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ABSTRACT

Cislunar Optimal Robust Trajectory Design with Corrective Maneuvers

by

Scott J. Kelly, Doctor of Philosophy

Utah State University, 2024

Major Professor: David Geller, Ph.D.
Department: Mechanical and Aerospace Engineering

The focus of this research is the optimization of impulsive transfer trajectories in cis-

lunar space in the presence of stochastic effects. A deterministic optimal trajectory is

developed. An equivalent robust optimal trajectory is developed by incorporating an initial

position dispersion, velocity dispersion, maneuver execution error, and random distubances

as process noise in the optimization problem. The cost function for the robust trajectory in-

cludes nominal impulsive maneuvers plus corrections. The robust trajectory is also subject

to a terminal dispersion covariance constraint. The hypothesis is made that incorporat-

ing stochastic error sources will result in a different trajectory path and different nominal

maneuvers when compared to the deterministic optimal trajectory. Specific applications

include a low-Earth orbit to low lunar orbit transfer, a low-Earth orbit to Near Rectilinear

Halo Orbit insertion, and a Near Rectliniear Halo Orbit rendezvous trajectory.

(182 pages)
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PUBLIC ABSTRACT

Cislunar Optimal Robust Trajectory Design with Corrective Maneuvers

Scott J. Kelly

One common method for determining how to get from point A to point B is by finding

the most fuel-efficient path. This is a common method for spacecraft trajectory designers

also. Without any random or unexpected occurrences this path is called the deterministic

optimal trajectory. Sometimes unexpected events happen that result in deviating from the

most fuel-efficient path; while driving, you may encounter a detour. Naturally, we tend to

return to the original fuel-efficient path and continue the journey. Similar deviations happen

in space. The rocket delivering a spacecraft to orbit likely will not deliver exactly to the

intended starting point of the most fuel-efficient path to the target. As a result, a mid-course

correction is required to not miss the target which costs additional fuel. This research seeks

to determine the most fuel-efficient path by optimizing the baseline maneuvers in addition

to corrections when characterized sources of error exist. This is referred to as a robust

optimal trajectory. To determine if the robust path is beneficial, this research compares the

total cost of the optimal deterministic trajectory with corrections with the optimal robust

trajectory and its associated corrections.
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For Cody.

“That’s no moon.”
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Traveling the cosmos can be an uncertain endeavor with random error sources that are

impossible to predict. There is error from the start in a spacecraft’s actual and planned

orbit at launch vehicle separation. At major mission events, maneuvers are rarely executed

exactly according to the plan due to maneuver execution error. Throughout the mission,

and especially during random venting that occurs in manned missions, spacecraft impart

random impulses, disturbing the current trajectory. These errors sources have the potential

to impact a spacecraft’s planned mission and mission success mandates planning for these

inherent errors. A common plan may be to carry sufficient fuel margin to correct dispersions

along a deterministically planned trajectory. With properly characterized error sources, a

Monte Carlo analysis can inform the required quantity of fuel margin but does not provide

a framework for determining path choices to minimize the required propellant. This work

presents a robust trajectory design method that accounts for the impact of an initial state

dispersion, maneuver execution error, and process noise, simultaneously optimizing the

number and location of trajectory correction maneuvers (TCM) along the trajectory.

Cislunar space, the area of space affected by the gravitational influence of both Earth

and the Moon, is a burgeoning area of interest and importance. The three-body problem

and cislunar repeating trajectories are of particular interest due to recent and upcoming

space exploration missions. The NASA Artemis program has a large cislunar component

and includes a Near-Rectilinear Halo Orbit (NRHO) as an operational orbit for the Gateway

Space Station [1]. Gateway is planned to serve as a base of operations and staging point

for lunar surface missions, research, and a departure point for further space exploration.

The unmanned Artemis I demonstration mission utilized a three body trajectory as part of
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its mission plan, a Distant Retrograde Orbit (DRO). The CAPSTONE spacecraft was the

first spacecraft to inject into and operate in an NRHO (in November 2022), arriving via a

ballstic lunar transfer [2].

1.2 Literature Review

1.2.1 Deterministic Trajectory Design and Optimization

Optimization of deterministic impulsive trajectories has been a topic of extensive study.

Conway presents a thorough history and overview [3] of early influential works in trajectory

optimization [4–8]. Indirect optimization formed a large portion of the early trajectory op-

timization approaches prior to the advance of significant personal computing power. Betts

presents a survey of numerical methods for trajectory optimization to include nonlinear pro-

gramming, optimal control problems, numerical analysis, shooting methods, transcription,

dynamic programming, and genetic algorithms [9]. Trajectory optimization algorithms that

connect multiple events via segments and incorporate node flexibility enable optimization

trades across an entire mission [10,11]. In two works by Ocampo forming the foundation for

the COPERNICUS trajectory design tool, multiple impulses are simultaneously minimized

while satisfying segment connectivity constraints as well as other constraint options [12,13].

In some cases, a deterministically planned trajectory may appear to provide a min-

imum fuel path to a target. The same trajectory may exhibit sensitivities that result in

excessively expensive corrective maneuvers if not properly planned. On the other hand,

robust trajectories that take into account uncertainties may require more energy to embark

upon, but reduce the cost of expensive corrections. For example, it is commonly known that

the Hohmann transfer is the theoretically optimal ∆V two impulse transfer. However, even

as early as Apollo, transfer angles of 130 to 160 degrees for terminal phase initiation (TPI)

burns were utilized rather than “optimal” 180 degrees to make the TPI time less sensitive to

orbit insertion dispersions [14]. Space shuttle rendezvous maneuvers implemented a similar

transfer angle to minimize sensitivities related to ∆V dispersions that are amplified with a

180 degree transfer angle.
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1.2.2 Robust Trajectory Optimization

The search for a robust trajectory has taken numerous forms. In one of the earlier ex-

amples, Nishimura and Pfeiffer utilize a dynamic programming approach to develop trajec-

tories with stochastic error sources that constrain trajectory corrections within a magnitude

threshold and minimize dispersions at a target [15]. Jin et al. embedded a linear covariance

analysis tool within a genetic algorithm to identify robust trajectories for rendezvous and

proximity operations (RPO) that minimize nominal ∆V plus the sum of corrections [16].

Oguri and McMahon optimize trajectories in the presence of stochastic error sources to max-

imize the likelihood of a spacecraft’s ability to meet its mission operating parameters [17].

Geller et al. incorporate robustness into linear covariance analysis by triggering terminal

RPO maneuvers with an event occurrence rather than at a specific time [18]. Jenson and

Scheeres approach a robust optimization problem with maneuver execution error using in-

direct methods [19]. Boone and McMahon perform optimization of a nonlinear system with

impulsive controls and stochastic constraints [20]. Greco et al. optimize interplanetary

transfers under uncertainty by abandoning the concept of a reference trajectory and errors

with respect to the reference in favor of a more general framework where each sample is a

separate trajectory with probability density [21].

In this dissertation, the robust trajectory design method is formulated as a direct

optimization problem with a constraint on position dispersion at specified events and a cost

function comprised of the mean (nominal) ∆V plus 3σ TCM δV (the lower-case δ signifies a

TCM versus a nominal maneuver). Stochastic error sources include an initial position and

velocity dispersion, maneuver execution error applied to nominal maneuvers and TCMs,

and process noise to account for random spacecraft impulses and errors throughout the

trajectory. The design method is meant to be agnostic to dynamical system; the problem

scenarios presented are impulsive transfers in the classical two-body problem and the circular

restricted three-body problem but the state variational equations and the Jacobian functions

can be replaced with other systems as desired.
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The direct optimization approach uses nonlinear programming (NLP) with analytical

gradients of a multiple segment nominal trajectory. Using multiple trajectory segments

enables the incorporation of specific events throughout a trajectory [22] and also results in

additional benefits for nonlinear systems as sensitivities are distributed across the entire

trajectory [23]. Linear covariance analysis rapidly estimates the state dispersion covariance

and TCM covariance along each nominal trajectory using propagated state transition matri-

ces (STM). Analytical gradients are derived to include the sensitivity of TCMs with respect

to the problem parameters in a manner similar to the Jacobian in a multiple differential

correction scheme [24]. Validation of the optimal NLP robust solutions for simpler scenarios

is peformed using a brute force mission map approach; the mission maps also enable visual-

ization of a simplified solution space and build confidence in the gradient-based optimizer’s

likelihood of identifying the optimal solution.

An easier approach as far as implementation effort is concerned is to implement NLP

gradients using the finite difference method. This approach is a computationally time

consuming one though and one that in the end may preventing convergence. At a minimum,

the cost function and each non-zero constraint equation for a perturbed trajectory must be

tested against a nominal case to determine the sensitivity of each to variations in problem

parameters. The number of perturbed trajectory propagations grows quickly as the number

of segments and problem parameters increases. The reduction in accuracy of gradients using

the finite difference method versus analytical gradients is enough to prevent convergence

in some of the subsequent trajectory design scenarios. The main drawback to analytical

gradients is the initial effort in deriving and implementing the analytical gradients, however

the benefits are significant run-time reduction and improved convergence properties [25].

Significant effort was spent in deriving and verifying the implemented analytical gradients,

however, verification details are not presented in this dissertation.

Incorporating robust trajectory design stochastic elements in a NLP increases the com-

plexity of deriving analytical gradients but does not prevent convergence to the robust

nominal trajectory for the cases tested. Effectively, linear covariance equations are em-
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bedded inside the NLP where the STM along portions of the nominal trajectory informs

the covariance of the TCMs. First-order sensitivities are part of the cost function; as a

result, analytical gradients involve taking the partial derivative of an STM with respect to

state vectors. The resulting second-order terms are referred to as state transition tensors

(STT) which are also propagated along a nominal trajectory similar to STM propagation.

Process noise is also incorporated by numerically integrating its time rate of change equa-

tion between trajectory events (referred to as the Q-bar matrix or QBM). A process noise

covariance state sensitivity tensor and its time rate of change equations are derived and

numerically integrated to produce the process noise analytical gradients (referred to as the

Q-bar tensor or QBT). Derivations for the covariance-based gradients are presented in this

dissertation.

1.2.3 The Three-Body Problem

Finding repeating orbits in the CR3BP can be non-trivial. Linearization of the system

dynamics about a Lagrange point allows for the direct solution of a repeating orbit, however

when modeled in the nonlinear system it no longer repeats. It is possible to find a member of

the planar Lyapunov family, for example, by iteratively correcting the repeating linearized

solution using the sensitivities in a numerically propagated state transition matrix (STM)

until convergence. Grebow [26] and Zimovan [27] describe methods for finding repeating

trajectories via shooting methods, assembling constraint equations satisfied by repeating

orbits, and performing differential corrections, a common term for using STM elements as

sensitivities for a multi-variable Newton’s method to adjust initial conditions and satisfy the

constraint equations. They also use continuation techniques to generate families of repeating

trajectories and stability properties to identify bifurcations and additional families.

Farquhar introduced the halo orbit concept [28] and proposed it as a promising space

station orbit as early as 1970 due to the family’s constant line of sight to Earth and portions

of the lunar surface. Howell and Breakwell [29] initially explored NRHO properties in the

CR3BP. Many additional interesting and promising natural dynamical structures exist in

cislunar space [24, 27, 30, 31]. Nonlinearities and varying stability properties (including
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incredibly large instabilities) exist for many CR3BP trajectories. The NRHO portion of

the L2 halo orbit family is an ideal target orbit for extended missions due to favorable

stability properties and very minimal orbital maintenance ∆V required. The orbital period

of an individual trajectory varies as the family of orbits is traversed; selecting a member of

the family with a period that is an even ratio with other nearby periodic motion can lead

to favorable mission characteristics. For example, phasing a spacecraft in the 9:2 synodic

ratio NRHO (completes 9 orbital revolutions for every two synodic lunar periods) creates a

predictable eclipse environment enabling spacecraft eclipse minimization, further increasing

the trajectory’s utility. The L2 Southern halo NRHO places the majority of the trajectory

with line of sight to the lunar south pole, an area of high interest for numerous reasons

including complex geography harboring ice.

For three body orbital transfers involving additional complexity, long propagation

times, or requiring multiple events, multiple shooting methods are commonly implemented

[27, 32, 33]. State transition matrix elements containing sensitivities from the beginning to

end of each segment are used to correct segment initial states to meet a set of constraints.

When time frames are lengthy or dynamics are highly nonlinear, first order STM sensitiv-

ities may be insufficient in creating meaningful connections between initial and final state

element variations whicn can prevent convergence. Multiple shooting or a multiple segment

trajectory is a common three body trajectory design method which attempts to alleviate

issues with nonlinearities and longer propagation times. The trade-off is an increase in

complexity and numerical computation.

In many cases where a Newton’s method-like application is implemented, an initial

guess that is close to convergence is required. Dynamical systems theory techniques are

commonly used to develop initial three body trajectory guesses prior to correction [34]. In-

variant manifold theory is commonly applied to generate initial guesses. Stable and unsta-

ble manifolds are generated where nearly free departures/arrivals along an unstable/stable

eigenvector direction are propagated forward/backward in time to find intersections with

other feasible trajectories. Direct observation or other tools such as a Poincare mapping
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assist in identifying desired connections of state variables. When found, these nearly con-

nected trajectories form initial guesses that a multiple shooting algorithm can easily correct

to connect and meet a set of constraints [32]. However, the result is a feasible trajectory

that meets a set of constraints but is not optimal, even in a local sense.

1.3 Dissertation Outline

This dissertation is organized as follows:

• Chapter 2: Mathematical Background

– This chapter presents an overview of the theory and derivation of the two-body

problem, the circular restricted three-body problem, and lays the groundwork

for the first and second-order state sensitivity theory.

• Chapter 3: Deterministic Trajectory Design

– The deterministic optimal trajectory serves as the comparison baseline for the

robust trajectory results. This chapter presents numerical methods for differen-

tial correction, a demonstration of their application for finding CR3BP repeating

trajectories, and introduces an optimization approach via a nonlinear program

(NLP) with a similar multiple segment trajectory design approach.

• Chapter 4: Two-Body Trajectories Robut to Initial Dispersion

– The robust trajectory NLP solution method is presented in this chapter. The

only error source that is incorporated in finding two-body robust trajectories

is an initial state dispersion. The derivation of the analytical gradient of linear

covariance-based terms is presented, requiring the propagation of state transition

tensors to implement. The two-body results closely mirror the author’s published

work in [35].

• Chapter 5: Stochastic Analysis Along a Nominal Trajectory

– This chapter introduces additional error sources: nominal maneuver execution

error, trajectory correction maneuver execution error, and random disturbances

modeled as process noise. The accumulated state dispersion covariance from pro-

cess noise, referred to as the Q-bar matrix (QBM) is introduced and incorporated



8

into the state dispersion at appropriate trajectory events. Analytical gradient

derivation of linear covariance-based cost terms with the QBM require the QBM

state sensitivity, referred to as the Q-bar tensor (QBT), which is also derived in

this chapter.

– This chapter also presents a fast TCM optimization method and a comparison

of the optimal TCM set with variations in stochastic parameters.

• Chapter 6: Cislunar Robust Trajectory Design

– Three-body robust trajectory results are presented and compared to their deter-

ministic optimal equivalent trajectories. Specific trajectories include: low-Earth

orbit to low-lunar orbit (two and three nominal impulsive maneuvers); low-Earth

orbit to powered lunar flyby to NRHO insertion; two-impulse NRHO rendezvous.

• Chapter 7: Results Verification

– This chapter presents three verification methods of robust results presented.

First, a Monte Carlo analysis verifies the accuracy of modeled TCM magnitude

estimates. Second, a genetic algorithm is used to verify the optimality of the

TCM solution set chosen along a nominal trajectory. Third, the robust solution

space for the two impulse NRHO rendezvous trajectory is observed as a series of

contour plots to verify NLP convergence to the optimal solution.

• Chapter 8: Conclusions, Final Remarks, and Future Work

1.4 Summary of Contributions

• A paper similar to the contents of Chapters 3 and 4 titled “Optimal Robust Two-

Body Trajectory Design with Corrective Maneuvers” was published in the Journal of

Spacecraft and Rockets [35] and presented at the 45th American Astronautical Society

Guidance & Control Conference in Breckenridge, CO, February 2023.

• A paper similar to the contents of Chapters 5 and 6 titled “Robust Cislunar Trajectory

Optimization in the Presence of Stochastic Errors” was submitted to and is in the

review process with the Journal of Astronautical Sciences. Another similar set of
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results was presented at the 46th American Astronautical Society Guidance & Control

Conference, February 2024.

• Unique technical contributions to the field include:

– The simultaneous optimization of deterministic cost plus a stochastic cost esti-

mate via a nonlinear program.

– The use of state transition tensors in the analytical gradient of linear covariance-

based stochastic cost estimates.

– The fast TCM optimization method presented in Chapter 5.

– The propagation and manipulation of the QBM history alongside STM for in-

corporation in linear covariance analysis.

– The propagation and manipulation of the QBT history alongside the QBM for

use in the derivation of the QBM analytical gradients.

– The development of a trajectory that could save NASA up to 77.8 m/s in total

upper bound maneuver requirement for a spacecraft traveling from LEO to the

NRHO Gateway.
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CHAPTER 2

MATHEMATICAL BACKGROUND

2.1 Dynamical Systems

2.1.1 N-Body Problem

In the problem of n-bodies, from Newton’s law of gravitation, the gravitational forces

on each of the n-bodies imparted by the others, modeled as point masses, are described by

Equation 2.1 where rij = ∥rj − ri∥.

fi = G

n∑
j=1

j ̸=i

mimj

r3ij
(rj − ri) (2.1)

Assuming that only gravitational forces are acting on each body, from Newton’s second law,

Equation 2.2 describes the motion of the ith particle with respect to an inertial frame. The

result is 3n second-order differential equations.

r̈i = G

n∑
j=1

j ̸=i

mj

r3ij
(rj − ri) (2.2)

2.1.2 Two-Body Problem

For the two-body problem the equations of motion defining the motion of bodies 1 and

2 are:

r̈I1 = Gm2r12
r312

r̈I2 = −Gm1r12
r312

(2.3)

When modeling the motion of a spacecraft, the mass of the first body (Earth or another

planetary body) is assumed to be much greater than the second (the spacecraft). Ignoring
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the effect of the spacecraft on the motion of the first body results in the following 3 second-

order differential equations where µ is the gravitational parameter of the first body:

r̈2 = −µr12
r312

(2.4)

2.1.3 Three-Body Problem

For the three-body problem, Equation 2.2 results in 9 second-order differential equa-

tions taken in an inertial frame:

r̈I1 = Gm3r13
r313

+ Gm2r12
r312

r̈I2 = Gm3r23
r323

− Gm1r12
r312

r̈I3 = −Gm1r13
r313

− Gm2r23
r323

(2.5)

where the relative position vectors are

r13 = r3 − r1

r23 = r3 − r2

r12 = r2 − r1

(2.6)

For the case where the motion of m3 is of interest with respect to m1 and m2, the

relative motion equations are found as the difference of inertial derivatives:

r̈I13 = r̈I3 − r̈I1 = −Gr13
r313

(m1 +m3)−Gm2

(
r23
r323

+ r12
r312

)
r̈I23 = r̈I3 − r̈I2 = −Gr23

r323
(m2 +m3)−Gm1

(
r13
r313

+ r12
r312

) (2.7)

2.1.4 Circular Restricted Three Body Problem

The circular restricted three body problem (CR3BP) is a simplification of the grav-

itational attraction of three bodies (the classical three body problem) [36, 37]. The first

CR3BP simplification (presented by Lagrange) relates to the mass of one of the bodies:

the mass of one body is assumed to be neglibible in comparison to the two other massive
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ŷS

x̂S

ẑS

m1

m2

barycenter

r1 r2

m3

r13
r23r3

Fig. 2.1: CR3BP Synodic Rotating Coordinate Frame

bodies. This is a reasonable assumption; a nearby spacecraft does not measurably change

the orbit of the Earth or the Moon.

The second CR3BP simplification is the assumption that the relative motion of the

two primary bodies is circular. Circular motion means a constant distance between the two

primaries and rotation at a constant angular rate (ω̇ = 0). The result is an autonomous

system that does not require knowledge of each primary’s location at a specific time. In fact,

aligning a coordinate frame that rotates at the angular rate of the two primaries results in

the location of each primary as a fixed point independent of time. This assumption simplifies

the study of the system’s nonlinear differential equations, and enables the development of

families of repeating orbits as well as the application of dynamical systems theory [32, 34],

among others.

In the context of trajectory design, the CR3BP is typically used as a starting point to

generate an initial guess that is refined in a more complicated model. Models of increasing

fidelity typically include the elliptical resricted three body problem [38, 39], the bicircular

restricted four body problem [40, 41], or an ephemeris model that incorporates the time-

dependent location of any number of planetary bodies [42, 43]. For cislunar applications, a

common ephemeris model incorporates the locations of Earth, Sun, Moon, and Jupiter [44].
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Substituting m3 = 0 into Equation 2.7 results in the equations of motion for the

restricted three body problem:

r̈I13 = −Gr13
r313

(m1)−Gm2

(
r23
r323

+ r12
r312

)
= −µ1

r13
r313

− µ2

(
r23
r323

+ r12
r312

)
r̈I23 = −Gr23

r323
(m2)−Gm1

(
r13
r313

+ r12
r312

)
= −µ2

r23
r323

− µ1

(
r13
r313

+ r12
r312

) (2.8)

Since the mass of the third body is negligible, the motion of m1 and m2 is Keplerian about

their common barycenter and not necessarilty circular at this point.

A convenient coordinate frame is centered at the system barycenter and rotates at the

rotation rate of m1 and m2, ωS/I . This rotating coordinate system is commonly called

the synodic frame (or the S frame) [36]. The synodic frame’s x-axis, x̂S , points from

the barycenter toward m2. The synodic frame’s z-axis, ẑS , is aligned with the angular

momentum vector of the Moon’s orbit such that ωS/I = ωS/I ẑS . The y-axis completes the

right-handed coordinate system; as a result, x̂S and ŷS lie in the Earth-Moon orbital plane.

Figure 2.1 shows the x̂S , ŷS , and ẑS axes. In the S frame, the position of m1 and m2

(defined by r1 and r2) will only have an x̂S component. While it may appear that m3 lies

in the x̂S-ŷS plane, there is no ẑS component restriction on r3.

The transport theorem is required to compute the m3 equations of motion in the

rotating S frame. Equation 2.9 shows the kinematics relating the inertial derivative to the

derivative in the rotating frame.

ṙI3 = ṙS3 + ωS/I × r3 (2.9)

Equation 2.10 is the result of applying the transport theorem a second time, relating inertial

acceleration to acceleration in the rotating frame.

r̈I3 = r̈S3 + 2ωS/I × ṙS3 + ω̇S
S/I × ṙ3 + ωS/I ×

(
ωS/I × r3

)
(2.10)



14

Combining the previous expression for r̈I3 from Equation 2.5 with Equation 2.10 results in

Equation 2.11.

r̈S3 + 2ωS/I × ṙS3 + ω̇S
S/I × ṙ3 + ωS/I ×

(
ωS/I × r3

)
= −Gm1r13

r313
− Gm2r23

r323
(2.11)

In the S frame, the position vectors of each mass are:

r1 = −r1x̂S

r2 = r2x̂S

r3 = xx̂S + yŷS + zẑS

and the relative position vectors previously defined in Equation 2.6 become:

r13 = r3 − r1 = (x+ r1) x̂S + yŷS + zẑS

r23 = r3 − r2 = (x− r2) x̂S + yŷS + zẑS

Finally, substituting the relative position vectors into Equation 2.11 results in Equation

2.12 in component form. These equations define the motion of the elliptical restricted three

body problem. An important observation is that r1 and r2 are not constant for elliptical

motion; they are time-dependent functions of the relative position of m1 and m2.


ẍ− 2ωS/I ẏ − ω̇S/Iy − ω2

S/Ix

ÿ + 2ωS/I ẋ+ ω̇S/Ix− ω2
S/Iy

z̈

 =


−µ1

(x+r1)
r313

− µ2
(x−r2)
r323

−µ1
y
r313

− µ2
y
r323

−µ1
z
r313

− µ2
z
r323

 (2.12)

The next simplification to reach the CR3BP equations of motion is enforcing circular

motion for masses m1 and m2 about their barycenter. In circular motion, the distance from

each primary mass to the barycenter is constant. Additionally, the angular rate is constant
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and ω̇S/I = 0. Equation 2.13 shows the resulting CR3BP equations of motion.


ẍ− 2ωS/I ẏ − ω2

S/Ix

ÿ + 2ωS/I ẋ− ω2
S/Iy

z̈

 =


−µ1

(x+r1)
r313

− µ2
(x−r2)
r323

−µ1
y
r313

− µ2
y
r323

−µ1
z
r313

− µ2
z
r323

 (2.13)

Szebehely shows that the system in Equation 2.13 depends only on one parameter

through the use of dimensionless variables [36]. Currently, the system depends on the two

primary gravitational parameters (µ1 and µ2), the distance from each primary to the system

barycenter (r1 and r2), and the angular rate of the system (ωS/I). Leveraging the fact that

many of these parameters are functions of the two gravitational parameters enables the

reduction in dependence.

First, defining a system gravitational parameter µ (Equation 2.14) enables the expres-

sion of each primary gravitational parameter as a function of µ. If the mass of the system

is scaled such that µ1 + µ2 = 1, then µ2 = µ and µ1 = 1− µ.

µ =
µ2

µ1 + µ2
(2.14)

Next, using the equation for the center of mass (Equation 2.15) and scaling system

distances such that the distance between the primaries is equal to 1 (∥r̃12∥ = ∥r̃2 − r̃1∥ =

r̃1 + r̃2 = 1) enables the expression of the position of each primary as a function of µ

(Equations 2.16 and 2.17). The tilde indicates a dimensionless parameter; i.e., for distance,

r̃1 =
r1
r12

.

− µ1r1 + µ2r2 = 0 (2.15)

r̃1 = µr̃12 = µ (2.16)

r̃2 = (1− µ)r̃12 = 1− µ (2.17)

Finally, finding the mean motion n (Equation 2.18) and scaling time such that nondi-

mensional time τ = tn enables the expression of the angular rate as a ratio of angle traveled



16

per nondimensional time τ .

n =

√
µ1 + µ2

r312
(2.18)

ω̃S/I =
ωS/I

n
= 1 (2.19)

The result is the non-dimensional CR3BP equations of motion (Equation 2.20). The

system of equations is now only dependent on the mass ratio of the two primaries and the

position of m3. 
¨̃x− 2 ˙̃y − x̃

¨̃y + 2 ˙̃x− ỹ

¨̃z

 =


− (1−µ)(x̃+µ)

r̃313
− µ(x̃−(1−µ))

r̃323

− (1−µ)ỹ
r̃313

− µỹ
r̃323

− (1−µ)z̃
r̃313

− µz̃
r̃323

 (2.20)

where

r̃13 =
√
(x̃+ µ)2 + ỹ2 + z̃2 (2.21)

r23 =
√
(x̃− 1 + µ)2 + ỹ2 + z̃2 (2.22)

While there is no closed-form solution to Equation 2.20, given an initial state for m3,

it is possible to numerically integrate the corresponding six first-order differential equa-

tions and determine a future state for m3. For implementation, the initial state must be

converted to nondimensional units. As an example, conversion of the m3 state vector to

nondimensional distance and nondimensional velocity occurs via the following relationship:

r̃3 =
r3
r12

(2.23)

ṽ3 = v3
n

r12
(2.24)
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Rearranging the CR3BP equations of motion

¨̃x = 2 ˙̃y + x̃− 1−µ
r̃313

(x̃+ µ)− µ
r̃323

(x̃− 1 + µ)

¨̃y = −2 ˙̃x+ ỹ − 1−µ
r̃313

ỹ − µ
r̃323

ỹ

¨̃z = −1−µ
r̃313

z̃ − µ
r̃323

z̃

(2.25)

and introducing a pseudo-potential function U

U =
x̃2 + ỹ2

2
+

1− µ

r̃13
+

µ

r̃23
(2.26)

enables writing the equations of motion in the following alternate form:

¨̃x = ∂U
∂x̃ + 2 ˙̃y

¨̃y = ∂U
∂ỹ − 2 ˙̃x

¨̃z = ∂U
∂z̃

(2.27)

2.2 First-order Dynamics and State Sensitivity

In this dissertation, the six-dimensional spacecraft state represents the spacecraft po-

sition and velocity:

x =

[
x y z ẋ ẏ ż

]⊤
(2.28)

Error sources create a dispersion, δx, with respect to the nominal trajectory xN . The

dynamics of the dispersed state are a function of the nominal state and the dispersion:

ẋ = ẋN + δẋ = f (x+ δx) (2.29)

A first-order Taylor series expansion (TSE) along the nominal trajectory provides an esti-

mate for the dispersed state at a future time:

ẋ ≈ f (xN ) +
∂f

∂x

∣∣∣∣
xN

δx (2.30)
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which simplifies to the linearized dynamics along the nominal reference trajectory

δẋ =
∂f

∂x

∣∣∣∣
xN

δx (2.31)

and has the solution

δx (t) = Φ (t, t0) δx (t0) (2.32)

where Φ (t, t0) is the state transition matrix (STM), which contains the first-order dynamics

between t0 and t along the reference trajectory [32]:

Φ(t, t0) =
∂x(t)

∂x(t0)
=



∂x
∂x0

∂x
∂y0

∂x
∂z0

∂x
∂ẋ0

∂x
∂ẏ0

∂x
∂ż0

∂y
∂x0

∂y
∂y0

∂y
∂z0

∂y
∂ẋ0

∂y
∂ẏ0

∂y
∂ż0

∂z
∂x0

∂z
∂y0

∂z
∂z0

∂z
∂ẋ0

∂z
∂ẏ0

∂z
∂ż0

∂ẋ
∂x0

∂ẋ
∂y0

∂ẋ
∂z0

∂ẋ
∂ẋ0

∂ẋ
∂ẏ0

∂ẋ
∂ż0

∂ẏ
∂x0

∂ẏ
∂y0

∂ẏ
∂z0

∂ẏ
∂ẋ0

∂ẏ
∂ẏ0

∂ẏ
∂ż0

∂ż
∂x0

∂ż
∂y0

∂ż
∂z0

∂ż
∂ẋ0

∂ż
∂ẏ0

∂ż
∂ż0


(2.33)

Intuitively, the STM describes the sensitivity of a future state with respect to modifications

in the current state.1

The linear differential equations for propagating the STM are derived by substituting

Equation 2.33 into Equation 2.31:

Φ̇ (t, t0) = F (xN ) Φ (t, t0) (2.34)

where F represents the Jacobian, also sometimes referred to as the system matrix:

F (xN ) =
∂f

∂x

∣∣∣∣
xN

(2.35)

The initial condition for the linear dynamics between t0 and t0 is the identity matrix:

1This train of thought is useful when deriving and utilizing constraint equations in subsequent chapters;
i.e., what is the sensitivity of the subject equation to variations in the state at a specific point or segment
along the reference trajectory.
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Φ(t0, t0) = I6×6 (2.36)

For the CR3BP, evaluating Equation 2.35 yields

F (x) =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Uxx Uxy Uxz 0 2 0

Uyx Uyy Uyz −2 0 0

Uzx Uzy Uzz 0 0 0


(2.37)

where Uxx represents the second partial derivative of U with respect to x, etc. The partial

derivatives of the gravitational potential are:

Uxx = 1− 1− µ

r̃31
− µ

r̃32
+

3(1− µ)

r̃51
(x̃+ µ)2 +

3µ

r̃52
(x̃− 1 + µ)2 (2.38)

Uyy = 1− 1− µ

r̃31
− µ

r̃32
+

3(1− µ)

r̃51
ỹ2 +

3µ

r̃52
ỹ2 (2.39)

Uzz = −1− µ

r̃31
− µ

r̃32
+

3(1− µ)

r̃51
z̃2 +

3µ

r̃52
z̃2 (2.40)

Uxy =
3(1− µ)

r̃51
(x̃+ µ)ỹ +

3µ

r̃52
(x̃− 1 + µ)ỹ (2.41)

Uxz =
3(1− µ)

r̃51
(x̃+ µ)z̃ +

3µ

r̃52
(x̃− 1 + µ)z̃ (2.42)

Uyz =
3(1− µ)

r̃51
ỹz̃ +

3µ

r̃52
ỹz̃ (2.43)

which are applied when numerically integrating the STM.

2.3 Second-order Dynamics and State Sensitivity

The first-order linearized dynamics provide the equations form determining STMs.

Higher order approximations provide the equations for what are commonly called state



20

transition tensors (STT). This section introduces the theory for initializing and numerically

integrating the second-order STT. Two papers by Park and Scheeres are frequently cited

and form the basis of the derivation in 2.3.2 [45,46].

2.3.1 Index / Einstein Notation

A brief introduction to tensor notation and operations is required prior to the second-

order STT derivation. To this point, it is assumed that vector and matrix math (one and

two dimensional arrays) rules are known. Additional rules are required for greater than two

dimensional arrays.

Indices are applied to operations that indicate an array index that is summed over. For

traditional matrix multiplication, C = AB, the columns of a row of A are multiplied with

the corresponding rows of a column of B, then summed. This operation is represented by

the following summation operation:

C (i, j) = Σ
k
A (i, k)B (k, j) (2.44)

However, the summation convention becomes cumbersome. The same operation written in

index notation (also referred to as Einstein notation) is

Cij = AikBkj (2.45)

such that when an index appears twice in a term (index k in this example), it is implied

that it is summed over. This also aligns with the fact that the inner indices must match and

the outer indices are the final dimensions in matrix multiplication, i.e.: C4×3 = A4×2B2×3

When mutltiplying a transposed matrix, the order of the indices swap. For example,

E = AB⊤ is

Eij = AikBjk (2.46)
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Applying the above two concepts to linear covariance propagation

P (t2) = Φ(t2, t1)P (t1)Φ(t2, t1)
⊤ (2.47)

is made easier by breaking the operation into multiple simpler operations (generally a helpful

strategy for deriving complex index notation applications):

P (t2)ij = DikΦ(t2, t1)jk (2.48)

where

Dik = Φ(t2, t1)imP (t1)mk (2.49)

Combining Equations 2.48 and 2.49 reveals the index notation form for covariance propa-

gation:

P (t2)ij = Φ(t2, t1)imP (t1)mkΦ(t2, t1)jk (2.50)

Another feature is that the order terms are written in does not affect the result since the

summed-over indices are explicit. Equations 2.50 and 2.51 are equivalent expressions.

P (t2)ij = P (t1)mkΦ(t2, t1)imΦ(t2, t1)jk (2.51)

The following examples demonstrate some rules for vector and matrix differentiation.

Column vector p is n×1, column vector q is m×1. The partial derivative of p with respect

to q is

∂p

∂q
=



∂p1
∂q1

∂p1
∂q2

. . . ∂p1
∂qm

∂p2
∂q1
...

∂pn
∂q1

∂pn
∂qm


(2.52)
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In index notation, if matrix W = ∂p
∂q

Wi,j =
∂pi

∂qj
(2.53)

where indices following commas identify the index across which a partial derivative is taken.

The partial derivative of a matrix M with respect to the vector p is a 3-dimensional

array:

∂M

∂p
=

[
∂M
∂p1

. . . ∂M
∂pn

]
(2.54)

or, in index notation, if R = ∂M
∂p :

Rij,k =
∂Mij

∂pk
(2.55)

Similarly, the partial derivative of p with respect to M , in index notation, is

Fi,jk =
∂pi

∂Mjk
(2.56)

For demonstrating the chain rule, suppose two column vectors, x and y, and two

matrices, V and W with appropriate dimensions exist. The following equation also exists:

y = VWx (2.57)

and the desired quantity is ∂y
∂x . Defining an intermediate vector m = Wx results in

y = Vm (2.58)

and being intentionally verbose when evaluating ∂y
∂x shows a simple chain rule application:

∂yi

∂xj
=

∂yi

∂m

∂m

∂xj
(2.59)

Treating the product on the right like a matrix multiplication and applying indices, vector

m extends across the row elements of the first matrix and the column elements of the second
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matrix. In this way, k is the element that is summed over in the index notation matrix

multiplication.

∂yi

∂xj
=

∂yi

∂mk

∂mk

∂xj
= VW (2.60)

2.3.2 Second-order State Transition Tensor Derivation

The second-order STT derivation begins in a similar way that the (first-order) STM

does, via a TSE corresponding to the desired order. The second-order TSE of the state

dispersion at a future time is

δxi(t) ≈ Φi,k1δx
0
k1 +

1

2
Φi,k1k2δx

0
k1δx

0
k2 (2.61)

where i, k1, and k2 are index notation subscripts:

Φi,k1 =
∂x (t)i
∂x (t0)k1

(2.62)

δx0
k1

and δx0
k2

are both the same values numerically with the index summation applied to

different indices. Φi,k1k2 represents the second-order STT. The second-order TSE of the

system dynamics is

δẋi(t) = Fi,k1δxk1 +
1

2
Fi,k1k2δxk1δxk2 (2.63)

where Fi,k1 is equivalent to 2.35 and Fi,k1k2 is the second partial derivative of the system

dynamics.

Fi,k1k2 =
∂2f(x)

∂x2
=

∂Fi,k1(x)

∂xk2

(2.64)

Substituting Equation 2.61 into Equation 2.63 (and appropriately adjusting indices) results

in

δẋi(t) = Fi,m

(
Φm,k1δx

0
k1 +

1

2
Φm,k1k2δx

0
k1δx

0
k2

)
+

1

2
Fi,mn

(
Φm,k1δx

0
k1 +

1

2
Φm,k1k2δx

0
k1δx

0
k2

)(
Φn,k1δx

0
k1 +

1

2
Φn,k1k2δx

0
k1δx

0
k2

)
(2.65)



24

The next step is taking the time derivative of Equation 2.61

δẋi(t) = Φ̇i,k1δx
0
k1 +

1

2
Φ̇i,k1k2δx

0
k1δx

0
k2 (2.66)

and equating Equations 2.65 and 2.66, from which the terms of equivalent order are equated.

The first-order terms are:

Φ̇i,k1 = Fi,mΦm,k1 (2.67)

which matches Equation 2.34, the usual STM time derivative. The second-order terms are:

1

2
Φ̇i,k1k2δx

0
k1δx

0
k2 = Fi,m

(
1

2
Φm,k1k2δx

0
k1δx

0
k2

)
+

1

2
Fi,mnΦm,k1δx

0
k1Φn,k2δx

0
k2 (2.68)

revealing the second-order STT time derivative when common terms are canceled [45]:

Φ̇i,ab = Fi,mΦm,ab + Fi,mnΦm,aΦn,b (2.69)

The initial conditions for the second-order STT for numerical integration are

Φm,ab = 06×6×6 (2.70)

Similar to STM propagation, evaluating Equation 2.64 involves taking an additional

partial derivative of Equation 2.37 with respect to each state variable2. The partial with

2The implementation of the third partial derivatives of the gravitational potential U was performed
symbolically in Matlab. Repeated terms exist such that Uxyx = Uyxx resulting in only ten total new terms.
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respect to x follows:

Fi,m1 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Uxxx Uxyx Uxzx 0 0 0

Uyxx Uyyx Uyzx 0 0 0

Uzxx Uzyx Uzzx 0 0 0


(2.71)

The partial with respect to ẋ, ẏ, and ż are each 06×6.

A few shorthand notations will be used for upcoming multisegment trajectory design.

Regarding STM notation, the STM from the beginning to the end of segment i is Φ(tf,i, t0,i).

A shorthand notation used here for an STM that spans a segment is the replacement of

time intervals for the segment with a superscript of the segment number i:

Φi = Φ(tf,i, t0,i) (2.72)

In cases where an STM is required that exactly spans multiple segments, the colon operator

is used. For example, the STM that spans segments 2 and 3 in this notation is

Φ3:2 = Φ3Φ2 = Φ(tf,3, t0,2) (2.73)

Second-order STT terms are also used and share the same superscript notation short-

hand with an additional Roman numeral subscript corresponding to the order of the terms

contained (Φi
II):

Φm,ab(tf,2, t0,2) = Φ2
II (2.74)

The required dimension grows by a factor of six for second-order STTs. One interpretation

of a second-order STT is a quantification of how the STM varies for a segment with respect
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to variations in the segment’s initial state:

Φi
II =

∂Φi

∂x0,i
=

∂2xf,i

∂x2
0,i

(2.75)

which can also be interpreted as

∂Φi

∂x0,i
=

[
∂Φi

∂x0,i
, ∂Φi

∂y0,i
, ∂Φi

∂z0,i
, ∂Φi

∂ẋ0,i
, ∂Φi

∂ẏ0,i
, ∂Φi

∂ż0,i

]
6×6×6

(2.76)

The second-order STT shorthand ΦII (t, t0) will only be used in lieu of index notation to

represent the following form of matrix-tensor multiplication (a common form that can be

thought of as an array of matrix multiplications in the third dimension). The matrix-tensor

product of Φ(i+1)Φi
II can be thought of as distributing Φ(i+1) across the array of matrices

in the tensor:

Φp,m (tf,i+1, t0,i+1) Φm,jk (tf,i, t0,i) = Φ(i+1)Φi
II =

[
Φ(i+1) ∂Φi

∂x0,i
. . . Φ(i+1) ∂Φi

∂ż0,i

]
6×6×6

(2.77)

Combining second-order STTs is a bit more involved than combining sequential STMs.

Combining a second-order STT from t0 to t1 with an STT from t1 to t2 requires STMs from

the same two periods, Φ(t1, t0) and Φ (t2, t1), and the corresponding STTs, ΦII(t1, t0) and

ΦII (t2, t1). Equation 2.78 shows the operation using index notation [45]:

ΦII (t2, t0)i,jk = ΦII (t2, t1)i,pq Φ (t1, t0)p,j Φ (t1, t0)q,k +Φ(t2, t1)i,pΦII (t1, t0)p,jk (2.78)

Inverting a second-order STT requires the forward STT and inverse STM for a corresponding

time period [45]:

ΦII (t0, t1)i,jk = −Φ (t0, t1)i,pΦII (t1, t0)p,qmΦ (t0, t1)q,j Φ (t0, t1)m,k (2.79)
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CHAPTER 3

DETERMINISTIC TRAJECTORY DESIGN

3.1 Finding CR3BP Repeating Trajectories

3.1.1 Newton’s Method

Typically, when searching for a root using the Newton-Rhapson method, a function’s

slope at an initial guess can be used to approximate a new x-intercept that is typically

closer to the root than the initial guess. When successful, iterations can be performed until

a maximum error threshold is achieved.

f ′(xi) =
f(xi)− f(xi+1)

xi − xi+1
(3.1)

Where the desired root satisfies

f(xd) = 0 (3.2)

f ′(xi) =
f(xi)− 0

xi − xi+1
(3.3)

and with some rearranging

0 = f(xi) + f ′(xi) (xi+1 − xi) (3.4)

Additional rearranging reveals the traditional Newton-Rhapson iterative root-finding form:

xi+1 = xi −
f(xi)

f ′(xi)
(3.5)
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3.1.2 Single Differential Correction

The above method can be applied to a nonlinear multi-dimensional system of equations

where certain problem parameters V can be modified to satisfy a set of constraint equations

F given an intial guess V 0 [26, 27]. The constraints are

F = [F1, F2, . . . , Fm]T (3.6)

where each Fi equals zero at the desired solution V d:

F (V d) = 0 (3.7)

The design variable vector, V , can be formed from a variety of sources (state variables,

integration times, etc.)

V = [V1, V2,, . . . , Vn]
T (3.8)

Performing a first-order Taylor series expansion

F (V ) ≈ F (V 0) +
∂F (V 0)

∂V 0
(V − V 0) (3.9)

yields a result very similar to the single-variable Newton-Rhapson method. When solving

for an update to the initial guess to satisfy the constraint equations, the equation becomes

0 = F (V 0) +
∂F (V 0)

∂V 0
(V − V 0) (3.10)

0 = F (V i) +DF (V i)(V i+1 − V i) (3.11)

which is more challenging to rearrange as direct scalar division isn’t possible and matrix

inversion may not be possible if DF is not square. If square

V i+1 = V i −DF (V i)−1F (V i) (3.12)
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In cases where there are more design variables than constraints, there are infinitely many

solutions. DF is not square in these cases. A minimum norm pseudo-inverse can be

implemented:

V i+1 = V i −DF (V i)T
[
DF (V i)DF (V i)T

]−1
F (V i) (3.13)

The DF matrix describes how the constraint equations vary with changes in the design

parameters.

DF (V ) =
∂(constraint equations)

∂(design variables)
(3.14)

State transition matrix elements satisfy these individual sensitivity terms in many cases

(see Equation 2.33) and numerically integrating an STM in the CR3BP is trivial given an

initial guess.

Targeting a Future Position

For targeting a position at time t, the state variables that are allowed to change in-

stantaneously at time t0 are the velocity terms:

V =


ẋ0

ẏ0

ż0

 (3.15)

and the constraint equations to target a specific position at a future time t are

F =


x(t)− xd

y(t)− yd

z(t)− zd

 (3.16)

The partials in the matrix DF are

DF =
∂F (V 0)

∂V 0
=


∂x
∂ẋ0

∂x
∂ẏ0

∂x
∂ż0

∂y
∂ẋ0

∂y
∂ẏ0

∂y
∂ż0

∂z
∂ẋ0

∂z
∂ẏ0

∂z
∂ż0

 = Φrv (3.17)
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Substituting specifics for this problem, the targeting iterative update equation is

vi+1 = vi − Φ−1
rv


x(t)− xd

y(t)− yd

z(t)− zd


i

(3.18)

vi+1 = vi − Φ−1
rv δxr(t) (3.19)

Finding an NRHO

A single shooting method can be utilized to find repeating orbits in the CR3BP. The

following example reproduces the steps for finding a member of the L2 southern halo family

of repeating orbits by Grebow [26]. In addition to this, Grebow details strategies for finding

many families of repeating orbits [26] as well as initial guess strategies.

The design variables used leverage the symmetry of the repeating orbit. The L2 south-

ern halo family is symmetric about the xz plane as shown in Figure 3.1. At the perilune

crossing of the xz plane, the y position component is equal to zero while the x and z position

are nonzero. Additionally, the trajectory crossing occurs perpendicular to the xz plane. As

a result, the velocity vector is normal to the plane with ẏ being the only nonzero component,

also shown in Figure 3.1. The state vector at perilune is then:

xperilune =

[
x 0 z 0 ẏ 0

]⊤
(3.20)

Establishing an initial state for the trajectory guess at the xz plane crossing minimizes the

number of state elements to be modified in the design vector to three (in addition to a

variable integration time).

V =

[
x(t1) z(t1) ẏ(t1) ∆t

]⊤
(3.21)
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Fig. 3.1: NRHO Symmetry

Similarly, the constraint equations are comprised of the state elements that equal zero at

apolune (y position, x and z velocity):

F (V ) =

[
y(t2) ẋ(t2) ż(t2)

]⊤
(3.22)

In this manner, the design variables (Equation 3.21) are modified to find the subsequent

perpendicular xz plane crossing ∆t later. When satisfied, ∆t corresponds to half of an

orbital period.
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The DF matrix is constructed from the appropriate STM matrix elements. If integra-

tion time or other quantities are design elements, they are appended to DF .

DF (V ) =


Φ(t2, t1)2,1 Φ(t2, t1)2,3 Φ(t2, t1)2,5 ẏ(t2)

Φ(t2, t1)4,1 Φ(t2, t1)4,3 Φ(t2, t1)4,5 ẍ(t2)

Φ(t2, t1)6,1 Φ(t2, t1)6,3 Φ(t2, t1)6,5 z̈(t2)



=


∂y(t2)
∂x(t1)

∂y(t2)
∂z(t1)

∂y(t2)
∂ẏ(t0)

∂y(t2)
∂∆t

∂ẋ(t2)
∂x(t1)

∂ẋ(t2)
∂z(t1)

∂ẋ(t2)
∂ẏ(t1)

∂ẋ(t2)
∂∆t

∂ż(t2)
∂x(t1)

∂ż(t2)
∂z(t1)

∂ż(t2)
∂ẏ(t1)

∂ż(t2)
∂∆t

 (3.23)

where partial derivatives with respect to time are evaluations of the CR3BP equations of

motion (Equation 2.25) at time t2.

As a summary, the iteration steps are as follows: First, an initial guess is formulated

by an initial state and coast duration (X(t1) and ∆t) which form the design variable vector

V . Next, the state and state transition matrix are propagated to X(t2) and Φ(t2, t1). The

constraint equation vector is constructed from elements at time t2; in L2 NRHO example,

F (V ) is constructed from the elements equal to zero at the perpendicular xz plane crossing

at time t2. DF (Xi) is constructed per Equation 3.14. X1 can then be calculated using

Equation 3.13. The process is repeated until the constraint equation F (Xi) produces a

sufficiently small norm.

3.1.3 Multiple Differential Correction

Multiple differential correction connects multiple single differential correction problem

segments together via additional constraints. A more detailed general construction scheme

is outlined in [24, 47]. This subsection shows the steps in constructing a three segment

multiple differential correction scheme that allows two impulsive maneuvers and constrains

an initial and target position. A design vector for this three segment scenario with a fixed
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initial state is

V =



x0,1

∆t1

x0,2

∆t2

x0,3

∆t3


21×1

(3.24)

In this three segment example a constraint vector F can be constructed using the following

guidelines:

• Segment 1: Constrained initial state x0,1 in initial orbit. Unconstrained propagation

time ∆t1 for segment 1:

F1 = [x0,1 −Xstart]6×1 (3.25)

• Segment 2: Constrained position at the end of the first segment (rf,1) to equal the

position at the beginning of the second segment (r0,2). The velocity between segments

is left unconstrained in this example to incorporate a ∆V . Unconstrained propagation

time ∆t2 for segment 2.

F2 = [r0,2 − rf,1]3×1 (3.26)

• Segment 3: Constrained position at the end of the second segment (rf,2) with position

at the beginning of the third segment (r0,3) to allow a second ∆V . Constrained final

state x0,3 with state Xtarget.

F3 =

 r0,3 − rf,2

x0,3 −Xtarget


9×1

(3.27)

F =


F1

F2

F3

 (3.28)
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The construction of the derivative matrix follows the same format as Equation 3.14:

∂F

∂V
=


∂F1
∂V1

∂F1
∂V2

∂F1
∂V3

∂F2
∂V1

∂F2
∂V2

∂F2
∂V3

∂F3
∂V1

∂F3
∂V2

∂F3
∂V3


18×21

(3.29)

Individual partial derivatives are not complicated in this example with many populated by

identity matrices and zeros. Two nonzero examples follow:

∂F2

∂V1
=

[
∂(r2initial−r1final)

∂X1initial

∂(r2initial−r1final)
∂t1

]
3×7

=

[
−Φ1rr −Φ1rv −∂(r1(t1))

∂t1

]
(3.30)

∂F3

∂V3
=

 ∂(r3initial−r2final)
∂X3initial

∂(r3initial−r2final)
∂t3

∂(X3final−Xtarget)
∂X3initial

∂(X3final−Xtarget)
∂t3


9×7

=

 I3×3 03×4

Φ3
∂(X3(t3))

∂t3

 (3.31)

Once the partial derivatives are constructed, the iterative algorithm in Equation 3.13 is

used until the constraints are sufficiently satisfied.

3.2 Multiple Segment Trajectory Optimization

As derived, differential correction creates a continuous trajectory that satisfies a set of

constraints (i.e., a feasible trajectory). Differential correction does not optimize any cost

related to the transfer scenario, however. While it is possible to create a creative constraint

set that results in an optimal solution in some cases (collinear velocity and maneuver vec-

tors to find a Hohmann transfer), as scenarios become increasingly complicated, the correct

aspects of optimality may become difficult to implement via constraints. Given that differ-

ential correction is a common gradient-based method used to generate CR3BP trajectories,

and the appropriate linear terms effectively inform steps toward a feasible solution, the

upcoming section utilizes similar sensitivities to find a feasible solution and simultaneously

optimize a deterministic objective function via nonlinear programming.
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3.2.1 Problem Setup

A multiple segment trajectory is a method of modeling a trajectory as a set of dis-

crete dynamics and constraints. Each trajectory segment formulation is a boundary value

problem that is designed to satisfy its endpoint constraints. Assembling the multi-segment

problem involves discretizing a trajectory into n segments separated by n + 1 nodes that

are not necessarily evenly spaced in time. Each trajectory segment is defined by the six-

dimensional state at the beginning of segment i, x0,i and the duration of the segment, ∆ti.

The state at the end of segment i, xf,i is a function of the natural motion dynamics of the

system, the state at the beginning of the segment, and the duration ∆ti:

xf,i = f (x0,i,∆ti) (3.32)

Each trajectory segment parameter vector si is defined by its initial state and duration

si =


r0,i

v0,i

∆ti

 (3.33)

and are each assembled into a parameter vector defining the trajectory:

S =


s1
...

sn

 (3.34)

Enforcing natural motion (a coast) between segments i and i+1 involves constraining

the final state of segment i with the initial state of segment i+ 1:

xf,i = x0,i+1 (3.35)

Similarly, an impulsive maneuver is allowed at the end of the first segment and beginning

of the last segment by leaving the velocity elements unconstrained (or only constraining the
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position elements):

rf,1 = r0,2 (3.36)

r0,n = rf,n−1 (3.37)

The multiple-segment trajectory forms the basis of the following optimization problem

definition. Each entry of the trajectory parameter vector S is an optimization parameter

(Equation 3.38) that can be modified to minimize the total deterministic ∆V (Equation

3.39) while satisfying the constraints (Equations 3.40 through 3.45) and initial conditions

(Equation 3.46).

optimization parameters S (3.38)

minimize J = ∥v0,2 − vf,1∥+ ∥v0,n − vf,n−1∥ (3.39)

subject to xf,i = f (x0,i,∆ti) (3.40)

r0,2 = rf,1 (3.41)

r0,n = rf,n−1 (3.42)

x0,3 = xf,2 . . .x0,n−1 = xf,n−2 (3.43)

∆ti ≥ 0 (3.44)∑
i

∆ti = ttotal (3.45)

given x0,1,xf,n, ttotal (3.46)

The cost function in Equation 3.39 is the magnitude of two impulsive maneuvers.

Equation 3.40 defines the system dynamics. Each segment forms an initial value problem;

the final state xf,i is a function of the initial state x0,i and the segment duration ∆ti.

Equations 3.41 and 3.42 allow for an impulsive maneuver at the end of the first segment

and the beginning of the final segment. Equation 3.43 enforces a coast (with no maneuvers)

for the n−2 intermediate segments. Equation 3.44 ensures each segment is being propagated

forward in time and Equation 3.45 enforces a fixed total time (when appropriate) for the
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trajectory by constraining the sum of the segment durations to the total trajectory duration

ttotal. As the two-body problem and CR3BP are both time invariant, the absolute initial

and final times are not required.

An equality constraint vector Ceq is formed from the equality constraint equations, and

likewise for Cin comprised of the inequality constraint equations. As an example, consider a

3 segment problem setup. S is comprised of three segment parameter vectors, s1 through s3,

for 21 total optimization parameters. Ceq contains 3 equations to enforce position continuity

between segments 1 and 2 (Constraint Equation 3.41), 3 equations to enforce position

continuity between segments 2 and 3 (Constraint Equation 3.42), 6 equations constraining

the initial state, and 1 equation constraining the fixed total transfer time. The result is 21

optimization parameters, 13 of which are directly constrained. When the constraints are

crossed out from the list of all optimization parameters (Equation 3.47), there are 8 of 21

free variables remaining, which correspond to two trajectory coast durations and two ∆V

vectors:

s1 =


��r0,1

��v0,1

∆t1

 , s2 =


��r0,2

v0,2

∆t2

 , s3 =


��r0,3

v0,3

��∆t3

 (3.47)

Figure 3.2 shows a sample 3 segment trajectory with relevant features labeled. Subsequent

trajectory figures follow this same format.

Numerical integration of the dynamics along each trajectory segment is used to obtain

xf,i given x0,i and ∆ti. A variable-step variable-order Adams-Bashforth-Moulton predictor-

corrector is implemented to solve each initial value problem [48]. It is also common to

propagate the state transition matrix (STM) Φi terms alongside state elements for each

trajectory segment. A gradient-based solver (Matlab’s fmincon) utilizing the partial deriva-

tives of the equality constraint equations, inequality constraint equations, and cost function

with respect to the problem parameters (
∂Ceq

∂S ,∂Cin
∂S , and ∂J

∂S ) informs the direction and

size of a step toward a solution. These sensitivities can be computed numerically via the

finite difference method or complex step differentiation, however the latter can be quite

time consuming when the gradient matrix is large. Instead, the gradient function is de-
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Fig. 3.2: Sample 3 Segment Trajectory
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rived analytically and, in simpler cases, populated sparsely of ones, STM elements, and

time derivatives. Cases with linear covariance-based stochastic cost or constraints (Chapter

4) require nontrivial derivation effort and may need to utilize second order STT terms.

STM and STT terms are propagated via numerical integration alongside nonlinear state

propagation.

3.2.2 Other Determinstic Constraint Options

The problem setup in Subsection 3.2.1 directly constrains initial and final elements of

the state vector. While coast durations in the first and third segments enable flexibility

in the specific departure and arrival orbits, effectively five of the six orbital elements are

fixed with the true anomaly being eligible for optimization. This subsection explores other

constraint options.

The first constraint fixes the two-body orbital energy

ϵ =

(
vIsc
)2

2
−

µbody

rsc/B
(3.48)

with respect to the planetary body B to be equal to a desired value. rsc/B is the magnitude

of the position vector with respect to B, rsc/B, and

rsc/B = r0,i − rB (3.49)

vIsc is the velocity of the spacecraft in a non-rotating frame. In this case, the velocity

elements of the parameter vector are in the rotating frame and the rotating frame velocity

needs to be included. Assuming the constraint is applied to the initial orbit:

vI
sc/B = v0,1 + ωS/I × r0,1

The constraint equation is

ϵinitial − ϵfixed = 0 (3.50)
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where ϵfixed in this dissertation generally corresponds to an initial circular orbit of a desired

altitude.

Equation 3.51 enforces a specific position vector magnitude with respect to B:

rsc/B − rfixedB = 0 (3.51)

To enforce orthogonal position and velocity vectors (an apse, or a circular orbit) the

constraint is

r⊤sc/Bv
I
sc = 0 (3.52)

In trajectory design problems that involve a planetary flyby, the optimal set of ma-

neuvers may result in a trajectory that passes within the surface of a planetary body (or

within a specified keep-out altitude). The inequality constraint Equation 3.53 enforces a

minimum flyby distance to a specific planetary body to avoid a too-close approach. This

constraint can be implemented multiple ways: First, a search of the entire trajectory for

the minimum flyby distance along the trajectory can identify the location of periapse and

at which point to apply the constraint. Another option is applying the constraint at the

same location as an apse constraint, enforcing a specific trajectory node to be periapse with

respect to a body and for it to be no closer than dmin flyby.

∥rperiapse∥ ≥ dmin flyby (3.53)

It is possible to constrain specific expenses of transfer trajectories such that they are

required to be performed by a launch vehicle upper stage, for example. An implementation

of this concept is forcing a plane change to occur with a specific nominal maneuver by

constraining the orbital planes surrounding a second maneuver to be co-planar. In the

following constraint formulation, a nominal maneuver is performed at the beginning of

segment i + 1. In this manner, the unit vector orthogonal to the orbital plane during
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segment i and i+ 1 are constrained to be collinear.

(
(r0,i × v0,i)

∥(r0,i × v0,i)∥
•

(rf,i+1 × vf,i+1)

∥(rf,i+1 × vf,i+1)∥
= 1

)
(3.54)

It is also possible to constrain an initial or target orbit to a circular orbit of specific

radius by implementing the combination of Constraint Equations 3.50, 3.51, and 3.52. In

this manner, the orbit is constrained to be circular and a specific size but the orbital plane

(inclination and right ascension) and true anomaly are free to be optimized.

The deterministic trajectory design methods described in this chapter are commonly

utilized to develop feasible connected trajectories in the CR3BP. Depending on the initial

guess, the optimization method described converges quickly to a locally optimal trajectory,

offering improvement from a feasible trajectory solution. In both cases, creative implemen-

tation of constraint equations and problem segmentation benefits convergence.
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CHAPTER 4

TWO-BODY TRAJECTORIES ROBUST TO INITIAL DISPERSION

4.1 Solution Method

The following solution method presents an incremental approach to developing a tra-

jectory robust to initial state dispersion. Problem 1 optimizes two impulsive maneuvers to

find a deterministic optimal trajectory. Next, stochastics are introduced via an initial state

dispersion; a trajectory is sought with optimized nominal maneuvers only that constrains

the final position dispersion at a target state (Problem 2). In Problem 3, two trajectory cor-

rection maneuvers (TCM) are introduced along the deterministic optimal trajectory from

Problem 1; the first TCM targets zero final position dispersion and the second TCM cor-

rects remaining velocity dispersion once the target position is achieved. Finally, the robust

trajectory is found by modifying the nominal maneuvers alongside the TCMs, resulting in

the lowest statistical upper bound for the total ∆V and a trajectory robust to initial state

dispersion (Problem 4). Figure 4.1 shows the four problems analyzed for each scenario,

progressing from deterministic optimal to robust, and their key features.1

Problem 1:
• Optimal

deterministic
• No dispersion
• Optimize
nominal ma-

neuvers

Problem 2:
• Initial
dispersion

• Target disper-
sion constraint
• Optimize nom-
inal maneuvers

Problem 3:
• Initial
dispersion

• Target disper-
sion constraint
• Nominal
maneuvers

from Prob. 1
• Optimize

TCMs

Problem 4:
• Optimal robust

• Initial dis-
persion

• Target disper-
sion constraint
• Optimize

nominal maneu-
vers and TCMs

Fig. 4.1: Problem progression flowchart

1This chapter’s content was published as [35] in the Journal of Spacecraft and Rockets.
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4.1.1 Optimal Deterministic Trajectory

Problem 1 is an n segment deterministic optimization problem following the form of

Equations 3.38 through 3.46. The resulting equality constraint vector is

Ceq =



x0,1 −X0

r0,2 − rf,1

x0,3 − xf,2

...

x0,n−1 − xf,n−2

r0,n − rf,n−1

xf,n −Xt∑
∆ti − tfinal



= 0 (4.1)

The inequality constraint vector is

Cin =


−∆t1

...

−∆tn

 ≤ 0 (4.2)

and the cost function is the sum of two nominal impulsive maneuvers

J = ∆V1 +∆V2 = ∥v0,2 − vf,1∥+ ∥v0,n − vf,n−1∥ (4.3)

The equality constraint gradient matrix
∂Ceq

∂S is not derived in its entirety in this chap-

ter; rather, examples are presented that encompass all of the major required steps. As a

first example, a single submatrix of the constraint gradient reveals that the STM directly

corresponds to the sensitivity of a future state (xf,2) to changes in an initial state (x0,2).

This example also demonstrates the sensitivity of a segment final state with respect to the

segment duration is the direct evaluation of the system equations of motion at the final

state. Depending on specific conventions and specific nonlinear programming (NLP) input
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requirements, the correct gradient format may actually be the transpose of what is derived

in this chapter.

∂Ceq,3

∂s2
=

[
∂(x0,3−xf,2)

∂x0,2
,

∂(x0,3−xf,2)
∂∆t2

]
=

[
−∂xf,2

∂x0,2
, −∂xf,2

∂∆t2

]
=

[
−Φ(tf,2, t0,2), −ẋf,2

]
(4.4)

The sensitivity of the same constraint equations with respect to x0,3 is the identity

matrix:

∂Ceq,3

∂x0,3
=

∂ (x0,3 − xf,2)

∂ (x0,3)
= I6×6 (4.5)

The inequality constraint gradient is trivially derived and populated with ones and

zeros.

∂ (−∆t1)

∂s1
=

[
−∂∆t1
∂x0,1

, −∂∆t1
∂∆t1

]
=

[
01×6 −1

]
(4.6)

The cost function gradient incorporates an identity for the partial derivative of a vector

magnitude with respect to itself:

∂J

∂s1
=

[
∂∥v0,2−vf,1∥

∂x0,1
,

∂∥v0,2−vf,1∥
∂∆t1

]
(4.7)

∂∥v0,2 − vf,1∥
∂x0,1

=
∂∥v0,2 − vf,1∥
∂ (v0,2 − vf,1)

∂ (v0,2 − vf,1)

∂x0,1

= −
(v0,2 − vf,1)

⊤

∥v0,2 − vf,1∥
∂vf,1
∂x0,1

= −
(v0,2 − vf,1)

⊤

∥v0,2 − vf,1∥

[
Φ1
vr Φ1

vv

]
(4.8)

where Φ1
vr and Φ1

vv are the corresponding 3× 3 submatrices of the STM for segment 1, Φ1

(e.g. rows 4-6 and columns 1-3 for Φ1
vr).

∂∥v0,2 − vf,1∥
∂∆t1

= −
(v0,2 − vf,1)

⊤

∥v0,2 − vf,1∥
∂vf,1
∂∆t1

= −
(v0,2 − vf,1)

⊤

∥v0,2 − vf,1∥
v̇f,1 (4.9)
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This solution method and derivation matches a similar problem setup by Whitley and

Ocampo [10]. Using these analytical gradients, the solution to Problem 1 as described by

Equations 3.38 to 3.46 is achieved using an NLP.

4.1.2 Initial State Dispersion with Target Position Dispersion Constraint

The second problem introduces stochastics into the optimization problem in the form

of a normally distributed initial state dispersion δx0.

δx0 =



δx

δy

δz

˙δx

δ̇y

δ̇z


(4.10)

The initial dispersion elements are modeled as zero-mean, uncorrelated, normally dis-

tributed random variables with equal variance in each direction (position dispersion distri-

bution δr0 ∼ N
(
0, σ2

r

)
and velocity dispersion distribution δv0 ∼ N

(
0, σ2

v

)
). The resulting

dispersion covariance at the beginning of segment 1 (P1) is

P1 =

 σ2
rI3×3 03×3

03×3 σ2
vI3×3

 (4.11)

The state dispersion at node i (the beginning of segment i) is represented by a dispersion

covariance matrix Pi. The segment STM Φi linearly propagates the dispersion covariance

to the beginning of the subsequent segment and preserves the Gaussian distribution [49].

The transfer trajectory is still restricted to two impulsive maneuvers but a target position

dispersion inequality constraint is introduced. Pn represents the target dispersion covariance

at node n (the beginning of the final segment), which is roughly equivalent to arriving to

the target state early (segment n is a coast segment). Another common choice may be

constraining the terminal position covariance (Pn+1).
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With the exception of the introduction of the new target position dispersion constraint,

the remainder of the optimization problem is unchanged from Problem 1 (the optimization

parameters S, the cost function, and the remainder of the constraints are all the same).

Formally, the optimization problem is

optimization parameters S (4.12)

minimize J =
∑

∆V = ∥v0,2 − vf,1∥+ ∥v0,n − vf,n−1∥ (4.13)

subject to xf,i = f (x0,i,∆ti) (4.14)

Pi+1 = ΦiPiΦ
i⊤ (4.15)

r0,2 = rf,1 (4.16)

r0,n = rf,n−1 (4.17)

x0,3 = xf,2 . . .x0,n−1 = xf,n−2 (4.18)

∆ti ≥ 0 (4.19)∑
∆ti = tfinal (4.20)

tr(MrPnM
⊤
r ) ≤ σ2

r,max (4.21)

given x0,1,xf,n, tfinal, P1 (4.22)

Equation 4.15 introduces the dispersion covariance propagation (with no process noise or

disturbances) and Equation 4.21 introduces the new target position dispersion covariance

inequality constraint. Mr is a mapping matrix to the position covariance submatrix (the

mapping matrix can be generalized for any target constraint) and tr() represents the trace

operator which yields the sum of the position dispersion variances:

Mr =

[
I3×3 03×3

]
(4.23)

The dispersion covariance inequality constraint increases the complexity of the analyt-

ical inequality constraint gradient, in derivation effort and in the quantity of terms propa-

gated numerically. Deriving the gradient requires the following identity which is derived in
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Appendix A.1.

∂tr
(
CABA⊤C⊤)

∂x
= 2


tr
[
C⊤CAB ∂A

∂x1

⊤]
...

tr
[
C⊤CAB ∂A

∂xn

⊤]

⊤

(4.24)

The identity in Equation 4.24 assumes the matrix A is a function of the vector x and the

matrices B and C are not. Generally, the identity applies when the matrix A is dimension

n×m, B is m×m and symmetric, and C is p× n.

Applying the identity in Equation 4.24 yields the following where the target covariance

is given by Pn = Φ(n−1):1P1Φ
(n−1):1⊤ and the sum of the position dispersion variances is

tr(MrΦ
(n−1):1P1Φ

(n−1):1⊤M⊤
r ).

∂tr
(
MrΦ

(n−1):1P1Φ
(n−1):1⊤M⊤

r

)
∂x0,i

= 2



tr

(
M⊤

r Mr

(
Φ(n−1):1P1

)
∂Φ(n−1):1

∂x0,i

⊤
)

tr

(
M⊤

r Mr

(
Φ(n−1):1P1

)
∂Φ(n−1):1

∂y0,i

⊤
)

tr

(
M⊤

r Mr

(
Φ(n−1):1P1

)
∂Φ(n−1):1

∂z0,i

⊤
)

tr

(
M⊤

r Mr

(
Φ(n−1):1P1

)
∂Φ(n−1):1

∂ẋ0,i

⊤
)

tr

(
M⊤

r Mr

(
Φ(n−1):1P1

)
∂Φ(n−1):1

∂ẏ0,i

⊤
)

tr

(
M⊤

r Mr

(
Φ(n−1):1P1

)
∂Φ(n−1):1

∂ż0,i

⊤
)



⊤

(4.25)

where ∂Φ(n−1):1

∂x0,i
is a combination of first-order STMs and second-order STTs from the begin-

ning of segment i to the end of segment n−1. As each segment is a separate boundary value

problem, the STMs for segments 2 through n − 1 do not vary with changes in x0,1 when

i = 1, for example. Therefore, they are treated as matrices of constants when evaluating

∂Φ(n−1):1

∂x0,1
:

∂Φ(n−1):1

∂x0,1
=

∂

∂x0,1

(
Φ(n−1):2Φ1

)
= Φ(n−1):2 ∂Φ1

∂x0,1
= Φ(n−1):2Φ1

II (4.26)

Partial derivatives of the STM with respect to segment duration represent the instan-

taneous time rate of change of the STM at the final node of a segment. Thus, they are

a direct evaluation of the time rate of change equations for the state transition matrix



48

Φ̇ = FΦ about xf,i and Φi.

∂tr
(
MrΦ

(n−1):1P1Φ
(n−1):1⊤M⊤

r

)
∂∆ti

= 2tr

(
M⊤

r Mr

(
Φ(n−1):1P1

) ∂Φ(n−1):1

∂∆ti

⊤)
(4.27)

As an example, when i = 1, ∂Φ(n−1):1

∂∆t1
is

∂Φ(n−1):1

∂∆t1
= Φ(n−1):2 ∂Φ1

∂∆t1
= Φ(n−1):2F (xf,1) Φ

1 (4.28)

Using these analytical gradients, the solution to Problem 2 as described by Equations 4.12

to 4.22 can be solved using an NLP.

4.1.3 Optimal 3σ Trajectory Correction Maneuver Along a Nominal Trajec-

tory

Problem 3 incorporates a TCM which attempts to minimize the position dispersion at

the target state. This models a common trajectory design method: a deterministic optimal

trajectory is developed and embarked upon. However, sources of error result in deviations

from the optimal path and TCM(s) must be performed along the trajectory in order to

successfully arrive at the desired state. The magnitude of each TCM varies based on its

execution time throughout the trajectory and can be incorporated as part of a cost function.

In addition to the time of the correction, the TCM is also a function of the initial state

dispersion δx0. The quantity minimized along a single trajectory is the root sum of the

squares (RSS) of the TCM covariance (σδV ), subsequently defined in Equations 4.35 and

4.41. The RSS of a vector’s covariance is independent of rotation and provides a statistical

bound for the corresponding vector’s magnitude, given by

σRSS =
√
tr (P ) (4.29)

Two TCMs are required to remove all six components of the dispersion at the target

(δx(tn) = 06×1). The first TCM, δVr, performed at time tc along a reference trajectory
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targets zero position dispersion at the target state at a future time tn (δr(tn) = 03×1). The

second TCM, δVv, corrects the remaining velocity dispersion once the target position is

achieved. In terms of the multi-segment trajectory design architecture, the chosen target is

node n (x0,n, the beginning of the final segment). The remainder of the final segment will

be a coast in the target state with zero remaining dispersion. In this manner, tc can occur

anywhere along the reference trajectory prior to the target, t0,1 ≤ tc < t0,n.

Position Dispersion Correction

If the dispersion magnitude at the time of the correction (δx(tc)) is relatively small,

linear targeting techniques can be implemented to estimate the expected TCM magnitude.

In general, the dispersion at time tn given a dispersion at tc is estimated by

δx(tn) = Φ(tn, tc)δx(tc) = Φn0:cδx(tc) (4.30)

where tc is not required to occur at a segment intersection.

With perfect state knowledge at time tc, the position dispersion correction impulse δVr

can be solved using the following equation:

δr(tn) = 0 = Φrr(t0,n, tc)δr(tc) + Φrv(t0,n, tc) (δv(tc) + δVr) (4.31)

Solving for δVr to produce zero position dispersion at the target yields

δVr = −Φn0:c−1

rv Φn0:c
rr δxr(tc)− δxv(tc) =

[
−Φn0:c−1

rv Φn0:c
rr −I3×3

]
δx(tc) = Tδx(tc)

(4.32)

where the intermediate matrix T is a function of Φn0:c = Φ(t0,n, tc):

T =

[
−Φn0:c−1

rv Φn0:c
rr −I3×3

]
(4.33)
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The covariance of the position dispersion TCM, δVr, is

E
[
δVrδV

⊤
r

]
= E

[
(Tδx(tc)) (Tδx(tc))

⊤
]
= TE

[
δxδx⊤

]
T⊤ = TPcT

⊤ (4.34)

and the RSS of the position dispersion TCM is

σδVr =
√

tr (TPiT⊤) =
√
tr (TΦ(tc, t1)P1Φ(tc, t1)⊤T⊤) (4.35)

While the TCM does not modify the nominal trajectory (the mean of the TCM is zero),

it does modify the dispersion covariance. The post-correction state dispersion is

δx+C
c = δx−C

c +

 03×6

T

 δx−C
c (4.36)

and the post-correction dispersion covariance is

P+C
c = E

[(
δx−C

c +Nδx−C
c

) (
δx−C

c +Nδx−C
c

)⊤]
= (I +N)P−C

c (I +N)⊤ (4.37)

where N =

 03×6

T

 and I is the identity matrix.

Velocity Dispersion Correction

Upon arrival to the target state at tn, the position dispersion δr(tn) has been corrected.

However, velocity dispersion δv(tn) still exists that needs to be corrected with a second

TCM, δVv. The velocity dispersion at tn is

δv(tn) = Φvr(tn, tc)δr(tc) + Φvv(tn, tc) (δv(tc) + δVr) (4.38)

Substituting the previous expression for δVr, introducing two intermediate matrices

W =

[
Φvv −Φvr

]
, L =

[
WT⊤ 03×3

]
, and simplifying results in
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δv(tn) =

(
Φn0:c
vr − Φn0:c

vv Φn0:c−1

rv Φn0:c
rr 03×3

)
δx(tc) =

[
WT⊤ 03×3

]
δx(tc) = Lδx(tc)

(4.39)

The variance of the final velocity dispersion δv(tn) is

E
[
δv(tn)δv(tn)

⊤
]
= E

[
Lδx(tc)δx(tc)

⊤L⊤
]
= LPcL

⊤ (4.40)

and the RSS of the final velocity dispersion is

σδv(tn) =
√
tr (LPiL⊤) =

√
tr (LΦ(tc, t1)P1Φ(tc, t1)⊤L⊤) (4.41)

which is corrected directly via the second TCM, σδVv = σδv(tn).

TCM Optimization

With the intent to use a specific deterministic trajectory as the nominal trajectory

there is no need to incorporate nominal ∆V as part of the cost function. Additionally,

without any additional sources of error or uncertainty (only an initial state dispersion), the

TCM will result in zero position dispersion at the target. Thus, the position dispersion

covariance constraint becomes unnecessary for this problem.

A new optimization variable tc is introduced which is currently the only free optimiza-

tion parameter. The optimization problem becomes

optimization parameter tc (4.42)

minimize J = σδV = σδVr + σδVv (4.43)

subject to Pi+1 = ΦiPiΦ
i⊤ (4.44)

P+C
i = (I +N)P−C

i (I +N)⊤ (4.45)

t0,1 ≤ tc < t0,n (4.46)

given SDO, P1 (4.47)
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where SDO represents the deterministic optimal trajectory parameter vector.

Direct optimization of tc outside of the NLP is more efficient and avoids the pitfalls of

multiple local minima. Propagating and storing the STM time history along the nominal

trajectory, Φ(t, t0), allows for the rapid calculation of σδV via the following steps at each

time increment chosen along the trajectory (the automatically chosen nonlinear integration

time increments are utilized in the current implementation):

1. Calculate Φ (t0,n, tc) = Φ (t0,n, t1) Φ (t1, tc)

(a) From Φ (tc, t1), invert using the symplectic unit matrix to compute Φ (t1, tc) [50].

2. Compute

(a) T =

[
−Φn0:c−1

rv Φn0:c
rr −I3×3

]
(b) Ptc = TΦ(tc, t1)P1Φ(tc, t1)

⊤T⊤

(c) σδVr =
√

tr (Ptc)

3. Compute

(a) W , L, Ptf = LΦ(tc, t1)P1Φ(tc, t1)
⊤L⊤

(b) σδVv =
√

tr
(
Ptf

)
4. Compute total TCM RSS σδV = σδVr + σδVv at each time increment

Once the TCM RSS is computed for each time increment, the solution to Problem 3 is

a direct search for minimum value and the corresponding correction time tc yields the

minimum cost correction time to perform the first TCM (δVr) along the nominal trajectory.

4.1.4 Robust Trajectory, Optimal Nominal ∆V and 3σ TCM

The fourth problem combines various aspects of the previous problems to develop an

optimal trajectory that is robust to initial state dispersion. In this problem, the impulsive

nominal maneuvers are reintroduced into the optimization problem alongside the minimum

3σ TCM pair. In this manner, the nominal trajectory may be modified at the cost of

increasing the nominal ∆V in order to reduce the total ∆V +3σδV , nominal plus TCM δV .

It is worth addressing the nature of the two cost function terms.
∑

∆V represents a

deterministic path cost while 3σδV represents a statistical upper bound for the expected

TCM magnitude. In reality, while a spacecraft mission’s actual TCM cost may not reach the
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3σ value, it is being considered as a planning factor in this analysis that directly correlates

to the amount of on-board propellant a mission may carry. In general, the appropriate σ

scaling factor may be flexible based on a specific mission’s risk posture and is easily modified

in the problem formulation should a different planning factor be appropriate.

The aspect of modifying the nominal trajectory to influence the target position dis-

persion is similar to the Problem 2. The multi-segment trajectory parameter vector S and

the TCM execution time tc comprise the optimization parameters. The target position dis-

persion constraint is unnecessary in this case as there are no random disturbances (process

noise) or maneuver execution error; as a result, the TCM completely mitigates the target

position dispersion.

The optimization problem is

optimization parameters S, tc (4.48)

minimize J =
∑

∆V + 3σδV (4.49)

subject to xf,i = f (x0,i,∆ti) (4.50)

Pi+1 = ΦiPiΦ
i⊤ (4.51)

P+C
i = (I +N)P−C

i (I +N)⊤ (4.52)

r0,2 = rf,1 (4.53)

r0,n = rf,n−1 (4.54)

x0,3 = xf,2 . . .x0,n−1 = xf,n−2 (4.55)

t0,1 ≤ tc < t0,n (4.56)

∆ti ≥ 0 (4.57)∑
∆ti = tfinal (4.58)

given x0,1,xf,n, tfinal, P1 (4.59)

Deriving the analytical gradients of the 3σδV magnitude (Equation 4.60) requires a

modification to the previous identity in Equation 4.24 such that the matrix C is also a
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function of x (presented in Appendix A.1). Equation 4.61 shows the updated identity,

applied subsequently in Equations 4.62 and 4.63.

3σδV = 3

(√
tr (TΦ(tc, t1)P1Φ(tc, t1)⊤T⊤) +

√
tr (LΦ(tc, t1)P1Φ(tc, t1)⊤L⊤)

)
(4.60)

tr
∂CABA⊤C⊤

∂x
= 2


tr
[
CABA⊤ ∂C

∂x1

⊤]
+ tr

[
C⊤CAB ∂A

∂x1

⊤]
...

tr
[
CABA⊤ ∂C

∂xn

⊤]
+ tr

[
C⊤CAB ∂A

∂xn

⊤]

⊤

(4.61)

An abbreviated derivation is presented for the TCM partial derivatives. Implementing

the identity in Equation 4.61 results in the following partial derivative of the position

dispersion TCM squared (σ2
δVr

) with respect to the initial state of segment i, x0,i and the

duration of segment i, ∆ti.
∂σ2

δVv
∂x0,i

and
∂σ2

δVv
∂∆ti

follow the same form as Equations 4.62 and

4.63 with the L matrix in place of T .

∂σ2
δVr

∂x0,i
= 2


tr
[
TΦc:1P1Φ

c:1⊤ ∂T
∂x0,i

⊤]
+ tr

[
T⊤TΦc:1P1

∂Φc:1

∂x0,i

⊤]
...

tr
[
TΦc:1P1Φ

c:1⊤ ∂T
∂ż0,i

⊤]
+ tr

[
T⊤TΦc:1P1

∂Φc:1

∂ż0,i

⊤]

⊤

(4.62)

∂σ2
δVr

∂∆ti
= 2

[
tr
[
TΦc:1P1Φ

c:1⊤ ∂T
∂∆ti

⊤]
+ tr

[
T⊤TΦc:1P1

∂Φc:1

∂∆ti

⊤] ]⊤
(4.63)

∂T

∂x0,i
=

[
Φn0:c−1

rv

[
∂Φn0:c

∂x0,i

]
rv
Φn0:c−1

rv Φn0:c
rr − Φn0:c−1

rv

[
∂Φn0:c

∂x0,i

]
rr

03×3×6

]
(4.64)

∂T

∂∆ti
=

[
Φn0:c−1

rv

[
∂Φn0:c

∂∆ti

]
rv
Φn0:c−1

rv Φn0:c
rr − Φn0:c−1

rv

[
∂Φn0:c

∂∆ti

]
rr

03×3

]
(4.65)

∂L

∂x0,i
=

[
∂

∂x0,i

(
WT⊤) 03×3

]
=

[
∂W
∂x0,i

T⊤ +W ∂T⊤

∂x0,i
03×3×6

]
(4.66)
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∂W

∂x0,i
=

∂

∂x0,i

[
Φn0:c
vv −Φn0:c

vr

]
=

[ [
∂Φn0:c

∂x0,i

]
vv

[
−∂Φn0:c

∂x0,i

]
vr

]
(4.67)

where the relevance of ∂Φc:1

∂x0,i
and ∂Φn0:c

∂x0,i
in Equations 4.62 through 4.67 vary by segment.

For example, in cases where segment i is before the segment containing tc,
∂Φn0:c

∂x0,i
and ∂Φn0:c

∂∆ti

are populated with zeros and ∂Φc:1

∂x0,i
follows the form

∂Φc:1

∂x0,i
= Φc:(i+1) ∂Φi

∂x0,i
Φ(i−1):1 = Φc:(i+1)Φi

IIΦ
(i−1):1 (4.68)

∂Φc:1

∂∆ti
= Φc:(i+1)F (xf,i) Φ

i:1 (4.69)

Similarly, when segment i is after the TCM segment, ∂Φc:1

∂x0,i
and ∂Φc:1

∂∆ti
are zero and ∂Φn0:c

∂x0,i

follows the form

∂Φn0:c

∂x0,i
=

∂

∂x0,i

[
Φn0:(i+1)ΦiΦ(i−1):c

]
= Φn0:(i+1)Φi

IIΦ
(i−1):c (4.70)

∂Φn0:c

∂∆ti
= Φn0:(i+1)F (xf,i) Φ

i:c (4.71)

Both ranges of STM sensitivities are nonzero when segment i contains tc. In this case,

∂Φn0:c

∂x0,i
is the most challenging and requires an additional step to derive the sensitivity of

Φif :c (the STM from the TCM at tc to tf,i, the end of the ith segment) with respect to x0,i.

The main additional step is expressing Φif :c in terms of STM segments that have t0,i as an

endpoint.

Φn0:c = Φn0:(i+1)Φif :c = Φn0:(i+1)ΦiΦi0:c = Φn0:(i+1)Φi
(
Φc:i0

)−1
(4.72)

Evaluating ∂
(
Φc:i0

)−1
/∂x0,i involves utilizing the matrix inverse derivative property:

∂
(
Φc:i0

)−1

∂x0,i
= −Φi0:cΦc:i0

II Φi0:c (4.73)
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∂Φn0:c

∂x0,i
= Φn0:(i+1) ∂

∂x0,i

[
Φi
(
Φc:i0

)−1
]
= Φn0:(i+1)

[
Φi
IIΦ

i0:c − ΦiΦi0:cΦc:i0
II Φi0:c

]

Figure 4.2 summarizes the robust trajectory algorithm steps required to solve Problem

4.

Generate initial guess
Divide into multi-

segment architecture

Enter NLP loop

Propagate state and
STM/STT history

Find optimal TCM execution time

Evaluate objective
function + gradients

Evaluate constraints + gradients

Local minimum/constraints
satisfy convergence criteria?

Take interior point step to
new nominal trajectory

Stop

no

yes

Fig. 4.2: Robust trajectory algorithm flowchart

4.2 Results

4.2.1 450 km to 1000 km Altitude, Coplanar, Bicircular, 180 Degree Offset

Scenario 1 is overly simplified but selected for a few reasons: validation of the NLP

result through comparison with mission maps; the optimal deterministic solution is well
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Orbital Elements Initial State Target State

a (km) 6828 7378

e 0 0

i 45◦ 45◦

Ω 0 0

u (Arg. Latitude) 0◦ 180◦

Table 4.1: Scenario 1 initial and target state orbital elements

known; in support of building intuition incrementally. Figure 4.3 depicts the scenario and

the optimal deterministic solution while Table 4.1 shows the initial and target state orbital

elements for a circular inclined orbit. The trajectory setup for this scenario is 3 trajectory

segments: an initial coast segment, the transfer segment, and a final coast segment.

-5000

0

5000

Z
 (

km
)

5000

Y (km)

0
60004000

X (km)

20000-5000 -2000-4000-6000

Initial Position
Target Position

Fig. 4.3: Scenario 1 setup and deterministic optimal solution

Optimal deterministic trajectory

With this 3 segment trajectory, the problem can be reduced to two independent pa-

rameters to create a mission map of the solution space. The two parameters chosen are the

coast time in Segment 1, ∆t1, and the coast time in Segment 3, ∆t3. With a fixed total
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Fig. 4.4: Scenario 1 deterministic ∆V mission map

duration this determines the transfer segment duration, ∆t2. Figure 4.4 shows a contour

map of the nominal ∆V magnitude as a function of possible ∆t1(x-axis) and ∆t3 (y-axis)

combinations. Each individual point on the mission map is a different nominal trajectory.

Four sample nominal trajectories are shown in Figure 4.5 corresponding to dots in Figure

4.4. Along each trajectory in Figure 4.5, individual trajectory segments are identified by

different colors.

The solution space in Figure 4.4 is ideal in this case for gradient-based optimization.

Only one local minimum value exists and the gradient of the cost function results in success-

ful convergence toward the desired solution. The NLP solution method described in Section

4.1 results in rapid convergence as well to the Hohmann transfer with a total nominal ∆V

of 290.2 m/s.

Initial state dispersion with target dispersion constraint trajectory

The next aspect of Scenario 1 is the introduction of the initial state dispersion δx0. The

magnitude of δx0 modeled for this analysis is on the scale of launch vehicle orbit insertion

accuracy. The initial dispersion elements are modeled as zero-mean, uncorrelated, normally

distributed random variables with position variance σ2
r = (10km)2 per axis, and velocity
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(b) Sample trajectory 2
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(d) Sample trajectory 3

Fig. 4.5: Scenario 1 sample mission map trajectories
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Fig. 4.6: 3σ position dispersion magnitude at target orbit arrival

variance σ2
v = (10m/s)2 per axis. The initial dispersion forms the dispersion covariance

matrix at the beginning of segment 1, P1.

The dispersion covariance as a function of time varies with each trajectory. An im-

portant metric to many missions is the magnitude of the position dispersion upon arrival

to a target orbit. Similar to the ∆V mission map in Figure 4.4, Figure 4.6 shows the 3σ

RSS position dispersion upon arrival to the target orbit (at the end of segment 2). The 3σ

position dispersion is 452 km upon arrival to the target orbit for the Hohmann transfer.

Suppose a mission requirement is that the 3σ position dispersion is less than or equal to

300 km upon arrival to the target orbit. Figure 4.7 shows the result of utilizing the NLP

solution methodology outlined in Section 4.1.2 (Problem 2) to satisfy the position dispersion

constraint. As a result, the nominal ∆V increases to 407.7 m/s. Comparing the ∆V mission

map and the 3σ position dispersion mission map also enables visual manual optimization to

confirm the result with no ∆t1 coast and an approximately 11.1 minute ∆t3 coast. Figure

4.6 facilitates this comparison: the thicker blue line represents the maximum target position

dispersion constraint of 300 km. The lowest ∆V intersection with the position dispersion

constraint occurs at the NLP result and the corresponding ∆V contour (from Figure 4.4)

of 407.7 m/s is represented by the thick black line.
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Fig. 4.7: Position dispersion constrained solution

Optimal 3σ TCM along deterministic optimal trajectory

A more effective method of minimizing position dispersion at a target is by performing

a TCM. A second TCM is required to also correct the velocity dispersion upon arrival to the

target state. The sum of these forms the total TCM magnitude, δV , as described in Section

4.1.3 (Problem 3). The magnitude of the TCM varies based on the time of execution along

a nominal trajectory. Once a nominal trajectory and STM time history are numerically

propagated along a reference trajectory, it is possible to rapidly find the minimum value

and TCM execution time.

Figure 4.8 shows the TCM magnitude time history along the four sample trajectories

as well as the selected minimum. Figure 4.9 shows the location of the optimal TCM along

the original deterministic Hohmann transfer. The four TCM histories shown in Figure 4.8

visually assist in understanding the solution space. First, the four TCM histories show

how the minimum TCM and corresponding execution time is identified. Second, they show

how significantly the minimum TCMmagnitude can change based on the nominal trajectory

chosen. Trajectories 1 and 2 exhibit lower 3σδV minimums. However, when the deterministic

∆V for trajectories 1 and 2 are compared in Figure 4.4, it is clear that trajectory 1 is the

lower of the two.
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Fig. 4.8: Minimum 3σδV along sample trajectories

For the four current sample trajectories in Figure 4.8, another observation is the exis-

tence of the increased magnitude toward the beginning of the trajectory near a 180 degree

offset. This is akin to the Lambert ridge and represents the required out of plane trajectory

to correct the out of plane position dispersion. The plotted magnitudes during the initial

spike are likely inaccurate however as the trajectory has departed the linear region around

the nominal trajectory. The increased TCM magnitude toward the end of each trajectory

is intuitive; as less time remains to correct a dispersion a higher impulse is required.

Robust trajectory, optimal nominal ∆V and 3σ TCM

Introducing the nominal ∆V and the 3σδV TCM magnitude into the cost function

(Problem 4) provides the opportunity to find a lower ∆V statistical upper bound. Figure

4.10 shows a mission map that is the sum of the nominal ∆V and the optimal TCM along

each trajectory. The minimum value is no longer the Hohmann transfer. Figure 4.11 shows

the robust trajectory result from the NLP which the mission map confirms as the optimal

solution.
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Fig. 4.9: Optimal 3σδV along optimal deterministic trajectory
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Fig. 4.11: Robust trajectory

Results comparison

Table 4.2 shows the summary of the solutions to Problems 1 through 4 for the LEO to

LEO transfer (Scenario 1). These results show that the robust optimal path is no longer

the Hohmann transfer. The robust path can offer a savings of up to 5.9 m/s over taking

the deterministic optimal. Another important observation about this set of results is the

ratio of nominal ∆V to expected 3σδV magnitude. The 3σδV is a significant percentage of

the nominal ∆V magnitude, which results in a greater opportunity for TCM cost savings

versus scenarios where the nominal ∆V dominates the cost function. This is one set of

characteristics where a robust trajectory is more likely to provide an opportunity for savings.

4.2.2 450 km to 20,000 km, Coplanar, Bicircular

Similar to the first scenario, Scenario 2 is optimized via mission maps alongside the

NLP results. Additional coast duration is incorporated prior to ∆V1 and after ∆V2 to

enable flexibility in transfer angle, initial orbit departure, and target orbit arrival.

Optimal deterministic trajectory

With a fixed total transfer time, it is again possible to reduce the problem to a function

of two variables, ∆t1 and ∆t3. The fixed duration mimics a rendezvous scenario in the target
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Trajectory
Description

Nominal
∆V (m/s)

3σδV (m/s) ∆V Upper
Bound
(m/s)

3σ Target
Dispersion

(km)

1. Optimal
deterministic w/initial

state dispersion
290.2 N/A 290.2 451.7

2. Initial state
dispersion with target
position dispersion

constraint

407.7 N/A 407.7 300

3. Optimal 3σ TCM
along deterministic

optimal
290.2 173.6 463.8 0

4. Robust, optimal
nominal ∆V and 3σ

TCM
295.2 162.7 457.9 0

Table 4.2: Results: 450km to 1000km altitude, coplanar, 180 degree offset

orbit but the coast duration in the target orbit introduces flexibility to rendezvous with the

target earlier or later than the position in the initial guess. The total fixed transfer duration

is somewhat arbitrarily equal to a quarter initial orbit coast, a Hohmann transfer, and a

1
12 target orbit coast. Figure 4.12 shows the nominal ∆V solution space as a mission map

of combinations of nominal trajectories and the corresponding total nominal ∆V required.

Six sample trajectory solutions are indicated as well which will be referenced further during

the TCM analysis portion of this scenario. Figure 4.13 shows the deterministic optimal

(minimum ∆V ) NLP solution which corresponds to sample trajectory 2 in Figure 4.12.

The nominal ∆V is 3384.45 m/s.

Initial state dispersion with target dispersion constraint trajectory

Without any TCMs and the same initial state dispersion covariance as the previous

scenario, the 3σ position dispersion at the target orbit along the deterministic optimal

trajectory is 1603.00 km. Figure 4.14 shows the target orbit 3σ position dispersion map.
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Fig. 4.12: Deterministic ∆V mission map
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Fig. 4.14: 3σ position dispersion at target orbit

Figure 4.15 shows the minimum ∆V solution to meet a maximum 3σ position dispersion

constraint at the target orbit. The result is verified on the position dispersion mission map

(Figure 4.14): the thick blue line is a constant contour of 1200 km 3σ position dispersion.

The lowest constant ∆V contour that is tangent to the position dispersion of interest is

the thick black line (following the shape of the Figure 4.12 contours), corresponding to a

nominal ∆V of 3666.46 m/s. The NLP result in Figure 4.15 corresponds to the dot at the

intersection of the black and cyan contour lines.

Optimal 3σ TCM along deterministic optimal trajectory

Along the deterministic optimal trajectory, the minimum TCM magnitude is 76.51

m/s. Figure 4.19 shows the trajectory with the location of the TCM identified by the black

dot.

As an aside, the shape of the mission map exhibits interesting behavior. Continuing

a similar analysis to the first scenario, each point on the TCM mission map represents

the minimum TCM along each reference trajectory. Figure 4.16 shows the mission map

of the minimum 3σ TCM magnitude along each nominal trajectory combination. Figure

4.17a shows the minimum 3σ TCM magnitudes across the range of ∆t1 values and a single

∆t3 value. This highlights the potentially non-intuitive nature of the TCM solution space.



68

-2

-1.5

-1

-0.5

0

2

0.5

1

1.5

Z
 (

km
)

#104

2

Y (km)

#104 0
2

X (km)
#104

10-1-2 -2

Fig. 4.15: Target position dispersion constrained

Figure 4.17b shows the TCM magnitude as a function of TCM execution time along the

nominal trajectory. While some similarities exist between each TCM plot as a function of

time (e.g. earlier is generally better), that that is not always the case. Sample trajectory

2 also exhibits the Lambert ridge phenomenon 180◦ from the target. Sample trajectories

four through six exhibit multiple spikes, the location of which contribute to the spike in the

minimum TCM plot in Figure 4.17a.

Robust trajectory, optimal nominal ∆V and 3σ TCM, fixed final time

There is visibly little difference in the optimal deterministic and robust trajectory in

this scenario or between the corresponding mission maps in Figures 4.12 and 4.18. The

resulting robust nominal ∆V is 3384.46 m/s with a 3σ TCM magnitude of 76.47 m/s for a

total of 3460.93 m/s. The savings in this case are trivial as the ratio of nominal ∆V to 3σ

TCM magnitude is very high. There is little opportunity to perform modifications to the

nominal trajectory which save more TCM than the cost of the increased nominal ∆V . A

similar result applies to Scenario 3 and is discussed further in Section 4.2.3.
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Fig. 4.16: Minimum 3σ TCM RSS along nominal trajectory mission map
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Fig. 4.17: Scenario 2, Problem 3 sample solutions
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Fig. 4.18: ∆V + 3σδV mission map
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Fig. 4.20: Scenario 2, robust, free final time

Robust trajectory, optimal nominal ∆V and 3σ TCM, free final time

One additional small reduction in total ∆V can be made by removing the fixed total

duration (or fixed final time) constraint. Figure 4.20 shows the resulting trajectory. The

main difference with this solution is optimized coast times in Segments 1 and 3 to further

minimize the cost function.

Results comparison

Table 4.3 shows the results for the four problems for the current scenario. The large

nominal ∆V in this case prevents significant ∆V savings in the robust trajectory solutions,

as modeled.
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Trajectory

Description
Nominal

∆V (m/s)

3σδV (m/s) ∆V Upper

Bound

(m/s)

3σ Target

Dispersion

(km)

1. Optimal

deterministic w/initial

state dispersion

3384.45 N/A 3384.45 1603.00

2. Initial state

dispersion with target

position dispersion

constraint

3666.46 N/A 3666.46 1200

3. Optimal 3σ TCM

along deterministic

optimal

3384.45 76.51 3460.96 0

4. Robust, fixed final

time
3384.46 76.47 3460.93 0

5. Robust, free final

time
3384.45 76.20 3460.65 0

Table 4.3: Results: 450 km to 20,000 km, coplanar, bicircular

4.2.3 450 km, 28◦ Inclined, Circular to Geostationary

Scenario 3 represents a launch into a circular, 28◦ inclined, 450km altitude orbit followed

by a subsequent transfer to geostationary orbit. The optimal deterministic to robust range

of results are presented in Table 4.4. One new mission-specific “problem” (Problem 5)

is introduced to capture an additional mission constraint where ∆V1 and δVr must occur
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simultaneously. This may be required in the case that an upper stage has a limited number

of burns, for example.

Optimal deterministic trajectory

The optimal deterministic trajectory is as expected. ∆V1and ∆V2 occur at the inter-

section of the initial and target orbital planes. ∆V1 includes 2.22◦ of inclination change

with the remainder occurring at ∆V2. The total nominal ∆V is 4168.27 m/s. Introducing

the same magnitude initial dispersion (σr = 10km, σv = 10m/s) results in a 3σ position

dispersion upon arrival to the target orbit of 2710.05 km.

Initial state dispersion with target dispersion constraint trajectory

In this case, a 2000 km 3σ position dispersion inequality constraint is introduced at

arrival to the target orbit, although the specific value is somewhat arbitrary. The nominal

∆V is now 5312.42 m/s to meet the position dispersion constraint.

Another interesting set of solutions is the removal of the fixed total transfer time

constraint. The summary for this case is the optimal dispersion constrained path results in

shortening the total transfer time, mainly via shortening the duration of the geostationary

transfer segment.

Optimal 3σ TCM along deterministic optimal trajectory

The optimal TCM along the deterministic optimal trajectory is not performed imme-

diately, but rather 2.15 minutes into the first segment for a minimum 3σ magnitude of 72.08

m/s.

Robust trajectory, optimize nominal ∆V and 3σ TCM

The result in this case is relatively unremarkable as the ratio of the nominal ∆V to

3σδV is very high. As a result, alterations to the nominal trajectory by incorporating the

TCM into the cost function are minimal. The total ∆V is reduced by 0.04 m/s.
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Robust trajectory, ∆V1 and δVr concurrent constrained to occur concurrently

This result introduces an additional constraint whereby ∆V1 and δVr are required to

occur simultaneously. A likely applicable scenario may be a limitation on the number of

impulsive burns that a launch vehicle upper stage can perform, requiring that a single

maneuver (∆V1 + δVr) perform both insertion into geostationary transfer orbit as well as

minimizing the position dispersion at a future target. The angular distance traveled between

∆V1and ∆V2 is 187◦, resulting in a ∆V statistical upper bound of of 4271.15 km/s. This

result optimizes the avoidance of the Lambert ridge for correcting the out of transfer plane

dispersion and the deviation from the optimal deterministic transfer angle.

Results comparison

Table 4.4 shows a results summary for the current scenario. There are a few conclusions

from this set of results. First, when the nominal total ∆V is significantly greater than the

3σδV magnitude, the difference between the optimal deterministic trajectory and the robust

trajectory becomes less significant. Additionally, for this relatively long duration trajectory

(when compared to Scenario 1, for example), the minimum 3σ TCM is lower as there is more

time for a smaller adjustment to correct a similarly-sized dispersion. However, maneuver

execution is assumed to be perfect in the current model. Increasing the model fidelity to

incorporate maneuver execution error may result in the opposite effect: maneuver errors

will be amplified over the course of a long trajectory and require additional TCM(s) in the

optimal robust solution.

4.2.4 450km, Critically Inclined to 894 km Sun-synchronous, Bicircular

Scenario 4 models a potential ride share launch challenge. While design and situation

specific, Scenario 4 highlights potential mission customization options and the relative ease

of incorporating additional constraints to suit a specific set of needs without introducing

problem convergence issues. The payload of interest is a ride share on a main mission

payload launch with a target 450 km, circular, critically inclined (63.4◦) target orbit. The

target orbit for the ride share payload is an 894 km sun-synchronous orbit. The main
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Trajectory
Description

Nominal
∆V (m/s)

3σδV (m/s) ∆V Upper
Bound
(m/s)

3σ Target
Dispersion

(km)

1. Optimal
deterministic w/initial

state dispersion
4168.27 N/A 4168.27 2710.05

2. Initial state
dispersion with target
position dispersion

constraint

5312.42 N/A 5312.42 2000

3. Optimal 3σ TCM
along deterministic

optimal
4168.27 72.08 4240.35 0

4. Robust, optimal
nominal ∆V and 3σ

TCM
4168.31 72.00 4240.31 0

5. Robust, ∆V1 and
δVr concurrent

4203.57 67.58 4271.15 0

Table 4.4: Results: 450km, 28◦ inclined, circular to geostationary
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mission payload does not utilize the entirety of the launch vehicle’s lift capacity to low

Earth orbit and as a result, the upper stage has enough propellant margin to perform an

additional large burn prior to its disposal burn. One challenge is that the most efficient

solution is performing the plane change at the higher altitude. This scenario introduces

an additional constraint such that the plane change must occur during the ∆V1 maneuver.

The δVr TCM will also be constrained to occur with ∆V1 to minimize the target orbit

dispersion for the ride share mission while meeting the upper stage capability constraints.

The ride share payload of interest will separate following the transfer initiation burn, ∆V1.

As a result, the maneuver to circularize in the target orbit (∆V2) and correct the velocity

dispersion upon arrival to the target orbit (δVv) will be the responsibility of the ride share

payload.

Optimal deterministic trajectory

Figure 4.21 shows the optimal deterministic trajectory without any of the mission-

specific ride share constraints applied.

Initial state dispersion with target dispersion constraint trajectory

A 3σ position dispersion constraint of 400 km is introduced resulting in a total ∆V of

5472.96 m/s. The fixed total time constraint was removed in this case and for the remainder

of this scenario.

Optimal 3σ TCM along deterministic optimal trajectory

Figure 4.21 shows the location of the optimal 3σ TCM along the optimal deterministic

trajectory as a black dot. Table 4.5 shows the results.

Robust trajectory, optimal nominal ∆V and 3σ TCM

Due to the significantly larger magnitude again of the nominal ∆V in comparison to

the 3σδV , there is little to be gained by deviating from the nominal trajectory in order to
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Fig. 4.21: Scenario 4 optimal deterministic trajectory with optimal TCM identified

reduce the TCM magnitude. The resulting robust trajectory path is not visibly different

and is not replotted as a result. Table 4.5 shows the resulting magnitudes.

Mission-specific robust

This trajectory solution implements the following additional constraints:

• ∆V1 and δVr constrained to occur concurrently: (∆t1 = tc)

• All inclination plane change constrained to occur with ∆V1; equivalently, the transfer

plane is coplanar with the target plane (Equation 3.54).

Figure 4.22 shows the resulting mission-specific trajectory. Table 4.5 shows the resulting

maneuver magnitudes. Individual maneuver magnitudes are provided as one of the goals of

this trajectory is reducing the ∆V requirement for the ride share spacecraft to circularize

in the target orbit (∆V2) and correct the remaining velocity dispersion (δVv). While the

resulting trajectory is not the lowest TCM magnitude in the result set, there is a significant
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Fig. 4.22: Scenario 4 mission-specific robust trajectory

reduction in the overall ∆V requirement for the ride share spacecraft while still balancing

the initial upper stage burn requirement.

Results comparison

Table 4.5 summarizes the Scenario 4 results.

4.2.5 Comments On Initial Guesses and Convergence

Two convergence examples (Figures 4.23 and 4.24) show the initial guess and interme-

diate steps taken toward the converged solution. Figure 4.23 shows the 82 step convergence

history for the Scenario 2 robust, fixed final time trajectory. Figure 4.24 shows two views of

the 114 step convergence history for the Scenario 4 mission-specific robust trajectory. Both

examples show that the initial guesses are suboptimal and infeasible given the constraint

set but share some of the characteristics with the converged solutions.

In general, convergence has not been an issue for this trajectory design method when

provided an n segment initial guess trajectory that is in the neighborhood of the solution.
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Trajectory

Description
Nom.

∆V1

(m/s)

Nom.

∆V2

(m/s)

3σδVr

(m/s)

3σδVv

(m/s)

∆V2 +

3σδVv

(m/s)

∆V

Upper

Bound

(m/s)

3σ

Target

Dis-

persion

(km)

1. Optimal

deterministic

w/initial state

dispersion

292.42 4248.93 N/A N/A 4248.93 4541.35 750.85

2. Initial state

dispersion

w/target position

dispersion

constraint

2027.72 3445.24 N/A N/A 3445.24 5472.96 400

3. Optimal 3σ

TCM along

deterministic

optimal

292.42 4248.93 66.95 49.16 4298.09 4657.46 0

4. Robust,

optimal nominal

∆V and 3σ TCM

285.43 4255.99 66.94 49.03 4305.02 4657.39 0

5. Mission

specific robust
4705.05 151.52 309.66 225.89 377.40 5392.11 0

Table 4.5: Results: 450km, critically inclined to 894 km sun-synchronous, bicircular
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Fig. 4.23: Scenario 2 robust, fixed final time convergence steps

Lambert’s Problem was used to generate connected initial trajectories with reasonable but

somewhat arbitrary orbital departure/arrival positions and durations [51]. Segment con-

nectivity is not a requirement, which presents other initial guess options such as two-sided

shooting [25] for systems where a closed form solution does not exist. Another option is a

continuation-like approach where the deterministic trajectory is first found and then passed

as the initial guess when finding the robust solution.

Regarding the converged solution, the result is only guaranteed to be a local minimum.

Large deviations from the initial guess are inherently not considered. For example, there

are likely a set of LEO to LEO multiple-revolution local minima that the current algorithm,

as described, will not find. Solutions with more than two nominal impulsive maneuvers are

also not currently considered.

While not an extensive convergence study, Table 4.6 shows a summary of the conver-

gence time and number of iterations for the problems presented herein. All analyses were

performed on a Lenovo Thinkpad Carbon X1 Gen 9. The overall trajectory duration affects

the propagation time for each NLP step and overall time to convergence. The free final time

examples appear to be outliers, however large adjustments to segment durations is generally

time consuming due to the small steps taken. The dispersion constrained trajectories have



81

(a) (b)

Fig. 4.24: Scenario 4 mission-specific robust convergence steps

a longer convergence time as well, however many small steps are taken very close to the

converged solution in these cases to meet convergence thresholds.

4.3 Conclusion

This chapter introduced a trajectory design method that accounts for a normally dis-

tributed initial state dispersion and minimizes the sum of nominal impulsive ∆V plus 3σ

TCM magnitude. The multiple segment approach allows for the flexible incorporation of

mission events. Direct optimization was performed via nonlinear programming. Analytical

gradients of state dispersion covariance and TCM δV covariance were derived to accelerate

and aid convergence. Results showed that robust optimal trajectories have improved perfor-

mance over deterministic optimal trajectories which are no longer optimal when stochastic

effects are included.

An important conclusion from the results is the identification of transfer scenario char-

acteristics that result in the greatest benefit based on the optimal robust trajectory versus

the optimal deterministic trajectory. Short duration trajectories with a somewhat small

nominal ∆V serve to benefit the most by choosing the optimal robust trajectory: TCM
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Trajectory description Convergence time (sec) Number of iterations

Scenario 1, deterministic 10.5 37

Scenario 1, dispersion constrained 210.7 686

Scenario 1, robust 19.1 55

Scenario 2, deterministic 28.1 59

Scenario 2, dispersion constrained 744.7 1445

Scenario 2, robust, fixed total time 33.2 82

Scenario 2, robust, free total time 998.4 1887

Scenario 3, deterministic 29.8 73

Scenario 3, dispersion constrained 60.9 34

Scenario 3, robust 53.6 69

Scenario 3, mission specific robust 25.9 48

Secnario 4, deterministic 39.4 107

Scenario 4, dispersion constrained 109.4 114

Scenario 4, robust 55.8 117

Scenario 4, mission specific robust 158.0 366

Table 4.6: Convergence time and iteration count summary
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δV is relatively expensive as there is less time to benefit from a correction over shorter

durations; additionally, cost function trade space exists as a result of the lower magnitude

nominal ∆V relative to the TCM δV . Long duration scenarios with large nominal ∆V

magnitudes exhibit the opposite effect and the results show small differences between the

deterministic optimal and robust solutions. The incorporation of other stochastic sources

is likely to increase the benefit of taking an optimal robust path versus its deterministic

counterpart.

In addition to the robust trajectory design method presented, the mission maps and

the TCM optimization method presented both visually support building intuition for the

impact of trajectory design choices on stochastic parameters of interest.
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CHAPTER 5

STOCHASTIC ANALYSIS ALONG A NOMINAL TRAJECTORY

The trajectory parameter vector S defines a nominal trajectory. Altering any quantity

in the vector S results in a new nominal trajectory that requires a new propagation and re-

assessment of the deterministic cost and constraints. The state dispersion covariance defines

the Gaussian statistics along the nominal trajectory, as a function of time and stochastic

error sources. Unlike modifications to the nominal trajectory, modifications to the dispersion

covariance analysis do not require the propagation of a new nominal trajectory. However,

modifications to the dispersion covariance require repropagation of the accumulated process

noise covariance, which will be discussed later. As a result, a new dispersion covariance

analysis happens quickly when only testing different times to perform dispersion covariance

modifying events (initial dispersion, TCM execution time, maneuver execution error values).

Chapter 5 presents a fast linear covariance analysis-based method of TCM optimization

along a nominal trajectory that only requires a series of matrix multiplications versus a

new trajectory propagation. Following the description of the TCM optimization method, a

series of examples illustrates the dependence of the optimal TCM location and TCM δV on

the magnitude of specific stochastic parameters. The stochastic parameters considered are

an initial state dispersion, nominal maneuver execution error, TCM execution error, and

random disturbances (also commonly known as process noise).

5.1 Modeling Error Sources

5.1.1 Initial State Dispersion

An initial state dispersion represents errors in the trajectory initial state, such as orbit

insertion error. The initial state dispersion is a zero mean multivariate normal distribution



85

with position variance σ2
r and velocity variance σ2

v in each direction:

P0 = E
[
δx (t0) δx (t0)

⊤
]
=

 σ2
rI3×3 03×3

03×3 σ2
vI3×3

 (5.1)

The dispersion along a nominal trajectory is propagated linearly from an initial time t0 to

an arbitrary time tc using the STM

δx(tc) = Φ(tc, t0)δx(t0) (5.2)

Similarly, the state dispersion covariance is propagated linearly along the nominal trajectory

to the next dispersion covariance modifying event:

P−
c = E

[
δx(tc)δx(tc)

⊤
]
= Φ(tc, t0)P0Φ (tc, t0)

⊤ (5.3)

5.1.2 Trajectory Correction Maneuvers without Execution Error

The purpose of a TCM is to modify the dispersion at a target event or time. In this

analysis, the target is an upcoming nominal maneuver. Two types of TCMs are imple-

mented: a position dispersion-correcting TCM (Equation 5.5) and a velocity dispersion-

correcting TCM (Equation 5.10). Subsection 4.1.3 presented a more detailed derivation of

the following equations.

The dispersion at tc along a nominal trajectory is propagated linearly using the STM

to the target at time tn:

δx(tn) = Φ(tn, tc)δx(tc) (5.4)

A position targeting TCM, δVr, is designed to remove the position dispersion at a future

target (δr(tn) = 0) via a velocity modification

δVr =

[
−Φrv(tn, tc)

−1Φrr(tn, tc) −I3×3

]
δx(tc) = Tδx(tc) (5.5)
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where tc represents TCM execution time and tn represents the target time along a nominal

trajectory. The covariance of δVr is a function of the matrix T and the dispersion covariance

at tc prior to the TCM, P−
c :

E
[
δVrδV

⊤
r

]
= TE

[
δxδx⊤

]
T⊤ = TP−

c T⊤ (5.6)

An upper bound for the variance of the magnitude of a TCM is the RSS of the TCM

covariance:

σδVr =
√

tr
(
TP−

c T⊤
)
=
√
tr (PTCMr) (5.7)

The velocity change to the state dispersion from a TCM is

δx+
c = δx−

c +

 03×6

T

 δx−
c (5.8)

When modeling the state dispersion covariance, the TCM modifies the velocity dispersion

covariance rather than modifying the nominal state. The post-correction dispersion covari-

ance follows

P+
c = E

[(
δx−

c +Nδx−
c

) (
δx−

c +Nδx−
c

)⊤]
= (I +N)P−

c (I +N)⊤ (5.9)

where I is the identity matrix and N =

 03×6

T


A velocity dispersion-correcting TCM directly corrects remaining velocity dispersion

at a final time or time of the nominal maneuver, δVv = −Mvδx (tn).

σδVv =
√
tr
(
MvP

−
n M⊤

v

)
=
√
tr (PTCMv) (5.10)

where Mv is a 3× 6 mapping matrix that extracts the velocity dispersion covariance. Only

the cost of cleaning up the final position and velocity dispersion is included in the analysis.
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The actual final covariance update is not implemented as injection into the target orbit

marks the end of the trajectory design.

5.1.3 Trajectory Correction Maneuvers with Execution Error

Realistically, TCMs do not perfectly mitigate a future position dispersion as they are

not perfectly executed. TCM execution error is incorporated simultaneously with the TCM

dispersion covariance update. The execution error model is normally distributed, zero mean,

σ2
RTCM

variance per axis, resulting in the following TCM dispersion covariance update with

maneuver execution error:

P+
c = (I +N)P−

c (I +N)⊤ +GRTCMG (5.11)

where RTCM = σ2
RTCM

I3×3 is the TCM execution error covariance and G is a 6× 3 matrix

that maps the error to the velocity covariance sub-matrix. A more realistic model per a

specific mission’s hardware parameters can be incorporated.

The TCM execution error also contributes to the stochastic cost of the TCM:

σδV =
√

tr (PTCM +RTCM ) (5.12)

5.1.4 Nominal Maneuver Execution Error

Nominal maneuvers along the nominal trajectory are also not executed perfectly and

the nominal maneuver execution error contributes to the dispersion covariance at the time

of execution. The dispersion covariance update equation adds the maneuver execution error

at the time of the nominal maneuver. The error model is also zero mean with a variance of

σ2
R∆V

per axis where R∆V = σ2
R∆V

I3×3 is the nominal maneuver execution error covariance.

The dispersion covariance update equation for a nominal maneuver is

P+
∆V = P−

∆V +GR∆V G
⊤ (5.13)
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5.1.5 Corrected Nominal Maneuvers

Another option for affecting the future state dispersion covariance is combining a TCM

with a nominal maneuver. Assuming the nominal maneuver is not performed at a location

where TCMs are ill-conditioned (e.g., correcting out of plane dispersion during the first

maneuver in a Hohmann transfer), the effect of combining vector magnitudes of both the

nominal maneuver and the TCM results in savings in many cases. When a nominal ma-

neuver, ∆V , and a TCM, δV , are combined in a single maneuver, the corrected nominal

maneuver vector, ∆Vcr, is

∆Vcr = ∆V + δVr

where the individual δVr components are zero mean Gaussian random variables with covari-

ance matrix PTCMr . A first-order TSE of the magnitude of the corrected position-targeting

maneuver, ∥∆Vcr∥, about the nominal maneuver vector, helps to estimate the statistics of

the correction magnitude ∥δV ∥:

∥∆Vcr∥ ≈ ∥∆V ∥+ ∂∥∆V ∥
∂∆V

δVr (5.14)

The mean of ∆Vcr is ∆V and the variance is

σ2
∥∆Vcr∥ = E

[
(∥∆Vcr∥ − ∥∆V ∥) (∥∆Vcr∥ − ∥∆V ∥)⊤

]
(5.15)

σ2
∥∆Vcr∥ = E

[(
î⊤∆V δVr

)(
î⊤∆V δVr

)⊤]
(5.16)

σ2
∥∆Vcr∥ = î⊤∆V (PTCM +R∆V ) î∆V (5.17)

Similarly, the target orbit arrival ∆V can be combined with a correction to remove

remaining velocity dispersion at the target orbit insertion. The statistics of the velocity

dispersion cleanup components are represented by the 3× 3 velocity submatrix of the state

dispersion at target orbit insertion:

PTCMv = MvP
−
n M⊤

v (5.18)
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The first-order TSE produces a similar result to Equation 5.17:

σ2
∥∆Vcv∥ = î⊤∆V (PTCMv +R∆V ) î∆V (5.19)

One way to interpret this simplification is vector addition: the only portion of the TCM

that adds cost to the combined maneuver is the portion in the direction of the nominal

maneuver. This savings is only accurate in cases where the nominal maneuver is much

larger than the correction magnitude. When the reverse is true, this model’s perceived

savings are unrealistic.

5.2 Random Disturbances / Process Noise

Incorporating process noise is a common technique for incorporating the effect of con-

tinuous stochastic errors of a process. Spacecraft venting or misaligned reaction control

subsystem thrusters result in random impulses that may have a cumulative effect on the

trajectory. These random impulses can also be represented by an increase to the dispersion

covariance with respect to the nominal trajectory. A simple model for random disturbances

is a zero mean white continuous noise process with power spectral density (PSD) Q. The

effect of Q accumulates over time via the linear stochastic differential equation [49]:

Q̄(tf , t0) =

∫ tf

ti

Φ(tf , τ)G(τ)Q(τ)G(τ)τΦ⊤(tf , τ)dτ (5.20)

where Q̄ represents the accumulated state dispersion covariance due to process noise, and

G maps Q to the velocity components of the state dispersion covariance matrix. In the

current implementation, Q and G are constant so their time reference τ may be removed.

Q̄ will be referred to as the Q bar matrix, or QBM.

The upcoming TCM optimization method in Section 5.5 references propagated STM

histories along a nominal trajectory many times without repropagating when testing differ-

ent times to perform TCMs. Similarly, the continuous QBM history is also propagated and

saved, from the beginning of each segment, alongside the STM history. Equation 5.21 [49]
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is used to numerically integrate the QBM with initial condition Q̄(t0, t0) = 06×6:

˙̄Q(t, t0) = F (t)Q̄(t, t0) + Q̄(t, t0)F (t)⊤ +GQG⊤ (5.21)

With the QBM history along the trajectory, propagated from the beginning of each

segment, the appropriate portion of Q̄ is extracted from the history which contributes to

the dispersion covariance at each dispersion covariance modifying event (TCMs, nominal

maneuvers with execution error error). For example, at the first correction, the dispersion

covariance equals the linear covariance growth via the STM plus the accumulated process

noise covariance:

P−
c1 = Φ(tc1 , t0)P0Φ (tc1 , t0)

⊤ + Q̄tc1
(tc1 , t0) (5.22)

where the STM (Φ) and the QBM (Q̄) time-histories have been previously saved.

Some manipulation of the QBM history is required as optimizing TCMs along a nominal

trajectory allows TCMs to occur independent of segment intersection, and the QBM history

is propagated from the beginning to the end of each segment. The first manipulation involves

combining two sequential propagated durations of Q̄. Q̄t1 (t1, t0) represents the effect of

process noise covariance at t1, accumulated from t0 to t1. Similarly, Q̄t2 (t2, t1) represents

the effect of process noise covariance at t2, accumulated from t1 to t2. The goal is to combine

these two sequential portions of Q̄ to form the accumulated effect of process noise from t0

to t2 on the covariance at t2, Q̄t2 (t2, t0). At first, it may seem that Q̄t2 (t2, t0) is merely the

sum ofQ̄t1 (t1, t0) and Q̄t2 (t2, t1), however, upon closer examination the required operation

is shown in Equation 5.23:

Q̄t2 (t2, t0) = Q̄t2 (t2, t1) + Φ (t2, t1) Q̄t1 (t1, t0) Φ (t2, t1)
⊤ (5.23)

The second term can be thought of as linear propagation of Q̄t1 (t1, t0) to t2:

Q̄t2 (t1, t0) = Φ (t2, t1) Q̄t1 (t1, t0) Φ (t2, t1)
⊤ (5.24)
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As propagation of terms of the QBM occurs from the beginning to end of each segment

and TCMs are not limited to segment intersections, another QBM manipulation is required.

Assuming QBM history propagation begins from t0 through t2 and a TCM occurs at t1, a

required quantity is Q̄t2 (t2, t1). Rearranging Equation 5.23 produces the desired quantity,

shown in Equation 5.25.

Q̄t2 (t2, t1) = Q̄t2 (t2, t0)− Φ (t2, t1) Q̄t1 (t1, t0) Φ (t2, t1)
⊤ (5.25)

5.3 Stochastic Cost and Constraints

The stochastic cost represents the additional cost of managing the state dispersion along

a nominal trajectory to meet mission requirements. The stochastic cost is the sum of the

RSS of nδV TCMs with execution error plus the additional cost incurred by correcting n∆Vc

nominal maneuvers, multiplied by a scalar that corresponds to the mission’s risk tolerance

related to maneuver margin (3σ is used in this analysis):

Jσ = 3

nδV∑
k=1

(σδV ) +

n∆Vc∑
q=1

σ∥∆Vc∥

 (5.26)

An important parameter at nominal mission events (e.g., nominal maneuvers, target

orbit insertion, rendezvous) is spacecraft position relative to the nominal trajectory. The

state dispersion covariance relative to the nominal trajectory represents the statistical devi-

ation from the planned trajectory. TCMs manage the state dispersion within a reasonable

level around the nominal trajectory. Said another way, TCMs ensure that the state disper-

sion constraints are met. The main state dispersion constraint ensures that the RSS of the

position dispersion is less than a maximum value, σr,max:

√
tr (MrPM⊤

r ) ≤ σr,max (5.27)

In general, Constraint Equation 5.27 is applied in this analysis at all nominal maneuvers

after the first nominal maneuver.
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5.4 Analytical Gradients

The design method in this paper propagates, computes, and provides analytical gra-

dients of the cost function and constraints with respect to the problem parameters, S,

to the NLP. Many stochastic cost terms involve STMs, which require the propagation of

second-order STTs to compute the gradient analytically. Similar to propagating second-

order STTs, the gradient of QBM terms requires propagating a tensor that characterizes

the state sensitivity of the accumulated process noise covariance, ∂Q̄(t1,t0)
∂x0,i

. This will be

referred to as the Q bar tensor, or QBT. This section provides an overview of two gradient

formulations: first, a sequential method for assembling the gradient of multiple TCMs and

second, the propagation and manipulation of the QBT.

5.4.1 Multiple TCM Cost Analytical Gradient

The partial derivative of the deterministic cost, deterministic constraints, a single TCM

RSS magnitude, and the target position dispersion covariance constraint are derived in

Chapter 4.1. This section incorporates multiple TCMs, maneuver execution error, and

process noise. The approach used to calculate the gradient of multiple TCMs follows.

The total stochastic cost, Jσ, is the summation of the cost of numerous TCMs. Cor-

respondingly, when multiple TCMs are performed along a nominal trajectory, each at tck

with execution error covariance RTCM , the total TCM RSS σδV gradient requires gradients

of each individual position-correcting TCM, σδVr,k
, plus the gradient of the final velocity

dispersion correction σδVv . However, modifications to TCMs have impacts to the dispersion

covariance that affect the gradient of subsequent TCMs. The sequential nature of the fol-

lowing formulation maintains the sensitivity of each TCM to modifications in elements that

have an impact on the preceding dispersion covariance. Said differently, each TCM affects

the dispersion covariance at all future TCMs. The following sequential, nested covariance

sensitivity formulation simplifies this operation.
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The first TCM, k = 1, mirrors the single TCM scenario in Section 4.1 with the addition

of RTCM . The RSS of the first TCM, σδVr,1 , is

σδVr,1 =
√

tr
(
T1P

−
c1T

⊤
1 +RTCM

)
(5.28)

The post-TCM covariance is defined by Equation 5.11. To simplify notation, the gradient

of σδVr,1 with respect to a segment initial state will be represented by the function D, where

D is a result of the application of matrix differentiation rules (product rule, exponent rule,

etc.) on Equation 5.28:

∂σδVr,1

∂x0,i
= D

(
T1, P

−
c1 , RTCM ,

∂T1

∂x0,i
,
∂P−

c1

∂x0,i

)
(5.29)

Evaluating ∂T1
∂x0,i

and
∂P−

c1
∂x0,i

are again both applications of the product rule (and expanded in

more detail in Section 4.1.4 and in [35]). The sub-terms that involve the partial derivative of

STM segments ∂Φ
∂x leverage propagated STT terms. Manipulation to obtain the appropriate

STT endpoints is described in Subsection 2.3.2.

The second TCM (k = 2) now incorporates the effects of TCM 1 to the next covariance

update P−
c2 ; assuming the next covariance update is another TCM:

σδVr,2 =
√
tr
(
T2P

−
c2T

⊤
2 +RTCM

)
(5.30)

P−
c2 = Φ(tc2 , tc1)P

+
c1Φ (tc2 , tc1)

⊤

= Φ(tc2 , tc1)
(
(I +N1)P

−
c1 (I +N1)

⊤ +GRTCMG⊤
)
Φ (tc2 , tc1)

⊤ (5.31)

The state sensitivity of the dispersion before TCM 2,
∂P−

c2
∂x0,i

, can be expressed as another

function J , shortening another lengthy application of matrix differentiation rules:

∂P−
c2

∂x0,i
= J

(
T1,

∂T1

∂x0,i
, P−

c1 ,
∂P−

c1

∂x0,i
,Φ (tc2 , tc1) ,

∂Φ (tc2 , tc1)

∂x0,i
, RTCM

)
(5.32)
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Now
∂P−

c2
∂x0,i

is expressed as a function of gradients at TCM 1 and the dynamics between TCMs

1 and 2. Calculating the dispersion covariance sensitivities sequentially enables subsequent

TCMs and their gradients to be expressed as a function of values at the previous dispersion

covariance update.

5.4.2 Accumulated Process Noise Covariance Gradient

When including the effect of process noise and evaluating
∂P−

c1
∂x̄0,i

, where P−
c1 now includes

Q̄

P−
c1 = Φ(tc1 , t0)P0Φ (tc1 , t0)

⊤ + Q̄tc1
(tc1 , t0) (5.33)

evaluating
∂Q̄tc1

(tc1 ,t0)
∂x0,i

, the QBT, becomes a required term. These QBM state sensitivities

are obtained via numerical integration of Equation 5.34 below, with a brief derivation

following. The first step involves taking the partial derivative of ˙̄Q (Equation 5.21) with

respect to the initial state. Applying the product rule results in Equation 5.34 which

is numerically integrated to obtain the QBT, similar to an STT, with initial conditions

∂Q̄(t0,t0)
∂x(t0)

= 06×6×6:

[
∂ ˙̄Q(t, t0)

∂x(t0)

]
ijk

=
∂F (t)i,m
∂x(t0)k

Q̄(t, t0)mj + F (t)i,m
∂Q̄(t, t0)mj

∂x(t0)k

+
∂F (t)jm
∂x(t0)k

Q̄(t, t0)im + F (t)j,m
∂Q̄(t, t0)im
∂x(t0)k

(5.34)

where F (t)i,j is the system Jacobian. A chain rule application utilizes the second derivative

of the system dynamics with respect to a previous state, F (t)i,jk:

∂F (t)ij
∂x(t0)k

=
∂F (t)ij
∂x(t)m

∂x(t)m
∂x(t0)k

= F (t)i,jmΦ(t, t0)m,k (5.35)

Similar to the QBM, some manipulation of the QBT is also required to obtain the

appropriate QBT endpoints and its effect at the appropriate time. Finding the equation

for sequential QBT combination (e.g., assembling
∂Q̄t2 (t2,t0)

∂x(t0)
from

∂Q̄t1 (t1,t0)

∂x(t0)
and

∂Q̄t2 (t2,t1)

∂x(t1)
)
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involves taking the partial derivative of Equation 5.23, which equals the following after two

chain rule applications and term collection:

∂Q̄t2 (t2, t0)

∂x(t0)
= WijmΦ (t1, t0)m,k +Φ(t2, t1)i,m

∂Q̄t1 (t1, t0)mn

∂x(t0)k
Φ (t2, t1)j,n (5.36)

where

Wijm =
∂Q̄t2 (t2, t1)ij

∂x(t1)m
+ΦII (t2, t1)i,nm Q̄t1 (t1, t0)npΦ (t2, t1)j,p

+Φ(t2, t1)i,n Q̄t1 (t1, t0)npΦII (t2, t1)j,pm (5.37)

Subtracting a contribution involves taking the partial derivative of Equation 5.25, perform-

ing a product rule and two chain rule applications, and collecting terms:

∂Q̄t2 (t2, t1)ij
∂x(t1)k

= DijmΦ (t0, t1)m,k − ΦII (t2, t1)i,nm Q̄t1 (t1, t0)npΦ (t2, t1)j,p

− Φ (t2, t1)i,n Q̄t1 (t1, t0)npΦII (t2, t1)j,pm (5.38)

where

Dijm =
∂Q̄t2 (t2, t0)ij

∂x(t0)m
− Φ (t2, t1)i,n

∂Q̄t1 (t1, t0)np
∂x(t0)m

Φ (t2, t1)j,p (5.39)

5.4.3 Gradient Application with Independent TCMs & Segment Intersections

The goal of this section is deriving the gradient of the accumulated process noise covari-

ance at each TCM (or any other covariance-modifying event along a nominal trajectory),

Q̄k, with respect to segment initial states x0,i, when TCMs do not occur at segment inter-

sections (e.g., in the middle of a segment). There are four relevant time events that occur

and four potential sequences of these events, each with a unique logic case. Two of the time

events are the beginning and end of segment i, t0,i and tf,i. The other two time events are

the time the kth TCM is performed (tk) and the time the k−1th TCM is performed (tk−1).
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The four potential sequences of events with nonzero gradients and the gradient derivation

∂Q̄k(tk,tk−1)
∂x0,i

for each sequence follows.

1. t0,i ≤ tk−1 ≤ tf,i ≤ tk

For Case 1, TCM k − 1 occurs in segment i and TCM k occurs after segment i.

An expression for the process noise covariance at tk, accumulated from tk−1 to tk,

intentionally separated into portions that are sensitive to modifications in x0,i are

those that are not, is

Q̄k (tk, tk−1) = Q̄k (tk, tf,i) + Q̄k (tf,i, tk−1) (5.40)

where manipulation is required to represent Q̄, as propagated, from the beginning of

each segment:

Q̄k (tf,i, tk−1) = Φ (tk, tf,i) Q̄f,i (tf,i, tk−1) Φ (tk, tf,i)
⊤

= Φ(tk, tf,i) (Q̄f,i (tf,i, t0,i)− . . .

Φ (tf,i, tk−1) Q̄k−1 (tk−1, t0,i) Φ (tf,i, tk−1)
⊤)Φ (tk, tf,i)

⊤ (5.41)

The gradient of Q̄k (tk, tk−1) is

∂Q̄k (tk, tk−1)

∂x0,i
=

∂Q̄k (tk, tf,i)

∂x0,i
+

∂Q̄k (tf,i, tk−1)

x0,i
(5.42)

Since Q̄k (tk, tf,i) and x0,i are in different segments, the first term of the partial deriva-

tive in Equation 5.42 is zero.

∂Q̄k (tk, tf,i)

∂x0,i
= 06×6×6 (5.43)
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The second term of Equation 5.42 is

∂Q̄k (tf,i, tk−1)

x0,i
= Φ(tk, tf,i)

∂Q̄f,i (tf,i, tk−1)

x0,i
Φ (tk, tf,i)

⊤ (5.44)

which, when combined with the expansion in Equation 5.41, yields

∂Q̄f,i (tf,i, tk−1)

x0,i
=

∂Q̄f,i (tf,i, t0,i)

∂x0,i

−
∂Φ (tf,i, tk−1)

∂x0,i
Q̄k−1 (tk−1, t0,i) Φ (tf,i, tk−1)

⊤

− Φ (tf,i, tk−1)
∂Q̄k−1 (tk−1, t0,i)

∂x0,i
Φ (tf,i, tk−1)

⊤

− Φ (tf,i, tk−1) Q̄k−1 (tk−1, t0,i)
∂Φ (tf,i, tk−1)

⊤

∂x0,i
(5.45)

2. t0,i ≤ tk−1 ≤ tk < tf,i

For case 2, k − 1 and TCM k occur in the same segment. The form of the solution

changes as the portion of the trajectory from tk to tf,i is not relevant to Q̄k. As a

result

Q̄k (tk, tk−1) = Q̄k (tk, t0,i)− Φ (tk, tk−1) Q̄k−1 (tk−1, t0,i) Φ (tk, tk−1)
⊤ (5.46)

∂Q̄k (tk, tk−1)

x0,i
=

∂Q̄k (tk, t0,i)

∂x0,i

− ∂Φ (tk, tk−1)

∂x0,i
Q̄k−1 (tk−1, t0,i) Φ (tk, tk−1)

⊤

− Φ (tk, tk−1)
∂Q̄k−1 (tk−1, t0,i)

∂x0,i
Φ (tk, tk−1)

⊤

− Φ (tk, tk−1) Q̄k−1 (tk−1, t0,i)
∂Φ (tk, tk−1)

⊤

∂x0,i
(5.47)

3. tk−1 < t0,i ≤ tf,i ≤ tk

For case 3, TCM k− 1 occurs prior to the start of the ith segment and TCM k occurs

after the end of the ith segment. The resulting total Q̄k (tk, tk−1) is separated into
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the pieces that are part of the ith segment and and those that aren’t part of the ith

segment:

Q̄k (tk, tk−1) = Q̄k (tk, tf,i) + Q̄k (tf,i, t0,i) + Q̄k (t0,i, tk−1) (5.48)

The partial derivative of Q̄k (tk, tf,i) with respect to x0,i is zero. The partial is then

∂Q̄k (tk, tk−1)

∂x0,i
=

∂Q̄k (tf,i, t0,i)

∂x0,i
+

∂Q̄k (t0,i, tk−1)

∂x0,i
(5.49)

For
∂Q̄k(tf,i,t0,i)

∂x0,i
:

Q̄k (tf,i, t0,i) = Φ (tk, tf,i) Q̄f,i (tf,i, t0,i) Φ (tk, tf,i)
⊤ (5.50)

∂Q̄k (tf,i, t0,i)

∂x0,i
= Φ(tk, tf,i)

∂Q̄f,i (tf,i, t0,i)

∂x0,i
Φ (tk, tf,i)

⊤ (5.51)

and for
∂Q̄k(t0,i,tk−1)

∂x0,i
:

Q̄k (t0,i, tk−1) = Φ (tk, t0,i) Q̄0,i (t0,i, tk−1) Φ (tk, t0,i)
⊤

= Φ(tk, tf,i) Φ (tf,i, t0,i) Q̄0,i (t0,i, tk−1) Φ (tf,i, t0,i)
⊤Φ (tk, tf,i)

⊤ (5.52)

the partial is

∂Q̄k (t0,i, tk−1)

∂x0,i
= Φ(tk, tf,i) (ΦII (tf,i, t0,i) Q̄0,i (t0,i, tk−1) Φ (tf,i, t0,i)

⊤ + . . .

Φ (tf,i, t0,i) Q̄0,i (t0,i, tk−1) ΦII (tf,i, t0,i)
⊤)Φ (tk, tf,i)

⊤ (5.53)

4. tk−1 < t0,i ≤ tk < tf,i

For case 4, TCM k− 1 occurs prior to the start of the ith segment and TCM k occurs

during the ith segment. Similar to case 2, the trajectory between tk and tf,i does not

impact Q̄k (tk, tk−1):

Q̄k (tk, tk−1) = Q̄k (tk, t0,i) + Q̄k (t0,i, tk−1) (5.54)
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∂Q̄k (tk, tk−1)

∂x0,i
=

∂Q̄k (tk, t0,i)

∂x0,i
+

∂Q̄k (t0,i, tk−1)

∂x0,i
(5.55)

The first term is pulled directly from the numerically integrated ∂Q̄ history, from the

beginning of the ith segment to tk. The second term is

Q̄k (t0,i, tk−1) = Φ (tk, t0,i) Q̄0,i (t0,i, tk−1) Φ (tk, t0,i)
⊤ (5.56)

and its partial derivative is

∂Q̄k (t0,i, tk−1)

∂x0,i
= ΦII (tk, t0,i) Q̄0,i (t0,i, tk−1) Φ (tk, t0,i)

⊤ (5.57)

+ Φ (tk, t0,i) Q̄0,i (t0,i, tk−1) ΦII (tk, t0,i)
⊤ (5.58)

For the remaining cases (tk−1 ≤ tk ≤ t0,i ≤ tf,i and t0,i ≤ tf,i ≤ tk−1 ≤ tk), Q̄k is

independent of the ith segment, therefore the partial derivatives with respect to x0,i are

zero.

5.4.4 Accumulated Process Noise Covariance Sensitivity to Segment Duration

The four cases for Q̄ state sensitivity do not specifically apply to segment duration

sensitivity; the order of t0,i and tk−1 do not change the result. The important compar-

ison is whether tf,i occurs after tk−1 and is less than or constrained to be equal to tk:

(tk−1 < tf,i ≤ tk). Consider Q̄k (tk, tk−1) as the sum of Q̄ in two parts, before and after tf,i:

Q̄k (tk, tk−1) = Q̄k (tk, tf,i) + Q̄k (tf,i, tk−1)

Modifications to the duration of segment i, ∆ti, have no impact on Q̄k (tk, tf,i). However,

modifications to ∆ti do have an impact on Q̄k (tf,i, tk−1):

∂Q̄k (tk, tk−1)

∂∆ti
= Φ(tk, t0,i+1)

˙̄Qf,i (tf,i, tk−1) Φ (tk, t0,i+1)
⊤ (5.59)
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In this case, Equations 5.21 and 5.59 apply directly. If tk is less than tf,i, the partial

derivative with respect to ∆ti is zero. Changing the duration of a segment after the endpoint

of the process noise accumulation has no impact on the QBM and the corresponding partial

derivative is zero.

5.5 Trajectory Correction Maneuver Optimization

Section 5.5 explores the optimization of TCMs along a fixed nominal trajectory. Sub-

section 5.5.1 describes a method to optimize the number and location of multiple TCMs

along the deterministic optimal trajectory to ensure a dispersion constraint is met at a

single target. Subsection 5.5.1 also introduces a second target event along a nominal tra-

jectory and connects the covariance analysis between two separate TCM target portions of

the trajectory. Subsection 5.5.2 shows a series of optimal TCM examples along the same

nominal trajectory with variations in error sources to highlight the sensitivity of the op-

timal TCM solution to variations in stochastic problem parameters/error sources. TCM

optimization significantly mitigates the total cost of corrections with varying error sources

when compared to a default TCM solution (referred to as the “looks about right” solution).

The stochastic parameters for the analysis in this section are shown below in Figure 5.1.

5.5.1 Optimizing TCM Number and Location Along a Nominal Trajectory

At any time along a dispersed nominal trajectory between t0 and tfinal, it is possible

to perform a TCM and affect the dispersion covariance at a future time. Figure 5.1 shows a

three impulse LEO to powered lunar flyby (PLF) to NRHO insertion (NRI) trajectory in the

CR3BP rotating frame. The stars represent nominal maneuvers. For the TCM optimization

example, only the portion of the trajectory between the first and second nominal ∆V s is

analyzed (the portion of the trajectory that is plotted with a thicker line and multiple colors

in Figure 5.1). The targeted position for corrections in this portion is the position at the

PLF (∆V2). ∆V1 is a corrected nominal maneuver.

When an error-free correction is performed without random disturbances, the desired

position is achieved. In terms of dispersion covariance, the position dispersion at the tar-
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• Initial Dispersion
– σr = 10 km
– σv = 10 m/s

• Maneuver Execution Error
– σR∆V

= 1 m/s
– σRTCM

= 1 cm/s
• Process Noise

– σQ = 0.1mm/s/
√
s

• Position Dispersion Constraint
– σr,max = 1 km
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Fig. 5.1: Sample Nominal Trajectory and Error Parameters

geted time along the nominal trajectory is zero. When an initial dispersion, maneuver

execution error, and process noise are introduced, the position dispersion at the target be-

comes a function of these error sources and the TCM execution time along the nominal

trajectory. The blue line in Figure 5.2a shows the target position dispersion RSS as a

function of a single TCM execution time. Figure 5.2a also shows a horizontal dotted line

representing a 1 km target position dispersion RSS constraint. This constraint restricts the

feasible TCM execution time options to those below the dotted horizontal line. A vertical

dotted red line identifies the earliest TCM option that meets the target position dispersion

constraint, with all later TCM options also meeting the target dispersion constraint.

Figure 5.2b shows the TCM δV as a function of execution time for the same TCM

options that produce Figure 5.2a. The red dot represents the lowest δV TCM that meets

the target dispersion constraint. Generally, the earliest TCM execution time that meets the

target position dispersion constraint is a function of TCM execution error and process noise.

With less execution error, the TCM can be performed earlier in the trajectory at a reduced

cost. Greater execution error requires a later TCM at greater δV . This TCM to meet the

target dispersion constraint will be referred to as TCM α and is an expensive option in the

current example performed so late in the trajectory.1 Introducing an additional TCM (TCM

1Greek letters are chosen to mitigate potential confusion associated with assigning numbers to each
TCM. TCM α is the first TCM applied in the optimization sequence, but will be the last TCM to be
performed along the trajectory.
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Fig. 5.2: Side-by-side Comparison of Target Position Dispersion RSS and TCM RSS as a
Function of TCM Execution Time

β) has the potential to reduce the total δV when compared to the single TCM solution. By

fixing the TCM α execution time, TCM β can be performed along the trajectory from t0 to

tcα . Figure 5.3a shows the two TCM total δV as a function of TCM β execution time and a

fixed TCM α execution time (represented by the vertical dotted line). Selecting the TCM

β execution time that minimizes the total TCM δV (the red dot in Figure 5.3a) results in

the optimal two TCM solution that simultaneously satisfies the target position dispersion

constraint.

The process can be repeated as the first step in finding the optimal three TCM solution.

By fixing the TCM α and β execution times and introducing a third TCM (TCM γ), a TCM

γ execution time exists that again corresponds to a minimum total TCM δV . An additional

step in this case is required however, as the execution time for TCMs β and γ are variable,

affect one another, and affect the total TCM δV . A gradient-based search, step, and re-

search until a minimum value is found is implemented. A test in each direction (one time

increment earlier and later) of each TCM execution time identifies if a lower total TCM

δV solution exists. If so, a gradient vector is created and all TCM execution times are

modified one time index in the appropriate direction simultaneously. Figures 5.3b, 5.3c,

and 5.3d respectively show the sequence of incorporating three, four, and five TCMs from
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the previous optimal solution identified. Table 5.1 shows the gradient search steps taken

from the initial placement of TCM ζ (Figure 5.3d) to the lowest five TCM total δV solution

identified.

Iteration tβ (hrs) tγ (hrs) tϵ (hrs) tζ (hrs) tα (hrs) Total 1σ δV (m/s)

1 0.341831 7.046474 63.633821 76.631727 82.512024 14.600527

5 0.341831 6.693965 61.32633 75.528061 82.512024 14.595893

10 0.341831 6.253329 59.255504 74.679087 82.512024 14.59385

16 0.341831 5.724565 58.072175 74.364653 82.512024 14.593563

Table 5.1: Gradient-Based Five-TCM Optimization Steps

After a certain number of TCMs are added to the maneuver plan, the total TCM

δV will start to increase rather than decreasing. This identifies the optimal number of

TCMs and their optimal execution time along a nominal trajectory. The data in Table 5.2

identifies that the optimal number of TCMs corresponding to the lowest total δV is five, as

increasing to 6 TCMs results in a total cost increase. However, an improvement threshold

may be implemented as savings diminish prior to the cost increase. In this analysis, the

improvement threshold chosen is 3 times the RSS of RTCM , equating to roughly .05 m/s

resulting in four TCMs being chosen despite the marginal additional savings with five TCMs.

The previous analysis only considered TCMs between ∆V1 (departing LEO) and ∆V2

(PLF) to introduce the optimization steps. For scenarios with multiple target dispersion

constraints (multiple target portions of the trajectory), the optimization sequence is similar

with an additional step. The additional first step is placing TCM(s) at the cheapest option to

meet each target’s position dispersion constraint. For example, in Figure 5.4, there are two

TCM targets, ∆V2 (PLF) and ∆V3 (NRHO insertion). The first TCM is placed to optimally

meet the target position dispersion constraint at ∆V2 with a single TCM. Similarly, the

second TCM is then placed to optimally meet the target position dispersion constraint at

∆V3 with two total TCMs. The remainder of the process continues as previously described,

with eligible options for the new TCMs being across all target portions of the trajectory.
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# of TCMs 1 2 3 4 5 6

Optimal TCM 1σ δV (m/s) 103.0 15.45 14.66 14.60 14.59 14.61

Table 5.2: Optimal Total TCM RSS as a Function of Number of TCMs

TCMs are squentially added at the cheapest option throughout the entire trajectory and

re-optimized via the gradient descent method until the TCM cost increases compared to

the previous optimal value. Verification results for this method appear in Section 7.2.

5.5.2 Optimal TCM(s) with Variations in Stochastic Parameters

The objective of this section is to highlight the sensitivity of the optimal TCM set

to variations in stochastic parameters through a series of examples. Each example shows

the optimal TCM set corresponding to a change in the stochastic parameters in Figure

5.4 along the same three impulse nominal trajectory from LEO to NRI via PLF. Points of

comparison include the stochastic cost as well as the number and location of TCMs along

the trajectory as error sources change. Note that in Figures 5.4 through 5.11, while there

is an initial coast in LEO from the green dot to the departure impulsive maneuver (not

labeled to avoid congestion) and a final NRHO coast to reach the red square, these only

enable flexible departure from the initial orbit and arrival to the target orbit and are not

involved in the stochastic analysis. The initial dispersion is applied at ∆V1 and the target

dispersion constraint is applied at ∆V3 with all TCMs occurring between these endpoints.

The TCMs in the LEO to PLF portion of the trajectory aim to minimize position dispersion

at ∆V2 (PLF) and the TCMs in the PLF to NRI portion of the trajectory target ∆V3 (NRI).

The first example in Figure 5.4 shows the baseline error parameters, the optimal TCM

cost, and a comparison to another TCM selection method that has historically been referred

to as the LAR or “looks about right” method [52]. The author selected a few TCM locations

that looked about right to serve as a cost comparison to the optimal TCM set (see LAR

Jσ in subsequent figures as a comparison to optimal Jσ). The LAR TCMs were selected

with a few guidelines: 1) a TCM immediately follows nominal maneuvers to “clean up”

nominal maneuver execution error; 2) the final TCM in each portion is placed such that it
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Fig. 5.4: Baseline Stochastic Parameters, Optimal and LAR TCMs Along LEO to NRHO
Trajectory

meets the same target position dispersion constraint as the optimal for a fair comparison;

3) the remaining TCMs in each TCM targeted portion of the trajectory roughly visually

subdivide the trajectory. The cost increase is minimal for the initial error values.

The LAR TCMs are shown as open circles in Figure 5.4, while the optimal TCMs for

the baseline error sources occur at the open triangles. The second nominal maneuver at PLF

is not a corrected nominal maneuver for this analysis; the magnitude comparison between

the nominal maneuver and the TCM, in some cases, is such that the TCM magnitude is

too large compared to the size of the nominal maneuver for the savings in Subsection 5.1.5

to apply.

The next example (Figure 5.5) explores the impact of increasing the effect of the pro-

cess noise by a factor of 10. The final TCM preceding each target moved closer to the

target, which makes sense; additional process noise causes the state dispersion to grow

more quickly so the final TCM must be closer to the target to meet the same position

dispersion constraint. Additional TCMs along the trajectory serve to reduce the cost of

meeting the target position dispersion constraint as well as managing the magnitude of the

trajectory dispersion along the trajectory. With increased process noise, the optimal TCM

solution proactively manages dispersion growth throughout the trajectory with additional

TCMs. The low TCM execution error does not penalize the addition of many TCMs in
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Fig. 5.5: 10x Process Noise, Optimal and LAR TCMs Along LEO to NRHO Trajectory

this case. TCMs are grouped near the lowest nominal velocity apogee-like portion of the

trajectory. The optimal TCM set also minimizes the velocity dispersion at PLF, which,

when not properly managed, creates a very expensive subsequent TCM (more on this in

Chapter 6). The total 3σ correction cost comparison between optimal (44.4 m/s) and LAR

(122.0 m/s) in this case is noteworthy. The only LAR TCM change for this example is

an update to the final LAR TCM time prior to each target to meet the target position

dispersion constraint.

Figure 5.6 shows the result of reducing the initial dispersion significantly. A portion

of the total TCM cost is attributed to the corrected initial maneuver. With a small initial

dispersion, the correction of the initial dispersion notably reduces in magnitude.

Figure 5.7 shows the impact of increasing the nominal maneuver execution error from 1

m/s to 10 m/s 1σ. The increased nominal maneuver execution error is corrected by the first

TCM following each nominal ∆V . This results in a large 3σ TCM cost increase but does not

significantly change the optimal TCM solution or result in significantly poor performance

of the LAR TCMs when compared to the optimal set.

Figure 5.8 shows the impact of increasing the TCM execution error to 10 cm/s from 1

cm/s. The main difference in the optimal TCM set is the introduction of additional TCMs

to manage the additional error being injected by each TCM into the dispersion covariance.
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Fig. 5.8: 10 cm/s 1σ TCM Error, Optimal and LAR TCMs Along LEO to NRHO Trajectory

The TCM error is also included in the correction cost, which creates an upper bound on the

number of TCMs before the cost begins to increase again. When comparing the increase of

the optimal TCM cost (18.0 m/s initially to 42.1 m/s), the additional TCMs in the optimal

set successfully mitigate a significant impact to the overall correction cost. On the contrary,

the LAR method performs significantly worse regarding the increased TCM cost from 23.6

m/s to 114.9 m/s.

In Figure 5.9, the target position dispersion RSS constraint is reduced to 100 m from 1

km. The result is a final TCM that is closer to the target, preceded by an additional TCM

to reduce the dispersion magnitude and correction magnitude for the final TCM of each

targeting portion. The cost of the optimal TCM solution does not significantly increase as a

result of the more stringent constraint. The performance of the LAR method is not terrible

but poor by comparison as it does not benefit from additional TCMs preceding each final

targeting TCM.

Figure 5.10 shows the result of increasing the magnitude of multiple error sources simul-

taneously, highlighting the importance of an optimized TCM set. Increasing the nominal

maneuver execution error and process noise increases the TCM cost to 123.3 m/s for the

optimized set, compared to 182.2 m/s for the LAR TCM set. Increasing the TCM execution

error in addition to the process noise and nominal maneuver execution error (Figure 5.11
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Fig. 5.9: 100 m Position Dispersion Constraint, Optimal and LAR TCMs Along LEO to
NRHO Trajectory

which matches Figure 6.7) results in only a moderate increase to the TCM cost to 144.4

m/s but an additional significant increase to 332.0 m/s for the LAR TCM set. With the

increase in TCM execution error, the total number of TCMs is reduced when compared to

the set in Figure 5.10.

Table 5.3 summarizes the TCM scenario results shown in Figures 5.4 through 5.11.

There are conclusions related to modifications in each error source. Correcting initial dis-

persion is expensive whether the optimal TCM set or LAR TCM set is implemented. Sim-

ilarly, correcting nominal maneuver execution error is also expensive, independent of the

TCM set. Optimizing TCMs provides the most benefit for error sources that contribute to

the state dispersion along the trajectory, whether continuously in the form of process noise,

or discretely through increased TCM execution error. Optimizing TCMs is also beneficial

in a scenario that requires a more stringent target position dispersion.
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Fig. 5.10: Increased Nominal Maneuver Execution Error and Process Noise, Optimal and
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σr0 σv0 σR∆V
σRTCM

Q σr,max LAR Jσ Opt. Jσ

1 km 1 m/s 1 m/s 1 cm/s 0.1 mm/s/
√
s 1 km 23.6 m/s 18.0 m/s

1 km 1 m/s 1 m/s 1 cm/s 1 mm/s/
√
s 1 km 122.0 m/s 44.4 m/s

10 m 1 cm/s 1 m/s 1 cm/s 0.1 mm/s/
√
s 1 km 18.4 m/s 13.1 m/s

1 km 1 m/s 10 m/s 1 cm/s 0.1 mm/s/
√
s 1 km 110.8 m/s 100.5 m/s

1 km 1 m/s 1 m/s 10 cm/s 0.1 mm/s/
√
s 1 km 114.9 m/s 42.1 m/s

1 km 1 m/s 1 m/s 1 cm/s 0.1 mm/s/
√
s 100 m 37.8 m/s 18.8 m/s

1 km 1 m/s 10 m/s 1 cm/s 1 mm/s/
√
s 1 km 182.2 m/s 123.3 m/s

1 km 1 m/s 10 m/s 10 cm/s 1 mm/s/
√
s 1 km 332.0 m/s 144.4 m/s

Table 5.3: TCM Sensitivity Analysis Along Deterministic Optimal LEO to PLF to NRI
Trajectory Summary. Observations to be made from the results: 1) As various error sources
increase from the first row, which error sources are the most expensive to correct. 2) How
the LAR TCM set compares to the optimal TCM set with changes in error sources. A
major conclusion is that erorr sources that contribute to the state dispersion continuously
(process noise) or discretely multiple times along the trajectory (TCM execution error) have
the potential to be expensive to correct if the TCM set is not optimized. On the other hand,
increased initial dispersion and nominal maneuver execution error is expensive to correct in
the LAR and optimal TCM set.
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CHAPTER 6

CISLUNAR ROBUST TRAJECTORY DESIGN

The robust trajectory design method incorporates linear covariance analysis along each

nominal trajectory to minimize the sum of the deterministic ∆V plus an estimate for the

upper bound of the optimal TCM set δV .1 The resulting cost function represents the

statistical upper bound for the total ∆V requirement, a mission planning factor that directly

correlates to on-board spacecraft propellant. In addition to describing the problem setup

and reviewing the robust trajectory design results for various scenarios, another goal of

this section is to convey when pursuing a robust trajectory over a deterministic optimal

trajectory may provide benefit versus the scenarios when there is likely little to be gained.

The solution method is nonlinear programming with analytical gradients (Matlab’s

fmincon and the interior point method). The nominal trajectory is divided into segments

to aid convergence, particularly for nonlinear portions of the trajectory. First, an initial

guess nominal trajectory is numerically integrated. Next, the number and location of TCMs

are optimized along the initial guess per the method described in Section 5.5. The TCM

locations form the initial segmentation of the initial guess trajectory. Subsequently, cor-

responding TCMs are fixed to occur at the corresponding node after each iteration, as

opposed to performing the approach in Section 5.5. In some cases, successful NLP conver-

gence requires additional segmentation of particularly long segments between TCMs. Each

TCM is tied to a specific segment intersection and additional segments are incorporated for

long duration trajectory spans.2 In this manner, the TCM optimization algorithm is only

1A significant portion of this chapter’s content was submitted to be published with the Journal of
Astronautical Sciences.

2See the TCM identification triangles in Figure 5.8; the duration between TCMs 1 and 2 requires
additional segmentation. Unsuccessful convergence steps are generally quite obvious when the issue is too
few segments. When intermediate steps become disjointed and illogical, one attempt to obtain convergence
should be subdividing long segments into additional segments. This work does not investigate an upper
limit on the number of segments required, although the authors did not notice a drawback with erring on
the side of additional segments, such as 25 or 30 total segments across the LEO-Lunar flyby-NRI trajectory.
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run one time, on the initial guess trajectory.3 This places the optimal number of TCMs

in the appropriate local minima for the NLP to optimize as the trajectory changes. This

also ensures TCMs times are not limited to variable step size STM histories and are instead

tied to NLP problem parameters, creating a direct connection to analytical gradients with

a smoother solution space.

Section 5.5 explored the optimization of TCMs along the same deterministic optimal

nominal trajectory. In finding a robust trajectory, each NLP step corresponds to a new

nominal trajectory. At each new nominal trajectory, a new state, STM, STT, QBM (Q̄),

and QBT (∂Q̄) is propagated in order to assemble the analytical gradients to provide back

to the NLP for determining the next step. Section 5.4 described the steps for building the

analytical gradients for each TCM and their total.

The following optimization problem applies to m nominal maneuver trajectories (in-

dexed by the letter j) along an n segment trajectory (indexed by the letter i).

3If the NLP steps result in significant changes to the nominal trajectory, it may be necessary to re-run
robust optimization starting with the previously converged solution as the new initial guess. This allows for
an update to the number of TCMs and their associated nodes.
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optimization parameters S (6.1)

minimize J =
m
Σ
j=1

∆V + 3

nδV∑
k=1

(σδV ) +

n∆Vc∑
q=1

σ∥∆Vc∥

 (6.2)

subject to xf,i = f (x0,i,∆ti) (6.3)

Pk+1 = Φ(tk+1, tk)PkΦ (tk+1, tk)
⊤ + Q̄ (tk+1, tk) (6.4)

P
+tj
k = P

−tj
k +GR∆V G

⊤ (6.5)

P
+tck
k = (I +N)P

−tck
k (I +N)⊤ +GRTCMG⊤ (6.6)

x0,i = xf,i−1, i /∈ d (6.7)

r0,i = rf,i−1, i ∈ d, i > 1 (6.8)√
tr (Prr,d) ≤ σr,max, j > 1 (6.9)

∆ti ≥ 0 (6.10)

given x0,1,xf,n, P1,d, e, c, R∆V , RTCM , Q, σr,max (6.11)

Nominal impulsive maneuvers are allowed at the trajectory nodes identified in the vector

d; the vector e identifies which of nominal maneuvers in d include a correction (for n∆Vc

total corrected nominal maneuvers indexed by the letter q). The TCM optimization method

identifies nδV total position-correcting TCMs along the initial guess nominal trajectory; the

corresponding TCM execution nodes are stored in the vector c (indexed by the letter k).

The cost function (Equation 6.2) is the the sum of the nominal maneuvers plus the total

3σ TCM δV . Of the constraint equations, Equation 6.3 is the system dynamics for each

trajectory segment as a function of the initial state and the segment duration. Equation

6.4 represents the covariance propagation using numerically integrated STM terms along

the nominal trajectory and the accumulated process noise covariance between covariance

updates. Equations 6.5 and 6.6 represent the dispersion covariance update equations for

a nominal maneuver with execution error and a TCM with execution error, respectively.

Equations 6.7 and 6.8 constrain the trajectory segments to be connected by all six state
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elements (a coast) or allow an impulsive ∆V between segments, as identified by the nodes

in the vector d. Equation 6.9 constrains the RSS of the position dispersion at nominal

maneuvers after the first to be less than or equal to σr,max. The duration of each trajec-

tory segment must go forward in time (Equation 6.10). The total trajectory duration is

unconstrained. Upon convergence, the optimal TCM times for the robust trajectory are

extracted from the appropriate nodes of S.

6.1 Robust LEO to Low Lunar Orbit

The first scenario analyzed is a nominal two impulse trajectory, a translunar injection

(TLI) maneuver departing LEO followed by a lunar orbit insertion (LOI) maneuver to low

lunar orbit (LLO). The initial Earth orbit is a 400 km prograde circular orbit, coplanar

with the plane defined by the Moon’s motion around the Earth. The target lunar orbit is

110 km retrograde circular orbit, inclined 27 degrees and LOI occurring on a descending

pass. The problem formulation is such that the true anomaly is flexible in order to optimize

the departure and arrival locations within the initial and target orbits. A shooting method

is used to develop the disconnected initial guess trajectory shown in Figure 6.1a, which

converges to the deterministic optimal trajectory shown in Figure 6.1b. Figure 6.2 shows the

initial guess trajectory, convergence steps, and converged deterministic optimal trajectory

in a single figure (the NLP cost function only includes nominal ∆V ).

Figure 6.3 shows the error sources incorporated and the resulting robust LEO to LLO

trajectory. Table 6.1 summarizes the deterministic cost with optimal corrections and the

robust cost. In this case, the deterministic optimal and robust trajectories are nearly

identical. The problem dynamics and constraints do not present sufficient flexibility in the

solution space where spending additional nominal ∆V can result in a TCM cost savings.

Additionally, a major takeaway that the authors have observed in similar scenarios is related

to the cost ratio of nominal ∆V to TCM δV . For such a costly set of nominal maneuvers,

there is little trade space to spend additional nominal ∆V for savings on the TCM cost.

One possibility for the lack of a difference in the deterministic and robust trajectories

is that the problem is overly constrained. In an attempt to find a robust trajectory that
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Fig. 6.1: Initial Guess & Converged Trajectory, Deterministic Optimal LEO to LLO

Fig. 6.2: Convergence Steps to Deterministic Optimal LEO to LLO Trajectory
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• Initial Dispersion
– σr = 10 m
– σv = 1 cm/s

• Maneuver Execution Error
– σR∆V

= 10 m/s
– σRTCM

= 1 cm/s
• Process Noise

– σQ = 1mm/s/
√
s

• Position Dispersion Constraint
– σr,max = 1 km
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Fig. 6.3: Robust LEO to LLO Trajectory

Deterministic and Robust Cost Comparison (m/s)

Deterministic
∆V 4326.9 ∥∆V1∥ 3015.2

Optimal TCM 3σ δV 54.3 ∥∆V2∥ 1208.0

∆V Total Upper Bound 4381.2

Robust
∆V 4326.9 ∥∆V1∥ 3015.5

Optimal TCM 3σ δV 54.3 ∥∆V2∥ 1207.7

∆V Total Upper Bound 4381.2

Table 6.1: Robust LEO to LLO Trajectory Cost Comparison

provides savings over the deterministic optimal, the constraints are modified in the next

example. In the first LEO to LLO trajectory, the initial orbit is fully constrained with a

free true anomaly. For the next example, the initial orbit is only constrained to be a 400 km

circular orbit via Constraint Equations 3.50, 3.51, and 3.52, resulting in a free orbital plane

and true anomaly. Figure 6.4 shows three views of the deterministic optimal trajectory.

Table 6.2 shows the deterministic and robust cost comparison. While relaxing the initial

orbit constraints allowed for maneuver optimization to obtain an out of plane component

at TLI which in turn minimizes the plane change required at LOI, it did not create design

space flexibility that enables robust savings. The robust trajectory is not shown in an

additional figure as it is effectively the same trajectory as the deterministic optimal case.
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Fig. 6.4: Deterministic Optimal TLI to LOI Trajectory, Free Initial Orbital Plane

Deterministic and Robust Cost Comparison (m/s)

Deterministic
∆V 4185.1 ∥∆V1∥ 3060.9

Optimal TCM 3σ δV 54.8 ∥∆V2∥ 1124.2

∆V Total Upper Bound 4239.9

Robust
∆V 4185.1 ∥∆V1∥ 3061.8

Optimal TCM 3σ δV 54.7 ∥∆V2∥ 1123.4

∆V Total Upper Bound 4239.9

Table 6.2: Robust LEO to LLO Trajectory Cost Comparison
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6.2 Robust Three Impulse LEO to Elliptical Earth Departure to Lunar Orbit

The next option allows three impulsive maneuvers to potentially enable additional

flexibility in the design space from LEO to LLO. The initial guess trajectory is implemented

with an additional coast of a single orbit in LEO and a relaxed constraint set to allow an

additional ∆V prior to TLI. The target lunar orbit is 1000 km altitude, circular, coplanar

with the Earth-Moon plane. Figure 6.5 shows the deterministic optimal trajectory: a large

∆V from LEO enters a very high apogee (near the distance of lunar orbit) elliptical Earth

orbit followed by a small ∆V to intersect the lunar position and finally the LOI maneuver.

The second maneuver is referred to in this dissertation as the elliptical Earth departure

(EED). The total duration of this trajectory is 13.48 days.

Figure 6.6 shows the resulting robust trajectory when the cost of correcting the error

sources in Table 6.3 is included in the optimization cost function. Effectively, the size of

the Earth departure ellipse is optimized along with minor changes to the portion of the

trajectory from the Earth to the Moon. The distance from Earth at apogee of the ellipse

is 54,668 km with a new total transfer duration of 6.01 days. Table 6.4 shows the cost

comparison of the deterministic optimal result with optimal corrections and the robust

result. The robust trajectory results in a total cost upper bound savings of 15.7 m/s.

This scenario presents another interesting consideration regarding the correction of

nominal maneuvers. The first nominal maneuver (∆V1) serves as the departure from LEO

into an elliptical Earth orbit. ∆V2 serves as the “Earth flyby” maneuver, performed at

perigee of the elliptical orbit. The TCM target for the first correction portion is the position

at ∆V2. As a result, incorporating a combined correction with ∆V1 results in attempting

to correct out-of-plane dispersion through a 360◦ transfer, which is not possible, or results

in being forced to use a different transfer angle. A singularity similar to correcting out-of-

plane dispersion in a 180◦ transfer exists (the Lambert ridge for interplanetary missions).

The result is a very expensive correction to ∆V1 alongside a modification to the geometry

between ∆V1 and ∆V2 such that the correction is not impossible. As an alternative, the

first nominal maneuver can also omit the combined correction (the nominal maneuver is
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1σ Error Sources

Initial Dispersion ∆V Error TCM Error Process Noise σr,max at ∆V2

1 km 1 m/s 10 m/s 10 cm/s 1mm/s/
√
s 1 km

Table 6.3: LEO to EED to LLO Trajectory Error Sources
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Fig. 6.5: Deterministic Optimal Three Impulse LEO to EED to LLO Trajectory

executed as planned in spite of a known state dispersion), and subsequent TCMs are then

performed to manage the dispersion separately from ∆V1. The results for this section

represent an uncorrected ∆V1 and a corrected ∆V2 and ∆V3. Selecting which nominal

maneuvers are corrected is currently a manual step that must be identified and implemented

by the trajectory designer. The very large ∆V1 correction portion of the nominal maneuver

is likely inaccurate enough to be identified during Monte Carlo verification if not identified

in advance.

6.3 Robust LEO to Powered Lunar Flyby to NRHO Trajectory

This scenario starts with the same nominal trajectory used for TCM optimization in

Section 5.5. The initial orbit is a 450 km circular orbit, inclined 28 degrees with respect

to the Earth-Moon plane and rotated so that the right-ascension in the CR3BP rotating
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Fig. 6.6: Robust Three Impulse LEO to EED to LLO Trajectory

Deterministic and Robust Cost Comparison (m/s)

Deterministic
∆V 3785.1 ∥∆V1∥ 3049.7

Optimal TCM 3σ δV 133.1 ∥∆V2∥ 12.3

∆V Total Upper Bound 3918.2 ∥∆V3∥ 723.1

Robust
∆V 3799.4 ∥∆V1∥ 2544.6

Optimal TCM 3σ δV 104.4 ∥∆V2∥ 525.3

∆V Total Upper Bound 3903.8 ∥∆V3∥ 729.4

Table 6.4: LEO to EED to LLO Trajectory Cost Comparison
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Fig. 6.7: Deterministic Optimal NRI Trajectory with Optimal TCMs

frame is 50 degrees counterclockwise from the x-axis. The target orbit is the 9:2 synodic

resonant member of the L2 Southern Halo family. The nominal maneuver execution error

and process noise were increased for this example from the baseline comparison set in Figure

5.4 to the error parameters shown in Figure 6.8. Table 6.5 shows a cost comparison of the

deterministic optimal trajectory with an optimal set of TCMs to the robust trajectory.

Tables 6.6 and 6.7 show the cost of each correction as well as the absolute time each TCM

is executed along the deterministic optimal and robust trajectories, respectively.

In this scenario, the robust trajectory provides a savings of 19.8 m/s to the total cost

upper bound. For missions where ∆V1 is performed by a launch vehicle upper stage, this

represents a reduction in the space vehicle’s maneuver requirement from 550.1 to 530.1

m/s.4 Similar to the message portrayed by Subsection 5.5.2, the robust trajectory result is

dependent on the error sources incorporated. This scenario is ideal for pursuing a robust

trajectory over the deterministic optimal. The risk of spending additional nominal ∆V

is low (an additional 1.8 m/s) and the potential payoff in terms of correcting errors is

meaningful.

4Different weighting factors of cost function values between upper stage cost and spacecraft propellant
has the potential to further optimize a robust trajectory that prioritizes the spacecraft, for example.
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• Position Dispersion Constraint
– σr,max = 1 km
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Fig. 6.8: Robust NRI Trajectory

Deterministic and Robust Cost Comparison (m/s)

Deterministic
∆V 3463.9 ∥∆V1∥ 3058.2

Optimal TCM 3σ δV 144.4 ∥∆V2∥ 212.5

∆V Total Upper Bound 3608.2 ∥∆V3∥ 193.2

Robust
∆V 3465.7 ∥∆V1∥ 3058.2

Optimal TCM 3σ δV 122.6 ∥∆V2∥ 213.1

∆V Total Upper Bound 3588.4 ∥∆V3∥ 194.4

Table 6.5: Robust NRI Trajectory Cost Comparison

TCM Portion 1 Targeting ∆V2 Pos. TCM Portion 2 Targeting ∆V3 Pos.

3σ δV (m/s) Time (hrs) 3σ δV (m/s) Time (hrs)

∆V1 Corr. 3.85 0.30840 ∆V2 N/A 90.043

TCM 1 43.6 0.33967 TCM 8 72.6 90.552

TCM 2 2.84 16.483 TCM 9 3.52 108.12

TCM 3 1.48 26.842 TCM 10 2.47 115.10

TCM 4 1.28 33.218 TCM 11 1.46 116.92

TCM 5 3.64 71.453 ∆V3 σv 1.82 118.36

TCM 6 3.10 84.999

TCM 7 2.72 88.766

Table 6.6: Deterministic NRI Trajectory TCM Set
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TCM Portion 1 Targeting ∆V2 Pos. TCM Portion 2 Targeting ∆V3 Pos.

3σ δV (m/s) Time (hrs) 3σ δV (m/s) Time (hrs)

∆V1 Corr. 3.85 0.30752 ∆V2 N/A 89.871

TCM 1 43.5 0.34088 TCM 8 51.76 90.000

TCM 2 2.33 11.784 TCM 9 2.72 103.21

TCM 3 3.13 48.849 TCM 10 2.34 111.50

TCM 4 2.62 70.051 TCM 11 2.10 114.68

TCM 5 2.12 80.248 ∆V3 σv 1.25 116.16

TCM 6 1.71 84.439

TCM 7 3.23 88.666

Table 6.7: Robust NRI Trajectory TCM Set from NLP Results Details

The majority of the savings for this trajectory comes from the TCM following ∆V2.

Correcting accumulated velocity dispersion once attaining the target position at lunar flyby

is expensive; with a high velocity magnitude and a relatively low ∆V2 magnitude there are

two compounding effects. First, velocity dispersion orthogonal to the velocity vector at

flyby effectively requires a plane change to correct which is more expensive with a large

nominal velocity. A major optimization that occurs in the robust trajectory is the mini-

mization of the velocity dispersion at lunar flyby (an RSS of 3.8 m/s) when compared to

the deterministic optimal trajectory (RSS of 26.1 m/s). Second, since ∆V2 is a relatively

inexpensive maneuver, the corrected nominal savings from Equation 5.17 is not applicable

because the correction at ∆V2 is comparable in magnitude in some cases than the nominal

maneuver, which is why the first and third nominal maneuvers are the only corrected ma-

neuvers incorporated in this problem. When modeled with the combined maneuver savings,

the nonlinear program leverages the savings in an unrealistic way, resulting in an unrealistic

combined savings which fails Monte Carlo verification.

In general, robust solutions also result in an earlier arrival to the target orbit, thereby

reducing the total dispersion growth that occurs from dynamics and process noise.5 While

5However, there are competing stochastic interests; a TCM to mitigate an initial dispersion early in a
trajectory generally benefits from having a longer duration target. Again, the robust result is very dependent
upon the error sources utilized.
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Fig. 6.9: Robust NRI Trajectory with Free Initial Plane

a difficult comparison to make visually between Figure 6.8 (robust) and Figure 6.7 (deter-

ministic optimal), the robust NRHO insertion position occurs 2052 km earlier in the NRHO

path compared to the deterministic optimal insertion. In another run of the same scenario

scenario with less process noise, the robust solution resulted in an optimal NRI 1011 km

earlier than the deterministic optimal NRI.

Relaxing the initial orbital constraint set to free the orbital plane by implementing

Constraint Equations 3.50, 3.51, and 3.52 rather than constraining the initial position and

velocity enables additional optimization in the deterministic optimal and robust NRI sce-

narios. Figure 6.9 shows the resulting robust NRI trajectory and Table 6.8 shows the cost.

The robust trajectory provides a potential 77.8 m/s in savings compared to the determin-

istic optimal trajectory. Assuming ∆V1 is performed by a launch vehicle upper stage, the

space vehicle maneuver requirement is 509.7 m/s. Appendix B.2 shows the CR3BP state

at mission events and coast durations required to recreate this trajectory.

Table 6.9 shows the result of a study comparing the sensitivity of multiple NRI trajecto-

ries with a free initial orbital plane to variations in stochastic parameters. The trajectories

compared are: 1) the deterministic optimal trajectory in Table 6.8; 2) the robust trajectory

in Table 6.8; 3) a new robust trajectory created specifically for the new stochastic param-

eters. The results shown for Trajectories 1 and 2 are the TCM cost along the nominal

trajectory using the algorithm described in Section 5.5.1 and the total cost upper bound.

The nominal ∆V is not shown again as it does not change for each test for Trajectories 1 and
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Deterministic and Robust Cost Comparison (m/s)

Deterministic
∆V 3439.3 ∥∆V1∥ 3052.5

Optimal TCM 3σ δV 200.86 ∥∆V2∥ 195.6

∆V Total Upper Bound 3640.2 ∥∆V3∥ 191.2

Robust
∆V 3440.9 ∥∆V1∥ 3052.7

Optimal TCM 3σ δV 121.49 ∥∆V2∥ 188.9

∆V Total Upper Bound 3562.4 ∥∆V3∥ 199.3

Table 6.8: Robust NRI Trajectory Cost Comparison

2. For Trajectory 3, each row represents a new robust trajectory with a new nominal cost

and TCM cost, each the converged result from the NLP robust trajectory design method.

There are numerous conclusions to be made from this table, related to the sensitivity of

each trajectory to various error sources, which error source is driving the large velocity

dispersion after PLF, and once a robust trajectory is found for a specific set of error sources

(Trajectory 2), whether it continues to perform well to variations in the error sources or is

it beneficial to find a new robust trajectory for each change in error sources.

First, observe the change in cost associated with changes to the initial dispersion.

Reducing the initial 1σ position dispersion from 1 km to 100 m results in a large reduction in

TCM cost along the deterministic optimal trajectory (200.86 to 139.99 m/s). This highlights

that the deterministic optimal trajectory is sensitive to initial position dispersion. On the

other hand, the TCM cost along the robust trajectory is only reduced from 121.49 to 120.29

m/s with the same change in initial position dispersion, which leads to the conclusion that

the robust trajectory is robust to initial position dispersion. The TCM after powered lunar

flyby continues to be the major cost driver due to large velocity dispersion. The robust

trajectory in these cases continues to minimize the velocity dispersion at PLF and the

resulting 3σ RSS of the TCM following PLF.

Second, observe the change in cost associated with changes to the nominal maneuver

execution error. A reduction in 1σ nominal maneuver execution error from 10 to 1 m/s
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results in a decrease along the deterministic optimal trajectory from 200.86 to 142.39 m/s.

The same change to nominal maneuver execution error for the robust trajectories reduces

the cost from 121.49 to 41.30 m/s, a larger difference. While the robust trajectory is less

sensitive to initial position dispersion it appears to be more sensitive to nominal maneuver

execution error. Both trajectories appear to exhibit similar sensitivity to changes in TCM

execution error and process noise; decreases to each of these error sources results in a reduc-

tion to the cost of corrections. Even in the case with the lowest error source magnitudes,

the 3σ TCM cost is reduced from 19.27 to 11.73 m/s while the nominal ∆V increases by

either 0.5 m/s or 1.6 m/s, further higlighting that the robust trajectory is a worthwhile

pursuit with minimal risk of an overall increase in cost.

Third, the performance of optimal TCMs along Trajectory 2 appear to perform quite

comparably to a new robust convergence for each reduction in error source values. While

this phenomenon has not been extensively tested to verify its universality, in this instance,

identifying a robust trajectory to larger error sources appears to also be robust to reductions

in smaller magnitude error sources such that there are diminishing savings realized by finding

a new robust trajectory.

Problem constraints also play a significant role in finding a robust trajectory. Another

three impulse lunar flyby trajectory tested was insertion into the Artemis I Distant Retro-

grade Orbit (DRO) via powered lunar flyby. The constraint being compared is the lunar

flyby distance constraint. In the NRI lunar flyby, the optimal solution has a perilune radius

of 2094 km and perilune is constrained to be greater than or equal to 1837.4 km (the moon’s

radius plus 100 km). As a result, in the NRI case the flyby distance constraint is not active.

However, in the DRO case, the flyby constraint is active and prevents the trajectory from

traversing within the surface of the moon. The active flyby distance constraint limits the

design space such that the optimal deterministic and robust trajectories converge to the

same trajectory shown in Figure 6.10. On the other hand, any mission related constraints

on TCMs (such as crew sleep avoidance) that prevent performing the optimal number at
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(km) (m/s) (m/s) (cm/s) (
mm/s√

s
) Cost Along 3439.3

m/s Det Opt (m/s)

Cost Along 3440.9

m/s Robust (m/s)

New Robust Trajectory (m/s)

σr σv σR∆V
σRTCM

σQ TCM

δV

Upper

Bound

TCM

δV

Upper

Bound

Nom.

∆V

TCM

δV

Upper

Bound

1 1 10 10 1 200.86 3640.2 121.49 3562.4 3440.9 121.49 3562.4

1 0.1 10 10 1 199.45 3638.8 120.62 3561.5 3440.9 120.08 3561.0

1 1 10 10 0.3 190.96 3630.3 116.60 3557.5 3440.9 115.40 3556.3

1 1 10 1 1 189.04 3628.4 112.28 3553.2 3440.6 112.52 3553.1

1 1 10 10 0.1 188.24 3627.6 115.05 3555.9 3440.9 115.00 3555.9

1 1 1 10 1 142.39 3581.7 43.79 3484.7 3442.0 41.30 3483.3

0.1 1 10 10 1 139.99 3579.3 121.95 3562.8 3440.2 120.29 3560.5

0.1 0.1 10 10 1 137.36 3576.7 119.32 3560.2 3440.3 117.90 3558.2

0.01 0.01 10 10 1 134.17 3573.5 118.97 3559.8 3440.2 117.26 3557.5

0.1 0.1 1 10 1 57.86 3497.2 38.73 3479.6 3441.2 38.46 3479.6

0.1 0.1 1 1 0.3 23.45 3462.8 14.70 3455.6 3439.9 14.96 3454.8

0.1 0.1 1 1 0.1 19.27 3458.6 11.45 3452.3 3439.8 11.73 3451.5

Table 6.9: Robust Trajectory Cost Comparison, NRI Trajectory with Free Initial Orbital
Plane
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Fig. 6.10: Deterministic Optimal and Robust LEO-PLF-DRO Trajectory

the optimal execution time have the potential to increase the benefit of a robust trajectory

as the TCM cost increases.

6.4 Robust NRHO Rendezvous Trajectory

The next scenario analyzes an active chaser spacecraft trailing a passive target in the

same NRHO6 by a specified amount of time (or distance, but the specific distance for a

corresponding time delay depends on the true anomaly). Two nominal impulsive maneuvers

are allowed by the chaser with the goal of rendezvous with a future target position. The

initial and final segments are again flexible in duration resulting in the optimization of the

location to perform the two nominal impulsive maneuvers. This method explores long range

rendezvous and optimization of impulsive ∆V rather than terminal guidance. Effectively,

two phasing maneuvers are being performed by the chaser, occurring within the same NRHO

orbital period.

The deterministic optimal result for any initial and final position within the same orbital

period is interesting in this case; with varying chaser trail durations, the location for the two

nominal ∆V s remains nearly constant. Figure 6.11 shows five different initial conditions

determined by the duration of time delay between the chaser and the target. All initial

chaser positions precede the first ∆V . The nominal ∆V total varies quite significantly from

0.265 m/s in the 5 minute delay case to 38.9 m/s in the 12 hour delay case. The transfer

6The NRHO utilized is the 9:2 synodic resonant member of the southern L2 family.
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Fig. 6.11: NRHO Deterministic Optimal Rendezvous Trajectories

durations are likely unrealistic for manned chasers with durations between nominal ∆V s

that vary little between cases: 5.29 days for the 12 hour delay, 5.76 days for the 5 minute

delay.

As a connection between the NRI trajectory and the subject NRHO rendezvous trajec-

tory, Figure 6.12 shows the resulting deterministic optimal trajectory with the initial state

equal to the robust NRHO insertion state from Figure 6.8. The delay between chaser and

target is adjusted to 6 minutes and 3.77 seconds such that the target is 100 km in the lead

at NRI. The deterministic cost in this scenario is quite minimal, 0.379 m/s, with a transfer

duration of 4.90 days.

Considering the minimal nominal ∆V , the 100 km separation at NRI case with only

0.379 m/s deterministic ∆V cost could potentially exhibit large variations when comparing

the deterministic optimal trajectory to the robust equivalent. Two robust comparisons

that apply the initial dispersion covariance at different locations are presented that answer

slightly different questions. In Case 1, the initial dispersion covariance is applied at ∆V1.

This scenario finds the optimal robust combination without increasing the stochastic cost

through additional coast in the first segment. In Case 2, the initial dispersion covariance

is applied at the beginning of the trajectory and grows throughout the coast prior to ∆V1.
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• Initial Dispersion
– σr = 1 km
– σv = 1 m/s

• Maneuver Execution Error
– σR∆V

= 10 cm/s
– σRTCM

= 10 cm/s
• Process Noise

– σQ = 1mm/s/
√
s
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Fig. 6.12: Deterministic Optimal Rendezvous Post-NRI with Optimal TCMs

Case 2 finds the optimal robust rendezvous trajectory given the initial conditions at NRI

and accounts for the stochastic cost increase of coasting in the first segment.

Figure 6.12 shows the error sources utilized in both robust trajectory cases. Due to

the small nominal ∆V magnitude, the nominal ∆V error is reduced to 10 cm/s 1σ; such a

small maneuver would likely be performed by a spacecraft RCS subsystem. Process noise is

the larger of the values frequently used in this dissertation, simulating disturbances from a

manned vehicle. The initial position dispersion matches the NRI target position dispersion

constraint as a connection to the NRI trajectory development problem.

Figure 6.13 shows the robust trajectory result for Case 1 where the initial dispersion

covariance is applied at ∆V1. Figure 6.14 shows the robust trajectory result for Case 2

where the initial dispersion is applied at trajectory node 1 (the initial chaser position).

Table 6.10 shows the cost comparison of the deterministic optimal with optimal TCMs,

the Case 1 robust, and Case 2 robust trajectories. Transfer durations decrease from the

deterministic optimal’s 4.90 days to 5.20 hours for Case 1 and 9.14 hours for Case 2.

A small study was performed to compare the sensitivity of the robust trajectory to

variations in process noise and target dispersion constraint. Figure 6.12 shows the baseline

error sources for Case 1 and Case 2 which appear in the first and fourth rows of Table

6.11. Less process noise and a larger target position dispersion are tested to observe the
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Deterministic and Robust Cost Comparison (m/s)

Deterministic
Nominal ∆V 0.379 ∥∆V1∥ 0.215

Optimal TCM 3σ δV 42.5 ∥∆V2∥ 0.164

∆V Total Upper Bound 42.8

Robust - Case 1
Nominal ∆V 3.81 ∥∆V1∥ 1.91

Optimal TCM 3σ δV 10.4 ∥∆V2∥ 1.91

∆V Total Upper Bound 14.2

Robust - Case 2
Nominal ∆V 4.46 ∥∆V1∥ 1.94

Optimal TCM 3σ δV 13.0 ∥∆V2∥ 2.52

∆V Total Upper Bound 17.4

Table 6.10: Robust NRHO Rendezvous Trajectory Cost Comparison

sensitivity of the robust results to error sources. The initial dispersion and maneuver

execution error remain unchanged from Figure 6.12. Rather than replotting each trajectory,

the NRHO true anomaly (TA) for ∆V1 (TA1) and ∆V2 (TA2) is shown to define the nominal

trajectory. As the stochastic cost increases with more process noise or a more stringent

target dispersion constraint, the optimal robust solution slides toward a more expensive

(and shorter duration) nominal trajectory. The opposite is true for the case with less

process noise and a less stringent target position dispersion constraint.

The ratio of nominal ∆V to TCM δV in this scenario is skewed heavily toward the

TCM cost. As a result, there is a large opportunity to spend a little more nominal ∆V in

exchange for significant TCM savings resulting in a drastic change to the optimal trajectory.

The robust trajectory exhibits similar modifications but on a larger scale for this example:

a shorter transfer duration and earlier arrival to the target state minimizes state dispersion

growth through problem dynamics and random disturbances. Also, while not explicitly

shown through additional figures, optimizing the number and locations of TCMs mitigates

a significant increase in TCM δV with changes in error source magnitudes when compared

to a fixed TCM set.
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Case 1σ Error Sources Cost (m/s) True Anomaly

σQ σr,max at ∆V2 Nom. ∆V TCM 3σ δV TA1 TA2

1 1 100 m 3.81 10.4 179.12◦ 180.88◦

1 .1 100 m 3.00 10.2 179.12◦ 180.99◦

1 1 1 km 2.32 7.59 178.52◦ 181.44◦

2 1 100 m 4.46 13.0 163.13◦ 167.97◦

2 .1 100 m 3.61 10.6 163.00◦ 169.94◦

2 1 1 km 2.27 9.84 163.00◦ 168.68◦

Table 6.11: Robust NRHO Rendezvous Trajectory Sensitivity to Process Noise and Target
Position Dispersion Constraint
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CHAPTER 7

RESULTS VERIFICATION

7.1 Stochastic Results Verification via Monte Carlo Analysis

The first comparison verifies that the modeled stochastic TCM estimates are repre-

sentative of realistic magnitudes when compared to a Monte Carlo analysis. Each Monte

Carlo sample represents a full pass through the trajectory with error sources incorporated

as samples of random Gaussian error sources of the appropriate variance. In more detail,

each dispersed trajectory in the Monte Carlo analysis begins with the initial mean position

and velocity (x̄0,i). The initial state dispersion is applied to create the dispersed initial

state

x (t0) = x̄0,i + eP0 (7.1)

where eP0 is a zero-mean Gaussian sampling of the initial state dispersion covariance matrix

P0 (the position and velocity dispersion of which have equal variances in all three directions

as modeled). The dispersed initial state x (t0) is numerically integrated the appropriate ∆t

to the next random trajectory event via the 4th-order Runge-Kutta algorithm with fixed

time steps (∆td). Random accelerations (process noise) are incorporated discretely at each

time step as an addition to the first-order velocity dynamics:

v̇ (x) = a (x) + qd (7.2)

where the discrete contribution of process noise qd is a white noise sampling scaled by the

fixed numerical integration time step:

qd =

√
eQ
∆td

(7.3)
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eQ is a zero-mean Gaussian sampling of the 3 × 3 process noise matrix Q (also equally

distributed in all three directions), which is sampled a single time and held constant for all

four Runge-Kutta function calls per time step ∆td. In this manner, uncorrelated random

accelerations are discretely incorporated throughout each dispersed trajectory.

Once at the time corresponding to a nominal maneuver or TCM event, te, the actual

∆V that achieves the target position is iteratively calculated using Matlab’s fsolve, with

the nominal maneuver or nominal TCM serving as the initial guess. The calculated impulse

is applied to the dispersed state along with the appropriate maneuver execution error:

x (te)
+ = x (te)

− +∆V + eR (7.4)

where eR is the Gaussian maneuver execution error defined by the appropriate execution

error covariance matrix R∆V or RTCM . The process is repeated until each trajectory event

and target time have been achieved. Following the modeling of 1,000 individual dispersed

trajectories, the statistics of the magnitude of each correction form the metric by which

the modeled results in this dissertation will be compared. The magnitude of a vector is no

longer a Gaussian random variable: all values are positive (it is not zero mean) and it is

not symmetric about the mean. As such, to produce a 3σ-equivalent value for comparison,

a percentile calculation is used to compute a value that contains 99.7% of the sample

magnitudes. For corrected nominal maneuvers, the value used for comparison from the

Monte Carlo analysis is the change in magnitude from the nominal maneuver. Appendix

C presents a separate Monte Carlo analysis comparing the accumulated state dispersion

covariance matrix from discrete process noise incorporation described here to the numerical

integration of the QBM method.

Table 7.1 shows the results of a 1,000 run Monte Carlo analysis alongside the stochas-

tic estimates for the robust NRHO insertion trajectory with a free initial orbital plane in

Section 6.3 (Figure 6.9). The linear covariance-based estimates are conservative, however

not excessively large. The conservatism of the results is expected; 3 RSS of the TCM co-

variance matrix bounds the worst case direction of covariance alignment [53]. These results
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Correction Monte Carlo 99.7%
Magnitude (m/s)

Linear Covariance-based
3σ RSS (m/s)

∆V1 Corr. 5.23 3.84

TCM 1 37.4 42.8

TCM 2 1.73 1.78

TCM 3 2.17 2.88

TCM 4 1.89 2.63

TCM 5 1.57 2.30

TCM 6 1.60 2.03

TCM 7 1.47 1.79

TCM 8 1.24 1.63

TCM 9 37.5 51.1

TCM 10 2.57 2.84

TCM 11 1.78 2.44

TCM 12 1.54 2.17

∆V3 σv 1.14 1.30

Total 99.8 121.5

Table 7.1: Robust NRI Monte Carlo Verification Results

verify that the robust trajectory design method is producing results that are representative

stochastic estimates given the error sources present. The magnitude of the correction to

∆V1 appears to be an outlier in the trend of conservatism with the linear covariance-based

estimates. A specific reason has not been definitively determined; hypotheses include a

nonlinearity that is not being accounted for in the corrected maneuver savings model, or a

potential issue with the fixed time-step Runge-Kutta integration and a loss of accuracy when

compared to variable-step variable-order integration being used for the nominal trajectory.

7.2 Optimal TCM Set Verification

The purpose of this verification step is to test the optimality of the TCM set chosen

using a genetic algorithm. Two sets of results are verified: first, whether the TCM opti-
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Correction Fast Opt TCM Time (hrs) GA TCM Time (hrs)

TCM 1 0.33994 0.33994

TCM 2 25.945 25.792

TCM 3 44.974 44.757

TCM 4 55.351 55.264

TCM 5 60.846 60.784

TCM 6 63.576 63.556

Total 3σ TCM
Magnitude (m/s)

54.3026 54.3024

Table 7.2: Optimal TCM Set Verification Using Genetic Algorithm Along LEO to LOI
Trajectory

mization scheme along a nominal trajectory described in Section 5.5.1 finds the optimal

TCM set; second, if the nonlinear program converges to the optimal set when finding the

robust trajectory. The total number of TCMs is not modified in the genetic algorithm

search. Each of the following genetic algorithm searches is allowed 500 generations with a

population size of 100.

The first TCM set verification is along the deterministic optimal LEO to LLO trajectory

in Section 6.1 (Figure 6.1b). Table 7.2 shows a comparison of the TCM time result from

the fast optimization TCM method along the deterministic optimal trajectory as well as

the genetic algorithm results. Table 7.2 also shows the total cost of each TCM set. While

the fast TCM optimization method did not find a minimum TCM cost as low as the genetic

algorithm’s converged value, the genetic algorithm only reduced the cost an additional

0.0004%. The fast TCM optimization with a single target runs in 9 seconds while the

genetic algorithm takes 68 seconds in this instance.

The second TCM set verification is along the robust LEO to powered lunar flyby to

NRI trajectory with free initial orbital plane (Figure 6.9). The main difference in this case

is the existence of two TCM targets at the second and third nominal maneuvers. Table 7.3

shows the comparison between the fast optimization method along the robust trajectory

and the genetic algorithm results as well as the nonlinear program converged TCM set.
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Correction NLP Converged
TCM Time (hrs)

Fast Opt TCM
Time (hrs)

GA TCM Time (hrs)

TCM 1 0.02157 0.02158 0.02174

TCM 2 6.281 6.2225 5.1273

TCM 3 45.311 49.351 43.946

TCM 4 75.927 83.769 75.377

TCM 5 95.037 - 94.933

TCM 6 105.68 103.15 105.68

TCM 7 110.67 110.38 110.68

TCM 8 112.69 112.69 112.69

TCM 9 114.06 114.09 114.06

TCM 10 126.89 126.59 127.87

TCM 12 135.80 135.63 136.01

TCM 13 139.13 139.13 139.13

Total 3σ TCM
Magnitude (m/s)

121.49 122.05 121.47

Table 7.3: Optimal TCM Set Verification Using Genetic Algorithm

The fast optimization method results in a total 3σ TCM magnitude of 122.0 m/s while the

genetic algorithm produces a TCM set that costs 121.5 m/s. The fast TCM optimization

in this case runs in 39 seconds without parallel processing while the genetic algorithm takes

126 seconds with parallel processing on 7 cores. All of the results are within 0.5% of each

other. This instills confidence in the fast TCM optimization method and the accuracy of

previous results presented.

The third TCM set verification is along the deterministic NRI trajectory with a fixed

initial orbital plane (Figure 6.7). Table 7.4 shows the comparison of the fast optimization

TCM set and the genetic algorithm TCM set. In this instance, the genetic algorithm and

the fast TCM optimization method produced results within 0.2% of each other. The genetic

algorithm with 7 cores produced its results in 240 seconds while the fast TCM optimization

method took 54 seconds in this instance.
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Correction Fast Opt TCM Time (hrs) GA TCM Time (hrs)

TCM 1 0.33967 0.33967

TCM 2 16.483 16.065

TCM 3 26.842 26.337

TCM 4 33.218 32.990

TCM 5 71.453 71.453

TCM 6 84.999 84.999

TCM 7 88.766 88.768

TCM 8 90.552 90.546

TCM 9 108.12 106.05

TCM 10 115.10 113.88

TCM 11 116.92 116.92

Total 3σ TCM
Magnitude (m/s)

144.4 144.1

Table 7.4: Optimal TCM Set Verification Using Genetic Algorithm

7.3 Robust Trajectory Verification

The purpose of this section is to verify a converged trajectory’s optimality via a different

optimization method. The trajectory chosen to verify is the two-burn NRHO rendezvous

trajectory from Section 6.4, specifically “Robust - Case 2” from Table 6.10. This trajectory

was chosen because it can be simplified to a problem of two independent variables with an

associated cost. A mission map displaying the cost on the z-axis enables visual verification

of two independent problem variables: coast duration in the first segment prior to nominal

∆V1 and coast duration in the final segment following ∆V2 (the rendezvous maneuver).

The target begins 100 km in the lead in each scenario and follows the natural motion

trajectory throughout the scenario. By prescribing the first and last segments’ coast times

the location of the nominal maneuvers is determined. The result is a fixed rendezvous time

for each specific combination, but the transfer time and rendezvous location are variable

across combinations. Each individual combination then represents a prescribed ∆V1 and

∆V2 position and fixed transfer duration, which has a single solution (similar to Lambert’s
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Fig. 7.1: Nominal ∆V Optimization via Mission Map - NRHO Rendezvous

problem). The cost associated with each combination’s singular solution is displayed on

the mission map. The single differential correction method described in Subsection 3.1.2 is

used to adjust the chaser velocity to meet the target position at the specified time.

The first step is verification of the deterministic optimal rendezvous trajectory and

comparison to the NLP-converged solution in Figure 6.14. Figure 7.1 shows the contour

plot for the deterministic rendezvous cost as a function of the coast time in the first and

last segment and the corresponding minimum impulse trajectory. The contour represents

an ideal solution space for use by a gradient-based solver with a single minimum value and

a monotonic decrease toward the minimum. Validation of the optimal solution is successful

as the result matches the NLP-converged deterministic optimal trajectory in Figure 6.12.

Next, the optimal TCM set cost is computed along each nominal trajectory in the mis-

sion map (Figure 7.1a). Figure 7.2 shows the contour of total 3σ TCM cost. One immediate

observation is a nearly opposite cost incentive compared to nominal ∆V ; an increase in the

duration of coast in segment n increases the nominal ∆V cost while the opposite is true for

3σ TCM cost. Another observation is the apparent sub-structure and lack of smoothness

in the TCM cost contour. This is an artifact of the optimal TCM set being limited to the
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Fig. 7.2: Optimal 3σ TCM Cost Mission Map

set of discretized time increments generated during numerical integration and demonstrates

the need for assigning TCMs at segment intersections during optimization. This plot was

attempted to be smoothed by increasing the number of nonlinear integration time steps,

however, it does not completely rectify the issue. Without the attempted smoothing as

shown (which is otherwise costly in terms of additional computation required), the gradient

frequently changes sign in an unpredictable way, preventing gradient-based convergence.

Finally, the robust mission map shows the combination of nominal ∆V plus 3σ TCM

δV for the purpose of verifying the robust trajectory results in Figure 6.14 and Table

6.10. Figure 7.3a shows the robust mission map contour representing the total cost upper

bound for each trajectory. The minimum value is identified on the contour plot and the

corresponding robust trajectory is shown in Figure 7.3b. The results successfully verify

the robust NRHO rendezvous trajectory identified in Section 6.4 is the two-impulse local

minimum cost solution. The solution space is mostly monotonically decreasing toward

the minimum value with the exception of a ridge that forms with long duration coasts in

segments 1 and n (representing short duration transfers near apolune).
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145

CHAPTER 8

CONCLUSIONS, FINAL REMARKS, AND FUTURE WORK

8.1 Conclusions

This dissertation presented a robust trajectory design method that incorporates stochas-

tic error sources and the cost of correcting those errors into the optimization cost function

alongside total deterministic ∆V . The cost of error correction is estimated using linear

covariance analysis. Major mission events such as nominal maneuvers serve as the target

for TCMs and an inequality constraint on the RSS of the position dispersion covariance en-

forces a maximum magnitude of the target position dispersion at corresponding events. The

robust trajectory is found using nonlinear programming whereby the gradient of the cost

function (nominal ∆V plus 3σ TCM δV ) informs modifications to the nominal trajectory in

the direction of a cheaper solution. Analytical gradients of the cost function and constraints

are implemented and derived herein. The partial derivative of linear covariance-based cost

estimates requires state transition tensors. Random disturbances are modeled as process

noise and incorporated as an accumulated dispersion covariance between covariance updates

(referred to as the Q-bar matrix). The analytical gradient of the Q-bar matrix requires the

propagation of second-order Q-bar state sensitivities (referred to as the Q-bar tensor). A

single propagation of these terms provides the opportunity to perform rapid calculation and

comparison of the error and TCM estimates along a nominal trajectory.

Chapter 2 presented the mathematical background to be applied throughout the disser-

tation to include the CR3BP theory and second-order state transition tensor theory. Chap-

ter 3 began investigating the trajectory design and optimization problem in the CR3BP,

but only in a deterministic sense.

Chapter 4 results included two-body trajectories robust to initial state dispersion only.

A useful conclusion from the results informs what scenarios are likely to benefit most by
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pursuing a robust trajectory over a deterministic optimal trajectory. Short duration trajec-

tories with relatively small nominal ∆V serve to benefit the most with a robust trajectory:

with a short trajectory, there is less time to correct a large error, therefore the correction

magnitude must be greater. The ratio of cost function terms is important as well. If the

nominal ∆V is much greater than the cost of correcting errors, the cost function is skewed

toward optimizing nominal ∆V . Long duration scenarios with large nominal ∆V mag-

nitudes are expensive nominally and have more time to correct large errors at a cheaper

cost.

Chapter 5 introduced maneuver execution error, random disturbances as process noise,

multiple TCMs, and began exploring the effect of changing the magnitude of error sources on

the resulting TCM set formed by the fast TCM optimization method presented. With four

total error sources, a sensitivity analysis demonstrated the impact of changing each error

source individually. Initial dispersion is generally expensive to correct with the first TCM

but also has the potential to create large velocity dispersion at future trajectory events that

can be very expensive to correct. Nominal maneuver execution error is generally corrected

with a single TCM after the nominal maneuver and has a minimal impact on the remainder

of the TCMs, however, there are exceptions. Since the optimal TCM solution includes

numerous TCMs in many cases, TCM execution error does have a large impact on the

location, number, and total cost of the TCM solution. Variations in process noise have

a large impact on the resulting TCM solution as well. One conclusion is that optimizing

TCMs has the potential to greatly mitigate the cost of increasing error sources, which was

demonstrated by the comparison with the “looks about right” TCM solution.

Chapter 6 presented robust cislunar trajectory results and included all of the error

sources and multiple TCM opportunities introduced in Chapter 5. Specific trajectories

include a two-impulse LEO to LLO, a three-impulse LEO to LLO trajectory, a three-

impulse LEO to powered lunar flyby to NRHO insertion trajectory, and a two-impulse

NRHO rendezvous trajectory. A similar conclusion to Chapter 4 was made: the ratio

of nominal ∆V to 3σ TCM δV is important. In cases where the nominal ∆V is very
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expensive, the percentage savings by pursuing a robust trajectory is likely going to be

small. In some cases, like the LEO to LLO trajectory, there is not a difference between

the deterministic optimal and robust trajectory because the design space and dynamical

connection being leveraged traversing the lunar corridor does not offer an opportunity to

spend more nominal ∆V for TCM savings. Introducing additional flexibility into the design

space with an additional nominal maneuver may provide that opportunity though; the three-

impulse LEO to elliptical Earth departure to LLO scenario does offer savings for the robust

trajectory. The three-impulse LEO to powered lunar flyby to NRHO insertion trajectory

also provides flexibility to incorporate robust trajectory savings, however, the scenarios are

multi-faceted regarding where the robust trajectory provides savings. The savings are found

by minimizing a large velocity dispersion at the correction after powered flyby, which is very

expensive to correct at that instance due to the high nominal velocity magnitude. Finally,

the results from a two-impulse NRHO rendezvous scenario show that when the correction

cost is now much larger than the nominal ∆V , the trajectory exhibits large changes through

the shortening of the overall duration which minimizes the cost of correcting accumulated

error throughout.

Chapter 7 verified robust trajectory results in three ways. First, a Monte Carlo analysis

verified the linear-covariance based correction costs for a LEO to powered lunar flyby to

NRHO trajectory. Second, a genetic algorithm was used to verify the optimal TCM execu-

tion times along a resulting robust trajectory. Third, in the two-impulse NRHO rendezvous,

contours of the solution space were developed to verify that the nonlinear program result

visually converged to the plotted local minimum value.

8.2 Future Work

There are numerous paths for next steps and future work. Major categories include

incorporating navigation error into the method, incorporating this method into a trajectory

design tool like COPERNICUS, improving run time, incorporating indirect optimization,

further utilizing higher-order propagated terms to increase the accuracy of correction esti-

mates, and the continued search for other useful robust trajectories.
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Incorporating navigation error has the potential to further increase the benefit of taking

a robust trajectory. The simplest approach would be including a standard navigation error

value when performing calculations. However, a really interesting approach could be mod-

eling the navigation problem in parallel. A robust trajectory result could then benefit from

taking a path that maximizes information gained by optimizing measurement geometry and

in turn minimizing the cost of corrections.

A hopeful next step is incorporating stochastics into a trajectory design tool like

COPERNICUS. When finding a deterministic optimal trajectory, the tool in this disser-

tation is somewhat similar to a tool like COPERNICUS. Incorporating stochastics could

open the aperture as far as robust trajectory discoveries go and enabling a larger group of

people to search for a robust trajectory.

There are also opportunities for improving the run-time of each NLP iteration. Cur-

rently, each nominal trajectory requires numerically integrating 510 equations along the

nominal trajectory each iteration. A simple improvement to run time is parallelizing the

propagation of each trajectory segment since it is not required to propagate the segments

sequentially. Another opportunity for reducing run time is incorporating directional state

transition tensors, whereby the second-order STT’s 216 equations could be reduced to as

few as 6 equations by identifying and propagating the STT only in the most important one

or two directions, as identified by the eigenvalues and eigenvectors of the left-hand Cauchy

Green Tensor (CGT). [54] Some testing revealed that it may also be possible to propagate

a directional covariance value using both the left and right-hand CGT, similarly reducing

the number of equations required for the QBT.

Other improvements to the robust trajectory design method could include the incorpo-

ration of indirect optimization techniques or approximations to enable convex optimization

of parts of the problem. Specific to the TCM optimization problem, it seems possible to

develop an analog to primer vector theory specific to optimizing the number and location

of TCMs along a nominal trajectory, or at least utilizing an indirect approach to verify a

solution’s optimality. Similarly, there is also still room to improve the fast TCM optimiza-
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tion method along a nominal trajectory, such as using analytical gradients to take more

efficient steps toward a minimum value.

Finally, linear covariance analysis utilizes first-order terms (STMs) along the trajectory

to perform the stochastic estimates. There reaches a point where linearization relative to

the nominal trajectory becomes inaccurate. Incorporating higher order terms into estimates

has the potential to expand the region of accuracy with respect to the nominal trajectory.

However, it also introduces some challenges as the solution for a correction utilizing higher

order terms requires an iterative solution method as opposed to the closed-form solution

using only first-order terms.

A large portion of future work is continuing the search for robust trajectories and

building intuition regarding where the most potential benefit lies. The author has begun an

investigation in the bicircular restricted four body problem to identify any robust benefits

to the long duration ballistic lunar transfer. Investigating robust trajectories with TCM

restrictions, such as crew sleep avoidance, could reveal interesting robust results as well.

Another interesting problem is related to robust trajectory guidance once a trajectory has

been departed upon and error sources begin to be realized. For example, after the error

is realized following the initial nominal maneuver, is a tool like NASA’s two-level targeter

implemented or is there benefit to be gained by incorporating stochastics into a guidance

and targeting algorithm. Finally, more than three nominal maneuvers could be considered

to link together additional mission events. This dissertation only considered up to three

nominal maneuvers, however, the method is not limited to three. The design space likely

becomes more complicated with additional nominal maneuvers so additional challenges

should be anticipated.
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APPENDIX A

DERIVATIONS

A.1 Identity Derivation

The following concepts support the subsequent identity derivations. First, is the ap-

plication of the matrix differential product rule which is applied with the same logic to the

traditional product rule:

d(ABC) = d(A)BC +Ad(B)C +ABd(C)

The trace is a linear operator and follows another convenient rule set:

d(tr (ABC)) = tr (d(ABC))

Finally, as the trace operates on diagonal elements, interchanging the order of matrix mul-

tiplication (when the matrices are square) does not change the result:

tr (AB) = tr (BA)

or independent of squareness as long as the result is a square matrix

tr (AB) = tr
(
B⊤A⊤

)
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Applying these rules in evaluating the following when only matrix A is a function of x̄

results in

∂tr
(
CABA⊤C⊤)

∂x̄
=


tr
[
C ∂A

∂x1
BA⊤C⊤ + CAB ∂A

∂x1

⊤
C⊤
]

...

tr
[
C ∂A

∂xn
BA⊤C⊤ + CAB ∂A

∂xn

⊤
C⊤
]

⊤

=


tr
[
∂A
∂x1

BA⊤C⊤C + C⊤CAB ∂A
∂x1

⊤]
...

tr
[

∂A
∂xn

BA⊤C⊤C + C⊤CAB ∂A
∂xn

⊤]

⊤

=


tr
[
C⊤CAB⊤ ∂A

∂x1

⊤
+ C⊤CAB ∂A

∂x1

⊤]
...

tr
[
C⊤CAB⊤ ∂A

∂xn

⊤
+ C⊤CAB ∂A

∂xn

⊤]

⊤

=


tr
[
C⊤C

(
AB⊤ +AB

)
∂A
∂x1

⊤]
...

tr
[
C⊤C

(
AB⊤ +AB

)
∂A
∂xn

⊤]

⊤

When the matrix B is symmetric as is the case with a covariance matrix, the identity

simplifies further:

∂tr
(
CABA⊤C⊤)

∂x̄
= 2


tr
[
C⊤CAB ∂A

∂x1

⊤]
...

tr
[
C⊤CAB ∂A

∂xn

⊤]

⊤

The case when matrices A and C are both functions of x̄ simplifies following the same

set of rules to the following expression. Two separate trace operators are applied in this
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case as C is not square and the matrix multiplications result in different sized matrices.

tr
∂CABA⊤C⊤

∂x̄
= 2


tr
[
CABA⊤ ∂C

∂x1

⊤]
+ tr

[
C⊤CAB ∂A

∂x1

⊤]
...

tr
[
CABA⊤ ∂C

∂xn

⊤]
+ tr

[
C⊤CAB ∂A

∂xn

⊤]

⊤



159

APPENDIX B

REFERENCE INFORMATION

B.1 Parameter Values Used

• Earth gravitational parameter: µE = 398600.4415 km3/sec2

• Moon gravitational parameter: µM = 4902.8 km3/sec2

• Circular lunar orbit radius: 384,400 km

B.2 Robust LEO to PLF to NRHO Insertion Parameters
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(CR3BP positions, velocities, and time in non-dimensional distance, velocity, and time)

Initial Pos. (ND) -0.0195140726104922 TLI Pos. (ND) -0.0195135906158413

-0.0162187067684891 -0.0162189127918011

-0.000332044828317289 -0.000332608222350025

Initial Vel. (ND) 4.66444762574509 TLI Vel. After ∆V1 (ND) 6.51582635545753

-1.99394107575154 -2.83385415712864

-5.45226120271818 -7.63049481038387

LEO Coast (ND) 1.03332236237512e-07 ∆V1 to ∆V2 Coast (ND) 1.09343788419489

Flyby Position (ND) 0.988009871564714 NRI Pos. (ND) 1.00668674681398

-0.00495904123495611 0.0374930477196215

0.0015405279628845 -0.121392669208028

Flyby Vel. After ∆V2 (ND) 0.229999903493435 NRI Vel. After ∆V3 (ND) 0.101654785242203

-1.24045668752913 0.149338745117038

-1.73619605339098 -0.269420048398715

∆V2 to ∆V3 Coast (ND) 0.255697143169389

Table B.1: Robust NRI with Flexible Initial Orbital Plane Trajectory States and Durations
in the CR3BP
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APPENDIX C

PROCESS NOISE PROPAGATION VERIFICATION

This appendix section presents a Monte Carlo analysis for the purpose of comparing and

verifying two methods of incorporating process noise. The first is the Q-bar matrix (QBM)

numerical integration of accumulated state dispersion from process noise as described in

Subsection 5.2 along a nominal trajectory via variable step variable order integration. The

second is the discrete incorporation of process noise as random accelerations in a fourth

order fixed time step Runge-Kutta (RK4) as described in Section 7.1. In the first method, a

single propagation estimates the state dispersion covariance for a specific process noise power

spectral density (PSD) Q relative to the nominal trajectory, which is applied continuously

via Equation 5.21. In the second method, the dispersion covariance is calculated from 2,000

individual dispersed trajectories incorporating random accelerations at each discrete time

step ∆td.

For the Monte-Carlo analysis incorporating process noise discretely at fixed time steps,

the following apply:

• Initial state: LEO departure from robust LEO to PLF to NRI

• Total integration time: 3.258 days (0.7502 ND time units)

• Fixed RK4 time step: 37.5 sec. (1e− 4 ND time units)

• Process noise: σacc =
√

Q
∆t =

1mm/s/
√
s√

∆t
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The final state dispersion covariance matrix calculated from the Monte Carlo samples is

PMC =



1.7559 0.23614 −0.29620 4.1871 −0.95950 −0.38008

0.23614 0.38166 −0.04381 0.96305 0.56841 −0.08628

−0.29620 −0.04381 0.38235 −0.70263 0.14672 0.67747

4.1871 0.96305 −0.70263 11.026 −1.5265 −0.93943

−0.95950 0.56841 0.14672 −1.5265 2.5984 0.14518

−0.38008 −0.08628 0.67747 −0.93943 0.14518 1.9289


× 10−7

The numerically integrated QBM is

Q̄t1 (t1, t0) =



1.7489 0.24907 −0.31684 4.3000 −0.95456 −0.45719

0.24907 0.37933 −0.04884 0.99831 0.55612 −0.08253

−0.31684 −0.04884 0.39734 −0.75189 0.14696 0.70541

4.3000 0.99831 −0.75198 11.441 −1.5405 −1.1070

−0.95456 0.55612 0.14696 −1.5405 2.5663 0.19359

−0.45719 −0.08253 0.70541 −1.1070 0.19359 1.9655


×10−7

The percentage difference in diagonal terms of PMC and Q̄t1 (t1, t0) is

%diff =

[
1.6 0.61 3.7 3.6 1.3 1.9

]

with an average percent difference of 2.1%.

The total integration time used is 3.258 days in spite of the fact that powered lunar flyby

occurs at 4.748 days past LEO departure. The propagated duration intentionally includes

only one of the portions of the trajectory near a planetary body (Earth departure is used

versus the portion arriving to lunar flyby) when coupled with the larger process noise value of

1mm/s/
√
s. Without TCMs managing the total accumulated state dispersion from process

noise, the QBM becomes large enough such that linearization no longer applies. Performing

the Monte Carlo analysis from LEO to PLF results in average percent differences in Monte
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Carlo dispersion covariance to QBM dispersion covariance diagonal terms in the 10-11%

range. However, with a process noise of 0.1mm/s/
√
s, the average error reduces to 1.0%

encompassing the entire LEO to PLF portion of the trajectory. Based on these comparisons,

the error between the Monte Carlo results and the QBM propagation appears to be related to

problem nonlinearities and the error propagating the linear stochastic differential equation

(Equation 5.21) versus the method utilized to incorporate process noise discretely with fixed

time step RK4 integration.
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APPENDIX D

NONLINEAR PROGRAMMING AND THE INTERIOR POINT METHOD

Potential optimization approaches include direct and indirect optimization. The author

decided to predominantly pursue the direct optimization path via a category of numerical

methods known as nonlinear programming. Many desired trajectories in the CR3BP have

historically been found using differential correction, a creative implementation of Newton’s

method. This problem setup, however, does not enable optimization and also does not

directly enable the use of inequality constraints. A literature search showed that common

large-scale nonlinear programming approaches to direct optimization include software pack-

ages like SNOPT, IPOPT, KNITRO, etc [10, 55–58]. Two types of algorithms commonly

employed within these optimization packages are sequential quadratic programming (SQP)

and interior point (IP) methods (which incorporates aspects of direct and indirect optimiza-

tion). The author pursued Matlab’s nonlinear programming implementation of SQP and

IP through the function fmincon (mainly due to availability) and generally observed more

successful convergence with IP over SQP.

Matlab’s IP method is based on the work by Nocedal et al. [59] The problem is to

minimize a function f (x) subject to equality constraints h (x) and inequality constraints

g (x).

min
x

f (x) , subject to h (x) = 0 and g (x) ≤ 0

The IP method begins by recasting inequality constraints as equality constraints with the

incorporation of a logarithmic barrier function with a slack variable, s, for each inequality

constraint [56, 60, 61]. The barrier function effectively restricts the search for the optimal

solution to the interior feasible space.

min
x,s

fµ (x, s) = min
x,s

f (x)− µ
∑
i

ln (si) , subject to s ≥ 0, h (x) = 0, and g (x) + s = 0
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Subsequently, there are two options for optimization steps. First, a direct step is the

default option, where the Karush-Kuhn-Tucker (KKT) conditions of the barrier problem

are evaluated, linearized, and a partial or full Newton step is taken toward the solution

utilizing a line search to determine the step size until the best improvement is found. The

KKT conditions are that the gradient of the Lagrangian is equal to zero at a minimum

value

∇xL (x, λ) = 0

and that the equality constraints with Lagrange multipliers are satisfied

λg,igi (x) = 0

The second step option is a conjugate gradient (CG) step, which is only taken when

the direct step fails. The CG method attempts to adjust the problem parameters and slack

variables to minimize a quadratic approximation of the problem and linearized equality

constraints within a trust region. Convergence occurs when the KKT conditions are satisfied

within a specified tolerance. The convergence parameters utilized for the interior point

method within Matlab’s function fmincon are as follows:

• Optimality tolerance: 1× 10−6 (unitless)

• Step tolerance: 1× 10−15

– In Matlab, this represents the lower bound on the size of a step from the previous

to current parameter vector, which is a combination of nondimensional distance,

velocity, and time.

• Constraint tolerance: 2× 10−10 ×m× n

– m is the length of an individual segment parameter vector, equal to 7 in this

analysis. n is the number of segments. Matlab compares the constraint toler-

ance to the sum of all constraint equations. This scales the allowable constraint

violation with the number of problem parameters. This aggregate value is again

a combination of nondimensional units.
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APPENDIX E

ADDITIONAL CITATIONS

• Matlab colorblind colormap colors [62] were used for plotting trajectory segment col-

ors.
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