5-1994

The Design of an Augmentative Communications Device

Darren Blaser
Utah State University

Scott Sorenson
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/honors
Part of the Electrical and Computer Engineering Commons

Recommended Citation
https://digitalcommons.usu.edu/honors/320
THE DESIGN OF AN AUGMENTATIVE COMMUNICATIONS DEVICE

by

Darren Blaser and Scott Sorenson

Thesis submitted in partial fulfillment of the requirements for the degree of

DEPARTMENT HONORS

in

Electrical Engineering

Utah State University
Logan, Utah
1994
Introduction

There is an extremely large number of people in the modern world who have difficulty communicating. Among these are approximately 25 million people with cerebral palsy. Cerebral palsy is a disability that is usually caused during, or shortly after birth. Cerebral palsy usually affects a person's motor skills and sense of balance, often rendering them incapable of speaking clearly enough to be understood well. Because this group of people cannot communicate as effectively as other individuals, many uninformed people suppose they do not have as great a need to speak, to say things like, "How are you?", "I'm Hungry", "Thank you" or "I love you!" All people, including those suffering from speaking impairments, have feelings and emotions that need to be expressed. Their desires to communicate are just as strong, if not stronger, than individuals who have greater freedom to express themselves. To assure the highest possible quality of life-style for both individuals with severe speech impediments and all those associated with them, means must be devised to augment the ability of these individuals to communicate. These means must not only be easy and convenient to use, they must also be affordable. With these requirements in mind, we designed an augmentative communications device which we call Talk4Me. Talk4Me allows a user to playback prerecorded messages, enabling them to concisely express a limited number of ideas.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>i</td>
</tr>
<tr>
<td>List of Figures</td>
<td>ii</td>
</tr>
<tr>
<td>Executive Summary</td>
<td>iii</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Project Implementation</td>
<td>2</td>
</tr>
<tr>
<td>The User Interface</td>
<td>2</td>
</tr>
<tr>
<td>The Audio Subsystem</td>
<td>4</td>
</tr>
<tr>
<td>System Controller</td>
<td>7</td>
</tr>
<tr>
<td>The Power Supply</td>
<td>9</td>
</tr>
<tr>
<td>Results and Recommendations</td>
<td>12</td>
</tr>
<tr>
<td>Appendix</td>
<td>14</td>
</tr>
</tbody>
</table>
List of Figures and Tables

Figure 1. System Block Diagram ... 2
Figure 2. Control Panel ... 3
Figure 3. Membrane Switch Panel with LEDs ... 4
Figure 4. Audio Subsystem ... 5
Figure 5. ISD1020A Simplified Block Diagram ... 6
Figure 6. System Controller ... 7
Figure 7. Software Modules ... 8
Figure 8. Rechargable Power Supply ... 10

Table 1. Current Draw and Power Consumption ... 9
Executive Summary

Systems for augmenting the communicative abilities of individuals with severe speech impediments have been developed by several companies. However, most of these systems cost more than $1000, which prohibits many individuals from taking advantage of them. In October of 1992, Kathy Thurston proposed the investigation of producing a portable communication aid for the use of her sister for under $1000. The purpose of this report is to present the design of this augmentative communications device, which is called Talk4Me.

Although Talk4Me was designed specifically for Kathy's sister, whose severe speech impairment was caused by cerebral palsy, it has been found that Talk4Me could be of great use by many other individuals with speech impairments from a wide variety of causes.

The developed system consists of a user interface, designed to be easy and convenient for the user, and a record/playback system which records various phrases and plays them back when selected. It also includes a rechargeable battery system for portability. The results of this investigation and design indicate that an augmentative communications device is achievable for under $1000. However, some modifications to the design are required for Talk4Me to be manufactured.
Introduction

There is an extremely large number of people in the modern world who have difficulty communicating. Among these are approximately 25 million people with cerebral palsy. Cerebral palsy is a disability that is usually caused during, or shortly after birth. Cerebral palsy usually affects a person's motor skills and sense of balance, often rendering them incapable of speaking clearly enough to be understood well. Because this group of people cannot communicate as effectively as other individuals, many uninformed people suppose they do not have as great a need to speak, to say things like, “How are you?”, “I’m Hungry”, “Thank you” or “I love you!” All people, including those suffering from speaking impairments, have feelings and emotions that need to be expressed. Their desires to communicate are just as strong, if not stronger, than individuals who have greater freedom to express themselves. To assure the highest possible quality of life-style for both individuals with severe speech impediments and all those associated with them, means must be devised to augment the ability of these individuals to communicate. These means must not only be easy and convenient to use, they must also be affordable. With these requirements in mind, we designed an augmentative communications device which we call Talk4Me. Talk4Me allows a user to playback prerecorded messages, enabling them to concisely express a limited number of ideas.
Project Implementation

The preceding section discusses the need to develop a portable communication aid that is easy and convenient to use. The following report presents the Talk4Me augmentative communication device, which was developed for this application, as four functional subsystems: 1) the user interface, 2) the audio subsystem, 3) the system controller, and 4) the power supply. Each of these subsystems is shown in the system block diagram, as shown in Figure 1.

![System Block Diagram](image)

Figure 1. System Block Diagram

The User Interface

Ease of use is a major factor for the success of any communication device. Therefore, the user interface must be simple and easy to use. Talk4Me has a user interface that consists of a membrane switch panel and a control panel. To use Talk4Me, the user first turns on the unit with the push button on/off switch located
on the front panel near the membrane switches. The user then checks the switches on the control panel to be sure the correct options are selected. Figure 2 shows the six toggle switches which are available to select the various options. The available

![Control Panel Diagram](image)

Figure 2. Control Panel

options include: three possible modes of operation (selected by the top two switches), four possible memory configurations (selected by the middle two switches), and a level selection of four possible levels for quad-level operation with toggle switch level selection (selected by the two switches at the bottom of the control panel). If the user wishes to record a message, she simply presses the play/record rocker switch into the record position. This selects the recording mode. She then presses and holds the appropriate membrane switch down, while repeating the desired message. The message is recorded as long as the membrane switch is firmly depressed or until the allotted time for that switch is depleted. To play the message back she presses the play/record switch into the play position and presses the appropriate membrane switch. In the scanning mode, Talk4Me uses a simple row-column keyboard scan which allows the user to select the desired message. Each row lights sequentially for two seconds. This continues until any switch is pressed. After a switch is depressed, the LED in each column sequentially lights for two seconds, until another switch is pressed. When any switch is pressed for the second time,
Talk4Me plays back the message corresponding to the switch by the LED that is lighted.

Figure 3 shows the membrane switch panel. The small square boxes shown are LEDs which light while the device is recording and while the device is operating in the scanning mode, providing ease of operation for the user. The larger rectangles with rounded corners represent the actual membrane switch locations. There is also a LED in the top left hand corner of Figure 3 which functions as an on/off light.

The Audio Subsystem

The audio subsystem consists of an electret microphone, preamplifier, 16 ohm speaker and an array of ISD (Information Storage Devices Inc.) storage chips.
A complete schematic of the audio subsystem is shown in Figure 4. The electret microphone, with a sensitivity of 64 volts per millibar, captures the audio signal from the user and converts it into an electrical signal. This signal is then boosted.
by a low power preamplifier with a voltage gain of 16. This preamplification is accomplished with an LM324 operational amplifier in a non-inverting configuration which is biased for a 2.25 volt nominal output voltage with no input. The output of the preamplifier is capacitively coupled to the ISD storage array with a one microfarad capacitor. The ISD storage array consists of four ISD1020A single-chip voice record/playback devices. This is a new technology which utilizes patented Direct Analog Storage Technology (DAST). This revolutionary EEPROM storage method allows analog data to be written directly into a single cell without analog-to-digital or digital-to-analog conversion. This results in both an increase in density over equivalent digital methods and non-volatile storage of analog data. Figure 5 shows the simplified block diagram of the ISD1020A. The audio input comes into the preamplifier whose gain is automatically adjusted to maintain an optimum signal level into the filter. The anti-aliasing filter is a 5 pole low-pass filter with a roll-off of 40 dB per octave above the cut-off frequency of 3.4 kHz. The internal clock sets
the audio sampling rate at 6.4 kHz. Thus the anti-aliasing filter removes input frequency components above half the sampling frequency, satisfying the nyquist criterion. The audio signal is then written into the nonvolatile analog storage array. During playback, the recorded analog voltages are sequentially read from the storage array. The smoothing filter removes the sampling frequency component and the original audio signal is then passed into the output power amplifier which provides about 50 milliwatts RMS into two eight ohm speakers. An additional power amplifier is not needed as the speakers we are using have 93 dB per watt sensitivity at .5 meters. Because the ISD storage chips employ electrically erasable cmos technology the memory is nonvolatile, so even if the system is completely powered down there is no resulting loss of memory.

The System Controller

The heart of the system controller is the motorolla HC811E2 microcontroller. Refer to Figure 6.

Figure 6. System Controller
The motorolla HC811E2 microcontroller has five i/o ports which consists of 16 output and 17 input lines. Port a (pins 0-6) and port d (pin 3) are connected to the membrane switch array. These lines are used to scan the membrane switch panel. Port b is used strictly for output and drives the bank of LEDs on the front panel. Port c is used as the address bus and is tied directly to the ISD storage array. Ports d and e are used to scan the control panel and send the required control signals to the ISD storage array.

The motorolla HC811E2 microcontroller has a full two kilobytes of electrically erasable memory available for programming. A special circuit was built to program the microcontroller from any IBM pc-compatible computer with a serial port. The program for the microcontroller was written in motorolla assembly code, then compiled and transferred serially to the interfacing circuitry, which programs the microcontroller. A complete listing of the code used for Talk4Me is provided in the appendix.

The software for Talk4Me was written in modular fashion with three major modules, as shown in Figure 7. The initialization module initializes each of the ports, the stack, and various variables that were used in the static ram memory.

Figure 7. Software Modules
This module also reads the configuration switches in order to begin operation in the proper operating mode. After completing the initialization routine, the program continues with either the play or the record module as selected. Both the play and the record modules call subroutines which scan the membrane switch panel, calculate and place appropriate addresses on the address bus for the ISD storage array, enable the appropriate ISD storage chip, and wait for given delay times necessary for the control signals required for proper operation of the ISD storage array.

When the microcontroller was received it was found that the dip package had four less input pins than the PLCC package that was detailed in the data books. We corrected this problem by using a three to eight decoder to provide the chip enable signals for the ISD storage array, as shown previously in Figure 6.

The Power Supply

Talk4Me is a portable battery operated unit which uses five rechargeable nickel cadmium batteries. Table 1 shows the current draw and the power consumption measured during five different loading conditions. It is estimated that Talk4Me will be in the Direct Select (wait state) between 90 and 95 percent of the time. This gives Talk4Me an approximate lifetime of 7 days continuous use on a single charge. This

<table>
<thead>
<tr>
<th>Mode of Operation</th>
<th>Current Drawn (mA)</th>
<th>Power Consumption (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Select (wait state)</td>
<td>18.8</td>
<td>113</td>
</tr>
<tr>
<td>Direct Select (silent play)</td>
<td>100</td>
<td>600</td>
</tr>
<tr>
<td>Direct Select (loud play)</td>
<td>140</td>
<td>840</td>
</tr>
<tr>
<td>Record (wait state)</td>
<td>23.9</td>
<td>143</td>
</tr>
<tr>
<td>Record (active)</td>
<td>87.0</td>
<td>522</td>
</tr>
</tbody>
</table>

Table 1. Current Draw and Power Consumption
extended lifetime adds to the convenience of the user, as recharging would only be required weekly with heavy use.

Figure 8 shows the schematic for the batteries and voltage regulator used in the power supply. All the chips on the circuit board require a single +5 volt supply. This is delivered to the circuit board by the LM2931AT-5.0 low drop off voltage regulator with a variation of only ±.25 volts. The input voltage for this regulator comes directly from the five batteries as shown in Figure 8. Each nickel cadmium battery has a potential difference of 1.2 volts, making the five batteries in series total 6.0 volts. Charging circuitry is also included for recharging the batteries when they become discharged. The charging circuitry is also shown in Figure 8. The transformer shown plugs directly into any household 110 vac outlet. This rectifying
transformer converts 110 vac to 12 vdc. This is attached directly to a LM317T voltage regulator, which is being used as a constant current source that supplies 200 milliamps to charge the batteries. The batteries have a capacity of 2 amp hours, so the 200 milliamp current provides a standard charging rate of approximately one tenth the rated hour capacity. This means that 14-16 hours of charge time is required to fully charge the batteries.
Results and Recommendations

Talk4Me was evaluated by Beth Foley, Associate Professor of Communicative Disorders, who works constantly with individuals who have a wide range of speaking disabilities. Beth felt Talk4Me would be extremely useful in school settings with both young children who are developing language skills as well as those with developmental disabilities (e.g., mental retardation, Down syndrome). She also felt Talk4Me could prove very beneficial for "... adult users with short-term and/or relatively limited communication device needs (e.g., laryngectomees, stroke patients)." She continues, "Talk4Me fills this gap in the market, and should provide an effective, affordable communication system for a variety of individuals with severe speech impairments. An additional feature which makes Talk4Me an attractive new option is the scanning option, which enables even the most severely physically impaired user to access the system successfully via a single switch. . . Talk4Me fills a long-standing need in the AAC (augmentative and alternative communication) system market for a versatile, high quality, reasonably priced AAC device." Beth also included recommendations to improve the Talk4Me communication aid. Chief of these recommendation was a sturdier, more streamlined case with a handle for ease of carrying. Refer to the appendix for Beth Foley's complete evaluation.

The initial prototype of Talk4Me was convenient to use and was able to record and play back messages as desired. Talk4Me also proved to be easy to fully reprogram and/or make minor changes in the programmed messages.

The success of Talk4Me has spawned a joint effort by the Center for Persons with Disabilities, Sunshine Terrace, and the Electrical Engineering department at USU to design and build a production quality Talk4Me. This next phase in the development of Talk4Me will include the following added features for improved performance:
1) more durable and reliable membrane switches
2) fully developed and tested rechargeable battery system
3) more durable and streamlined case
4) multiple level programming options
5) improved software control routines
6) printed circuit board
7) external switch hook up to control row column scanning
8) multiple memory configurations
9) improved message queuing system (switch identifiers)

With these added features Talk4Me will be a significant addition to the devices which work to improve the quality of life for both individuals with severe speech impairments and all those who associate with them.
Appendix

Evaluation by Beth Foley, Associate Professor of Communicative Disorders.

The Talk4Me augmentative communication device represents a much needed low cost addition to current AAC systems market. There are no existing devices in the $500 - 1000 price range that provide such high quality speech output and ease of use. The Talk4Me is appropriate for a variety of AAC users with a range of communication needs. For example, because it is so easy to program, Talk4Me would be extremely useful in school settings with young children who are developing language skills and require frequent changes and/or expansions in the vocabulary available on their communication devices. It would also be especially effective for students with developmental disabilities (e.g., mental retardation, Down Syndrome) who need highly intelligible speech output in order for them to understand it and/or be understood by their peers. Adult users with short-term and/or relatively limited communication device needs (e.g., laryngectomees, stroke patients) would also benefit greatly from this technology. Currently, devices in the $500-1000 range utilize low quality speech technology (e.g., the Echo speech synthesizer) which is robotic sounding and often unintelligible to young children and/or individuals with significant deficits. Talk4Me fills this gap in the market, and should provide an effective, affordable communication system for a variety of individuals with severe speech impairments. An additional feature which makes Talk4Me is the scanning option, which enables even the most severely physically impaired user to access the system successfully via a single switch. In addition, Talk4Me provides a significantly greater storage capacity than comparable communication devices using digitized speech technology. Talk4Me fills a long-lasting need in the AAC (Augmentative and Alternative Communication) system market for a versatile, high quality, reasonably priced AAC device.
The Talk4Me prototype could be improved in a number of ways. First, the current case used to house the device is bulky and larger than it needs to be. A sturdier, more streamlined case with a handle for ease of carrying would make the device more attractive, more durable, and more portable. The overlay which will be used to display communication symbols needs to be more durable and resistant to spills, drooling, etc. The surface of the display must be such that the communication symbols can be added and removed with relative ease.
**** INITIALIZATION BLOCK ****

porta equ $00
portb equ $04
portc equ $03
portd equ $08
porte equ $0A

initialize variables

org $F800 start variable table at beginning
 of EEPROM

keytab fcb $00,$28,$50,$78,$00,$28,$50,$78
 rows 0 and 1 config#1
 fcb $00,$28,$50,$78,$00,$28,$50,$78
 rows 2 and 3
 fcb $00,$09,$12,$1b,$24,$31,$3e,$4b,$58,$68
 fcb $78,$88,$98,$b2,$c8,$e2
 fcb $00,$10,$20,$30,$50,$60,$70,$80,$a0
 fcb $c0,$ff,$ff,$ff,$ff
 fcb $00,$09,$12,$1b,$24,$2d,$36,$3f,$48,$55
 fcb $62,$6f,$7c,$89,$a4,$c0

chptab fcb $00,$00,$00,$00,$01,$01,$01,$01
 rows 0 and 1 config#1
 fcb $02,$02,$02,$02,$02,$03,$03,$03
 rows 2 and 3

lights fcb %11100001,%11010001,%10110001,%01110001
 row 0 lights
 fcb %11100010,%11010010,%10110010,%01110010
 row 1 lights
 fcb %11101001,%11010100,%10111000,%01111000
 row 2 lights
 fcb %11110000,%11011000,%10111000,%01111000
 row 3 lights

row#1 fcb %00000001
row#2 fcb %00000010
row#3 fcb %00000100
row#4 fcb %00001000
```
org $f900  start code 100 bytes from start of EEPROM

start

*********** INITIALIZE PORTS FOR INPUT/OUTPUT ***********

port a (located at $1000)

* pa0  keyboard matrix read line #1
* pa1  keyboard matrix read line #2
* pa2  keyboard matrix read line #3
* pa3  keyboard matrix read line #4
* pa4  keyboard matrix write line #1
* pa5  keyboard matrix write line #2
* pa6  keyboard matrix write line #3
* pa7  memory configuration (low bit)

port b (located at $1004)

* pb0-7 control for keyboard LED matrix (all output)

port c (located at $1003)

* pc0-7 address bus to all ASA chips (all output)
* program port c as output port
  0=input 1=output
  ldx #$1000
  ldaa #$FF
  staa $7,x

port d (located at $1008)

* pd0  >to 138 3 to 8 multiplexer for /ce’s
* pd1  (ASA chip 1-4 == bit address 0-3)
* pd2  *note address 5 disenables all ASA chips
* pd3  keyboard matrix write line #4
* pd4  power down for all ASA chips
* pd5  memory configuration (high bit)
* pd6  ?
* pd7  ?

program port d as output for pins pd0-4
```
ldaa #$1F load 00011111 . into accumulator a
staa $9,x program port d
ldaa #$00010011
staa $8,x initialize port d

******** port e (located at $100A) ********
* pe0 play /record * note all inputs
* pe1 memory overrun
* pe2 direct select /scan
* pe3 /EOM signal from all chips
* pe4-7 does not exist on 48 pin dip package

******** INITIALIZE STACK ********

LDS #250 points almost to top of ram

******** Configuration Initialization ********
******** Read configuration from input dip switch ********
******** and store configuration in variable config ********

ldaa #$00100000 mask of bit on port d to test
anda portd,x brach if high bit set
bne high
ldaa #$10000000 mask of bit on port d
anda porta,x brach if low bit set
bne one
ldaa #$00 in config %00 (zero)
br a mread
one ldaa #$01 in config %01 (one)
br a mread
high ldaa #$10000000 check low bit for value
anda porta,x in config %11 (three)
bne three
ldaa #$02 in config %10 (two)
br a mread
three ldaa #$03
mread staa config store configuration in variable
 (config)

******** Begin main modules of program ********

**** Read mode control and jump to appropriate address ****

* Read mode control data from port e(0-4)
* 0 - play /record
* 1 - memory overrun
* 2 - Direct Select /Scan
* 3 - Memory Config (low bit)

```assembly
mode ldaa #$01 test input e0 for /record
    anda porte,x branch to record mode

* brclr #$100A #$04 scan BRANCH TO SCAN MODE
* note scan mode not enabled yet default to dselect mode
* brset #$100A #$04 dselect BRANCH TO D.S. MODE
```

**
******** Direct Select Module ********
**

```
bsr scanh branch to scan subroutine
ldaa #$ff check for no key pressed
cmpa key $ff value for no key press
beq mode no key pressed -- check mode again

bclr portd,x #%00010000 power up all ASA chips
bsr address put appropriate address on bus
bsr waitee wait for eeprom to write
bsr chipenable enable first chip
bsr waitee
bset portd,x #%0000111 chip disable
ldaa #$00001000 read /EOM signal
eom anda porte,x test for end of message
bne eom
bset portd,x #%00010000 power down all ASA chips
bra mode end of dselect module
```

**
******** Recording Module ********
**

```
record bsr scanh branch to scan subroutine
    ldaa #$ff check for no key pressed
    cmpa key $ff value for no key press
    beq mode no key pressed -- check mode again

    bclr portd,x #%00010000 power up all ASA chips
    bsr address put appropriate address on bus

    bsr waitee wait for eeprom to write
    ldab key turn on recording light
    aby load light offset into y
```

record on bus
 ldab key load acc b key offset
 aby add offset (acc b) with index reg y
```
* ldaa $00, y
  staa portb, x
  bsr chipenable

* bsr samekey

* bset portd, x #00000111

* bsr waitee
  bset portd, x #00010000

samhold ldaa #00001000
  anda porte, x
  tsta

* beq out

* ldaa key
  psha
  bsr scan
  ldab key
  pula
  cba
  bne out
  ldaa $#ff
  cmpa key
  beq out
  bra samhold

out bra mode end of record module

********************************************************************
scanl bra scan help for scan subroutine to scan keyboard
********************************************************************

********************************************************************
********************************************************************
******** Subroutines ********
********************************************************************

******** wait for eeprom to write ********
********************************************************************

waitee ldy #10000
del dey bne del rts

******** wait ca 10 msec ********
********************************************************************
* wait10 ldy #300000
* address help
address jmp addr
chipenable jmp enable
scanh jmp scan

**same key**

**stop recording**

**insert possible delay ??**

samekey ldaa #$00 start counter at zero (timer)
staa count

same ldaa #$00001000 read /EOM signal (EOM)
anda porte,x
tsta test for end of chip message
beq timeout
* 

lda key load key pressed into acc a
psha save a
bsr scan check for same key press
ldab key
pula
cha
bne timeout

inc count compare previous with present
test for time expiration
* 

ldy #$0000 delay for smoother time counting
dey
* 
cpy #$00
*bne delay

ldy #$f8a0 offset for time table
ldab key
aby
* 

lda $00,y add offset (acc b) with idex reg y
cmpa count and plac result in index reg y
bhs same

* timeout ldaa $0 turn off recording light
staa portb,x
rts
* waitee help
waite jmp waitee

**scan module!!**

**subroutine that scans keyboard matrix**
* input expected: register x = $1000
* output returned: # of button depressed (0-15) = memory
* if no button is depressed $FF is returned in key

* note: rows = outputs (four most significant bits of port a)
columns = inputs (four least significant bits of port a)

* initialize port a

scan ldaa #$00 initialize all bits on porta to 0
staa porta,x
bclr portd,x #%00010000 clr write line #4
bsr waitee wait for eeprom to write

row0 bset porta,x #%00010000 set row0 bit
bsr waitee wait for eeprom to write
ldab #$00 load row #(00) into accb
lda #$0f read all four inputs
anda porta,x
bstaa wait for eeprom to write
ldab #$01 load row #(01) into accb
lda #$0f
anda porta,x
tsta
bne co10 row #0 active find column

row1 bclr porta,x #%00010000 clear row 0 bit
bsr waitee
bset porta,x #%00100000 set row1 bit
bsr waitee
ldab #$01 load row #(01) into accb
lda #$0f
anda porta,x
tsta
bne co10 row #1 active find column

row2 bclr porta,x #%00100000 clear row 1 bit
bsr waitee
bset porta,x #%01000000 set row 2 bit
bsr waitee
ldab #$02 load row #(02) into accb
lda #$0f
anda porta,x
tsta
bne co10 row #2 active find column

row3 bclr porta,x #%01000000 clear row 2 bit
bsr waitee
bset portd,x #%00010000 set row 3 bit
bsr waitee
ldab #$03 load row #(03) into accb
lda #$0f
anda porta,x
tsta
bne co10 row #3 active find column
bra notouch
* address help
addrs bra addrs1
enable bra cenable

col0 ldaa #$00
staa col
ldaa #$00000001
anda porta,x
tsta
bne calc
calculations

recored the col number
in variable col
check to see if col 0 is active

col0 active branch to key

col1 ldaa #$01
staa col
ldaa #$00000010
anda porta,x
tsta
bne calc
calculations

record the col number
in variable col
check to see if col 1 is active

col1 active branch to key

col2 ldaa #$02
staa col
ldaa #$00000100
anda porta,x
tsta
bne calc
calculations

record the col number
in variable col
check to see if col 2 is active

col2 active branch to key

col3 ldaa #$03
staa col
ldaa #$00001000
anda porta,x
tsta
bne calc
calculations

record the col number
in variable col
check to see if col 3 is active

col3 active branch to key

bra notouch

no columns are active

calc ldaa #$04
mul
acc D
ldaa col
aba
staa key
bra return

multiplying the row (in acum b)
with 4 and the result in
loading col in acc. b
adding the accs a and b
storing the result in key

load $ff into key

return rts

return from scan subroutine

********************************************************************
******** write address subroutine ********
********************************************************************
Getting the appropriate address from the configuration (key) table.

**expected inputs:**
config contains configuration (0-3)
key contains key # pressed (0-15)

**outputs:**
correct address for depressed key is written to port c (address bus)

addrsl
ldaa #$00 (delete when config enabled)
staa config (delete when config enabled)
ldaa config loading configuration into acc a
ldab #$10 loading 16 into acc b
mul multiply acca and accb and store the result in a
the value in acca now contains the sectional offset for the address
ldaa key load key # into acc b
aba adding key offset and sectional offset
staa adr and store the result in adr
ldy #$f800 load keytab offset into y reg
ldab adr load acc b with complete offset
aby add offset (acc b) with idex reg y
and place result in index reg y
ldaa $00,y load address into acc a
staa portc,x write address to portc
rts

cenable ld aa # $00
staa config
ldaa config loading configuration into acc a
ldab #$10 loading 16 into acc b
mul multiply acca and accb and store the result in a
the value in acca now contains the sectional offset for the address
ldaa key load key # into acc b
aba adding key offset and sectional offset
staa adr and store the result in adr
ldy #$f840 load chiptab offset into y reg
ldab adr load acc b with complete offset
aby add offset (acc b) with idex reg y
and place result in index reg y
ldab $00,y load chip # into acc a
ldaa #11111000  save current configuration on port d
anda portd,x  except for chip enable info
aba
staa portd,x  enable chip
rts --

****************************
******** End of Program ********
****************************

org $FFFE
fdb start
end

******     note: nice delay routine
* ldaa     #10
* tipsy    ldy  #$ffff
* wait2    dey
* cpy      #$00
* bne      wait2
* deca
* tsta
* bne      tipsy