
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations, Fall 
2023 to Present Graduate Studies 

8-2024 

Predicting Individual Hiking Trail Intensity Using Statistical Predicting Individual Hiking Trail Intensity Using Statistical 

Learning Learning 

Kelci Hannan 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd2023 

 Part of the Disability and Equity in Education Commons, and the Special Education and Teaching 

Commons 

Recommended Citation Recommended Citation 
Hannan, Kelci, "Predicting Individual Hiking Trail Intensity Using Statistical Learning" (2024). All Graduate 
Theses and Dissertations, Fall 2023 to Present. 305. 
https://digitalcommons.usu.edu/etd2023/305 

This Dissertation is brought to you for free and open 
access by the Graduate Studies at 
DigitalCommons@USU. It has been accepted for 
inclusion in All Graduate Theses and Dissertations, Fall 
2023 to Present by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd2023
https://digitalcommons.usu.edu/etd2023
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd2023?utm_source=digitalcommons.usu.edu%2Fetd2023%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1040?utm_source=digitalcommons.usu.edu%2Fetd2023%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/801?utm_source=digitalcommons.usu.edu%2Fetd2023%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/801?utm_source=digitalcommons.usu.edu%2Fetd2023%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd2023/305?utm_source=digitalcommons.usu.edu%2Fetd2023%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


 
 

PREDICTING INDIVIDUAL HIKING TRAIL INTENSITY USING STATISTICAL 

LEARNING 

by 

Kelci Hannan 

A dissertation submitted in partial fulfillment  
of the requirement for the degree 

of 

DOCTOR OF PHILOSOPHY 

in 

Disability Disciplines 

Approved: 

 
 
________________________________  ________________________________ 
Christopher J. Dakin, Ph.D.    David Bolton, Ph.D. 
Major Professor     Committee Member 
 
 
________________________________  ________________________________ 
Eadric Bressel, Ph.D.     Breanna Studenka, Ph.D. 
Committee Member     Committee Member 
 
 
________________________________  ________________________________ 
Tyson Barrett, Ph.D.     D. Richard Cutler, Ph.D. 
Committee Member     Vice Provost of Graduate Studies 
 

 
 

UTAH STATE UNIVERSITY 
Logan, Utah 

 
2024 

 
 
 



ii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © Kelci Hannan 2024 
 

ALL RIGHTS RESERVED 
  



iii 
 

ABSTRACT 
 
 

Predicting Individual Hiking Trail Intensity Using Statistical Learning 
 
 

by 
 
 

Kelci Hannan 
 

Utah State University, 2024 
 
 

Major Professor: Dr. Christopher J. Dakin 
Program: Disability Disciplines 
 
 

Hiking was the most popular outdoor recreation activity in 2023 and has been 

reported as the most common activity requiring Search and Rescue assistance. The low 

barriers to entry, paired with individuals’ tendency to overestimate their abilities, may pose 

problems when individuals need to subjectively assess a trail’s difficulty relative to their 

physical fitness capacity. Compounding this problem, each trail is assigned a difficulty from 

a difficulty rating system, to which all users must match the potentially inaccurate subjective 

assessment of their hiking abilities. With advancements in technology, other options exist to 

personalize trail difficulty ratings and reduce injury or overexertion risk while hiking. In this 

project, we evaluated the efficacy of generating a personalized prediction of trail difficulty. 

We first assessed the feasibility of using statistical learning models to estimate individual 

ratings of perceived exertion during a hike from biometric data, individual characteristics, 

and environmental characteristics. We then identified the variables with the greatest capacity 

to predict trail difficulty, compared accuracy of models using trail segment versus trail 

summary data, and assessed how changing the outcome variable impacted model accuracy. 
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Participants hiked the Wind Caves Trail in Logan, Utah while wearing an activity tracker and 

documenting their ratings of perceived exertion. Individual characteristics, including fitness 

level, hiking experience, and pain catastrophizing, were gathered using questionnaires before 

the hike. Based on the results, a large-scale study of this nature appears feasible, and a subset 

of predictor variables may be adequate to predict individual hiking trail intensity with 

sufficient sample size. Ultimately, using elastic net regression to predict ratings of perceived 

exertion resulted in the highest accuracy when pre-hike and intra-hike predictor variables 

were included. Classifying individual hiking intensity using a traditional difficulty scale 

resulted in every hiker being assigned the same difficulty and suggests that 46.67% of 

individuals might be misinformed of the trail difficulty and find it to be either harder or 

easier than anticipated. These projects lay a foundation for future research, within a relatively 

under-developed subject area, by illustrating study feasibility, exploring the data analytics of 

hiking difficulty prediction, and identifying variables important to these predictions.  

(140 pages) 
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PUBLIC ABSTRACT 
 
 

Predicting Individual Hiking Trail Intensity Using Statistical Learning 
 

Kelci Hannan 
 

 Hiking is an increasingly popular choice for people wanting to engage in recreation 

and physical activity. It not only offers the many benefits of exercise but also the opportunity 

to explore nature and to socialize. To ensure that new hikers are prepared to hike and remain 

safe while on the trail, knowledge of a hiking trail’s difficulty is important. Trail difficulty 

information is sometimes available at the trailhead if the trail is well-trafficked and 

maintained but is nearly always available online or through a hiking-specific mobile 

application, such as AllTrails. Both trailhead and online sources provide only one difficulty 

rating for all users regardless of personal characteristics, such as age and fitness level, which 

can lead to a misalignment of expectations and actual hiking experience. This project’s 

overall goal was to attempt to generate personalized predictions of hiking trail difficulty and 

assess the effectiveness and utility of this approach. During a series of investigations, 

individuals hiked the Wind Caves trail in Logan, Utah while wearing a fitness watch that 

recorded heart rate, hiking speed, and location. Participants recorded how hard they felt they 

were exercising while hiking using a metric called Rating of Perceived Exertion. Before 

hiking, each participant answered questions about their fitness level, response to painful 

situations, and hiking experience. This information combined with statistical models was 

used to predict each individual’s hiking intensity on the Wind Caves trail. These models were 

then evaluated for accuracy to assess how they might be used to improve estimates of hiking 

trail intensity prior to beginning a hike. We also explored which variables most improved 

hiking intensity prediction and how different perceived exertion scales impacted model 
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performance. The results of this project suggest that personalized predictions of hiking 

difficulty may be feasible with refinement of the approaches used here, such as imposing one 

hiking speed or focusing on a sub-group of hikers, and lay a foundation for future research 

into applying statistical models to this question. Finally, we offer areas for improvement in 

future studies examining personalized trail intensity predictions.   
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Chapter 1  

In 2023, participation in outdoor recreation reached a record high of 175.8 million 

people, with a little over half of Americans participating (Outdoor Industry Association & 

The Outdoor Foundation, 2024). Among outdoor recreation activities, hiking was the most 

popular (Outdoor Industry Association & The Outdoor Foundation, 2024). Hiking offers 

numerous physical health benefits, including lowering body weight, total cholesterol, and 

resting blood pressure (Greie et al., 2006) and improving insulin resistance (Schobersberger 

et al., 2010). Additionally, exposure to natural environments while hiking benefits overall 

well-being (Kaplan, 2001; R. Ulrich, 1984; R. S. Ulrich, 1979). However, hiking is not 

without risk. Among National Park Service units in 2005, hiking was the most common 

activity requiring Search and Rescue assistance (47% of incidents), and it was associated 

with 22.8% of all outdoor recreation-related fatalities (Heggie & Amundson, 2009). Under 

preparedness may be one source of this risk. For example, hiking contributed to 38% of all 

emergency medical services-involved injuries in Yellowstone National Park from 2003 to 

2004 (Johnson et al., 2007) and was the leading contributor to injury (55%) at Mount Rainier 

and Olympic National Parks between 1997 and 2001, where 14.2% of injuries across all 

activities were due to overuse or exertion (Stephens et al., 2005). The majority of hiking-

related injuries tend to be musculoskeletal in nature (Chrusch & Kavin, 2021) and mild or 

moderate in severity (Twombly & Schussman, 1995). Despite the well-documented injury 

risk associated with outdoor activity, hikers still underprepare, especially those that are 

younger, inexperienced, less fit, or plan shorter hikes and perceive this as less risky (Mason 

et al., 2013). Enhanced hiker preparation may alleviate some of these risks, and one means of 
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doing this is to provide a better match between the trail’s intensity rating and an individual’s 

pre-hike expectations and fitness level.  

 

Existing Hiking Trail Grading Systems 

Generally, hiking trail grading systems offer five to seven difficulty categories, which 

are assigned based on the, more or less, subjective assessment of trail difficulty by an 

evaluator. An individual then must subjectively match themselves to the correct difficulty 

category during the process of selecting a trail to hike. These choices about trail difficulty are 

likely a contributing factor to the aforementioned risks associated with hiking, as they can be 

quite inaccurate (Heggie & Heggie, 2012). Outdoor recreation, in general, is plagued by 

overestimation of one’s abilities, which manifests as an individual’s inability to match their 

skill level to the difficulty of the task. This is a common enough occurrence in wilderness 

activities that one author coined the term “acute bad judgement syndrome” to refer to the 

poor decisions that result from a combination of overestimation of one’s abilities and a lack 

of situational awareness (Trayers, 2004). Comparison of hiking to other outdoor activities, 

like mountaineering, reinforces the perception that hiking is easy, which may contribute to a 

general underestimation of the physical abilities required for safe participation (Heggie & 

Heggie, 2012). Therefore, expansion and subsequent standardization of trail rating systems 

could remove some of the subjectivity involved in hiking trail selection and prevent 

unnecessary injury due to the mismatching of individuals’ fitness levels to trail difficulty.  

Of the available hiking trail rating systems, one of the more objective systems uses 

average energy expenditure across treadmill gradients (Hugo et al., 1998) to categorize trail 

difficulty. This rating system has been applied to a variety of hiking trails using each trail’s 
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topographical map (Hugo, 1999b) and breaks trail difficulty into seven numerical levels with 

matching categorical designations that are ‘Very Easy’, ‘Easy’, ‘Fair’, ‘Moderate’, 

‘Difficult’, ‘Severe’, and ‘Extreme’ (Hugo, 1999a, 1999b). An extension of this system is the 

Green Flags Trails Unique Trail Difficulty Rating System, which uses a 10-point effort scale 

divided into 4 difficulties (easy, moderate, difficult, extreme) that align with total energy 

expenditure for a given trail (McIntosh & Hugo, n.d.). While this system appears to be the 

most rigorously tested of those commonly used, it seems to be applied most frequently in 

South Africa and other select locations without wide acceptance in other countries 

(International Hiking Trails, n.d.). One potential reason for the limited use of this system is 

that individuals must know their energy expenditure (kJ) on a trail that has already been 

evaluated using the Green Flags system in order to ‘calibrate’ themselves for other trails 

(Hugo, 1999b). This presents a barrier to use because energy expenditure is neither available 

for all trails nor easily accessible at a trailhead. Even if energy expenditure information is 

available, most individuals do not have access to or know how to use this value without 

instruction. In reference to such energy expenditure based rating systems, Hugo (1999) 

stresses that they are independent of the individual hiker, individuals across fitness levels will 

find a difficult trail proportionally more tiring than an easy trail, and it is the trail, not the 

person, being evaluated (for its energy requirements). While important, this exact principle 

may be an inherent point of confusion and distress for a number of leisurely hikers. Although 

individuals familiar with hiking trail difficulty ratings may understand that the difficulty 

levels are meant to be ‘easy’ or ‘difficult’ relative to their fitness level, individuals with less 

knowledge about hiking may interpret a ‘moderate’ rating to mean it will be a leisurely 
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experience, when, in fact, this trail may be difficult for a beginner. This, in turn, may lead to 

a negative experience and discourage an individual from pursuing hiking as a future activity.  

Various other, less rigorous and thoroughly tested, hiking trail rating systems exist 

and are commonly developed and implemented by local parks services. Among these rating 

systems, the variables used to quantify a trail’s difficulty are applied inconsistently, often 

differing between country, city, or park. Within the United States, for example, the National 

Park Service oversees 423 separate parks (National Park Service, 2021), of which some 

implement unique trail grading systems that differ from each other. Willamette National 

Forest grades trails as ‘easy’, ‘moderate’, or ‘difficult’ based on a trail’s grade, width, and 

surface (Willamette National Forest, n.d.), whereas Shenandoah National Park in Virginia 

implements a formula that considers a trail’s elevation gain and distance to then provide a 

numerical value that corresponds to five rating levels (‘easiest’, ‘moderate’, ‘moderately 

strenuous’, ‘strenuous’, ‘very strenuous’) (Shenandoah National Park Virginia, 2017). A 

mobile application, called Hiking Project, also has its own six-point rating system that 

provides trail ratings based on the average subjective rating of app users (Hiking Project, 

n.d.). These categories include ‘easy’, ‘easy/intermediate’, ‘intermediate’, 

‘intermediate/difficult’, ‘difficult’, and ‘very difficult’ and are predominantly based on the 

steepness of the trail and the type of terrain (Hiking Project, n.d.).  

A common theme across all trail rating systems is the requirement that individuals 

accurately estimate their fitness level to select an appropriate hike. However, evidence 

suggests that only slight to fair agreement exists between self-rated fitness and objectively 

measured fitness (Jensen et al., 2018; Obling et al., 2015). Further, an individual's estimate of 

their fitness level becomes less accurate with age (Germain & Hausenblas, 2006), and men, 
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as well as less fit individuals, tend to overestimate fitness level (Jensen et al., 2018; Shook et 

al., 2016). The sometimes-poor accuracy of an individual’s assessment of their fitness level 

may lead leisurely hikers to partake in hikes that are more difficult than they intend. An 

increase in inexperienced hikers seeking outdoor opportunities seems likely as outdoor 

recreation is encouraged by a growing number of initiatives, such as nature prescriptions (BC 

Parks Foundation, n.d.; Kondo et al., 2020; Mitten et al., 2018) and #OptOutside (REI, n.d.). 

This presents a unique challenge that calls for adaptation of classic hiking trail rating systems 

in order to accommodate an increasingly diverse group of individuals who have varying 

degrees of hiking experience.  

With many hiking trail rating systems relying heavily on physical trail characteristics 

to determine the difficulty level, a new system that considers individual physical 

characteristics and fitness level could provide an alternative, perhaps more accurate, rating 

approach. Combined with the increasing role of technology in everyday life and the 

prevalence of cell phone use to collect movement data, a more advanced approach to the 

rating of hiking trails through statistical learning could allow the opportunity for increasingly 

accurate, personalized hiking trail difficulty classification. Providing guidance to hikers 

through prediction of individualized hiking trail difficulty, in turn, could remove the burden 

from medical providers to recommend specific trails as patients progress in physical fitness 

and help to increase the safety of outdoor activity as exercise prescription (Mitten et al., 

2018). In fact, activity and intensity prediction algorithms used in tourism and sports 

domains could inspire such a rating system.   
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Performance and Intensity Prediction in Physical Activity 

A personalized rating system using individual characteristics, biometric data, and trail 

data, that predicts the trail difficulty for a given individual, could improve the general 

population’s experience of hiking and further encourage participation by sedentary 

individuals. With rapid improvements in technology, statistical approaches, and accessibility 

to technology, trail grading systems have the potential to be personalized to each hiker. 

Current use of such predictive statistical models is prevalent in tourist and leisure activity but 

often focuses on providing activity recommendations based on an individual’s preferences, 

interests, and location. Currently, there are none that allow a user to select a specific hiking 

trail and then provide the user with an estimate of the difficulty level based on the user’s own 

capability.  

The tourism industry provides suggested outdoor recreation activities through 

recommender systems. These systems identify products or services a specific user would be 

interested in (Schumacher & Rey, 2011) and can provide targeted activity suggestions based 

on location, personal interests, and other preferences (Borràs et al., 2014). With a focus on 

hiking, Calbimonte et al. (2018) prototyped SanTour, a recommender system, that would 

provide users with hiking trail options by combining individual health profiles and trail 

profiles. This approach tailors the basic recommender system to consider the physical 

condition of each person and individual factors that may be limiting, such as tolerance of 

heights, when suggesting hiking trails. More recently, Calbimonte et al. (2021) presented 

Syris, a platform developed to provide more precise information regarding the difficulty and 

risk of hiking trails while still acting as a recommender system for tourism trails. Syris is 

based in semantic data models and includes a difficulty assessment model that defines the 
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difficulty of a trail with three criteria: Effort, technique, and risk (Calbimonte et al., 2020). 

While Syris focuses on providing trail recommendations suitable for a participant’s 

questionnaire-measured fitness level, it does not provide individualized hiking trail difficulty 

ratings for a given trail. It, instead, provides a selection of trails that fit the user’s profile and 

allows for filtering of trails based on pre-assigned trail difficulties. Even with the 

consideration of individual characteristics when suggesting hiking trails and tourist 

attractions, at their core these tools remain recommender systems and do not provide direct 

information about a specific hiking trail in relation to the individual.   

Among the recommender system literature are a few instances where statistical 

modeling approaches have been used to predict event performance times (Fogliato et al., 

2020; Pitman et al., 2012; Sándor, 2018) and to classify average mountain bike trail difficulty 

based on bikers’ subjective ratings (Langer et al., 2020). Statistical learning is a broad term 

for a variety of methods used to understand and learn from data (Hastie et al., 2018; James et 

al., 2017). These methods can be used to (1) predict an outcome based on certain features 

(i.e. inputs, predictors, independent variables) and their known responses (i.e. outputs, 

dependent variables) (supervised learning), (2) determine the importance of certain variables 

to the predictive capacity of the model and, (3) infer the nature of the relationship between 

variables when no outcome variable is present (unsupervised learning) (Hastie et al., 2018). 

Investigations implementing statistical learning approaches tend to be divided into two types 

of problems: regression and classification (James et al., 2017). Generally, we can think of 

these problems in terms of the type of data the model is trying to predict. Regression 

problems deal with predicting quantitative data, and classification problems deal with 

predicting qualitative data, but, as with most things, this is not a hard and fast rule and some 
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flexibility exists (James et al., 2017). In either of these problems, the goal is to approximate 

the mathematical function that represents the relationship between the features and responses 

(Hastie et al., 2018). One recent study used statistical modeling to predict mountain bike trail 

difficulty from users’ subjective ratings of trail difficulties (Langer et al., 2020). While 

valuable for potential standardization of mountain bike trail ratings, their grading system was 

limited to only three categories, which simplifies ratings but also does not allow for 

differentiation of widely varying trail segments. In predicting performance times, statistical 

learning models tend to outperform rule-of-thumb based methods used to estimate hiking 

time (Pitman et al., 2012; Sándor, 2018) and intercept-only models predicting running time 

(Fogliato et al., 2020). A variety of explanatory variables were used in these models 

including: Hike length, trail gradient, current progress on the trail (Pitman et al., 2012), 

steepness-velocity relationship, and previously recorded velocity values (Sándor, 2018). 

While these investigations resulted in final models with high performance, these approaches 

do not address the problem of matching an individual’s fitness level to trail difficulty. 

Perhaps the body of literature most aligned with the current project is that concerning 

prediction of fatigue during sport using statistical learning approaches. The general goal of 

these studies was to identify the onset of fatigue in order to evaluate training loads and 

individualize training plans. The success of statistical models at predicting fatigue in 

Australian football (Bartlett et al., 2017; Carey et al., 2016), soccer (Geurkink et al., 2019; 

Vandewiele et al., 2017), and running (Davidson et al., 2020; Op De Beéck et al., 2018) 

suggests that statistical learning may serve as a useful starting point for predicting hiking 

difficulty. These studies employed a variety of statistical approaches to predict rating of 

perceived exertion (RPE), ranging from simple linear regression to support vector machines 
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(Appendix A), each with varying, but overall high, predictive accuracy. Specifically, Carey 

and colleagues (2016) provide a direct comparison of regression and classification 

approaches, which performed comparably in terms of predictive ability, although regression 

models resulted in slightly better predictions. Additionally, models that could account for 

non-linear relationships tended to perform better in both regression and classification across 

studies (Bartlett et al., 2017; Carey et al., 2016). The effectiveness of these studies' use of 

statistical learning to predict rating of perceived exertion across multiple sports domains with 

biometric information and/or training data suggests these predictor variables may also be 

effective for hiking trail difficulty prediction during hiking. In addition to these predictor 

variables, several other factors (e.g., weather) also likely affect trail intensity, and their 

importance can be assessed as part of the statistical learning process. Equally important is 

selecting the best outcome variable by taking into consideration the research question and the 

methods available to quantify the behavior being predicted.   

 

Prediction of Perceived Exertion as a Measure of Trail Difficulty 

Prior to the application of statistical learning models (further discussion in the 

methods), it is imperative to identify an appropriate outcome measure that provides an 

objective measure of trail difficulty and that does not prohibitively burden the hiker during its 

collection. Several options are available including a subjective assessment of trail difficulty, 

subjective ratings of perceived exertion, and heart rate. 

A subjective assessment of overall trail difficulty can be obtained using a traditional 

rating scale of ‘easy’, ‘moderate’, and ‘difficult’. While this provides the simplest measure of 

trail difficulty, it does so with limited resolution of the individual’s experience during the 
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hike, as discussed in the previous paragraphs. By forcing all trails into one of only three 

categories, we exclude much of a trail’s inherent variation. A better measure may be a rating 

of perceived exertion (RPE), as used extensively in the exercise physiology literature and, 

more importantly to this study, in other activities for statistical learning approaches (Bartlett 

et al., 2017; Carey et al., 2016; Davidson et al., 2020; Geurkink et al., 2019; Op De Beéck et 

al., 2018; Vandewiele et al., 2017). RPE, recorded at several points during the hike, can 

provide finer detail about the user experience and will allow for better identification and 

separation of individual hiking levels during model application.  

Perceived exertion is a subjective indicator of overall physical strain (Borg, 1982), 

which can be used to measure a hiker’s subjective experience of exercise intensity while 

hiking, and perhaps a trail’s difficulty. The Borg 6-20 scale (Appendix B) is a simple, 

effective tool for gauging an individual’s level of perceived exertion quickly and accurately 

(Borg, 1970, 1998). Initially, the Borg 6-20 scale was validated against heart rate (Borg, 

1962b, 1962a), and a strong correlation between these variables has been reported (Borg, 

1982) but is not always observed (Chen et al., 2002). RPE, it seems, may be dependent on 

other variables (Robertson et al., 1998), which might affect the relationship between it and 

heart rate (Chen et al., 2002). Considering that measures of external training load have been 

useful for predicting RPE (Carey et al., 2016), obtaining accurate predictions of 

individualized trail difficulty using RPE likely requires some accommodation for variables 

known to influence measures of RPE and heart rate. 

Ambient temperature, body weight, and use of hiking equipment can differentially 

affect individual RPE ratings and, therefore, they may be useful variables to include to 

improve the capacity of statistical models to predict hiking trail difficulty. Ambient 
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temperature can influence RPE, which increases in hot environments compared to cool ones. 

This effect has been observed during cycling (Maw et al., 1993), treadmill walking (von 

Heimburg et al., 2019) and during thermo-neutral yoga (Boyd et al., 2018). There also 

appears to be an additive effect of heat and hypoxic environments (at higher altitudes) 

resulting in higher RPE ratings when combined, compared to hot or hypoxic environments 

alone (Levine & Buono, 2019). Similarly, individuals who are overweight consistently rate 

perceived exertion higher than individuals of an ideal weight during self-selected (Hulens et 

al., 2003) and imposed walking intensities (Ekkekakis & Lind, 2006; Marinov et al., 2002). 

The use of hiking equipment, including trekking poles or a pack, may also impact perceived 

exertion and/or heart rate during hiking. Treadmill walking at 0% grade (Rodgers et al., 

1995) and hiking (Saunders et al., 2008) with trekking poles has been shown to result in 

significantly higher heart rate compared to not using poles, but RPE was not significantly 

altered by trekking poles regardless of trail grade (Saunders et al., 2008). Others report that 

treadmill walking at small grades with a backpack led to higher average heart rates and lower 

RPE when using poles compared to not using poles (Knight & Caldwell, 2000). Still others 

observed that trekking poles had no significant effect on heart rate or RPE (Perrey & Fabre, 

2008). At steeper grades (25%) no change in physiological variables, including heart rate, 

was observed with and without poles, but RPE was lower when using trekking poles 

(Jacobson et al., 2000). The impact of trekking poles on physiological measures appears 

dependent on other variables, including steepness of the trail (Saunders et al., 2008). Given 

these previous findings, ambient temperature, body weight, and hiking equipment have the 

potential to improve the ability of statistical models to predict trail intensity as measured by 

RPE.  
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Ultimately, the ability to accurately estimate an individual’s perceived difficulty on a 

given trail could enhance existing trail rating systems, serve to improve hiking safety and 

enjoyment (through appropriate trail selection), and improve the safety of medical 

recommendations for hiking as a prescription for outdoor activity. Therefore, the purpose of 

the current project was to develop and test a hierarchy of statistical models to determine the 

efficacy of developing a personalized prediction of hiking trail difficulty.  

 

Specific Aims 

Here we aimed to evaluate the efficacy of generating a personalized prediction of trail 

difficulty by addressing the following specific aims:  

1. Assess the feasibility of using statistical learning models to estimate individual 

ratings of perceived exertion during a hike from biometric data measured by an 

activity tracker, individual characteristics, trail characteristics, and environmental 

characteristics (Chapter 2).  

2. Identify the variables with the greatest capacity to predict trail difficulty (Chapters 2 

and 3).  

3. Compare the predictive accuracy of statistical learning models using trail segment 

data versus trail summary data (Chapter 3). 

4. Contrast the accuracy of models predicting overall trail difficulty on a traditional 

categorical rating scale, to those predicting perceived exertion on a continuous scale 

(Chapter 4). 
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Chapter 2  

Introduction 

In light of the scant research related to assessment of hiking trail difficulty (Coetzee, 

2018), the first step to making improvements in hiking trail rating systems is to identify 

variables that could be indicative of an individual’s subjective trail difficulty and to explore 

options for the ideal study design. The overarching theme of this investigation is to address 

how we can obtain a full picture of a hiker’s experience on a given trail without over-

burdening them with questionnaires, equipment, physical assessments, and excessive 

documentation while hiking.  

Before addressing this question, we need to identify and select a proxy measure for 

trail intensity with which to estimate individual hiking difficulty. As the goal is to use 

statistics to model individual hikers’ perceived physical exertion on a trail, a subjective 

measure that mirrors this perception may be an ideal choice, as it will reflect each 

individual’s perceived hiking experience. Hiking difficulty, as rated on a traditional difficulty 

scale, is a clear option as it measures an individual’s perception of trail intensity using a 

familiar format. The primary problem with traditional difficulty scales is that they tend to 

have only a few rating levels, often five to seven difficulties from which to choose. Such few 

levels can reduce discriminability between hikers, potentially limiting an algorithm’s ability 

to classify hikers into different tiers of physical fitness. Rating of perceived exertion (RPE) 

offers other benefits, such as a numeric scale, which offers rating flexibility and is important 

for some types of statistical models. Alternatively, common measures of RPE provide greater 

difficulty resolution (i.e., 15 levels), which could better separate hikers with differing fitness 
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levels and provide more variation in individual trail intensity ratings (which is valuable when 

attempting to predict using regression-based models).  

The Borg 6-20 scale, a commonly-used measure of RPE, has been well-established in 

a laboratory setting (Borg, 1962b, 1962a, 1970), but the categorical nature of this variable 

poses potential problems with regression-based modeling (Hastie et al., 2009). While it is 

possible to treat this variable as numeric, a direct measure of RPE as a continuous variable 

could be achieved by modifying the Borg 6-20 into a visual analog RPE scale (VRPE). The 

VRPE (Appendix C) has a moderate, positive relationship with the Borg scale (r = 0.71) and 

shows high reliability in test-retest analyses (ICC = 0.97) during a variety of standardized 

exercise tests (e.g., 1-mile run/walk, 1-minute push-up, 3-minute step test) (Casey et al., 

2015) and submaximal exercise (Grant et al., 1999). While these provide general support for 

use of VRPE in place of the Borg 6-20, there appear to be no reports of VRPE and Borg 6-20 

comparisons during hiking, which has the unique quality of being self-paced with no limit on 

number or length of breaks. Additionally, it is necessary to confirm that the RPE values 

measured using the VRPE provide as much (or more) information as the Borg 6-20.  

While a host of variables from human physiology, biomechanics, and physical 

assessments could inform trail difficulty research, narrowing these down to the most 

pertinent, while considering their accessibility and collection time burden, will benefit the 

practicality of any applicable findings and is essential to motivate broad use from the general 

population. Some insight into useful variables may arise from investigation into the 

prediction of fatigue in Australian football (Bartlett et al., 2017; Carey et al., 2016), soccer 

(Geurkink et al., 2019; Vandewiele et al., 2017), and running (Davidson et al., 2020; Op De 

Beéck et al., 2018). In these studies, the authors used a variety of tests to provide an 
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indication of fitness level (e.g., Step-Up Test, VO2). These fitness tests yield reliable and 

valid information, and are likely predictive of individuals’ trail difficulty ratings, but many 

may not be easily accessible to the public (in that they require effort to research and 

complete) and, therefore, will reduce the use of a trail rating system based upon them. For 

example, the Step-Up Test (De Villiers & Thiart, 1988) is a strong predictor of exertion on 

hiking trails (Coetzee, 2018) but not everyone is inclined to take a physical fitness 

assessment prior to undertaking leisure activity. Moreover, a primary barrier to the 

identification of predictive variables is that the majority of previous publications focus on 

elite athletes (Geurkink et al., 2019; Vandewiele et al., 2017) with access to more assessment 

tools (e.g., VO2 max, muscle fiber type, anaerobic and aerobic thresholds) compared to 

leisure hikers. If a personalized hiking difficulty prediction system is to be broadly adopted 

by the public, barriers to its use, such as excessive data collection and pre-hike assessments, 

likely need to be minimized.  

Therefore, the purpose of this study was not to predict hiking difficulty with any and 

all measures possible but to do so in a way that would make this approach broadly accessible 

to the general public. Using traditional laboratory measures could limit the accessibility of 

this approach by increasing the burden on participants and thereby creating a negative 

incentive to use predictive models dependent on these measures. Consequently, the focus of 

this feasibility study was to identify variables predictive of trail intensity whose collection 

present the least time burden to participants, in order to maximize the applicability and 

breadth of use of the final statistical model.  
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Research Questions 

With this first study, we sought to determine the feasibility of collecting a range of variables 

potentially predictive of perceived exertion while hiking in order to identify and refine those 

variables most predictive of perceived exertion (Overarching Specific Aims 1 and 2). This 

study also served as a proof of concept through preliminary implementation of the data 

collection protocol in which we investigated the following research questions: 

1) Is a larger study based on similar methods feasible, considering the recruitment of 

participants, hiker interest, and the broad range of measures potentially necessary to 

make accurate predictions? 

2) Which version of the RPE scale (Borg 6-20 or VRPE) might best differentiate 

between participants of varying fitness levels? 

3) Which independent variables are the strongest predictors of RPE during the entire 

hike? 

 

Methods 

Trail 

The hiking trail used to address these questions was the Wind Caves Trail in the 

Uinta-Wasatch-Cache National Forest in Cache County, Utah (Appendix D). This 1.8 mile 

out-and-back trail contains a variety of grades and varying trail features which allow for 

discriminating between participants of differing fitness levels and demand a range of physical 

abilities across different trail sections. Additionally, this trail is heavily trafficked making it 

the best regional option for recruiting participants. 
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Participants 

Individuals 18 years and older with an interest in hiking the Wind Caves trail and 

willingness to wear an activity tracker and chest strap heart rate monitor were recruited for 

this study through physical flyers placed around the university and surrounding community, 

in-class announcements, social media posts, and by word of mouth. All individuals 

completed the Physical Activity Readiness Questionnaire (PAR-Q) (Appendix E) prior to 

enrollment in the study to ensure there were no underlying conditions that contraindicated the 

level of physical activity required by this investigation. Individuals who met the pre-

screening health criteria were enrolled in this study. Of the 112 individuals that completed 

the pre-screening survey, 51 (F: 33; M: 18; 30.8 ± 14.96 yrs; 71.11 ± 13.83 kg; 171.52 ± 9.86 

cm) participated in the hike. All procedures were approved by Utah State University’s 

Institutional Review Board (#12021). 

Pre-Testing Procedures 

Prior to arriving at the trailhead, interested individuals completed the pre-screening 

survey (Appendix E). Eligible individuals then completed the informed consent form, as 

well as a series of forms meant to determine their fitness history and level (International 

Physical Activity Questionnaire [Appendix F], Baecke Fitness Inventory [Appendix G]) 

and measure other factors that may influence their exertion and difficulty ratings (Pain 

Catastrophizing Scale [Appendix H], demographic questionnaire [Appendix I]), and finally 

scheduled a time to hike. All forms were hosted on REDCap (Research Electronic Data 

Capture) (Harris et al., 2009, 2019). If the participant had not hiked the Wind Caves Trail 

before, they were sent a fact sheet about the trail to inform them of the trail’s 

characteristics, and they were encouraged to hike with another individual.  
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Testing Procedures 

Upon arrival at the trailhead, participants completed a pre-hike survey (Appendix 

J), which included items referencing circumstances that could have changed before arrival 

at the trailhead (i.e., use of trekking poles, size of hiking group, etc.). Each participant’s 

dominant hand (preferred writing hand) grip strength was measured using a hand grip 

dynamometer (T.K.K. 5001 GRIP-A Analog Grip Dynamometer, Takei Scientific 

Instruments Co., Ltd, Niigata City, Japan) as others have reported this measure to be a 

significant predictor of muscle endurance (Trosclair et al., 2011) and aerobic capacity (Dag 

et al., 2021). Three maximal efforts were recorded with the participant standing, elbow held 

at 90 degrees, and wrist in a neutral position. If the participant planned to carry a pack 

while hiking, the weight of the pack was measured using a handheld digital force gauge 

(FGE-HXY Digital Force Gauge, Nidec-Shimpo Corporation, Kyoto, Japan). Next, 

participants were instructed to fit the commercially available fitness tracker (Garmin 

Forerunner 235, Garmin Ltd., Olathe, Kansas, USA) on their non-dominant wrist. A 

researcher then checked it for proper fit, ensured data recording was enabled, and gave 

instructions for how to rate perceived exertion and document their exertion and difficulty 

ratings during the hike (see below). Participants hiked the Wind Caves Trail (without a 

researcher) at a self-selected pace and provided ratings of perceived exertion a 

predetermined number of times, as described below. Participants were free to take breaks 

when desired, and their time spent at the top of the trail was not restricted. The activity 

tracker worn on the wrist collected biometric data throughout the hike, including heart rate, 

distance, date, time, latitude, and longitude, at a sampling rate of 1 Hz. Only data between the 

GPS coordinates for the start and end of the hike were analyzed. When finished hiking, 
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participants returned all equipment to the research station at the trailhead and rated the entire 

trail difficulty on a seven-point scale (Appendix K).  

Ratings of Perceived Exertion. 

Participants recorded their ratings of perceived exertion on paper using a clipboard 

and pencil. All participants completed a pre-hike, post-ascent, post-descent, and post-hike 

rating using a traditional seven-point difficulty scale and using their pre-assigned rating of 

perceived exertion scale. Participants completed 1 to 15 RPE ratings during both the ascent 

and descent of the hike using the assigned RPE scale, for a total of 2 to 30 ratings over the 

entire hike. A participant assigned 1 RPE rating completed the scale twice during their 

hike, once during the ascent and again during the descent, while a participant assigned 15 

ratings completed the scale a total of 30 times, 15 during the ascent and 15 during the 

descent. The number of ratings and the RPE scale were quasi-randomly assigned. If 

participants hiked in pairs or a group, all hikers received the same RPE scale and number 

of ratings to complete during the ascent and descent. Participants were instructed to spread 

out their RPE ratings during the ascent and descent to be distributed over the entire hike as 

best they could. The general guideline used was to complete a rating every 2-5 minutes 

depending on the assigned number of ratings and the individual’s expected hiking speed, 

which would allow for RPE observations over the entirety of the hike as opposed to all 

ratings being clustered over a certain trail section. Participants were also instructed to 

complete a rating prior to stopping if they wanted or needed to take a break during the hike. 

Data Processing 

RPE was obtained from visual analog RPE scales by measuring, with a ruler, in 

millimeters the distance from the zero anchor to the intersecting line drawn by the 
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participant. All RPE and difficulty responses were manually input into REDCap, and fitness 

tracker data (i.e., .fit file) were transferred to a secure university computer for storage and 

data analysis. Using the Python programming language (Python Core Team, 2023), all .fit 

files from the fitness tracker (the GIS data file used by Garmin equipment and software) were 

downloaded and saved as a text file. All subsequent data wrangling and analysis of the fitness 

tracker data (e.g., altitude, heart rate, latitude, longitude, speed, date, and time) were 

performed in R (R Core Team, 2021). To accommodate differing data lengths across 

participants due to hiking speed, all measured and derived variables were summarized over 

the ascent, descent, and entire hike, resulting in metrics with a data length of one for all 

individuals (e.g., maximum heart rate during the ascent, average speed during the descent, 

etc.). All demographic and fitness questionnaire data collected in REDCap were exported and 

merged with fitness tracker data. 

Histograms of individual RPE during the hike’s ascent and descent were used to 

identify which RPE scale (Borg 6-20 vs. VRPE) to use in the next stages of this project. This 

was done by qualitatively assessing the uniformity of and detail provided by the data 

gathered with each scale over the course of the hike. A sub-purpose of generating these plots 

was to check that participants’ responses were relatively evenly distributed over the entire 

hike. Two sets of elastic net regression models were built to explore the two outcome 

variables of interest (VRPE and Borg 6-20 over the entire hike). This aided in determining 

which outcome variable resulted in models with higher predictive accuracy. Four models 

were built for each outcome variable using feature sets based on the included questionnaires 

and wearable-derived variables. The four feature sets included (1) all pre-hike variables, (2) 

only Baecke Fitness Inventory (BFI) items, (3) only Pain Catastrophizing Scale (PCS) items, 
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and (4) only International Physical Activity Questionnaire (IPAQ) items. Predictive accuracy 

of all models using different outcome variables was assessed using RMSE estimated from 

five-fold cross-validation. All models were built with the caret package (Kuhn, 2008; Kuhn 

et al., 2023) in R.  

A multi-step approach was used to identify the strongest predictors of RPE from the 

measured independent variables. First, Pearson correlations between all continuous 

independent and dependent variables were used to identify the strongest relationships 

between variables. Those independent variables showing strong correlations (relative to other 

predictor variables) with RPE were marked as potentially important. Independent variables 

that were strongly correlated with other independent variables were noted as potentially less 

important or problematic because a high correlation between predictor variables can lead to 

multi-collinearity in regression-based statistical models and less reliable statistical inferences 

(James et al., 2017). Visual assessment of correlation matrices, and subsequent confirmation 

of the correlation coefficients, was used to select those independent variables exhibiting the 

strongest relationships (relative to the strength of other predictor variables) with RPE. During 

this process, we focused predominantly on questionnaire items, as these presented the largest 

pre-hiking time barrier for participants and the most potential for variables with overlapping 

information (i.e., IPAQ and BFI) that could be removed to reduce burden to participants.  

Next, we examined variable importance within each feature set to identify the 

predictor variables that most strongly contribute to the models’ predictive accuracy. The 

independent variables identified in the step above as having the strongest correlations to the 

outcome variable were used in combination with the highest-ranking features from the 

variable importance analysis to determine which variables to include in a larger study. The 
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final determination on which variables were kept was made using both the statistical results 

and by considering the ease of collection and potential time burden to participants. 

 

Results 

 Performance of the Borg 6-20 and the VRPE was evaluated by examining the 

distribution of RPE ratings during the hike (Figure 2-1). The Borg 6-20 shows a relatively 

normal distribution during the  

ascent (Figure 2-1, bottom left) and a left-skewed distribution (lower ratings) during the 

descent (Figure 2-1, top left). The VRPE exhibits a more uniform distribution of ratings 

during the ascent (Figure 2-1, bottom right) and a right-skewed distribution during the 

descent of the hike (Figure 2-1, top right). Of the 211 Borg 6-20 ratings provided during the 

ascent, 45% of them were a 12 or 13. Of the 213 ratings during the descent, 35% were an 11 

and no ratings above 13 were used. The total number of ratings during the ascent and descent 

differ due to participant error (participants missing assigned ratings). Models predicting 

VRPE consistently have lower RMSE than Borg 6-20 across feature sets (Table 2-1 & Table 

2-2), but this is likely due to the discrete nature of the Borg 6-20 scale. As the VRPE has a 
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more uniform distribution of scores, and more flexibility to record participant’s responses, 

from this point forward VRPE is used as the outcome measure.  

 

 

 

 

Note. The Borg 6-20 shows a normal distribution during the ascent (bottom left), while the 

VRPE exhibits a more uniform distribution during the ascent (bottom right). During the 

descent, the Borg 6-20 exhibits a left-skewed distribution (top left), while VRPE shows a 

right-skewed distribution (top right).  

Figure 2-1 
 
Comparison of Borg 6-20 (left column) and VRPE (right column) Distributions 
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Table 2-1 

Results from Models Predicting VRPE  

Feature Set RMSE 

Pre-Hike Variables 5.49 e-15 

BFI Items 9.69 e-16 

IPAQ Items 1.29 e-15 

PCS Items 6.14 e-15 

 

Note. All RMSE values here result from the elastic net models. Pre-Hike Variables include 

those measured prior to the hike. BFI: Baecke Fitness Inventory; IPAQ: International 

Physical Activity Questionnaire; PCS: Pain Catastrophizing Scale; VRPE: visual analog 

rating of perceived exertion scale; RMSE: root-mean squared error 

Table 2-2 

Results from Models Predicting Borg 6-20 

Feature Set RMSE 

Pre-Hike Variables 0.048 

BFI Items 0.346 

IPAQ Items 1.355 

PCS Items 0.502 

 

Note. All RMSE values here result from the elastic net models. This outcome variable was 

treated as a numeric variable. Pre-Hike Variables include those measured prior to the hike. 

BFI: Baecke Fitness Inventory; IPAQ: International Physical Activity Questionnaire; PCS: 

Pain Catastrophizing Scale; RMSE: root-mean squared error 
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Two approaches were used to identify important predictor variables: (1) the strength of 

correlation between predictor and outcome measures and (2) variable importance weighting 

arising from L1 regularization performed by the elastic net regression on the feature sets. 

Predictor measures and VRPE with high correlations were marked as potentially informative 

(Figures 2-2, 2-5, 2-6). From the PCS, items 7, 10, and 13 were identified as important both 

by the elastic net regression model’s variable selection (Figure 2-3) and from their 

correlation with RPE (Figure 2-2). These variables had the strongest relationships with 

VRPE compared to the other PCS items. Additionally, PCS questions 10 and 13 (Figure 2-3) 

tended to occur often when assessing variable importance in the constructed models. PCS 2 

and 3 were also among the variables with the strongest relationship to RPE. However, 

because these relationships were in the same direction as PCS 10 but weaker, they were 

excluded from future data collection. We also excluded PCS 6 and 11 because of their strong 

correlations with PCS 7 and 10, respectively.  

From the IPAQ, days of vigorous exercise (IPAQ 1) and total time sitting (IPAQ 7) were 

identified as important (see Table 2-2 for item details). Days of vigorous exercise (IPAQ 1) 

had the strongest relationship with RPE relative to other items of the IPAQ (Figure 2-5) and 

also contributed most to the elastic net model, based on variable importance (Figure 2-4 A). 

Total time sitting (IPAQ 7) had a relatively strong correlation with RPE (Figure 2-5). 

Although IPAQ 3 (days of moderate exercise) contributed to the elastic net model (Figure 2-

4 A), this item was correlated with IPAQ 1, which increases the likelihood of 

multicollinearity and therefore it was not used in the following investigations. IPAQ 2 (time 

spent performing vigorous activity on one day) was excluded as it showed no correlation 
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nchor 

Note. Circle size maps to correlation coefficient magnitude, while circle color maps to 

correlation coefficient magnitude and direction. Coefficients are shown for the relationship 

between PCS items and RPE of the hike. The vertical and horizontal axes indicate the item 

number on the PCS. 
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Figure 2-2 
 
Correlations Between RPE of the Hike and PCS Items.  
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Note. The specific item or the total of all items is indicated on the vertical axis. ‘Total’ 

represents the sum of all PCS item ratings for a given participant, where lower totals indicate 

responses that suggest lower levels of catastrophizing and higher totals align with higher 

levels of catastrophizing. The length of the bars are the regression coefficients, and they 

represent a variable’s importance to the model.  

The following superscripts indicate the level of response at which a questionnaire item was 

important: * to a slight degree, † to a moderate degree, ⁱ to a great degree. For example, PCS 

Item 13 was an important variable when the participant responded with ‘to a slight degree’. 

Figure 2-3 
 
Pain Catastrophizing Scale (PCS) Variable Importance 
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 with RPE and was not a top variable in the importance analysis. Similarly, IPAQ 5 (days 

spent walking 10 minutes or more) had a relatively weak relationship with RPE compared to 

other IPAQ items, and therefore it was also excluded moving forward. It is important to note 

that questions from the IPAQ and BFI (below) tended to overlap in their content and so 

questions from the IPAQ were preferentially pruned over the BFI due to the potential utility 

of the BFI’s summary scores, which are described further below. 

Note. A) Only two items from the IPAQ were identified as important using elastic net 

regression models. The specific item is indicated on the vertical axis. Item 1: During the last 

7 days, on how many days did you do vigorous physical activities like heavy lifting, digging, 

aerobics, or fast bicycling? Item 3: During the last 7 days, on how many days did you do 

moderate physical activities like carrying light loads, bicycling at a regular pace, or double 

tennis? Do not include walking. B) Only two items from the BFI were identified as important 

using elastic net regression models. The specific item is indicated on the vertical axis.  

* indicates that this item with the response ‘sometimes’ was important in the regression 

model.  

 
 

Figure 2-4 
 
Variable Importance of IPAQ and BFI Items 
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The BFI is unique among the selected questionnaires in that it uses three summary 

indices that are derived from the questions presented to participants. Surprisingly, the indices 

were not among the top variables in the elastic net model (Figure 2-4 B) but they were 

weakly correlated with RPE (Figure 2-6). Given that the BFI items were meant to work 

together and the correlation coefficients for the majority of BFI items were between 0.1-0.4, 

we chose to include this questionnaire in its entirety, rather than prune questions like in the 

IPAQ above, in the studies that follow. This allowed for flexibility in the use of the three 

Figure 2-5 
 
Correlations Between RPE of the Hike and IPAQ Items 

Note. Circle size maps to correlation coefficient magnitude, while circle color maps to 

correlation coefficient magnitude and direction. Coefficients are shown for the relationship 

between IPAQ items and RPE of the hike. Numbers on the vertical and horizontal axes 

indicate the item number on the IPAQ.   
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indices or individual BFI items in future models but at the risk of collinearity as a result of 

the correlations between some of the questions.  

Note. Circle size maps to correlation coefficient magnitude, while circle color maps to 

correlation coefficient magnitude and direction. Coefficients are shown for the relationship 

between BFI items and RPE of the hike. The vertical and horizontal axes indicate the item 

number on the BFI. 

Figure 2-6 
 
Correlations Between RPE of the Hike and BFI Items 
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Grip strength showed a weak correlation with the hike’s RPE compared to the 

questionnaire items above, and considering that individuals would generally not have access 

to a hand dynamometer, it was excluded from future data collection.  

Table 2-3 

Selected Questionnaire Items Used for Analysis 

Item Item Text 

IPAQ 1 During the last 7 days, on how many days did you do vigorous physical 
activities like heavy lifting, digging, aerobics, or fast bicycling? 

IPAQ 7 During the last 7 days, how much time did you spend sitting on a week day? 

PCS 7 When I’m in pain, I keep thinking of other painful events. 

PCS 10 When I’m in pain, I keep thinking about how much it hurts. 

PCS 13 When I’m in pain, I wonder whether something serious may happen. 

BFI – All 
Items All items from the BFI were selected for inclusion in future studies.  

 

Note. IPAQ: International Physical Activity Questionnaire; PCS: Pain Catastrophizing Scale; 

BFI: Baecke Fitness Inventory.  

  



32 
 

 

Discussion 

Our overarching aims, here, were to determine the feasibility of collecting a range of 

variables potentially predictive of perceived exertion during a hike in order to identify and 

refine those variables most predictive of perceived exertion (Overarching Specific Aims 1 

and 2). The specific questions we sought to answer in this investigation were:  

1. Is a larger study based on similar methods feasible, considering the recruitment of 

participants, hiker interest, and the barrier presented by the required completion of a broad 

range of measures potentially necessary to make accurate predictions? 

2. Which version of the RPE scale (Borg 6-20 or VRPE) might best differentiate between 

participants of varying fitness levels?  

3. Which independent variables are the strongest predictors of RPE over the entire hike.  

Overall, the rate at which participants were recruited, and the ultimate recruitment of 

the proposed sample over a reasonable period, suggests that a future study, using a larger 

sample and only a subset of the independent variables collected here, is indeed feasible. 

Going forward, the VRPE is the favored dependent measure because, as a continuous 

measure, it reduces the clustering of hikers into a few RPE ratings that we observed with the 

Borg 6-20 and consequentially may provide better discrimination between individuals. 

Finally, these results suggest that several independent (predictor) variables could be removed 

to reduce the load on future participants by selecting only those questions that contributed 

most to the model’s predictive accuracy. These results are encouraging and suggest that a 

statistical model using a larger sample and a subset of the independent variables collected 

here may predict hikers’ perceived exertion to a practical accuracy. 

Efficacy of a larger sample size 
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Despite the time commitment required by individuals participating in this study, over 

100 individuals expressed their interest in participating via the pre-screening questionnaire 

over a 4-month period. Nearly half of these individuals completed the entire study. The 

results of this study suggest that the number of questionnaires and activities completed before 

participation could be reduced significantly, decreasing the time burden placed on 

participants and potentially reducing the attrition rate in a future study. Considering these 

results, it appears that a larger sample could be recruited for a larger scale study and, 

importantly, that the majority of participants would follow researcher-provided instructions 

sufficiently, while hiking the trail without a researcher, to provide the data necessary for 

training statistical models to predict perceived exertion.  

VRPE versus Borg 6-20 

Notably, not only did the VRPE capture RPE with increased resolution than the Borg 

6-20 but also exhibited a more uniform distribution over its range (versus a Gaussian-like 

distribution). The difference in distributions of the VRPE and Borg 6-20 suggest that these 

two scales may capture participant exertion information in differential ways. Specifically, the 

VRPE offers more rating levels with which participants can align their experience, while the 

Borg 6-20 uses fewer categories, many of which are anchored by text descriptors that might 

influence participant ratings. As a continuous variable, the VRPE offers hikers more options 

when reporting perceived exertion, but the same attribute could result in a noisier 

distribution. Its advantages are potentially more obvious when it is compared to the Borg 6-

20’s tendency to cluster participants into one or two moderate-level RPE categories. This 

clustering could potentially be problematic for models using this measure of individual 

performance as their dependent variable due to the information loss inherent to the reduced 
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variability. Similarly, during hiking descent, the tight range around which the RPE values 

cluster when using either measure suggests that the descent may have little predictive utility 

on its own and, if combined with the ascent, may reduce the predictive capacity of some 

models. While further analysis is needed to fully address and understand this concern, 

consideration of this effect in future research may help to avoid problems with prediction of 

individual trail difficulty when using the VRPE.  

Predictive independent variables 

Narrowing down possible predictor variables was an important purpose of this 

investigation. To do this, we trained several models to evaluate the large number of predictor 

variables, focusing primarily on those items adding to participant time burden prior to hiking 

in order to lower the attrition rate. A model containing only wearable-derived and 

demographic variables as predictors would be ideal for a simple, streamlined data collection 

but would not be useful for predicting a hike’s expected difficulty since the wearable 

measures are collected during the hike. On the other hand, a model containing all 

questionnaire items, demographic information, and wearable variables as predictors would 

place increased burden on participants to complete all questionnaires and tests at the 

trailhead, potentially hindering the model’s usage. Since only a few variables from these 

questionnaires appeared to contribute to the model’s predictive accuracy and some had strong 

correlations with each other, it appears it may be unnecessary to collect all of these items in 

order to effectively predict individual hiking intensity. Therefore, the use of only a subset of 

the variables collected in this study could decrease the time burden on participants in future 

studies while still producing an effective predictive model for hiking trail intensity. A direct 

comparison of predictions using simple survey data and wearable-derived variables could be 
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a useful direction for future research investigating hiking trail difficulty. Researchers may 

also consider investigating the relationships between the predictor variables used here to 

better understand variable interactions and their impact on RPE.   

 

Limitations 

Due to the limited sample size, separate datasets were not used to train and test the 

statistical models, which could lead to inflated predictive accuracy values compared to what 

might be observed if assessed on a test data set. Consequently, little focus was placed on 

comparisons of the predictive capacity of the models. 

 

Conclusion 

The results of this investigation suggest that it is likely feasible to conduct a large-

scale study investigating whether simple questionnaire data could be used to provide 

individual predictions of a hiking trail’s difficulty. However, when implementing this design 

on a larger scale, it appears that, compared to the Borg 6-20, VRPE could allow for better 

separation of individuals of differing fitness levels based on the wider spread of ratings 

across the scale and the increased number of rating levels with which hikers can align their 

experience. In addition, we were able to identify a subset of items from the questionnaires 

that provided the best predictive capacity of the variables collected, which may allow for 

fewer questions asked before the hike and, consequently, a reduced time burden on the 

participants. Overall, the results of this study suggest that a larger-scale project could be 

feasible and have the potential to provide foundational knowledge for improving on current 

hiking trail rating systems.  
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Chapter 3  

Introduction 

Hiking is an increasingly popular recreational activity (Outdoor Industry Association 

& The Outdoor Foundation, 2024) that has relatively low barriers to entry and offers both the 

benefits of physical activity and exposure to nature (Kaplan, 2001; R. Ulrich, 1984; R. S. 

Ulrich, 1979). Despite the popularity, and obvious benefits, there is not a universal hiking 

trail rating system to consistently inform hikers of the difficulty of the trail on which they are 

about to embark. In fact, a variety of difficulty rating systems are used within the United 

States (Shenandoah National Park Virginia, 2017; Willamette National Forest, n.d.) and even 

more so globally (International Hiking Trails, n.d.). Few of these systems are seemingly 

underpinned by peer-reviewed research (Hugo et al., 1998; McIntosh & Hugo, n.d.), and no 

system offers individualized predictions of hiking trail difficulty. Considering the growing 

number of individuals engaging in hiking (Outdoor Industry Association & The Outdoor 

Foundation, 2024), there is a need for updated trail rating systems that can provide a 

personalized estimate of a trail’s difficulty. Such a system could improve individual hiking 

experiences by better aligning the hiker’s expectation of a trail’s difficulty with the actual 

trail difficulty, thereby improving their overall experience.  

Currently, some hiking trail difficulty ratings systems provide only a single difficulty 

estimate for all hikers based on the characteristics of the trail and of the average user (Hugo 

et al., 1998; McIntosh & Hugo, n.d.; Shenandoah National Park Virginia, 2017; Willamette 

National Forest, n.d.). These systems seek to inform hikers about the trail intensity prior to 

their hike but fall short of considering individual characteristics that might also influence 

hiking trail intensity, such as age and fitness level. Two popular mobile applications, 
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AllTrails and Hiking Project, aim to help hikers identify nearby trails and their current 

conditions. AllTrails provides one trail intensity rating for all hikers, much like one might see 

on an informational sign at the trailhead. While users of this application are encouraged to 

write a review of each trail, the review prompts do not ask for their evaluation of the 

perceived difficulty of the trail after they have completed the hike. Instead, these prompts 

include a rating (out of five stars), a free response section to provide up-to-date information 

about trail conditions, and a report of the activity performed on the trail (e.g., hiking, 

running, etc.). As of January 2023, AllTrails rates the Wind Caves Trail as moderate. With 

45 million AllTrails users globally (as of January 2023), a more personalized evaluation of 

trail difficulty could benefit a significant number of people, especially entry-level hikers. 

Hiking Project comes closer to providing a dynamic average difficulty rating by 

crowdsourcing hiking trail information, including trail difficulty, from individual users 

(Hiking Project, n.d.). An average difficulty rating is then assigned to the trail based upon the 

user-submitted ratings. While this approach appears to be drawing closer to a more accurate 

rating of trail difficulty, the difficulty scale used by this application focuses on trail features 

instead of hiker exertion (Figure 3-1). This mismatch between a hiker’s perceived difficulty 

(which is often tied to exertion) and the difficulty defined by different trail terrain (and not 

physical exertion) may lead to confusion by users. An additional consideration is the low 

number of users of this app who choose to provide ratings for each trail. Only 20 user 

submissions contribute to the intermediate rating for the Wind Caves Trail on February 6, 

2023 (Figure 3-1). Considering that this is a heavily-trafficked trail, 20 ratings may be too 

small of a sample to obtain a precise measure of the trail average and will likely be skewed 

towards more active individuals who use the application often. Ignoring the potential issues 
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with the rating scale used in this app, its average trail difficulty rating is as close as we get to 

a predicted trail difficulty, and even then, this is not an individualized prediction.  

The rating systems and mobile applications currently in use may benefit from the 

incorporation of an individual hiker’s assessment of a hiking trail’s difficulty. This 

relationship between trail and hiker is arguably one of the more important factors 

contributing to new hikers’ engagement with the trail and, more generally, their hiking 

experience. When considering how to better integrate individual characteristics with hiking 

trail difficulty predictions, we should also evaluate the tools required for individuals to use a 

Note. Reproduced from Hiking Project (FAQ: Overview of Hiking Project Features, n.d.). 

Figure 3-1 
 
Hiking Project Difficulty Rating Scale 
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newly developed system and whether these tools would be readily accessible for beginning 

hikers. For example, wrist-based wearables often track heart rate during exercise, which 

seems like a simple variable to use for individualized hiking trail difficulty predictions, but 

this approach would require the individual to own this tool and also to hike the trail prior to 

obtaining a difficulty prediction. Alternatively, fitness and demographic questionnaires that 

are free online and available prior to a hike could be a viable alternative to using heart rate 

data to predict hiking difficulty if the prediction accuracy is comparable to models using 

biometric data collected during a hike. To better match hikers’ experience with trail 

difficulty, new means of estimating the overall difficulty of a trail relative to the individual 

should be explored, and simplification of tools required for an accurate trail difficulty 

estimate is needed.  

Research Questions 

This study sought to assess the accuracy with which statistical learning models could predict 

an individual’s exertion during a hike and to evaluate the contribution each variable made to 

these predictions through the following research questions (Overarching Specific Aims 2 and 

3): 

1) Contingent on the available sample size, what is the accuracy with which statistical 

models can predict an individual’s hiking trail difficulty, as measured on a visual 

analog RPE scale, during a hike on the Wind Caves trail?  

2) Which predictor variables contribute most to the predictive capacity of these 

statistical models?  
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3) Does the incorporation of intra-hike information, such as trail segment and aggregate 

trail information, improve the models’ predictive accuracy over that observed when 

using only variables available prior to the hike? 

Methods 

Trail 

The hiking trail used to address these aims was the Wind Caves Trail in the Uinta-

Wasatch-Cache National Forest in Cache County, Utah. This 1.8 mile out-and-back trail 

contains a variety of grades and varying trail features that will be potentially sufficient to 

discriminate between participants of differing fitness levels by demanding a range of physical 

abilities across different sections. Additionally, this trail is heavily trafficked, making it ideal 

for recruiting a large number of participants. 

Participants 

Individuals 18 years and older with an interest in hiking the Wind Caves trail and 

willingness to wear an activity tracker were recruited for this study through physical flyers 

posted in the surrounding community, in-class announcements, social media posts, digital 

signage, and by word of mouth. All individuals completed the Physical Activity Readiness 

Questionnaire (PAR-Q) prior to enrollment in the study to ensure there were no underlying 

conditions that contraindicated the level of physical activity required by this investigation. 

Individuals who met the pre-screening health criteria were enrolled in the study. Of the 353 

individuals that completed the pre-screening survey, 108 (F: 58; M: 46 [n = 104]; 30.57 ± 

12.12 yrs [n = 104]; 72.36 ± 14.56 kg [n = 97]; 171.25 ± 9.75 cm [n = 104]) participated in 

the hike. Four participants recruited at the trailhead did not respond to requests to complete 
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the physical activity and demographic questionnaires and were excluded from analyses. All 

procedures were approved by Utah State University’s Institutional Review Board (#11825). 

Pre-Testing Procedures 

Prior to arriving at the trailhead, interested individuals completed the pre-screening survey 

(Appendix E). Eligible individuals then completed the informed consent form, the Baecke 

Fitness Inventory (Appendix G), selected questions from the International Physical 

Activity Questionnaire (Appendix F) and Pain Catastrophizing Scale (Appendix H), and 

the demographic questionnaire (Appendix I), and scheduled a time to hike. This is the 

reduced pre-hiking packet based on the results of the feasibility study presented in Chapter 

2 and applied to this new sample of participants. All surveys were hosted on REDCap 

(Research Electronic Data Capture) (Harris et al., 2009, 2019). 

Testing Procedures 

Upon arrival at the trailhead, participants completed a pre-hiking survey (Appendix 

J), which included items referencing circumstances subject to change before arrival at the 

trailhead (i.e., use of trekking poles, size of hiking group, etc.). If the participant planned to 

carry a pack while hiking, the weight of the pack was measured using a handheld digital 

force gauge (FGE-HXY Digital Force Gauge, Nidec-Shimpo Corporation, Kyoto, Japan). 

Next, participants were instructed to fit the commercially available fitness tracker (Garmin 

Forerunner 235, Garmin Ltd., Olathe, Kansas, USA) on their non-dominant wrist. A 

researcher checked the fitness tracker for proper fit, ensured data recording was enabled, 

and provided instructions to the participant on how to rate perceived exertion and document 

ratings during the hike (see below). Participants hiked the Wind Caves Trail (without a 

researcher) at a self-selected pace while providing perceived exertion ratings at 
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predetermined times, as described below. Participants were free to take breaks when desired, 

and their time spent at the top of the trail was unrestricted. The activity tracker worn on the 

wrist collected biometric data throughout the hike, including heart rate, distance, date, time, 

latitude, and longitude, at a sampling rate of 1 Hz. When the hike was complete, participants 

returned all equipment to the research station at the trailhead.  

Ratings of Perceived Exertion. 

Participants recorded perceived exertion ratings on a provided clipboard using a 

pencil and paper packet. All participants completed a pre-hike, post-ascent, post-descent, 

and post-hike rating on a traditional seven-point hiking trail difficulty scale (Appendix K) 

and on a visual analog perceived exertion scale (VRPE) (Appendix C). Individuals hiking 

in a group were told not to discuss or share their ratings with other hikers in the group to 

improve the independence of each individual’s perceived exertion ratings.  

Data Processing 

RPE was obtained from the visual analog RPE scales by measuring with a ruler, in 

millimeters, the distance from the zero anchor to the intersecting line drawn by the 

participant. All questionnaire and RPE responses were manually input into REDCap, and 

fitness tracker data (i.e., .fit file) were transferred to a secure university computer for storage 

and data analysis. Using the Python programming language (Python Core Team, 2023), all 

.fit files (the GIS data file used by Garmin equipment and software) were downloaded and 

saved as a text file. All subsequent data wrangling and analysis of the fitness tracker data 

(e.g., altitude, heart rate, latitude, longitude, speed, date, and time) were performed in the 

programming language R (R Core Team, 2021). Then, in R, all relevant data from the text 

files were combined (e.g., altitude, heart rate, latitude, longitude, speed, date, and time). To 
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accommodate differing data lengths across participants, all measured and derived variables 

were summarized across the entire hike, then exported and merged. All demographic and 

fitness questionnaire data collected in REDCap were then exported and merged with fitness 

tracker data.  

Weather Data. 

 Weather data were downloaded from climate.usu.edu using Logan Golf Station from 

the AGWX (Utah AgWeather) network as the recording station. Hourly recordings were 

used, and the time closest to a hiker’s start time was used to identify the weather variables for 

that given hike. See Table 3-1 for a complete list of the weather variables used in this 

investigation.  

Table 3-1 

Included Weather Variables 

Variable (units) Measures 

Relative humidity (%) Maximum, minimum 

Dew point temperature (°F) Average, maximum, minimum 

Air temperature from thermistor (°F) Average 

Air temperature from RH sensor PRT (°F) Average, maximum, minimum 

Wind speed (mph) Average, maximum 

 
Note. RH: relative humidity; PRT: platinum resistance thermometer 
 

Trail Segment Data 

To determine whether segment-based information improves model predictive 

accuracy, two trail segments were defined: the segment with the steepest grade and the 

segment following. As most of the Wind Caves trail is composed of a low to moderate 
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incline, the steepest segment poses the greatest challenge to individual fitness and could 

serve as a way to separate individuals based on fitness level. The segment immediately after 

the steepest segment could also provide information about heart rate recovery, which differs 

based on training status (Darr et al., 1988). First, the trail segment (Segment 1) with the 

steepest grade was identified (~30% grade), and the start and end coordinates obtained using 

Google Maps were used to identify the fitness tracker data recorded during this segment. The 

same approach was used to gather information for the segment (~16% grade) immediately 

following (Segment 2) the steepest trail segment. Variables were then aggregated over each 

segment to provide additional predictor variables for use in predictive modeling of RPE over 

the entire trail.  

Statistical Analysis 

 All statistical analyses were completed using R (R Core Team, 2021). Due to missing 

GPS data, two participants were removed prior to the fitting of statistical models, resulting in 

106 subjects with the potential to be included in the final analysis. Of the 106 total 

observations, only 73 observations were complete, and therefore, only these observations 

were included in models fit with all predictor variables. For the remaining measures, 

participants were excluded if they were missing any of the variables necessary for a 

particular statistical model. 

 After limiting the dataset to only complete observations (n = 73), the dataset was 

partitioned into training (n = 63) and test (n = 14) datasets using RPE over the entire hike as 

the outcome variable and an 80/20 split of the whole dataset into the training dataset (80%) 

and the test dataset (20%). The training dataset was used to train all models built to address 

the aforementioned research questions, and the test dataset was held out to assess the final 
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model’s predictive accuracy on unseen data. All regression models were trained using five-

fold cross validation. Elastic net regression was chosen as the main approach as it has the 

ability to handle over-parameterized models through regularization. Models were built with 

five different feature sets. Set 1 includes only information available prior to the hike that was 

provided by the hiker, including demographic data and questionnaire responses. This is the 

ideal feature set from a participant burden perspective as well as from a predictive capacity 

lens; it takes only five to ten minutes of a hiker’s time, requires no additional equipment be 

used while hiking, and would allow a hiking difficulty prediction to be given prior to ever 

hiking a given trail. Set 2 is a small step up from Set 1 as it includes weather features 

obtained while the participant is hiking. This introduces intra-hike variables into the model 

while requiring no additional time or equipment from the hiker but does limit model 

application to a trail hiked only after another hike where weather data are available (unless 

weather prior to the hike is predictive of performance, which was not tested here). Sets 3, 4, 

and 5 introduce participant-level intra-hike performance variables. These three feature sets 

have the highest level of participant burden, as they require equipment use during the hike, 

which could also present a barrier to access if such a model was available for public use. 

While heart rate could be used as an outcome variable here, it was selected for predictor set 

inclusion as validation to address whether or not it greatly improves prediction over using 

variables available pre-hike (Sets 1 and 2 versus Sets 3-5). Each feature set with the included 

predictor groups is described in Table 3-2.  
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Table 3-2 

List of Feature Sets. 

Feature 
Set Included Feature Groups Description 

Set 1 Pre-Hike Variables collected before the hike, 
including demographic and 
questionnaires 

Set 2 Pre-Hike + Weather Set 1 + weather information 

Set 3 Pre-Hike + Weather + Segment Set 2 + variables from two trail 
segments 

Set 4 Pre-Hike + Weather + Aggregate Trail Set 2 + variables derived from the 
entire hike 

Set 5 Pre-Hike + Weather + Aggregate Trail + 
Segment 

Set 4 + variables from two trail 
segments 

 
Note. Sets 1 and 2 present the lowest burden to hikers both prior to and during the hike. Sets 

3, 4, and 5 contain participant-level intra-hike features and require equipment be used during 

the hike.  

 

Once trained, all models were fit using the test data to assess predictive accuracy of 

each feature set. All elastic net regression models were built with the train function from the 

glmnet package (Friedman et al., 2010, 2023), and all data cleaning and analyses were 

conducted using R Studio. Predictive accuracy of all models was assessed using RMSE. 

Additionally, a model predicting the sample average RPE for each participant was used to 

provide a performance benchmark for the five feature set models. While the five feature set 

models predicted each individual’s RPE for the hike as the dependent variable, the 
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benchmark model predicted the average RPE of the sample for every hiker regardless of 

predictor variable values.  

We also explored simple linear regression and multiple linear regression but found 

that these models overfit to the training data and, in turn, provided inaccurate predictions for 

the test data. In addition, we used principal component analysis as a feature reduction 

strategy to address the large number of predictor variables present in the dataset, but this did 

not improve model predictions above what was observed using elastic net regression.  

Results 

The regression model predicting the sample average RPE for each participant 

produced a training RMSE of 16.44 mm and a test RMSE of 17.79 mm. Elastic net 

regression models using the feature sets listed above (Table 3-2), resulted in comparable 

training RMSE values across feature sets (Table 3-3). Training these models on limited pre-

hike variables (Set 1, Table 3-2) resulted in an RMSE of 15.09 mm on the training data and a 

prediction RMSE of 23.82 mm on the test data. Adding weather variables (Set 2, Table 3-2) 

resulted in the same training RMSE (15.09 mm) but an improvement in test RMSE (19.23 

mm) – the top performing model based on test RMSE. An elastic net model using all 

available features (Set 5, Table 3-2) resulted in only a slight improvement in test data 

prediction accuracy (RMSE: 22.41 mm) compared to the pre-hike variable model (Set 1) but 

was outperformed by the pre-hike and weather model (Set 2). The range of training RMSE 

values obtained across varying parameters for each of the feature sets is shown in Figure 3-2.  
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Table 3-3 

Results of Elastic Net Regression 

Feature 
Set Included Feature Groups Training 

RMSE ± SD 
Test 

RMSE 

Set 1 Pre-Hike 15.09 ± 2.12 23.82 

Set 2 Pre-Hike + Weather 15.09 ± 2.85 19.23 

Set 3 Pre-Hike + Weather + Segment 15.12 ± 3.59 21.35 

Set 4 Pre-Hike + Weather + Aggregate Trail 15.31 ± 3.03 22.57 

Set 5 Pre-Hike + Weather + Aggregate Trail + 
Segment 15.52 ± 3.19 22.41 

 
Note. Set 2 resulted in the lowest test RMSE of the five feature set models, outperforming 

even Sets 3, 4, and 5 which included participant-level intra-hike variables. Additional feature 

set details are in Table 3-2. 

 
L1 normalization, inherent to elastic net regression, reduces the impact of variables 

that contribute little to prediction, in effect selecting the variables of the greatest predictive 

importance. Elastic net regression revealed that multiple variables were consistently in the 

top ten most important variables across feature sets (Figure 3-3 and Table 3-4). All feature 

sets showed question ten of the Pain Catastrophizing Scale (PCS), specifically for those 

responding with ‘all the time’, as the most important variable. Sets 4 and 5 showed average 

heart rate normalized to estimated maximum heart rate as the second most important 

variable. The individual Baecke Fitness Inventory (BFI) questions were also consistently 

important, as was average speed normalized to individual maximum speed during the 
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Figure 3-2 

RMSE Values Resulting from Varying Regularization Parameter (lambda) and Mixing 

Percentage (alpha) Parameters in Elastic Net Regression 

Note. The regularization parameter adjusts the strength of regularization: lower lambda values 

create a more flexible model but with increased risk of overfitting to the data, whereas higher 

lambda values reduce risk of over fitting but can increase model bias. The mixing percentage 

weighs the amount of each of the two forms of regularization contributing to the model’s fit. An 

alpha value of 0 reduces the model to ridge regression (a form of regression that helps control for 

multicollinearity), an alpha value of 1 reduces the model to lasso regression (a form of regression 

that performs variable selection), and values in between are a weighted combination of the two. 

During model training, a range of lambda (color) and alpha (x-axis) values are used to adjust the 

regression model and assess which combination of parameters results in the lowest RMSE. In 

this case, a low lambda (red lines) results in high RMSE regardless of the alpha value, while 

there appears to be a trade-off between mid and high lambda (green and blue) and alpha values 

across all feature sets. This information is then used to set the parameters of the final regression 

model. Each subplot shows the training RMSE for the feature set indicated by the title. Feature 

set details are provided in Table 3-2.  
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steepest trail segment, in models where segment info was included (Sets 3 & 5). Whether or 

not the individual hiked with others was also an important feature in all five models.   
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Table 3-4 

Features Identified with Variable Importance Analysis 

Feature Name Feature Description 

Average Speed 
Normalized – 
Segment 1 

Average speed during steepest trail segment normalized by the 
individual’s maximum speed during this segment.  

Average Heart 
Rate Normalized 

Average heart rate from the entire hike as a percentage of the hiker’s 
estimated heart rate maximum. 

Maximum Heart 
Rate Normalized 
– Segment 2 

Maximum heart rate during the trail segment immediately following 
the steepest segment as a percentage of the hiker’s estimated heart rate 
maximum.  

PCS Total Sum of ratings on three PCS items included in the questionnaires. 

PCS 10* When I'm in pain, I keep thinking about how much it hurts. 

PCS 13* When I'm in pain, I wonder whether something serious may happen. 

BFI 1 
What is your main occupation? 

Low activity (1), moderate activity (3), high activity (5) 

BFI 3a At work I stand: 

BFI 5a At work I lift heavy loads: 

BFI 6† After working I am tired: 

BFI 7† At work I sweat: 

BFI 10 
In comparison with others of my own age I think my physical activity 
during leisure time is: much more (5), more (4), the same (3), less (2), 
much less (1) 

BFI 12† During leisure time I play sport: 

BFI 20† During leisure time I walk: 

Leisure Index A composite measure of all responses to BFI leisure section items 

Group Binary variable indicating whether an individual hiked alone or with at 
least one other person. 
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Note. Features with the top 10 variable importance following elastic net regression. 

Estimated heart rate maximum was calculated using the equation: 220 - age. PCS: Pain 

Catastrophizing Scale; BFI: Baecke Fitness Inventory. Superscripts indicate response options 

for the noted questions. 

* Not at all (0), to a slight degree (1), to a moderate degree (2), to a great degree (3), all the 

time (4) 

a never (1), seldom (2), sometimes (3), often (4), always (5) 

† Never (1), seldom (2), sometimes (3), often (4), very often (5) 
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Dis 
Note. All sets showed item ten of the Pain Catastrophizing Scale as the top most important 

variable. Sets 4 and 5 showed average heart rate normalized to estimated maximum heart rate 

in the top two variables. Individual Baecke Fitness Inventory questions were consistently 

important, as were average speed normalized to individual maximum speed during the 

steepest trail segment and hiking in a group. The variables on the y-axis correspond to the 

variables, descriptions, and levels presented in Table 3-4. *seldom, isometimes, †always/all 

Figure 3-3 
 
Top 10 Important Variables from Established Using Elastic Net Regression 
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important, as were average speed normalized to individual maximum speed during the 

steepest trail segment and hiking in a group. The variables on the y-axis correspond to the 

variables, descriptions, and levels presented in Table 3-4.  

*seldom, isometimes, †always/all the time, avery often, bmore, yyes, cto a slight degree, dhigh 

activity, eall the time, S1segment 1, S2segment 2 

norm: normalized; PCS: Pain Catastrophizing Scale; BFI: Baecke Fitness Inventory 
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Discussion 

 The purpose of this investigation was to (1) assess the accuracy of statistical models 

predicting individual hiking trail difficulty rated on a visual analog RPE scale, (2) identify 

predictor variables important to the models’ predictive capacity, and (3) determine whether 

aggregate trail features and segment-derived features improve model accuracy more than pre-

hike variables. The results suggest that with this sample, pre-hike variables can predict VRPE 

to an accuracy of approximately 19-23 mm and that the addition of aggregate or segment 

information does not greatly improve accuracy (~22 mm RMSE), in this case. One variable 

identified here as most predictive, PCS item 10, was also an important predictor in the 

previous chapter, while no other predictive variables were consistently important between 

this chapter and the last. These findings suggest that basic questionnaire data (Set 1) and 

weather data (Set 2) may help improve the accuracy with which trail intensity, measured via 

perceived exertion, can be estimated. Importantly, the included questionnaires present 

relatively low barriers for individuals to complete if they are interested in using these 

algorithms to aid their hiking trail choices. 

What is an accurate prediction of trail difficulty?  

 When assessing predictive ability, there must be a comparative standard to use as a 

frame of reference for the predictions being made. At this point in time, the standard likely 

includes either an estimate of trail intensity based on trail elevation and length, the trail 

intensity provided by the managing park system (NPS or local trail service), or trail intensity 

provided by an app (such as All Trails or Hiking Project). Standardized rating systems and 

general trail ratings provide only one rating meant for all individuals. As a result, these 

ratings do not consider the individual experience of each hiker and require that each hiker 
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evaluate their fitness level relative to the standard, typically without knowledge of how the 

standard was developed. In contrast, approaches like the Hiking Project crowdsource trail 

ratings via their users, which may be an improvement from the ratings of static systems. 

However, it is important to consider the sample from which Hiking Project draws these 

ratings and whether this sample of users is representative of the general population. For 

example, these users are likely to be individuals who regularly engage in hiking (at least 

enough to warrant retaining a hiking-specific app) and thus, may be able to compare 

experiences across different trails. With this in mind, crowdsourced trail app predictions are 

likely to skew toward a more physically active population and therefore, might not accurately 

represent the general population or those new to hiking. While these estimates of the average 

trail intensity are far from perfect, an approach such as this provides an ideal tradeoff 

between estimation efficiency (easy to estimate) and prediction accuracy.  

 Comparable accuracy results were obtained by predicting the sample average RPE for 

all participants (test RMSE = 17.79 mm) and from a model including pre-hike and weather 

features (Set 2 test RMSE = 19.23 mm). This suggests that the information provided by these 

data does not improve upon an average intensity prediction for our sample. While the change 

in predictive capacity between an average and an individualized model may not be very 

different here, the observation that individual subject variables are important for the 

predictive capacity of the model suggests that with greater and more diverse data there is 

potential to improve individual engagement in hiking through better trail intensity 

predictions. While expanding to a larger, more heterogeneous training set could improve 

inferences drawn from these models, caution must be exercised to ensure that the models are 

not overfitting to the training data. 
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What is a meaningful change in VRPE? 

 Since there are no standardized norms to use as a comparison to different outdoor 

activity-related VRPE measures, it is challenging to evaluate the practical significance of the 

elastic net model’s accuracy (RMSE). As a starting point, to determine what difference in 

RMSE is meaningful we might consider using minimum clinically significant differences 

reported in Visual Analog Scale (VAS) scores for other biological constructs. The minimum 

clinically significant difference in VAS scores for patient satisfaction is 7-11 mm (group SD: 

10-15 mm) (Singer & Thode, 1998), 15 mm for nausea (95% CI 11.0 to 19.8 mm) (Hendey 

et al., 2005), 10-14 mm for pain regardless of severity (Kelly, 2001), and 10 mm for sleep 

quality (95% CI 8.0 to 12.6 mm) (Zisapel & Nir, 2003). While these differences are specific 

to the construct being measured, the use of a 100-mm visual analog scale to obtain subjective 

measures directly from the individual can provide a general guide for the meaning of changes 

on the visual analog scale used for measuring perceived exertion. The range of minimum 

clinically significant differences from 7-15 mm (with even larger 95% CI in some cases), 

places our model’s RMSE just above the range of what is considered clinically significant for 

other biological constructs. While far from perfect—as this would suggest that, on average, 

the model’s predictions are likely statistically different from the true scores—these values 

can provide a baseline from which to improve upon. Moreover, a small improvement in 

predictive capacity, for example an RMSE lower than the minimum clinically significant 

difference, could suggest that the predicted perceived exertion is close enough to the actual 

perceived exertion that it would, on average, place an individual in the correct exertion 

‘category’, depending on the resolution of the categorical scale used. 
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Which Variables Improved Model Predictive Capacity?  

 Beyond predictive capacity, the models presented here also provide insight into which 

predictor variables should be considered if trying to predict RPE during a hike. Out of 101 

features, 16 regularly appeared in the top ten features across the five feature sets. Of these 

variables, one was heart rate, which should be expected, as heart rate is a strong predictor of 

exertion during physical activity. Age-normalized average heart rate (as a percent of 

maximum heart rate) also helps to control for age-related changes in mean heart rate. 

Whether or not individuals hiked in a group was also important to multiple models, 

suggesting that there is some social impact on RPE when hiking, which will be explored in 

Chapter 5.  

 Most of the top features were questionnaire-derived variables. These include multiple 

items from the Baecke Fitness Inventory, as well as items from and the total score of the Pain 

Catastrophizing Scale. The identified Baecke Fitness Inventory items captured information 

about physical activity during work and leisure, as well as an individual’s perceived fitness 

level relative to their peers. This last variable is unique as it not only compares individuals of 

differing fitness levels but also asks for one’s subjective perception of their fitness relative to 

their age group. The items from the Pain Catastrophizing Scale also provide unique 

information compared to other questionnaire items. Specifically, these items ask about the 

individual’s response to painful circumstances or events (Sullivan et al., 2000). Item 10 of 

the Pain Catastrophizing Scale, in particular, asks individuals to what degree they keep 

thinking about how much it hurts when they are in pain. Surprisingly, this variable was the 

top most important variable in each feature set, particularly for individuals that responded 

with ‘all the time’. Individuals that tend to fixate on pain or discomfort during the hike have a 
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tendency to experience higher RPE over the hike, which may be related to the relationship 

between greater catastrophizing thoughts and greater cardiovascular response (Lentini et al., 

2021). Finally, segment-specific information (Set 3) did slightly improve predictions of RPE 

in the training set compared to including only aggregate trail information (Set 4). Inclusion of 

the normalized average speed during the steepest segment improved training RMSE 

compared to models using only aggregate data, suggesting that there is unique information 

provided by this segment-specific feature but not as much as might be expected. Although 

the addition of trail information, whether segment-specific or aggregate, did not greatly 

improve model accuracy over using only pre-hike variables.  

Elastic net regression with only pre-hike variables (Set 1, test RMSE = 23.82 mm) 

was comparably accurate to an elastic net regression model that included all predictor 

variables (Set 4, test RMSE = 22.41 mm), while a model including pre-hike variables and 

weather during the hike outperformed both (Set 2, test RMSE = 19.23 mm). This suggests 

that the addition of participant-specific variables measured during the hike may not 

meaningfully improve RPE predictions and thus, with further refinement, pre-hike variables 

and publicly available weather data may be all that are necessary to provide a functional 

personalized prediction of RPE prior to a hike. However, further work is clearly necessary to 

refine these methods.  

Limitations 

A larger and more diverse sample would likely have improved the predictive capacity 

of the model as well as its generalizability, making the final model more accurate and 

applicable to a wider range of individuals. Collection of a larger sample would also have 

permitted use of larger statistical models that may better capture the variability in the sample. 
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Here, only 31% of individuals that submitted the prescreening survey completed the hike. 

Examination of the relatively high attrition rate could provide clues to improve retention of 

those individuals interested in participating, which could increase the efficiency of data 

collection in the future.  

Conclusion 

 This study highlighted the accuracy with which elastic net regression can predict 

perceived exertion during hiking, given this specific trail and sample characteristics. It also 

provides direction for future investigations by identifying and confirming which variables 

may be important to prediction, such as whether the hiker is carrying a pack and the hiker’s 

response to painful situations, that may improve predictions of VRPE while hiking. 

Additionally, information about hiking performance broken down by segment may improve 

VRPE prediction accuracy during hiking. The highest prediction accuracy was observed 

when a combination of participant-level pre-hike data and intra-hike weather data were 

included in the model. However, these results could likely be improved with a larger sample 

size and correspondingly larger predictive models, and ultimately the goal of providing 

individual predictions of trail intensity may be realized.  
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Chapter 4  

Introduction 

 Hiking trail intensity is traditionally rated on a difficulty scale with five to seven 

levels (Hugo, 1999b) where each trail is assigned one difficulty level that is used for all 

hikers. This approach is widely used and accepted, but scientific support for it is limited 

(Hugo, 1999b; Hugo et al., 1998). Despite this, the difficulty scale has several benefits, 

including distinct levels rooted in the estimated bioenergetic demands of the trail (Hugo, 

1999a) and labelled using common terms (e.g., fair, moderate, extreme) that align relatively 

closely with hikers’ conceptualization of trail difficulty. It is important, however, to 

recognize that the intended use of this scale is to evaluate the bioenergetic cost of a trail and 

not an individual’s perception of its difficulty (Hugo, 1999b). Because the trail rating is not a 

measure of experienced intensity, inconsistent ratings may arise if the mapping between the 

scale’s levels, and hiker’s perception of the intensity associated with each level, varies 

between participants. While this ‘rating the trail’ approach might be suitable for 

generalization, if non-linearities are introduced by individual differences in mapping 

category names to their experiences, it may pose challenges to accurately predicting an 

individual’s perception of trail difficulty. In the previous projects, I have used this difficulty 

scale (Hugo, 1999b) to provide categorical descriptions of different intensity ratings (Chapter 

2). However, it is important to better understand how this categorical rating scale compares 

to the numerical visual analog rating of perceived exertion (VRPE) scale, used in previous 

chapters, for predicting individual hikers’ perceptions.  

 In contrast to the aforementioned categorical measure of difficulty, perceived exertion 
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can be measured on a linear visual analog scale from 0 to 100 mm, using 1 mm increments. 

A benefit of the VRPE is that a user’s rating of perceived exertion is not dependent upon 

their interpretation of the descriptive term associated with different intensity levels (e.g., 

‘moderate’). Instead, users indicate where on the range of exertions possibly experienced this 

current exertion is without use of descriptive terms that have the potential for 

misinterpretation, other than the descriptive terms used for the scale anchors. This approach 

allows for a more precise measure of perceived exertion, as it permits a gradation of hiking 

exertions free from the constraints of language. One drawback is that a VRPE value might 

not have meaning for many people (e.g., Is moderate exertion at 60 mm or 50 mm?). Thus, it 

might be difficult for hikers to score their current exertion using this measure within the 

broader context of their possible exertion without repeated exposure to the scale. As the 

visual analog scale has no positional, only extreme, anchors, its scores are likely to have 

higher intra-rater and inter-measure variability, which could make prediction more difficult.  

While both RPE measurement scales have their limitations, it remains unclear whether 

the difference in resolution (numeric vs. categorical) between these scales impacts the 

accuracy of models predicting individual perceived trail difficulty. Considering the limited 

predictive accuracy observed using VRPE (numeric) in Chapter 3, this Chapter aims to 

evaluate whether predictive accuracy might be improved by transforming the continuous 

measure into a discrete measure and descriptively comparing its performance as a categorical 

measure to that of the categorical difficulty scale. By recoding VRPE as a categorical 

variable, we aim to achieve two objectives:  
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1. Reduce variability in participant’s VRPE ratings through pooling: By grouping similar 

intensities into discrete categories, the analysis becomes less susceptible to outliers and 

variation of ratings using the VRPE scale. 

2. Minimize the impact of individual differences in how participants map category names 

(e.g., ‘moderate’) to their perceived experience: Discretizing the numerical VRPE data 

may help counter this source of variability and thus provide a more accurate 

representation of participant’s perceptions.  

This approach allows for a comparison between two commonly used methods for measuring 

individual hiking trail difficulty and may offer insights into more effective ways to collect 

and analyze RPE data while improving a model’s capacity to predict individualized trail 

difficulty.  

 

Research Questions 

This study aims to descriptively investigate the benefits of discretizing VRPE data on a 

statistical model’s predictive capacity by comparing the accuracy of a model predicting trail 

perceived exertion (a proxy for difficulty) using the discretized VRPE to a model predicting 

ratings of trail difficulty using a traditional categorical rating scale (Overarching Specific 

Aim 4). 

 

Methods 

Trail 

The hiking trail used to address this aim was the Wind Caves Trail in the Uinta-

Wasatch-Cache National Forest in Cache County, Utah (Appendix D). This 1.8 mile out-and-
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back trail contains a variety of grades and varying trail features to potentially allow for better 

discrimination between participants of differing fitness levels. Additionally, this trail is 

heavily trafficked making it the best local option for recruiting participants. 

Participants 

Individuals 18 years and older with an interest in hiking the Wind Caves Trail and 

willingness to wear an activity tracker were recruited for this study through flyers posted 

around the community, in-class announcements, social media posts, digital signage, and by 

word of mouth. All individuals completed the Physical Activity Readiness Questionnaire 

(PAR-Q) prior to study enrollment to ensure there were no underlying conditions that 

contraindicated the level of physical activity required by this investigation. Individuals who 

met the pre-screening criteria were enrolled in the study. Of the 353 individuals that 

completed the pre-screening survey, 108 participated in the hike (F: 58; M: 46 [n = 104]; 

30.57 ± 12.12 yrs [n = 104]; 72.36 ± 14.56 kg [n = 97]; 171.25 ± 9.75 cm [n = 104]). Four 

participants recruited at the trailhead did not respond to requests to complete the set of 

physical activity and demographic questionnaires and, therefore, were excluded from the 

analysis. All procedures were approved by Utah State University’s Institutional Review 

Board (#11825). 

Pre-Testing Procedures 

Prior to arriving at the trailhead, interested individuals completed the pre-screening survey 

(Appendix E). Eligible individuals then completed the informed consent form, a 

demographic questionnaire (Appendix I), the Baecke Fitness Inventory (Appendix G), 

selected questions from the International Physical Activity Questionnaire and the Pain 
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Catastrophizing Scale (Appendix H),  and scheduled a time to hike. All surveys were 

hosted on REDCap (Research Electronic Data Capture) (Harris et al., 2009, 2019). 

Testing Procedures 

Upon arrival at the trailhead, participants completed a pre-hiking survey (Appendix 

J), which included items referencing circumstances subject to change prior to the hike (i.e., 

use of trekking poles, size of hiking group, etc.). If the participant planned to carry a pack 

while hiking, a researcher measured the weight of the pack using a handheld digital force 

gauge (FGE-HXY Digital Force Gauge, Nidec-Shimpo Corporation, Kyoto, Japan). Next, 

participants were instructed to properly fit the commercially available fitness tracker 

(Garmin Forerunner 235, Garmin Ltd., Olathe, Kansas, USA) on their non-dominant wrist. 

A researcher then checked it for proper fit, ensured data recording enabled, defined rating 

of perceived exertion, and provided instructions for documentation of RPE and difficulty 

during the hike (see below). Participants hiked the Wind Caves Trail (without a researcher) 

at a self-selected pace and provided ratings of perceived exertion and difficulty at 

predetermined locations, as described below. Participants were free to take breaks when 

desired, and their time spent at the top of the trail was not restricted. The activity tracker 

worn on the wrist collected biometric data throughout the hike, including heart rate, distance, 

date, time, latitude, and longitude, at a sampling rate of 1 Hz. When the hike was complete, 

participants returned all equipment to the research station at the trailhead and rated the entire 

trail difficulty on a seven-point scale (Appendix K).  

Individuals recruited at the trailhead completed the prescreening survey to assess their 

eligibility for participation. If eligible, participants read and signed the informed consent 

document, completed the pre-hiking survey, and then followed the same pre-hiking 
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preparation and data collection steps described above. These participants were then emailed a 

request to complete the Baecke Fitness Inventory (Appendix G), selected questions from 

the International Physical Activity Questionnaire (Appendix F) and the Pain 

Catastrophizing Scale (Appendix H), and demographic questionnaire.  

Ratings of Perceived Exertion. 

Participants recorded perceived exertion ratings with a clipboard, pencil, and paper 

packet. All participants completed a pre-hike, post-ascent, post-descent, and post-hike 

rating on a traditional hiking trail difficulty seven-point scale (Appendix K) and on the 

VRPE (Appendix C). If hiking in a group, participants were instructed to avoid sharing or 

discussing ratings.  

Data Processing 

RPE was obtained from VRPE scales by measuring with a ruler in millimeters the 

distance from the zero anchor to the intersecting line drawn by the participant. All VRPE and 

difficulty responses were manually input into REDCap, and fitness tracker data (i.e., .fit file) 

were transferred to a secure university computer for storage and data analysis. Using the 

Python programming language (Python Core Team, 2023), all .fit files from the fitness 

tracker (the GIS data file used by Garmin equipment and software) were downloaded, 

converted to, and saved as a text file. All subsequent data wrangling and analysis of the 

fitness tracker data (e.g., altitude, heart rate, latitude, longitude, speed, date, and time) were 

performed in R (R Core Team, 2021). All demographic and fitness questionnaire data 

collected in REDCap were then exported and merged with fitness tracker data. 

Statistical Analysis 
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 To make comparisons between models using VRPE and those using difficulty as the 

response variable, VRPE was recoded to a categorical variable (Figure 4-1), and 

classification was applied to both outcome variables. Hiking difficulty was measured on a 

seven-point categorical scale, but participants used only five of these levels. VRPE was 

measured as a numeric variable from 0 to 100 and was recoded by dividing the 100-point 

scale into 7 equal levels to match the levels of the difficulty scale (under the assumption that 

the difficulty scale levels increase linearly like the VRPE scale). Very few values were in the 

two extreme categories, therefore the bottom two levels were combined as well as the top 

two levels. This resulted in a categorical RPE scale with five levels. Both categorical 

response variables (difficulty and RPE) resulted in level sparsity during classification due to 

very few observations in the ‘Severe’ category. Therefore, these observations were recoded 

Note.  Each histogram represents the distribution of RPE and difficulty on a categorical scale 

and displays the levels used in the classification models. 

Figure 4-1 
 
Distribution of Categorical Response Variables 
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for inclusion into the next highest level, ‘Difficult’, which resulted in four levels (‘Easy’, 

‘Fair’, ‘Moderate’, ‘Difficult’) of each response variable used for classification.  

Due to missing GPS data, two participants were removed prior to the fitting of 

statistical models, resulting in 106 subjects with the potential to be included in the final 

analysis. The missing variables for these two subjects meant that the models would 

automatically exclude them for predictions whenever a predictor variable was missing from 

the dataset. Similarly, since there were only 81 ‘data complete’ observations, models 

including all predictor variables were limited to this sample size. The samples used for 

predictive modeling, including those with only a subset of all predictor variables, were 

restricted to observations that were ‘data complete’ for that respective model (i.e., all the data 

required for that particular model was present). 

After limiting the dataset to only data complete observations (n = 81), the data were 

partitioned into training and test datasets using an 80/20 split for each of the two response 

variables (categorical RPE and difficulty). Models were trained using the training dataset to 

address the aforementioned specific aim, and the test datasets were withheld to assess the 

final model’s predictive accuracy on unseen data for a given response variable. All models 

were built with a feature set that included only variables available before the hike using five-

fold cross-validation to assess accuracy on the training set. This feature set included pre-hike 

questionnaire responses and demographic and hiking equipment information.   

Elastic net classification was used as the main statistical approach as it has the ability 

to avoid overfitting when over-parameterized. Model performance was assessed using 

classification accuracy, with higher accuracy indicating better performance. All models were 
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built using the ‘train’ function from the caret package (Kuhn, 2008; Kuhn et al., 2023), and 

all statistical analyses were completed using R (R Core Team, 2021). 

Results 

Categorical VRPE resulted in a more uniform distribution of scores across the 

possible ratings compared to the difficulty ratings. After recoding VRPE responses, elastic 

net classification resulted in a test accuracy 28.57% for RPE and 53.33% for difficulty. The 

training accuracy ranges obtained via cross-validation for each response variable are shown 

in Figure 4-2. The accuracy variability of the difficulty classifier was greater during training 

but its accuracy was on average higher than that of the discrete RPE classifier (Figure 4-2 

Left). Compared to a model predicting at random chance levels, the RPE classifier was a 

small improvement, as indicated by a Cohen’s Kappa value consistently greater than zero. In 

contrast, the difficulty classifier’s performance was comparable to random chance, with a 

Kappa value closer to zero, although with greater variability. The confusion matrices from 

the models’ test predictions, presented in Figure 4-3, provide further detail about model 

performance on the test data. The RPE classifier demonstrated a more accurate categorization 

at low intensity RPE predictions (‘easy’, ‘fair’) compared to high intensity RPE predictions 

(‘moderate’, ‘difficult’), whereas the difficulty classifier always predicted ‘moderate’. Due to 

clear differences in covariation between the measured and predicted scores in the discretized 

RPE versus difficulty, we performed a Spearman rank correlation on each variable to 

determine the strength of the relationship between the measured and predicted values. There 

was a moderate, positive (rho = 0.34) relationship between the measured and predicted 

categorical VRPE scores but an undefined relationship between the measured and predicted 

difficulty scores (due to the lack of variability in the predicted difficulty scores). This result 
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suggests that while the discretized RPE performed worse on average, it better captured 

participant outcome variability across changes in RPE compared to the difficulty classifier. 

 

Note. Model accuracy (left) and kappa (right) for difficulty and categorical RPE during the 

training of the classification model.  Left: Accuracy indicates the number of observations 

classified correctly for each round of cross-validation. Contrasting the classification of 

difficulty and RPE, difficulty nearly always out-performs RPE based on accuracy. This 

measure is reported as a percentage. Right: Kappa compares the observed accuracy to the 

expected accuracy (random chance) and presents the classification accuracy of the model 

being tested relative to a model classifying based only on random chance. Kappa ranges from 

-1 to 1, where 0 indicates the classification accuracy is equal to random chance, -1 is less 

0.30.20

Difficulty

RPE

Accuracy Kappa
0.25 0.30 0.35 0.40 0.45 -0.3 -0.2 -0.1 0.0 0.1 0.2

Figure 4-2 
 
Classification cross-validation for the training set 
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than random chance, and 1 indicates perfect agreement between the observations and model 

outcomes. In terms of Kappa, the RPE classifier performs slightly better than the difficulty 

classifier, which performs similar to a random chance classifier. In all subplots above, the 

box, tails, and dots represent the spread of values observed during cross-validation for 

accuracy and kappa. 
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Note. RPE (left) was classified correctly in the ‘easy’ and ‘fair’ categories but was 

misclassified in the ‘moderate’ and ‘difficult’ categories.  Difficulty (right) was always 

classified as ‘moderate’. The measured category is represented on the x-axis, and the 

category in which the model classified the observation is shown on the y-axis. If a model 

were to classify correctly all values in every category, the squares along the diagonal would 

be green with no other squares highlighted in red. A square’s color indicates whether the 

model’s classification category was correct (green) or incorrect (red). The opacity of each 

square reflects the proportion of all measured observations in a given level that were 

classified correctly or incorrectly. The more opaque, the greater proportion of measured 

values covered by that specific classification (predicted) category. The more transparent, the 

lower the proportion of measured values represented by the associated square.  

Figure 4-3 
 
RPE and Difficulty Confusion Matrices for the Test Data 
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Discussion 

 This investigation sought to examine whether recoding of the numerical VRPE 

measure as a categorical variable would improve prediction accuracy. Ultimately, difficulty 

classification resulted in better test accuracy (53.33%) than for categorical VRPE 

classification (28.57%). However, this improved accuracy for difficulty came as a 

consequence of predicting a moderate intensity for every hiker. The results of this study 

suggest that model accuracy was superior for difficulty compared to categorical VRPE, 

although the difficulty model sacrificed individual variability for accuracy by predicting 

‘moderate’ for every hiker. In contrast, the model classifying VRPE appeared to capture the 

subject-to-subject variability more effectively, especially at lower intensity levels.  

Non-linear mapping of difficulty levels 

One concern of using the difficulty scale to indicate how challenging participants 

found the trail is the possibility of there being variation in how participants interpreted the 

relationship between the scale’s category names (i.e., ‘easy’, ‘fair’, ‘moderate’, etc.) and the 

exertion that they experienced. The VRPE likely bypasses this particular effect by using 

descriptive anchors only at the scale extremes and avoiding categorical associations. After 

the VRPE was recoded to four categorical levels, its distribution was more uniform than the 

difficulty distribution, suggesting that indeed the mapping between degree of exertion and 

the ratings provided between the two measures differed at least to some degree. Participants 

were more likely to associate their experience with a moderate difficulty when presented 

with the categorical difficulty scale than to select an exertion level on the VRPE 

approximately equivalent to this level. This finding raises questions as to whether the 

categorical labels acted to bias the scoring of participants (e.g., participants selected 
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moderate more often for psychological or social reasons rather than mark their true 

experience) or whether participants had difficulty associating their exertion with a spot on the 

VRPE line resulting in more variable scores and the appearance of a uniform distribution as a 

result of our categorical recoding. Future research is necessary to disentangle these possible 

influences on these dependent measures. 

Model prediction accuracy 

Accuracy is a simple way to communicate results and compare classification models, 

however, it provides only surface-level information about the total number of observations 

classified correctly and neglects level-specific information about where the model performs 

poorly. For example, while classification accuracy of VRPE was lower than that of difficulty 

(as seen in the confusion matrices above), VRPE classification performed well at lower 

intensity levels (‘easy’, ‘fair’), and the predicted RPE appeared to covary with the measured 

RPE across all levels. However, because only a moderate relationship (rho = 0.34) exists 

between the two variables, a larger sample size is necessary to determine if this relationship 

is significantly different from zero. A simulated power analysis using this correlation 

magnitude suggests that approximately 64 subjects would be necessary to establish whether 

this relationship is significantly different from zero with greater than 80% power.  

Although the classification accuracy was superior for difficulty compared to VRPE, 

this outcome came at the cost of individual variability. Every difficulty observation was 

classified as ‘moderate’ and thus this model did not consider individual variability in making 

its predictions. While this outcome counters the goal of this thesis (to use information 

supplied by participants to improve and provide personalized predictions), given the 

relatively ‘normal’ distribution of the data in the test and training set, this may be the 
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contextually optimal outcome. Specifically, for normally distributed continuous numerical 

data, the estimate that minimizes mean absolute and squared errors are the median and mean 

of the distribution (measures of central tendency), assuming there is no knowledge available 

regarding the mechanism of the generative model. Since the data here are ordinal categorical 

data, the median or mode of the data may represent a similar compromise. Given the size of 

this sample, and the relative weakness of the relationship between the predictor variables and 

the outcome variables, the model may not have been able to perform better than predicting a 

single central, or most probable, difficulty because no benefit was gleaned from information 

provided by the individual participants. Notably, assigning a single difficulty to every hiker 

is essentially how difficulty scales are currently applied, and these data indicate that this 

approach may only be accurate approximately 53% of the time. If we extend this finding to 

our current use of difficulty scales, and assume a similar distribution of data to that observed 

here, it suggests that 46.67% of individuals would potentially be misinformed of the trail 

difficulty and find it to be either harder or easier than anticipated (moderate). Considering 

that we want to decrease barriers to hiking engagement, especially for beginner or leisurely 

hikers, and these individuals are likely to have lower physical fitness and familiarity with 

hiking trails, an accuracy rate of 53.33% is less than desirable, although it is comparable to 

previous findings (Geurkink et al., 2019). In contrast, since the categorical VRPE scores 

were fairly uniformly distributed, the advantage to predicting the center of the distribution, or 

most probable category, was not as large and therefore the model’s accuracy seemingly 

benefitted from incorporating participant information into the predictions over simply 

predicting a single value (category) for everyone. Compared to the difficulty model, the 

categorical VRPE model resulted in a lower average classification accuracy but did classify 
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observations in the ‘fair’ and ‘easy’ categories better compared to the ‘moderate’ and 

‘difficult’ categories (though the consequences of categorizing a hard trail as easy are greater 

than categorizing an easy trail as hard). Interestingly, while the VRPE model captured some 

of individual variability it also tended to underestimate three of the four categories. The 

reason for this is currently unclear. 

While there are pros and cons to using either of these response variables, combining 

them may provide a better solution. A scale that combines the flexibility of the VRPE with a 

traditional difficulty scale, where VRPE ranges are stratified by difficulty level using 

terminology that is easily interpretable by all hikers, could circumvent the absent meaning, to 

those unfamiliar, of a 0 to 100 scale but would also allow for regression-like resolution. 

Additionally, a hybrid scale could help limit the impact of variation in participants’ 

interpretation of the relationship between the category names and the difficulty they 

experience. Such a scale could better standardize participant responses, potentially increasing 

response consistency within and between individuals. 

Limitations 

Ultimately, while there was an increase in accuracy when classifying difficulty 

compared to VRPE, the low overall accuracy of both provides an opportunity for 

improvement.  As stated earlier, it is likely that training these models on a larger, more 

diverse training sample and testing them on a larger test set could result in greater predictive 

accuracy for both measures. Additionally, changes to the experimental design, such as using 

a hybrid scale or further refining the included features, may improve the predictive accuracy 

of such models. 
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Conclusion 

 This study aimed to determine whether converting the numerical VRPE measure to 

categorical would enhance predictive accuracy. Our findings suggest that classifying trail 

difficulty results in better test accuracy than discretized RPE. However, this improved 

accuracy was due to the model predicting a moderate intensity for every hiker, rather than 

capturing the subject-to-subject variability more effectively. These findings suggest that 

while treating VRPE as a categorical measure may not necessarily improve prediction 

accuracy, it could potentially lead to improved outcomes if the correlation between these two 

measures can be strengthened. Future research should explore ways to address this 

correlation and optimize prediction accuracy, perhaps by combining scales and refining the 

predictor variables to allow for improved response accuracy and reliability.   
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Chapter 5  

Why didn’t predictive models perform better? Closer examination of trends in the data 

When interpreting the results of previous chapters at face value, it appears that 

predicting individualized hiking difficulty using statistical learning methods does not greatly 

improve upon current hiking trail rating systems and, therefore, may not be overly useful. 

One factor contributing to the relatively poor predictive accuracy may be that individuals, 

whether active (Rose & Parfitt, 2007; Spurway, 1992; Zamparo et al., 2001) or sedentary 

(Parfitt et al., 2006), tend to self-select an exercise intensity around their lactate threshold, 

which often falls within the ACSM guidelines of 50-85% VO2max for moderate exercise 

(Glass & Chvala, 2001; Parfitt et al., 2000). Importantly, when self-selecting exercise 

intensity, individuals report higher RPE (as measured with Borg 6-20) than they report when 

a below-lactate intensity is imposed (Parfitt et al., 2006). The ability to self-regulate hiking 

speed and take breaks during the study likely led participants to hike at a moderate exercise 

intensity, on average, which may have led to the moderate-centered RPE distribution. This 

self-selection of moderate intensity exercise may partially explain the tendency of models 

presented in previous chapters to also predict near the average VRPE for the entire group or 

classify every observation as moderate difficulty. Due to this, future investigations might 

consider a study design that implements experimental controls for hiking speed, break 

number, and break lengths during the hike.  

Regardless of potential limitations resulting from individuals self-selecting hiking 

intensity, further investigation into the data revealed that interactions between sub-

populations within the sample may be reducing the predictive capacity of the models above. 

Identification of these trends may be useful to improve future efforts toward predicting 
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hiking trial difficulty. In particular, both an individual’s prior trail experience and whether or 

not they hiked in a group appear to moderate the relationship between several variables, 

which could negatively impact the predictive capacity of some models if these variables are 

not controlled for, or there is insufficient sample size to account for them. Below, several 

variables are plotted by whether a participant had hiked the trail before (Black) or not (Gray) 

(Figure 5-1) and by whether or not they hiked in a group (Figure 5-2).  

Previous Trail Experience 

The first sub-populations we identified were repeat-hikers (hiked the Wind Caves 

trail previously (n = 52)) and first-time hikers (never hiked this trail before (n = 27)). This 

grouping variable appears to influence the relationship between VRPE over the entire hike 

across a variety of predictor variables, including those that typically have a consistent 

relationship with RPE, such as heart rate during the hike (Borg, 1982). Select scatter plots 

with linear model fits are shown in Figure 5-1.  
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Familiarity with the Wind Caves trail, and hiking as physical activity, may be playing 

a role here, as repeat- and first-time hikers report hiking for different reasons, including 

exercise and health (Wilcer et al., 2019). Familiarization with exercise may explain 

differences in motivational and affective responses to self-selected exercise intensity in 

sedentary women (Rose & Parfitt, 2012). Whether our model’s predictive capacity was 

hindered by trail-specific or general physical activity familiarity is unclear. However, there 

does appear to be some influence of first-time hiking trail exposure on several predictor 

variables in this sample that were explored in previous chapters. For example, when 

Note. Different behaviors may be observed depending on whether or not the participant had 

previous experience on the trail. Gray = first-time hiker. Black = repeat-hiker. The shaded 

region indicates the 95% confidence interval for predictions from a linear model. 

 

Figure 5-1 

Relationship Between Predictor Variables and VRPE Grouped by Previous Experience on 

the Wind Caves Trail 
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considering average heart rate’s utility in predicting the rating of perceived exertion, we see 

that trail-unfamiliar hikers tend to rate perceived exertion higher for lower heart rates 

compared to trail-familiar hikers. Heart rate was not the only predictor variable to exhibit 

what appears to be different behavior for trail-familiar and unfamiliar hikers. Height and BFI 

22 also appeared to exhibit differing trends across RPE depending on whether the hiker had 

experience with the trail (Figure 5-1). Importantly, we included these variables here to try to 

account for their influence. However, there may ultimately have been insufficient power 

and/or model complexity to use the information provided by these relationships, potentially 

leading to poorer predictive capacity of the models.  

Group Hiking 

The second moderating variable we identified as potentially influencing the 

relationship between select predictor variables and VRPE is whether individuals hiked with 

at least one other person (Figure 5-2). In our sample, 50 people hiked alone and 29 hiked in a 

group. Hiking in a group introduces a social component into the hike and likely alters a 

participant’s hiking velocity and when and/or how many breaks are taken during the hike so 

that the group can stay together.  
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 Underlying motivations, such as autonomy (Coble et al., 2003) and social interaction 

(Cronan et al., 2008; Kim et al., 2015; Whiting et al., 2017), may drive individuals to hike 

solo or partake in group hiking. At the same time, fears associated with hiking alone (e.g., 

getting lost, accidental injury, injury by another person (Coble et al., 2003)) may also 

contribute to an individual’s solo hiking experience or decision to forego solo hiking 

altogether. Individual motivations and fears related to hiking contribute to a complex 

experience involving not only physiological measures considered here but also psychological 

Note. Opposite behaviors may be observed in measures of RPE depending on whether or not 

participants hiked in a group. Gray = Solo-hiker. Black = Group-hiker. The shaded region 

indicates the 95% confidence interval for predictions from a linear model. 

Figure 5-2 
 
Relationships Between Predictor Variables and VRPE Grouped by Solo and Group Hikers 
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and social factors. These complex, personal decisions that guide an individual to hike solo or 

in a group may also influence the measures presented here, leading to identifiable differences 

in each type of hiking group but washing out the predictive accuracy of models not 

considering these relationships. Ultimately, it would seem that these studies would benefit 

from a larger sample size by better capturing the relationship between the independent 

variables and potentially opening the door for the use of more complex models. 

Conclusion 

 These results suggest that heterogeneity within our sample may be impairing models’ 

capacity to accurately predict individual hiking trail difficulty at this sample size. A larger 

overall sample size may potentially allow inclusion of these variables in the model if they 

continue to behave differently. However, if such a dataset is unavailable, future researchers 

may consider focusing only on one sub-population, such as individuals that have never hiked 

the trail before or those solo-hiking, to reduce the confounding impact of these relationships. 

Another option is to impose a particular hiking speed on all individuals in an effort to control 

for the effect of self-selected intensity tending toward a moderate level of exercise in all 

individuals. Either of these approaches may improve model training and the accuracy of their 

predictions.  
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Chapter 6  

General Discussion and Conclusions 

Improving hikers’ self-awareness of physical fitness, trail conditions, and trail 

difficulty may decrease recreational injuries and incidents and positively influence overall 

hiking experience (Heggie & Heggie, 2012; Trayers, 2004). Others seeking to align 

individual fitness level and trail difficulty to assess hiking readiness report weak relationships 

between popular fitness questionnaires (International Physical Activity Questionnaire) and 

individual RPE on a hiking trail (Coetzee et al., 2021). The alternative suggestion to 

implement standardized fitness assessments (i.e., step test and one-mile walking test) 

presents its own barriers to informed hiking trail difficulty, namely required time, equipment, 

and additional physical exertion for prospective hikers (Coetzee, 2018; Coetzee et al., 2021). 

We proposed an alternative approach to determine individual hiking trail difficulty using 

statistical models to predict RPE during a hike using trail, individual, and weather feature 

sets. Our results are encouraging when considering the potential application to improve 

individual hiking experiences, but there are still many important areas to explore and many 

unanswered questions. 

Methodology Considerations 

 A prevailing limitation across our aims is that the sample size is smaller than ideal 

and, consequently, likely limits the predictive capacity of the models presented, as well as 

additional statistical approaches that could be explored. While imputation could be used to 

replace missing data and increase the sample size, this approach can lead to biased estimates 

when applied under specific circumstances (Donders et al., 2006). Similar studies have used 

smaller samples and applied complex machine learning models after imputation of the 
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original sample to create a larger dataset (Davidson et al., 2020; Geurkink et al., 2019). These 

publications report classification accuracy of upwards of 86% to predict RPE in a variety of 

sports contexts but only after simplifying the problem by reducing RPE to two larger 

categories (“Somewhat hard to hard” (RPE ≤ 15) vs. “Hard to very hard” (RPE > 15)) 

(Davidson et al., 2020) or using a “loose accuracy” approach where classification of 

predictions within ±1 of the observed value was considered correct (Geurkink et al., 2019). 

While imputation could be used to replace missing data and increase the sample size, this 

approach can lead to biased estimates when applied under specific circumstances (Donders et 

al., 2006). Another option is to explore time series analysis using the raw data extracted from 

the fitness tracker. This could be a promising approach as it has previously been used to 

predict fatigue and RPE (Hajifar et al., 2021) with relative success. 

As seen in recent studies predicting fatigue via participant-reported RPE, an 

alternative approach to this problem could be to focus on a small sample of hikers that repeat 

the hiking task multiple times and consider each hike as separate training observations 

(Bartlett et al., 2017; Carey et al., 2016; Vandewiele et al., 2017). This approach would 

provide information from which the models could learn how RPE changes within a smaller 

group of individuals based on the time of year, environmental factors, and as the hiking 

season progresses. While a model trained on a smaller sample may still encounter issues of 

overfitting to these individuals’ characteristics, it may allow for greater focus on hiking 

performance and fluctuating weather conditions.  

Social Impact on Perceived Hiking Difficulty 

Hiking with one or more other people may influence the level of exertion experienced 

during a given hike (Coetzee et al., 2021). Beyond hiking faster to keep pace with group 
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members with higher physical fitness, there may be some level of distraction that makes the 

perceived experience less intense than objective measures (such as heart rate) suggest. This 

may lead to lower RPE levels despite heightened physiological measures and necessitate the 

inclusion of a group interaction in regression-based models. This change in the relationship 

between certain variables may, in turn, impact model performance when predicting RPE.  

Motivations and hiking styles that characterize different hikers may also influence 

subjective perception of hiking difficulty. Long-distance hikers on the Pacific Crest Trail 

have been categorized into two groups, “purists” and “social hikers”, with each group having 

distinct approaches to and motivations for hiking (Lum et al., 2019). Purists primarily seek 

connection to the trail itself and are engaged solely for the act of hiking, while Social Hikers 

are characterized by a desire to partake in emotional connection to others (Lum et al., 2019). 

While there is currently no literature that directly connects hiking characterization and 

subjective trail difficulty, it is worth considering when predicting individual hiking 

experience based on a subjective measure, such as rating of perceived exertion.  

Similar relationships between gender and RPE may also exist as women tend to have 

higher concerns about confidence and fear of getting hurt despite sharing similar interests in 

outdoor recreation as men (Ceurvorst et al., 2018). The subjective and multi-faceted nature of 

RPE may mean that personal attributes, specifically psychological factors, may impact an 

individual’s perception of trail exertion. As described here, an individual’s level of general 

pain catastrophizing appears to be correlated with their perceived hiking experience as 

measured with RPE. 

Generally, this dataset would also benefit from more observations in older age 

groups, as well as broader variety of fitness levels. Anecdotally, when recruiting participants, 
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it was difficult to recruit older individuals who had never hiked the trail before due to fears of 

getting hurt, lost, or needing help while on the trail. As this study required physical activity, 

specifically hiking, it likely suffered from participation bias towards those who enjoy hiking 

and physical activity. While this is anecdotal, a greater focus on non-hiking audiences during 

recruitment and implementation of a variety of participation opportunities may increase 

recruitment of individuals less likely to naturally volunteer for a study such as this. In light of 

this, future studies might consider organizing group hikes, not only for older hikers but for 

anyone who feels more comfortable hiking with others. This approach may help with 

diversifying the age range as well as the type of hikers who are willing to participate in the 

study, especially if a more challenging hike is used.  

Conclusions 

Overall, this series of projects lays a foundation for future research within a relatively 

under-developed subject area by illustrating the feasibility of a real-world study of this 

nature, exploring preliminary data analytics for prediction of individual hiking difficulty, and 

identifying future directions through the identification of variables that appear important to 

predicting individualized trail difficulty. While the results of this project are encouraging, we 

are limited by sample size, participant demographics, and self-selected hiking intensity. To 

make the approach presented here a truly viable approach to rating trail difficulty, it will need 

to be extended to other hiking trails, particularly those with more difficult terrain to further 

differentiate between hikers of differing fitness levels. A first step may be to expand it to 

include other trails within the Wasatch region to understand how models need to be built for 

different trails and how individual performance on different trails will impact predictions. 

Next, expansion to trails in different regions of the United States will also allow us to explore 
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samples with different demographics and understand what these differences might indicate 

about perceived hiking difficulty based upon regional and geographic differences.  
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Appendix A. Description of Statistical Models 
Support Vector Machines 

 The support vector machine (SVM) is an extension of the support vector classifier. 

Support vector classifiers address the problem of non-linearity by enlarging the feature space 

through the addition of polynomial versions of predictor variables (James et al., 2017). The 

SVM also does feature space expansion but uses kernels to make computations more 

efficient (James et al., 2017). Simply, a kernel is a mathematical function representing the 

relationship between two outcomes; this quantity is then used to create a decision rule for 

classification problems (James et al., 2017).   
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Appendix B. Borg RPE 6-20 Scale 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(Borg, 1970, 1998) 
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Appendix C. Rating of Perceived Exertion Visual Analog Scale 

 
 Rate your current perceived exertion.  

(If you are taking a break, rate your perceived exertion right before you stopped hiking.) 
 

Record the time from the fitness tracker 
Time: _______________________ 

 
Turn to the Next Page             

No Exertion At All 

Maximal Exertion 



 

 

Appendix D. Wind Caves Hiking Trail Information 
 

  

All RPE ratings provided by participants in the feasibility study plotted on the Wind Caves 
trail based on latitude and longitude at the time RPE was documented. Each circle 
represents a single RPE provided at that trail location. Circle color and size represent the 
value of the RPE rating. Larger circles indicate a higher RPE. The color to RPE value 
mapping can be viewed in the inset on the map.  



 

 

Appendix E. Physical Activity Readiness Questionnaire (PAR-Q) 

Regular physical activity is fun and healthy, and increasingly more people are starting to 

become more active every day. Being more active is very safe for most people. However, 

some people should check with their doctor before they start becoming much more 

physically active. If you are planning to become much more physically active than you are 

now, start by answering the seven questions in the box below. If you are between the ages 

of 15 and 69, the PAR-Q will tell you if you should check with your doctor before you 

start. If you are over 69 years of age, and you are not used to being very active, check with 

your doctor. Common sense is your best guide when you answer these questions. Please 

read the questions carefully and answer each one honestly: check YES or NO. 

1. Has your doctor ever said that you have a heart condition and that you should only do 

physical activity recommended by a doctor? 

2. Do you feel pain in your chest when you do physical activity? 

3. In the past month, have you had chest pain when you were not doing physical activity? 

4. Do you lose your balance because of dizziness or do you ever lose consciousness? 

5. Do you have a bone or joint problem (for example, back, knee or hip) that could be made 

worse by a change in your physical activity? 

6. Is your doctor currently prescribing drugs (for example, water pills) for your blood 

pressure or heart condition? 

7. Do you know of any other reason why you should not do physical activity? 

  



 

 

 

Appendix F. International Physical Activity Questionnaire (15-69 years) 

We are interested in finding out about the kinds of physical activities that people do as part 

of their everyday lives. The questions will ask you about the time you spent being 

physically active in the last 7 days. Please answer each question even if you do not 

consider yourself to be an active person. Please think about the activities you do at work, as 

part of your house and yard work, to get from place to place, and in your spare time for 

recreation, exercise or sport.  

 

Think about all the vigorous activities that you did in the last 7 days. Vigorous physical 

activities refer to activities that take hard physical effort and make you breathe much harder 

than normal. Think only about those physical activities that you did for at least 10 minutes 

at a time.  

1. During the last 7 days, on how many days did you do vigorous physical activities like 

heavy lifting, digging, aerobics, or fast bicycling?*  

_____ days per week  

No vigorous physical activities Skip to question 3  

2. How much time did you usually spend doing vigorous physical activities on one of those 

days?  

_____ hours per day  

_____ minutes per day  

Don’t know/Not sure  

 



 

 

Think about all the moderate activities that you did in the last 7 days. Moderate activities 

refer to activities that take moderate physical effort and make you breathe somewhat harder 

than normal. Think only about those physical activities that you did for at least 10 minutes 

at a time.  

3. During the last 7 days, on how many days did you do moderate physical activities like 

carrying light loads, bicycling at a regular pace, or doubles tennis? Do not include walking.  

_____ days per week  

No moderate physical activities Skip to question 5  

4. How much time did you usually spend doing moderate physical activities on one of 

those days?  

_____ hours per day  

_____ minutes per day  

Don’t know/Not sure  

 

Think about the time you spent walking in the last 7 days. This includes at work and at 

home, walking to travel from place to place, and any other walking that you have done 

solely for recreation, sport, exercise, or leisure.  

5. During the last 7 days, on how many days did you walk for at least 10 minutes at a 

time?  

_____ days per week  

No walking Skip to question 7  

6. How much time did you usually spend walking on one of those days?* 

_____ hours per day  



 

 

_____ minutes per day  

Don’t know/Not sure  

 

The last question is about the time you spent sitting on weekdays during the last 7 days. 

Include time spent at work, at home, while doing course work and during leisure time. This 

may include time spent sitting at a desk, visiting friends, reading, or sitting or lying down 

to watch television.  

7. During the last 7 days, how much time did you spend sitting on a week day?*  

_____ hours per day  

_____ minutes per day  

Don’t know/Not sure 

 

* Denotes items selected for use in Chapters 3 & 4.  

  



 

 

Appendix G. Baecke Fitness Inventory  
Work Index 

1. What is your main occupation? 

low activity, moderate activity, high activity 

((1) low activity including clerical work, driving, shop keeping, teaching, studying, 

housework, medical practice, and occupations requiring a university education; (2) middle 

activity including factory work, plumbing, carpentry, and farming; (3) high activity 

includes dock work, construction work, and professional sport.) 

2. At work I sit:  

never, seldom, sometimes, often, always 

3. At work I stand:  

never, seldom, sometimes, often, always 

4. At work I walk:  

never, seldom, sometimes, often, always 

5. At work I lift heavy loads:  

never, seldom, sometimes, often, always 

6. After working I am tired:  

very often, often, sometimes, seldom, never 

7. At work I sweat:  

very often, often, sometimes, seldom, never 

8. In comparison of other of my own age I think my work is physically:  

much heavier, heavier, as heavy, lighter, much lighter 

  



 

 

Sport Index 

9. Do you play sports?  

Yes, No 

10. In comparison with others of my own age I think my physical activity during leisure 

time is:  

much more, more, the same, less, much less 

11. During leisure time I sweat:  

very often, often, sometimes, seldom, never 

12. During leisure time I play sport:  

never, seldom, sometimes, often, very often 

13. What sport do you play most frequently?  

low intensity, medium intensity, high intensity 

((1) low level examples: billiards, sailing, bowling, golf; (2) middle level examples: 

badminton, cycling, dancing, swimming, tennis; (3) high level examples: boxing, 

basketball, football, rugby, rowing) 

14. How many hours do you play a week? (For your most frequently played sport) 

< 1 hour, 1-2 hours, 2-3 hours, 3-4 hours, > 4 hours 

15. How many months do you play in a year? (For your most frequently played sport) 

< 1 month, 1-3 months, 4-6 months, 7-9 months, > 9 months 

16. What sport do you play second most frequently?  

low intensity, medium intensity, high intensity 



 

 

((1) low level examples: billiards, sailing, bowling, golf; (2) middle level examples: 

badminton, cycling, dancing, swimming, tennis; (3) high level examples: boxing, 

basketball, football, rugby, rowing) 

17. How many hours do you play a week? (For your second most frequently played sport) 

< 1 hour, 1-2 hours, 2-3 hours, 3-4 hours, > 4 hours 

18. How many months do you play in a year? (For your second most frequently played 

sport) 

< 1 month, 1-3 months, 4-6 months, 7-9 months, > 9 months 

Leisure Index 

18. During leisure time I watch television:  

never, seldom, sometimes, often, very often 

19. During leisure time I walk:  

never, seldom, sometimes, often, very often 

20. During leisure time I cycle: 

never, seldom, sometimes, often, very often 

21. How many minutes do you walk and/or cycle per day to and from work, school, and 

shopping?   

< 5 minutes, 5-15 minutes, 15-30 minutes, 30-45 minutes, > 45 minutes 

* All BFI items were included in Chapters 3 and 4.  

  



 

 

Appendix H. Pain Catastrophizing Scale  
 

Everyone experiences painful situations at some point in their lives. Such experiences may 

include headaches, tooth pain, joint or muscle pain. People are often exposed to situations 

that may cause pain such as illness, injury, dental procedures or surgery. 

 

We are interested in the types of thoughts and feeling that you have when you are in pain. 

Listed below are thirteen statements describing different thoughts and feelings that may be 

associated with pain. Using the following scale, please indicate the degree to which you 

have these thoughts and feelings when you are experiencing pain. 

0 - not at all 

1 - to a slight degree 

2 - to a moderate degree 

3 - to a great degree 

4 - all the time 

 

1) When I'm in pain, I worry all the time about whether the pain will end.  

2) When I'm in pain, I feel I can't go on.  

3) When I'm in pain, it's terrible and I think it's never going to get any better.  

4) When I'm in pain, it's awful and I feel that it overwhelms me.   

5) When I'm in pain, I feel I can't stand it anymore.  

6) When I'm in pain, I become afraid that the pain will get worse.  

7) When I'm in pain, I keep thinking of other painful events.* 

8) When I'm in pain, I anxiously want the pain to go away.  



 

 

9) When I'm in pain, I can't seem to keep it out of my mind.  

10) When I'm in pain, I keep thinking about how much it hurts.*  

11) When I'm in pain, I keep thinking about how badly I want the pain to stop.  

12) When I'm in pain, there's nothing I can do to reduce the intensity of the pain.  

13) When I'm in pain, I wonder whether something serious may happen. * 

*Denotes PCS items included in Chapters 3 & 4.  

  



 

 

Appendix I. Demographic Questionnaire 
Age: _________ 

Sex Assigned at Birth: _______________ 

Gender Identity: _______________ 

Race/Ethnicity: _______________ 

Height: _________ ft _________ in 

Weight: _________ lbs 

Have you had an injury to any of the following body regions in the last 12 months? 

  

Foot      No  Yes 

Ankle      No  Yes 

Knee      No  Yes 

Quadriceps / Hamstring   No  Yes 

Hip      No  Yes 

Neck      No  Yes 

Back      No  Yes 

Shoulder     No  Yes 

Head      No  Yes 

       

If you answered yes to sustaining a lower body injury in the last 12 months, please briefly 

describe the injury, any current impairment due to the injury, and provide a general date of 

injury:  

___________________________________________________________________________ 

 



 

 

Appendix J. Pre-Hike Survey 

Have you hiked this trail previously?  No Yes 

Have you recently travelled from an area of lower altitude?  No Yes 

How long have you been at this altitude?  _______________  

Are you hiking alone today? No Yes 

If no, number of others hiking with you (do not include yourself in this total): 

___________ 

Will you be using trekking poles today during the hike?  No Yes 

Will you be carrying a pack during the hike? No Yes 

If yes, weight of pack: _______________ 

Approximately how many hikes have you completed in the last month?: _______________  

How difficult do you expect this hike to be (select one)? 

Very Easy Easy      Fair        Moderate      Difficult Severe          Extreme 

 
  



 

 

Appendix K. Traditional Hiking Difficulty Rating Scale 
 

How difficult do you expect this hike to be?  

Very Easy 

Easy 

Fair 

Moderate 

Difficult 

Severe 

Extreme 
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