 8 bits and data transfer rate of 30 frames/seconds. After the release of the spin-off product HSC1700 to the general market, many big companies have been keenly interested in and purchased the products.

Spaceborne Hyperspectral sensor HSC-III

At the beginning of 2008, development of the spaceborne hyperspectral sensor “HSC-III” based on the optical design of the HSC1700 has been started.

Missions

To provide hyperspectral image for agricultural remote sensing

To acquire visualization of the effect of climate change on plant distribution.
Overview of HSC-III Flight model

Table: Performance of HSC-III

<table>
<thead>
<tr>
<th>Item</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument mass</td>
<td>10 kg</td>
</tr>
<tr>
<td>Power consumption</td>
<td>10 W</td>
</tr>
<tr>
<td>Imaging type</td>
<td>Push-bloom method</td>
</tr>
<tr>
<td>GSD</td>
<td>30 m</td>
</tr>
<tr>
<td>Swath width</td>
<td>20.6km</td>
</tr>
<tr>
<td>Field of view</td>
<td>1.8 degrees</td>
</tr>
<tr>
<td>Telescope aperture</td>
<td>20cm</td>
</tr>
<tr>
<td>Telescope type</td>
<td>2 mirror configuration of Ritchey-Chretien type</td>
</tr>
<tr>
<td>Wavelength range</td>
<td>400-1000nm (61 bands)</td>
</tr>
<tr>
<td>Spectral resolution</td>
<td>10 nm</td>
</tr>
<tr>
<td>Spectral calibration stability</td>
<td>< 0.25nm</td>
</tr>
<tr>
<td>Targeted SNR</td>
<td>> 300@620nm</td>
</tr>
<tr>
<td></td>
<td>> 200@400-1000nm</td>
</tr>
<tr>
<td>Digitization</td>
<td>10bit</td>
</tr>
<tr>
<td>Mass memory</td>
<td>30 GB</td>
</tr>
<tr>
<td>Mission target</td>
<td>Agriculture</td>
</tr>
</tbody>
</table>

Fig: Predicted Signal to Noise Ration

HSC-III: Hyperspectral Camera - III

Optics & Calibration unit

Electrical unit

Telescope

Soil (Alfisol) from ASTER Spectral Library

Vegetation (Grass) from ASTER Spectral Library

Albedo 0.3

HSC-III: Hyperspectral Camera - III

Optics & Calibration unit

Electrical unit

Telescope

Soil (Alfisol) from ASTER Spectral Library

Vegetation (Grass) from ASTER Spectral Library

Albedo 0.3
Breadboard model (BBM) of each module

Detector (BI-CMOS camera) (commercial component)

Telescope (Design phase now)

Spectrometer (based by spin-off product HSC1700)

Mission Data Handling Subsystem FPGAs-based

On-board Calibration Equipment
Spectrometer instrument

* telescope: mock-up

- The entrance slit is 15mm long by 15μm wide
- The transmitting grating is 25mm², 300 lines/mm grating frequency and approx. 75% maximum efficiency, and made by B270 glass.
- It requires 10nm ±1.5nm of spectral band with

Principle of the spectrometer by using a transmitting grating

Fig: Normalized response of each band

Fig: Spectral band width as function of wavelength
MDHS: Mission Data Handling Subsystem

Characteristics
- MDHS mainly consists of two FPGA
- Camera Link standard
 - 28bit to represent up to 24bits of pixel data and 3bits for video synchronous signals
 - Camera Link up to 2.38Gbps support the required transfer speeds of hyperspectral data.
- To reduce data volume by using ROI (Region of Interest) selection

Diagram
- Camera Link
- FPGA XC3S1500
- Power consumption < 4W
- FPGA: Spartan3 XC3S1500
- Detector I/F: Camera Link Standard
- DR bit rate: 1.848 Gbps
- SDRAM: 512Mbit × 14
- Flash ROM: 30Gbytes (SD card)
- Imaging area: Approx. 128.86km × 20km

Fig: MDHS breadboard model
OCE: On-board Calibration Equipment

- The On-board Calibration Equipment (OCE) which is the subsystem for on-board calibration is equipped with Visible-LEDs and Near-infrared-LEDs.
- The diffused panel provides 3 positions for Earth observation, the Sensor calibration and the LEDs calibration.
- Advantage of LEDs as on-board calibration source
 - High-energy efficiency, very long life, Small size and high-design flexibility
 - The calibration process can increase more calibration bands than the HYPERION (Hyperspectral sensor by NASA) equipped Atmospheric Limb Correction.

Fig: Schematic layout of the OCE
Fig: On-board Calibration Equipment Breadboard model
Spectral Lamp (Hg: Mercury, Xenon)

Calibration accuracy compared with Hg and Xe

It was excellent so that 0.02nm spectral calibration accuracy was achieved
Conclusion

• **TAIKI** spacecraft that is characterized by Hyperspectral remote sensing has been designed
 – The spacecraft is developed based on technologies of in orbit demonstrated bus-subsystems which consists of COTS components

• For the hyperspectral data downlink is equipped with the laser communication system **LCS**
 – LCS is being realized only for high-rate downlink
 – The possibility of laser communication has been confirmed in the terrestrial laser communication experiment

• The hyperspectral sensor **HSC-III** has been designed and the each module of BBM has been developed
 – TAIKI’s mission is targeted at Hyperspectral remote sensing
 – HSC-III is targeted at 30m GSD, VNIR and 300 SNR
 – BBM modules have been developed, which consists of the spectrometer, data handling subsystem and on-board calibration equipment
Thank you for your attention!!

CONTACT:
Yoshihide Aoyanagi
Hokkaido Institute of Technology
JAPAN
r09601@hit.ac.jp