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ABSTRACT

Rapid Prediction of Buoyancy-Driven Exchange Flows at the Great Salt Lake: ML Models

and a 1D Shallow Water Approach

by

Eric M. Larsen, Master of Science

Utah State University, 2024

Major Professor: Som Dutta, Ph.D.
Department: Mechanical and Aerospace Engineering

In recent years, the use of data-driven models has significantly increased, influenced

by advances in machine learning techniques, data availability, and the computational ca-

pabilities of modern hardware. In hydrology, with its wealth of measured data, machine

learning has been used for flood pattern prediction, estimation of sediment loads, water

quality, flow forecasting, and more. In the current thesis, we extend these methods to pre-

dict buoyancy-driven flows at the Great Salt Lake (GSL). The Great Salt Lake in Utah,

USA, is a hyper-saline terminal lake separated into a northern and southern arm. The

higher density of GSL’s northern side and higher lake elevation of the southern side gener-

ate a buoyancy-driven exchange flow through the New Breach. Previously, flow through the

breach has been modeled by Holley and Waddell [1] by numerically solving the 1D steady

shallow water equation, and by Rasmussen et al. [2] using computational fluid dynamics

(CFD). While the 1D model provides rapid prediction, it’s accuracy regresses under certain

lake conditions and the current implementation is not suitable for the geometry of the New

Breach. The CFD model has high-fidelity, but the computational cost is unsuitable for

rapid prediction.
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To fill the aforementioned gap in predicting the buoyancy-driven exchange flow, this

research leverages the availability of field data measured at the Great Salt Lake by United

States Geological Survey (USGS), to develop models that predict the buoyancy-driven ex-

change flow between the north and south arms of the lake. The primary aim of this study

is to quantify the suitability of data-driven models for predicting buoyancy-driven exchange

flows. Multiple data-driven models have been developed and tested, including Linear Re-

gression, Random Forest, Support Vector Regression, and Deep Neural Networks. The

Fidelity of the machine learning models were compared against predictions from the physics-

based models currently in use. The ML based approach has been found to be effective, but

for lake and breach-geometry conditions that have substantial data to train models. Thus,

in addition, a new formulation of the 1D steady shallow water model has been derived,

improving on the model by Holley and Waddell [1]. The new derivation will account for

trapezoidal cross-section and berm, present at the New Breach. The thesis shows that

machine learning methods can accurately predict the complex exchange flow through the

New Breach using lake conditions and measured velocity as input. It also illustrates the

importance of 1D shallow water model, especially for conditions that lack the data to train

the ML models, e.g. cases with different berm heights.

(115 pages)
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PUBLIC ABSTRACT

Rapid Prediction of Buoyancy-Driven Exchange Flows at the Great Salt Lake: ML Models

and a 1D Shallow Water Approach

Eric M. Larsen

The Great Salt Lake in Utah, USA, is a hypersaline terminal lake divided into northern

and southern arms by the Union Pacific Railroad causeway since the 1950’s. This separation

has caused a difference in density and water surface elevation between lake arms. These dif-

ferences result in a buoyancy-driven exchange flow occurring through an engineered breach

in the causeway. Traditionally, modeling the flow through the breach has been done by

numerically solving the 1D steady shallow water equations, and using computational fluid

dynamics (CFD). The CFD models yield high accuracy results, but require substantial

computing resources. This research proposes the use of data measured by United States

Geological Survey (USGS) to create data-driven models to predict the exchange flow through

the breach. The use of data-driven models, often referred to as machine learning, allows

for faster flow prediction and requires lower computational cost compared to CFD simu-

lations. This study uses, Linear Regression, Random Forests, Support Vector Regression,

and Deep Neural Networks to create data-driven models from available USGS data. These

models are compared to physics-based prediction models and monthly measurements taken

by USGS. The results of this study show that data-driven models can accurately predict the

buoyancy-driven exchange flow at a time consistent with USGS’ sampling. These models

could serve as a method for real-time prediction of the flow through the breach in the Great

Salt Lake, facilitating better management of the flow between the arms of the lake and

informing changes to the lake conditions over time.
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CHAPTER 1

INTRODUCTION

1.1 The Great Salt Lake

The Great Salt Lake (GSL), located in northern Utah, is a hyper saline terminal lake,

distinguished by its unique characteristics and separation into a northern and southern

arm. This division was introduced in the late 1950s with the construction of the Union

Pacific Rail Road’s west-east running causeway [1]. The causeway, a rock fill structure

incorporating box culverts, isolated the two sides of the lake while still allowing exchange

flow. The main means of exchange flow between the arms was through the box culverts,

with secondary exchange flow occurring by seepage through the causeway fill material.

The separation of the lake into north and south arms has a profound impact on their

respective characteristics. The south arm receives 95 percent of the total freshwater for

the lake from the Weber, Bear, and Jordan rivers, while the north arm relies solely on

precipitation for its freshwater input [3]. This distinction results in a noticeable gradient

in both density and water surface elevation(WSE) between the two arms. With recent

observations revealing densities ranging from 1150-1200 kg/m3 and 1050-1100 kg/m3 in

the north and south arm respectively. Throughout these density ranges the northern arm

maintains a typical density 50-80 kg/m3 higher than the south arm.

The difference in water salinity causes these two arms to act as separate ecosystems,

with the southern arm being more biologically diverse. Due to these different conditions,

the salt extraction industry is focused in the north arm, with the brine shrimp industry and

local recreation being focused in the south arm.

Given the terminal nature of the lake, its water level is dependent on the precipitation

received annually the upstream demands on the three freshwater sources-Weber, Bear, and

Jordan rivers, and allowable exchange flow between arms. This dependency on external
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factors influences the dynamic nature of the GSL and the need for a comprehensive under-

standing of lake dynamics to ensure proper ecosystem and lake water elevation maintenance.

One major contributor to lake conditions is the exchange flow between arms via the

New Breach (NB) (See Fig. 1.1). Since the installation of the UPRR causeway, the GSL NB

has been monitored by multiple agencies with different monitoring approaches [4], [5], [6].

These monitoring activities have lead to multiple data collection sites and methods. The

monitoring schemes have ranged from meter measurements monitored on a 15-minute and

monthly interval, studies to understand salt balance [7], to 1D models such as the model

created by Holley and Waddell [1]. These monitoring efforts have been used to understand

and predict the exchange flow through the causeway fill structure and the box culverts of

the causeway.

While these methods have been able to help monitor the lake, there is still crucial

information lacking in each of these methods based on the assumptions used. The major

limitation of meter data is the locality of the data collected. While we can assume a

general measurement is valid for the local area, it does not give a full depiction of the

global conditions that exist at any given time. To understand full lake conditions would

require taking measurements for the full lake; a field campaign with unrealistic expectations.

Considering these limitations, attention is focused on the main modes of exchange flow with

general lake conditions assumed from available monitoring stations around the NB.

An example of using the local data for flow prediction is the work done by Holley and

Waddell [1]. In the work of Holley and Waddell, focus was placed on the box culverts of

the causeway. Holley and Waddell’s model used a method developed from three types of

observed flow conditions, i.e. two-layer (bi-directional), arrested wedge, and single layer

flow (uni-directional). Using the density of each arm, and their respective water elevations

compared to the bottom of the culvert a discharge prediction could be produced. This model

worked well for the box culvert flow and was implemented for the duration of the culverts

service. With the semi-permanent nature of UPRR’s causeway, there exists settling in the
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fill structure each year. With increased settling the box culverts eventually were closed in

2013 [8] [3].

The closure of the culverts caused a reduction in the available flow between the south

and north arms leading to a rise in the WSE of the southern arm. At its maximum, the

difference in water surface elevation between the north and south arms was approximately

3 ft [9–11]. To increase the flow connectivity of the two arms the GSL NB was constructed

December 2016. Instead of using box culvert, the NB instead is a trapezoidal breach cut

through the causeway structure with a 150 ft bridge spanning the top allowing for an

unobstructed channel flow (see Figure 1.1).

Fig. 1.1: Lake arm separation at the Great Salt Lake (A), New Breach structure (B), and
location of the breach withing the Lake (C).

Over the next 6 months after the NB’s opening, the GSL showed a decline in the

difference between the north and south WSE measurements. Measurements of discharge

performed during this period by the United States Geological Survey (USGS) showed a

dominating flow from South to North (SN). Overtime this trend settled to a more stable

bi-directional flow with two distinct flow layers. With the difference in density, ρ, and WSE
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of the two arms, the expected discharge between the two arms is more complicated than a

single height difference. Unlike standard water flow driven primarily by height difference,

the water flow of the GSL also has buoyancy-driven effects. The density difference between

arms allow the hydrostatic forces to create a buoyancy-driven flow from North to South

(NS), while the SN flows are dominated by the height difference between lake arms, as

shown in Fig. 1.2.

Fig. 1.2: Governing forces impacting the flow structure through the breach at the Great
Salt Lake dictated by relative density and water surface elevation differences.

The competing factors of density and WSE cause a buoyancy-driven flow structure to

exist at the NB. The primary mode of flow is a two-layer, or bi-directional flow. Additional

flow cases do exist during more extreme lake conditions or during storm events at the

GSL. In total, there are three primary flow cases for the GSL: 1) Bi-directional flow, where

there are two layers of flow separated by an interface location. 2) Uni-directional South to

North (USN), where there is purely south to North flow driven primarily by WSE difference

between arms. Lastly, 3) Uni-directional North to South (UNS), where there is a single layer

of flow NS due to density difference and correct lake conditions. Similar to the three flow

regimes shown in work previously performed [1].

With the inclusion of the new NB there is a need for additional monitoring to un-

derstand flow in the new breach structure [4]. With the similarity of structures between
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the closed culverts and the NB, the 1D model developed by Holley and Waddell has been

adapted to predict SN and NS discharges for the NB. Due to improper adaptation of the

equations to the different cross-section and channel roughness, the model is unable to pre-

dict the discharge with the same fidelity. To overcome the limitations of the adapted models

for the NB, additional modeling was performed using computational fluid dynamics (CFD)

given the known GSL geometry [12], [2]. The CFD model was created using the lake geom-

etry localized around the NB and known lake conditions to solve for a quasi-steady state to

extract discharge information given lake conditions.

Through a compilation of these simulation runs, the expected GSL discharge can be

achieved compared to the USGS monthly measured discharge values. This CFD model has

been fundamental in developing a rating curve to approximate discharge values given known

conditions at the lake, and informing adaptive changes to the NB’s control berm structure

on the northern side of the channel. The limitation CFD simulations is the time required

to achieve a steady state solution and the limited number of runs available. Typical CFD

runs can take five to seven days to solve to steady state condition. This required time

is non-conducive to a real time solving technique for lake dynamics. The GSL system is

dynamic with lake conditions continually changing due to inflows, wind shear influences on

WSE around the breach, and variations in density in each arm throughout the year. With

these conditions in mind, one needs to have a model capable of adapting to these changing

conditions while still being able to produce reliable results quickly. The availability of

monitoring data around the NB lends itself to data-driven solving techniques like machine

learning to predict exchange flows in the GSL.

1.2 Machine Learning in Hydrology

In recent years, data-driven models, especially machine learning (ML), have gained

popularity both among the general public and within the scientific community. Machine

learning takes on various forms depending on the application and data available. This study

focuses on the use of Linear Regression (LR), Random Forest Regression (RF), Support
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Vector Regression (SVR), and Deep Neural Networks (DNN) using measured data available

around the GSL NB.

Linear regression is a fundamental statistical method used to produce prediction values

given a number of inputs. Linear regression assumes that the relationship between the inputs

and the desired output value is linear. The goal of LR is to find the best fit line for a set

of observed data points, given a combinations of inputs. This fit is achieved by minimizing

the difference between the observed values and the predicted values.

Random forest regression is a ML technique that uses a collection of decision trees

to create a regression model capable of capturing non-linear relationships [13]. In RF

regression, a group of decision trees is created, with each tree trained on a subset of data

to learn patterns and relationships within the data. Each tree is developed by maximizing

information gain as the number of leaf nodes is increased. The predictions of multiple

trees are combined to produce a single prediction, leveraging the ensemble of predictions

produced by individual trees.

The ensemble approach reduces the risk of overfitting and improves the robust nature

of the generated model. While other methods can be sensitive to outliers, RF methods

handle the effects of outliers by averaging across the forest. They are affected by outliers

only in the trees that represent those data points. By averaging all outputs the effects are

smoothed, resulting in a more stable prediction.

In hydrology, RFs are widely used for effectively modeling complex relationships be-

tween hydrological variables [14] [15]. Hydrological systems can be influenced by factors

such as precipitation patterns, land use, soil properties, topography, and yearly trends.

Random forests are capable of capturing these nonlinear relationships between predictors.

One advantage of RFs compared to their machine learning methods is their interpretabil-

ity. Where each tree is a collection of decision points based on variable values. Using this

information RFs have the ability to assess variable importance among the predictors.
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The ability for RFs to generate variable importance increases the focus on factors

essential to prediction, while being able to assess the predictors less essential to accurate

prediction. A major limitation of RFs though is their inability to create a governing equation

given data point inputs. Instead of developing a prediction function, decision trees instead

create an averaged prediction given the information found in the ensembled leaf nodes of

the generated forest. This limitation requires the predictions to be within the dataset range

to conform to expected trends. The are other methods capable of generating a governing

function, methods such as LR, and SVR.

Support Vector Regression is another ML technique utilized in hydrology for flow pre-

diction [16]. SVR is particularly effective in handling nonlinear relationships and high

dimensional data, making it well-suited for modeling of complex flow processes like the

GSL.

In SVR, the algorithm aims to find the optimal hyperplane that best represents the

training data while maximizing the data explained by the margin, which is the distance

between the hyperplane and the closest data points known as support vectors [17]. Un-

like traditional regression methods that minimize the prediction errors, SVR focuses on

minimizing deviations of predictions from a given ϵ-insensitive tube around the observed

data points. The ϵ-insensitive tube allows for flexibility of the prediction around the hyper-

plane providing a robust approach to handle noisy data and outliers frequently observed in

applications like hydrology.

In hydrology, SVR has been applied to areas including streamflow forecasting [14],

rainfall-runoff modeling, drought prediction, and flood analysis [16]. Utilizing SVR, robust

and accurate predictive models capable of handling outliers and noisy data can be generated.

Given the intrinsic noise present in monitoring data collected from various instruments,

the use of SVR offers a considerable advantage. Methods like SVR allow the developed

method to accommodate these noisy data points either in the insensitive margin region or

by excluding them from consideration in the produced hyperplane.
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Artificial Neural Networks (ANN) and DNNs are predictive models used for a variety of

purposes, ranging from image and text processing, numerical approximation, to data clas-

sification [18]. For each application, two primary considerations come into play: the nature

of the collected data and the most suitable network for processing such data. Convolutional

Neural Networks (CNN) are apt for handling image processing tasks [19], [20], [21], [22],

while time series prediction benefits from network types like Recurrent Neural Networks

(RNN) or Long-Short Term Memory (LSTM) networks [23], [24], where applications dom-

inated by meter data, like the GSL, lend themselves to an ANN or DNN for relationship

assessment [25] [26].

Each ANN/DNN is made up of a composition of layers, with each layer being a com-

position of nodes, and each node has a weight assigned to it, with each node in a layer

sharing a bias vector for the layer. The layers of a network can be anything from the input

information (input layer), the processing layers (hidden layers), or your output information

(output layer).

Despite the differences in layers, there are two main kinds of models: regression and

classification models. The latter of these model types is used to classify new information

into discrete classes. Regression models, on the other hand, receive input data and output

a continuous prediction using the model’s developed relationships, where the relationships

of each model are developed through the layers used in the network.

DNN layers can be of various types, including fully connected layers, convolutional lay-

ers, pooling layers, etc. [27]. The purpose of the layer structure is to map an M-dimensional

input to an N-dimensional output [28] [19]. The weights and biases of the network link the

M-dimensional input to the N-dimensional output, with the weights acting as the strength

of one node’s connection to another. The weights attached to each node have an influence

on all the nodes in the following layers and are influenced by all nodes that precede it [27].

The state of each node is dictated by the prescribed activation function of the layer set.

Activation functions can be ReLU, Tanh, Sigmoid, etc., where these activation functions

are tailored to specific desired functionalities of the built DNN.
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Neural networks are developed by training to a desired target given a loss function.

Development is usually performed by dividing the total dataset into three sections: training

data, validation data, and testing data. Training a network is done by allowing the network

to create relationships between input and output parameters by tuning the weights and

biases using a loss function. The loss function informs the network how well the DNN can

predict the desired outcome, with a typical loss function being Mean Squared Error (MSE).

The weights and biases are changed during training based on the learning rate and the

gradient of the loss function to improve model performance [29, 30]. The amount of data

the network processes at one time is called a batch, where any data partition smaller than

the full training being considered a mini-batch. The determined batch size depends on the

performance of a network and how clean the dataset is. Where larger batches are used

for noisier data to mitigate the effect of noise. The weights in the network are updated

each time the network runs through a batch of data through back propagation methods.

When the network has looped through all batches in the training data it is called an epoch.

Networks are trained for a set number of epochs or to a design performance condition.

During training, the network is trained on the training set, and the performance is checked

on the validation set. If the validation loss is consistently greater than your training loss,

the network is trying to overfit to the training data [31].

Overfitting is when a model attempts to fit relations specifically to the training data

and return those values to minimize the loss function. Having a model overfit to the training

data is no longer useful for conditions outside the used training set, or that don’t represent

the training dataset well. There are ways to reduce the risk of overfitting by reducing the

dimensionality of the model, tuning hyper-parameters, or by reducing the length a model

is trained for. There is no direct answer to what hyper-parameters will result in the best

data-driven model. Each model and dataset are individual and therefore must be tuned

independently. The only way to know what model structure works best is by training a

variety of model structures and comparing the results.
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Every model has its drawbacks, and ML is no exception. However, its utility lies in

domains with extensive datasets, with the increase in hydrological data collection in recent

years [19], hydrology sets an ideal application for ML methods. In recent years, ML has

found diverse applications within the hydrology community [19]. These applications yield

themselves to ML due to the accessibility of data, and variety of data collected. Federal

agencies like the United States Geological Survey (USGS), and other state agencies maintain

historical measurements and data collection sights for various fields and measurements.

Measurements ranging from streamflow measurements to satellite imagery of snow pack

density and location.

The collected data from sources like this find further utility when used in data-driven

models. Machine learning has used data like this to provide a wealth of applicable studies.

Were ML as been used for flood pattern predictions in rivers [32], to estimate sediment

loads in watersheds [33], assess water quality [34], make discharge predictions based on

controllable gate parameters [28], conduct flow forecasting given temporal trend data [23],

and forecast terrestrial water storage data given satellite imagery [20]. It is clear from

studies as those by [19], [35], [36], [37], [38], the use of ML for hydrological and environmental

applications continues to expand in both quantity and diversity.

In hydrological modeling, traditional methods rely on idealized physically-based nu-

merical models to predict data. Instead, researchers can now use measurement data from

real world systems to develop conclusions using ML. Machine learning though is not a cure

all, and the system itself must be considered when deciding what modeling method is best

suited for the specific application. For applications with sparse or noisy data ML is not

well suited without considerable effort placed on data augmentation or further collection.

In these cases a CFD or physically-based numerical model approach might be more appro-

priate for the given application. Nevertheless, hydrological applications like the GSL where

data collection sites have been monitoring the lake for years lend themselves to ML models

due to the quantity and quality of the data collected.
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With the proven nature of ML for hydrological applications [19], ML showed promise

in being able to assess the complex flow that exists in the GSL system. Where the GSL

data is primarily meter data collected by USGS, using a LR, RF, SVR and DNN, it is

hypothesized that a relationship can be created to determine the complex two-layer flow in

the GSL NB using the data readily available through USGS monitoring stations around the

NB.
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CHAPTER 2

OBJECTIVES

The following research objectives are proposed for this thesis. Each objective is followed

by research tasks required to accomplish the objective.

1. Objective 1: Quantify the efficacy of data-driven models for predicting buoyancy-

driven exchange flows, in particular the flow through the breach in the causeway at

GSL using lake conditions as the input.

• Understand the physics of the flow, and study the measured data to finalize the

lake-condition parameters relevant for flow prediction.

• Compile available data from USGS collection sites located near the breach, and

pre-process the data for developing machine learning models.

• Develop models using Linear Regression, Random Forest, Support Vector Re-

gression, and Deep Neural Networks for predicting flow through the breach.

• Quantify the performance of the ML models against physics-based approaches,

especially against 1D steady shallow-water equation.

2. Objective 2: Quantify the utility of using a hybrid approach (HNN), where pre-

diction from 1D steady shallow water equation is used as additional input to Deep

Neural Networks, for improving flow prediction.

• Implement the 1D predictions as additional inputs to a NN, a parallel approach.

• Implement the 1D predictions as the only input to a NN, a series approach.

3. Objective 3: Quantify the efficacy of using measured velocity as input to data-driven

models, for predicting buoyancy-driven exchange flow through the breach at GSL.

• Develop and test Linear Regression, Random Forest, Support Vector Regression,

and Deep Neural Networks based models.
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4. Objective 4: Understand the buoyancy-driven exchange flow through the breach in

the presence of the new trapezoidal cross-section and berm structure; and develop

physically-based numerical modeling techniques to predict the expected discharge be-

havior present at the New Breach.

• Develop area based modeling technique using measured velocity and known chan-

nel cross section.

• Re-derive the 1D steady shallow water equation based model to account for

trapezoidal cross-section and berm influence.
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CHAPTER 3

OBJECTIVES 1-3: ML MODELING OF GSL NB FLOWS

3.1 Methodology

The following chapter will cover the application of ML methods to predict the buoyancy-

driven flow through the GSL NB structure. This chapter will explain the methodology for

developing the ML models, including the data pre-processing, how these models are ap-

plied to the GSL problem and their accompanying results. For this study the developed

ML methods are Linear Regression, Random Forest, Support Vector Regression, and Deep

Neural Networks. Where each of these models will be built to perform the flow prediction

task, though their approaches differ.Using these models one can assess how well the GSL

system is suited for the use of data-driven models for flow prediction, and which modeling

technique might be best suited for prediction of the NB exchange flows.

Linear regression explains the data using a linear equation fit using input parameters

to make its prediction. Linear regression is a common hydrological tool used for making

prediction. It must be understood that linear regression can be sensitive to outliers, but

offers an understanding of what variables are important.

Random forest builds a series of decision trees to assess individual inputs compared to

data the model is trained on. Using the comparison between points RF uses an averaged

prediction over all trees to give a prediction. Random forest is an ensemble method lending

itself to be more robust to outliers due to averaging.

Support Vector Regression works similar to linear regression, building a regression

equation off of input parameters. The difference is in the consideration of the field, SVR

uses a sensitivity range to assess what data points are considered, and anything outside the

sensitivity range are not considered and deemed noise. This method allows for consideration



15

of noisy instrumentation consistent with real world sampling and can be robust to outliers

in the dataset.

Finally, Deep Neural Networks model behavior by fitting a high dimensional function

to the data points and then uses that to make predictions from an input vector. Utilizing

DNNs can work for explaining high dimensional data and building a robust method to

outliers. One major limitation of DNN is understanding what variables are important,

where DNNs are more of a black box model capable of creating predictions; where their

prediction process is much less interpretable compared to LR or RF methods.

3.1.1 Data Collection and Pre-processing

Regardless of what method is being used for ML prediction, one first needs to have an

adequate dataset for modeling development. The dataset used for ML is just as important

as the ML method used. More complex the data, more complex a model must be to ap-

proximate the patterns within the data. Complexity can arise from the number of instances

in a dataset and the dimensionality of the collected data. Though, to understand the true

complexity of a dataset, the data should be cleaned to eliminate spurious data that is not

representative of the physical system.

For the GSL, there is no pre-existing dataset available for use. Instead, a dataset

is compiled using the data available through USGS data collection sites, as seen in Fig.

1.1(C). The dataset compilation is performed by pulling data from the National Water

Information System (NWIS) at data collection sites around the NB location. The localized

data collection sites are sites: 10010024, 10010025, 10010026, 10010027 (see Fig.1.1C). The

data collected from these sites has been provided on provisional status from USGS. These

sites are then used to compile the following data at a 15-minute interval: Cell velocities

1-10, WSE for north, breach, and south locations, wind speed, and wind direction. The

cell velocities are measured by USGS’s Acoustic Doppler Current Profiling (ADCP) located

on the northern side of the NB bridge. The ADCP discretizes the water column into 10

individual cells at set heights above the instrument blanking distance. More details The

average velocity is recorded at each of these cells in the water column at a 15-minute
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interval. An additional cell is added known as Cell 0 where the no-slip boundary condition

is enforced for the bottom of the channel for the duration of the dataset. The monthly to

bi-monthly information collected from site locations are density and specific conductance

measurements with the addition of USGS measured discharge values for both NS and SN

flows. The availability of data collected from the USGS data sites is shown below in Table

3.1.

Table 3.1: NWIS data availability for data collected in study.

Data Type Time Interval Date Begin Date End

Velocity Cell 0 15 min - -

Velocity Cells 1-10 15 min 2017-09-13 2023-08-17

North WSE 15 min 2018-11-23 2023-08-17

Breach WSE 15 min 2017-09-13 2023-08-17

South WSE 15 min 2018-12-20 2023-08-17

Wind Speed 15 min 2018-05-17 2023-08-17

Wind Direction 15 min 2018-05-17 2022-12-12

Q SN (cfs) 15 min 2018-06-07 2020-06-04

Q NS (cfs) 15 min 2018-06-07 2020-06-04

Density North Monthly 2017-09-13 2023-08-17

Density South Monthly 2017-09-13 2023-08-17

SpCond North Monthly 2017-09-13 2023-08-17

SpCond South Monthly 2017-09-13 2023-08-17

Considering the difference in sample frequency and consistency of the different mea-

surement systems at the data collection sites, there exist gaps in the data. Gaps in the

data are caused by a variety of issues at the collection sites, either through the failure of

the instruments to record data, or the instruments being locked at a fixed value etc.. To

resolve the data gap issues, linear interpolation is used to fill in the small gaps existing in

the dataset. Data cleaning is performed after to ensure fixed values over long periods of
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time are removed from the dataset under the hypothesis of instrumentation malfunction for

locations that have more variable data.

Linear interpolation is used to fill other gaps in the dataset with specific constraints

in mind. Firstly, the interpolation is executed exclusively during periods of ”steady” state

conditions, characterized by minimal variation between the adjacent data points involved

in the interpolation process. This criterion ensures the reliability of the interpolation re-

sults by avoiding instances of significant fluctuation. Secondly, the chosen time frame for

interpolation is restricted to 30 minutes or less. This limitation is imposed due to the

measurement frequency of USGS sites, which record data every 15 minutes. The rationale

behind this decision is rooted in the understanding that shifts in the data do not occur at

frequencies lower than this threshold. Lastly, particular attention is given to ensuring data

points selected for interpolation do not exist within transition periods between the three

flow cases under consideration in this study. This precautionary measure aims to prevent

the introduction of inaccuracies that may arise during transitions and helps maintain the

integrity of the interpolation in the context of the specific flow scenarios examined.

The use of these conditions provided reasonable assurance that linearly interpolated

data points would produce results similar to expected conditions at the lake during the

interpolated time frame. Any data segments that do not meet the interpolation criteria are

excluded from the dataset. The use of interpolation enhances the information available to

the model from the original dataset by filling the necessary gaps and removing noisy data

where confident measurements or interpolation were not possible.

The dataset requires additional physical information to understand the density dif-

ference and its importance. The addition of density data has to be different from other

measurements due to the sampling period intervals. Density and specific conductance mea-

surements are measured on a monthly to bi-monthly basis. Therefore, the assumption

that density remains relatively constant has to be made. This assumption was driven from

monthly trends seen in lake conditions. In late 2020, the Utah Water Research Lab (UWRL)

installed sondes in the north and south arms of the lake to measure the specific conductance
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at a sampling rate of 15 minutes. These measurements are compared to the USGS water

measurements. The resulting comparison can be seen in Fig. 3.1 and in Table 3.2. With the

average specific conductance measurement from the UWRL and the monthly measurement

from USGS being similar, the specific conductance measurement from USGS was used as

the data for all entries of the measured month.

Fig. 3.1: Comparison of UWRL field measurement trend and USGS monthly measurement
showing gradual transitions in lake arm conductance values.

Table 3.2: Specific conductance (µS/cm) comparison between UWRL and USGS monthly
average measurements.

South Arm North Arm

Month USGS UWRL % Error USGS UWRL % Error

Apr-21 165000 170398.92 3.27 219000 225050.10 2.76

May-21 150000 186159.04 24.11 212000 NA NA

Jun-21 157000 188790.62 20.25 215000 NA NA

Jul-21 174000 186606.34 7.25 219000 233986.90 6.84

Sep-21 186000 189331.75 1.79 224000 228788.47 2.14

Nov-21 171000 186827.49 9.26 214000 217806.06 1.78
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Due to the comparison between the measured values, the monthly data from USGS

was used as the measurement of specific conductance for all the measurements of that

month in the data pool. The limited number of measurements from USGS restricted the

number of data points available for the training of the model. After the construction of the

breach in late 2016, HDR was required to sample the breach location for the course of three

years. This information was taken on a monthly basis for the duration of the three years.

Therefore, a comparison between the USGS and HDR specific conductance is assessed. The

data from the HDR measurements are taken from the annual reports HDR provided to the

state of Utah [4]. For the duration of the three years of sampling, two months are taken

from each year and the measured specific conductance is compared, see Table 3.3.

Table 3.3: Comparison between USGS data and HDR annual report data for specific con-
ductance (µS/cm).

South Arm North Arm
Month USGS HDR % Error USGS HDR % Error

Aug-2017 145000 149600 3.17 218000 225000 3.21
Nov-2017 152000 149700 1.51 215000 219000 1.86
May-2018 138000 145300 5.29 215000 223000 3.72
July-2018 152000 149600 1.58 223000 223000 0.00
Feb-2019 166000 167100 0.66 222000 224000 0.90
Jun-2019 127000 137400 8.19 210000 225000 7.14

The results of the data comparison between HDR reports and USGS collection data

shown in Table 3.3 show an acceptable difference between measurements, with the max-

imum difference being 8.19 percent. The comparison in measured values, HDR specific

conductance data as the specific conductance information in the compiled dataset. The col-

lected data has a more consistent behavior of sampling over the time frame of the dataset.

The HDR reported data also collected density for the north and south arms over the time

frame reported. Therefore, using these HDR reports, density and specific conductance data

are added to the compiled dataset as a monthly average value given trends seen in UWRL’s

sonde data.
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Compiling all the desired measurement data from USGS water data collection sites

and from HDR annual reports results in a dataset consisting of 155,804 instances with 22

possible features. This dataset is split into two different datasets for prediction development,

a hydrological dataset and a velocity dataset. The hydrological dataset contains WSE, wind,

and density data with associated discharges. The velocity dataset contains cell velocities

for cell0-cell10 and the associated discharges. Through refining the dataset and removing

the measurement errors and instances with missing features, final datasets are created with

24,307 instances in the hydrological dataset, and 51,673 instances in the velocity dataset.

Before the data is used for training, it is subdivided into training, validation, and testing

datasets. This study uses a 80,10,10 split of the dataset for training, validation, and testing.

Inspecting the data pool, the percentage of uni-directional and bi-directional flow cases

can be assessed. To characterize the uni-directional cases, the low-flow instances for the

opposite flow direction are excluded. During high-flow events, the flow is known to be

dominated by the flow direction. To understand this the data is standardized using the

python library sklearn’s standard scalar function [39] that standardizes the value given by

the mean and standard deviation given Eq. 3.1.

Zi =
Xi − µx

σx
(3.1)

Where Z is the standardized value, X is the variable of interest and σ is the standard de-

viation of the desired variable. Using this standardization the full dataset was standardized

using the following values shown in Table 3.4.
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Table 3.4: Standardization variables and associated values used for data scaling.

Variable Mean (µ) Std. Deviation (σ)

Cell1 [m/s] -0.3458 0.3005

Cell2 [m/s] -0.3763 0.3253

Cell3 [m/s] -0.4222 0.3450

Cell4 [m/s] -0.4630 0.3694

Cell5 [m/s] -0.4325 0.3777

Cell6 [m/s] -0.3080 0.3782

Cell7 [m/s] -0.1105 0.3699

Cell8 [m/s] 0.1011 0.3632

Cell9 [m/s] 0.2862 0.3677

Cell10 [m/s] 0.3835 0.3724

WindSpeed [m/s] 2.2912 1.9504

WindDirection [θ] 184.2872 115.2449

Discharge S to N [m³/s] 24.8718 17.2336

Discharge N to S [m³/s] 14.7878 12.7054

NorthWSE [m] 1277.3427 0.4805

BreachWSE [m] 1277.6796 0.4649

SouthWSE [m] 1277.6661 0.4868

SouthSpCond [µS/cm] 160713.7209 18318.5945

NorthSpCond [µS/cm] 217928.7601 7126.303

SouthDensity [g/cm3] 1.1000 0.0176

NorthDensity [g/cm3] 1.2017 0.0279

Using this standardization the dataset is analyzed to asses the different flow cases that

exist at the GSL, namely, bi-directional flow, and uni-directional flow both SN and NS.

Plotting of scaled discharge for the total dataset is shown in Fig. 3.2



22

Fig. 3.2: Scaled discharge for GSL system for both SN and NS flows for cases classification.

From the results of Fig. 3.2 there is a clear Gaussian distribution for both discharge

directions. With the majority of data consisting between a bound of 2 σ from the mean.

From this assessment uni-directional flow cases were set to any flow existing above the 2σ

threshold. Using this threshold bound the case separation of the dataset can be seen in Fig

3.3, with associated example velocity profiles for each of the cases.

Fig. 3.3: Case separation in dataset (a) and example velocity profiles for each flow case (b)
showing uni-directional NS flow (left) and SN flow(right), with majority bi-directional case
(middle).
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Here it can be seen that there is a class disparity between the bi-directional cases

and uni-directional cases for the GSL dataset. This result is not unexpected due to the

lakes usual nature to remain bi-directional with extreme flow cases arising under special

circumstances like weather events.

3.1.2 Data Split for Model Development

In machine learning it is essential to understand and set limitations on what data is

available to a model during training. If a model is able to see all data it has a tendency to

overestimate the true model performance. In order to mitigate these issues the data can be

divided into training, validation, and training datasets.

Each of these datasets represents an important aspect of ML development. Training

data is the core data used for developing the model’s predictive capabilities. This data

section usually represents the largest portion of the datapool. In specific it is used to train

the relationships between input and output variables. The model then checks performance

using a validation set.

The validation set is used to verify the model is performing well for data similar to the

training dataset, but is not the exact same. When there is a substantial difference between

the training and validation accuracy there is a need for additional model development

because performance is inconsistent. When models experience a higher validation loss this

can be an indicator of the model overfitting to the training data.

Finally, the test section of a data split is used to evaluate the overall performance of the

model. This allows one to compare the performance found in training to another dataset

not found in the training. This final evaluation is used to assess how each of the models

compare using the same set of data and determine relative performance.

For this study a randomized 80,10,10 training, validation, and testing split is used

for model development. Where 80 percent of the data is used for training, 10 percent to

validation, and the final 10 percent to testing. This is done to consider the overall size of

the dataset. Since there is under 100,000 viable instances for training this study reserves

most of the data for training, but leaves enough to have a well rounded evaluation of each
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model’s performance. In addition, the development of each model is done using a vectorized

regression approach where each instance of the available dataset is considered independent

of any other flow instance.

3.1.3 Performance Parameters

In any method employed to model a known phenomenon, it is crucial to establish

performance metrics for result comparison. This study utilizes the Nash-Sutcliffe efficiency

(NSE), root mean squared error (RMSE), correlation coefficient (CC), and percent bias

(PBIAS) as performance metrics, as shown in Table 3.5. The NSE value is analogous to R2

and is particularly relevant for discharge predictions.

Table 3.5: Performance metrics and formulas used for model evaluation.

Parameter NSE RMSE CC PBIAS

Equation 1−
∑n

i=1(Qi−Q̂i)
2∑n

i=1(Qi−Q̄)2

√
1
n

∑n
i=1(Qi − Q̂i)2

∑n
i=1(Qi−Q̄)(Q̂i− ¯̂

Q)√∑n
i=1(Qi−Q̄)2

∑n
i=1(Q̂i− ¯̂

Q)2

∑n
i=1(Qi−Q̂i)∑n

i=1 Qi
× 100%

Range −∞ ≤ NSE ≤ 1 0 ≤ RMSE ≤ ∞ −1 ≤ CC ≤ 1 −∞ ≤ %Bias ≤ ∞

Optimal Value 1 0 1 0

Note: Qi = Observed Q̂i = Predicted Q̄ = Mean Observed
¯̂
Q = Mean Predicted

By employing these metrics (Table 3.5), a comprehensive understanding of each net-

work’s performance relative to other models can be assessed. The primary metric in this

research is Nash-Sutcliffe efficiency (NSE), indicating how effectively the model follows the

predicted equals true value curve. The assessment considers all parameters, allowing an

overall evaluation of the model’s performance. As values approach the optimal values in

Table 3.5, it indicates good model performance. The combined use of these metrics provides

insights into how the model compensates for performance optimization without the need

for complex techniques in ML visualization.
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3.1.4 Machine Learning Models

For this study the following ML methods are developed to find a best performing

method for the GSL NB system. In ML there is no one best answer to represent a given

dataset. Any ML method must be assessed on the computation cost and the method’s

ability to model the patterns and relationships contained in the dataset. For this study four

main ML methods are assessed; Linear Regression, Random Forest Regression, Support

Vector Regression, and Deep Neural Networks. The evaluation of each developed model is

done using the performance metrics of this study, including NSE, RMSE, CC, and PBIAS.

Linear Regression

Linear regression is one of the most fundamental statistical methods in hydrology used

to produce prediction values given a number of inputs. The predicted values are created

using an equation of form similar to Eq. 3.2.

y = a1x1 + a2x2 + a3x3 + . . .+ anxn (3.2)

Here, y is the dependent variable, a1−an are the weights associated with each independent

variable, and x1 − xn are the independent variables. The goal of LR is to find weights that

minimize the residual sum of squares error between the expected and calculated values for

the dataset. Linear regression for this study is implemented using Python package Scikit-

learn (Sklearn) [39]. In the case of the GSL the available inputs are the systems WSE

values for the south, breach, and north locations, the wind speed and direction data, and

the respective densities of each arm of the lake. Using these values the produced. These

inputs are used in multiple configurations to allow for LR regarding each of the water

density information measurements individually for both north and south arms. Using these

configurations two LR models are created, one model for each discharge both SN and NS:
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1. Full input Specific Conductance: WSE North, South, North, Wind Speed, Wind

Direction, Sp. Cond. S, Sp. Cond. N.

2. Full input Specific Conductance: WSE North, South, North, Wind Speed, Wind

Direction, Density S, Density N.

While LR offers simplicity and interpretability to the dataset, it has built in assump-

tions that may not be appropriate for every dataset. Of these assumptions the primary

assumption is linearity between the dependent and independent variables. Violations of

this assumption can undermine the utility of LR to model a given behavior. For the GSL

the flow is dependent on multiple parameters such as the water elevation difference and

density difference between the lake arms. The non-linear response to change in variables

may not be suitable for LR. Despite these limitations though, LR remains a valuable tool

in hydrology due to versatility and ease of implementation. Due to this fact this method is

used to serve as a baseline compared to other common hydrological practices.

Random Forest

In this study RFs are developed using the same inputs given to other ML models

namely; WSE information, wind data, and density information for each arm of the lake

using python’s sklearn package [39]. Each of RFs is tested using both specific conductance

or density as the density information to the system. The RFs are developed using a grid

search method given different number of trees in the forest, maximum allowed depth and

minimum number of samples per leaf node. This approach is utilized to find the optimal

parameters focusing on the overall performance of the RF model. The developed models

are assessed using the performance metrics used for all models in this study.
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Support Vector Regression

Implementation of SVR for this study is done using the sklearn library in python

[39]. The SVR is developed using two different kernel functions, the radial basis function

(RBF)(Eq. 3.3) and Sigmoid kernel (Eq. 3.4). Using a grid search on these kernels and two

training parameters, γ influencing the band of the kernel for RBF, and variable importance

for Sigmoid and C for the trade off between margin and training error in the RBF kernel.

K(xi, xj) = exp(−γ||xi − xj ||2) (3.3)

K(xi, xj) = tanh(γxTi xj + r) (3.4)

Each of the SVR models produced are assessed using the selected performance param-

eters and compared to one another to find the optimal configuration.

Deep Neural Network

With the nature of the data collected for the GSL being meter data, this study devel-

oped DNNs to model the expected discharge dependent on GSL conditions. The approach

taken during the development of this network was, first, to train multiple networks given

different configurations to test for model accuracy on performance parameters. The devel-

oped method uses a mini-batch gradient descent method to train the networks; subdividing

the training data dependent on batch size to constrain how many instances were seen during

a given feed-forward step. Each model was tuned using variations in the number of layers

(depth), the number of nodes per layer (width), the activation functions used on each layer,

length of training, and batch size.

Specifically, the activation functions tested in this study are Sigmoid, ReLU, and Tanh.

Weights for each model configuration are initialized using a random normal distribution.

The Adam optimizer through the Keras TensorFlow library [40] is used for node weight and

bias updates throughout training.
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σ(z) = max(0, z(k))

z(k) =

n∑
i=1

(x
(k)
i w

(k)
i ) + b(k)

Where σ is the activation function value, z is the node value, x
(K)
i is the connected

node value to the kth node, w
(k)
i is the associated weight between connected nodes, and

b(k) is the bias value of the node k. For this study, Mean Squared Error is used as the loss

function for model performance (Eq. 3.5). Other more complicated loss functions can be

used, but MSE is the primary loss function used for robustness and ease of computation.

L =
1

n

n∑
i=1

(Qi − Q̂i)
2 (3.5)

Networks that performed near the optimal value of these parameters are isolated for

further development. Each network’s training is monitored at each epoch to compare the

relative performance between the training and validation loss. The desired curve during

training is a smooth decline in the loss function for both training and validation loss where

necessary. If there is erratic behavior in the training, i.e., when the validation loss varies

above and below the training loss throughout training with no clear trend, the model is

over-complicated for the modeled behavior, and the model needs refinement. Networks

showing trends of overfitting are removed from possible model structures. The reduced

models are then compared using the four performance parameters for evaluation. Models

performing well are tested on the test dataset, and relative performance is then compared

to training performance to check for overfitting of the networks to the training data.
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3.1.5 Hybrid DNN

One of the major limitations to developed ML models is their dataset dependence.

Meaning the relationships developed from input to output parameters is confined to the

values available in the dataset. This limitation does not allow models to predict the desired

behavior if the input parameters are outside the training bounds. When measurements are

outside the dataset range an output value will still be given, but it does not follow the

expected trend. In essence when input parameters are outside the bounds of trained values,

the model attempts to produce the a desired output but it may not follow the modeled

behavior trend. Instead the network follows the trained trends and returns values which

can diverge from the truth. Therefore, DNN performance shown in training and testing

can only be expected for values found inside their training range. This known issue with

DNNs leads itself to the question of how can values outside the dataset compiled be used

to anticipate future changes to the system.

The proposed use to increase DNNs ability to contribute useable results inside and

outside the training value range is to combine DNNs with outputs with one dimensional

output from the current GSL model used by Utah DNR. When combining a conventional

DNN with a more physically-based model yields a Hybrid Neural Network (HNN). This

combination will be done in two different configurations. One design will incorporate the

1D model in parallel while the other will combine it in series (see Fig. 3.4).
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Fig. 3.4: Proposed structure for 1D integration for a Hybrid Neural Network method using
parallel (left) and series (right) structures. The parallel method utilizing 1D output as
additional input, and series using the 1D output as input to the HNN.

The parallel HNN is build off of the development of DNNs for GSL discharge prediction.

This will be done by including the output from the 1D as two additional features to the input

vector for the DNN structure. By doing so the system will be able to incorporate already

known discharge values into the complex mapping procedure from the N dimensional input

to the M dimensional output. This approach will leverage the total available data for lake

conditions in the discharge prediction, and build off of current methods.

Another HNN is developed using the same 1D model but instead building the connec-

tion in series instead of parallel. In the series HNN the output from the 1D model is the

only input to a DNN structure to refine and then output a desired discharge value. This

approach will not include the wind data available from data collection sites due to lower

data requirements for the 1D model. Here the only required measures are north and south

WSE, and the densities of the respective sides of the lake. The DNN structure is build into

the later end of the model to act as a refinement to the received discharge approximations

given by the 1D model.

Using discharge predictions from the developed 1D model allows for increased bound-

ary condition consideration. Unlike DNNs this 1D model is developed from fundamental

principles based on concepts of conservation of mass and energy, seen previously in Section

3.6. These equations are not limited to a prescribed dataset, therefore, these models should
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be able to increase DNNs ability to make accurate predictions outside the dataset. The 1D

model was developed using fundamental assumptions leading to a more general solution.

Assumptions such as uniform velocity for a cross-section both height and lengthwise, or

the consideration that both layers are mutually exclusive with little interaction between

layers. With idealized assumptions like these a loss of accuracy is expected from real world

conditions, but this model has shown considerable versatility given the length of time it has

been implemented for GSL discharge predictions.

While the equations used in the 1D model are not directly integrated into the training of

the DNN, performance improvement is expected due to the preliminary discharge prediction

produced by this model. Using these discharges it is expected that the DNN section will

act as a refining process to the initial discharge prediction. The HNN will continue to

implement the MSE loss function used previously (Eq. 3.5). This network’s performance

will be evaluated using the same performance parameters used for other models used.

3.1.6 Velocity Dataset Machine Learning

All former models developed in this study leverage the commonly used hydrology data

to create data-driven models. This data being WSE, wind data, and density information.

This data is key to many hydrological equations and flow predictive models. At the GSL

there also exists another feature set collected in the dataset that explains the flow; the

velocity profile data. If one knows the velocity data given a known cross-section a prediction

can be made using simplified methods. These methods may not consider all available

frictional losses that influence the expected discharge, but can serve as a good baseline

approximation.

Given this knowledge, this study leverages the data from USGS’s ADCP instrument

positioned in the GSL NB channel. This data is more consistently available compared to

all other data being available and allows for an increased dataset size compared to the

hydrological based dataset. The velocity based dataset is of size 51,672 instances compared

to the 24,307 instances of the hydrological dataset used to develop other data-driven models.
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Using this increased dataset, the LR, RF, SVR, and DNN methods are developed to create

flow predictions using the velocity dataset instead of the hydrological dataset.

3.2 Results

3.2.1 Hydrological Dataset Data-driven Models

Using the hydrological based dataset the following ML models are developed. Each

method is the highest performing model given the grid search hyper-parameter tuning used

on each of the models. Each of these models is developed for two different configurations,

using either specific conductance or density as the density information for each lake arm.

Each data-driven method produced two models and their relative performance is compared,

with all performance parameters shown in Table 3.8.

3.2.2 Model Configurations

Linear Regression

The linear regression model is shown in (Eqs. 3.6-3.9) for the two model configurations.

First the configuration for flow prediction using density is shown in Eq. 3.6 and Eq. 3.7.

QSN = 7.0240·HS−3.2255·HB−3.4204·HN−0.0330·Vwind+0.0032·θ+0.0136·ρS−0.0047·ρN

(3.6)

QNS = −6.0145·HS+1.9585·HB+3.6787·HN+0.2223·Vwind−0.0364·θ−0.1195·ρS−0.1156·ρN

(3.7)

Where Q is the expected discharge, H is the WSE height at a given location, Vwind

is the wind velocity, θ is the wind flow direction from true north (θ = 0), S is the specific

conductance, and ρ is the density of a given side of the GSL. The equations for SN and NS

flow using specific conductance instead are shown in Eq. 3.8 and Eq. 3.9.
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QSN = 6.6932·HS−2.8447·HB−3.4701·HN−0.0273·Vwind+0.0036·θ−0.0093·SS+0.1042·SN

(3.8)

QNS = −6.2873·HS+2.3840·HB+3.7854·HN+0.2151·Vwind−0.0342·θ−0.1538·SS−0.2148·SN

(3.9)

Where S is specific conductance of each of the respective lake arms. From these equa-

tions it is clear to see that the relative importance of available variables is focused on the

WSE variables compared to all others. Where the four later variables serve more as fine

tuning of the overall prediction.

Using the results shown in Table 3.8, the use of LR is a viable means of predicting

the exchange flow through the NB structure. The benefit of this method is its relative

simple computation cost. The limitation of this model though is the assumption of a linear

relationship between input and prediction variables. As variables violate this assumption

the expected output will not reflect the true conditions expected at the GSL. For those a

more complex method would be more appropriate.

Random Forest

Another method capable of assessing the importance of each of the variables are RF

models. The developed RF model for flow prediction using specific conductance used a max

depth of 20 using a minimum of 3 samples per leaf node, and a total of 500 decision trees.

The model using density uses the same depth and minimum number of samples but instead

used 1000 decision trees (see Table 3.6).

Table 3.6: Hydrologically based dataset RF model configurations.

Density/SpCond Max Depth Min Samples N Trees

SpCond 20 3 500

Density 20 3 1000
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The performance of the RF models is shown in Table 3.8 with the variable importance

given these two configurations is shown below in Fig. 3.5.

Fig. 3.5: Variable importance from random forest model using Hydrological dataset input.

The results shown in 3.5 demonstrate the importance of WSE for flow prediction. Com-

pared to other parameters used in the RF method, WSE has an importance two to four

times larger than other parameters. Using this importance this shows the WSE measure-

ments used are the most important factors to consider when making a prediction of flow

in the GSL. It is interesting to note that the breach WSE does not play as vital of a role

compare to the other two WSE values. From a physical analysis of the system this finding

can make sense. The breach WSE is measured at the bridge location in the channel (see

Fig. 1.1) essentially the middle ground between the two lake arms. Using the south and

north WSE and wind shearing effects one could estimate this parameter. Due to this fact

one could see this as a derived parameter instead of an independent parameter.

In addition to this finding it is interesting to see the differences between the two model’s

variable importance. When using density the secondary contributing factors after WSE

are wind speed, direction, and the northern density. Here the southern density has little
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importance in the final decision made by the RF model. In contrast, when using specific

conductance in the RF model all variables become secondary contributors with similar scale

of their values compared to the major contributors, namely north and south WSE.

Support Vector Regression

For SVR models in this study this method needs to be broken into four different models

like LR. With one model for each flow direction, and density information configuration. The

resulting four model configurations are listed in 3.7. Compared to other methods that can

formulate multiple equations to represent the mapping from input to output variables, SVR

creates a equation similar to LR. Each equation has it’s own ϵ insensitive region best suited

for it’s prediction, in this study the insensitive region is given based on the γ value given

to the kernel function.

Table 3.7: Configurations for Support Vector Regression using hydrological dataset.

Flow Dir. Density/SpCond kernel C γ

SN Density RBF 100 1

NS Density RBF 100 0.1

SN SpCond RBF 100 1

NS SpCond RBF 10 1

Here since all configurations use the RBF kernel the γ value is inversely proportional to

the bandwidth of the Gaussian kernel. From this result it can be seen that the NS Density

configuration requires a larger bandwidth to allow for improved performance. This pattern

is not unusual for GSL flow prediction as the prediction of NS flow has a higher uncertainty

and thus the harder problem as shown in the results of Table 3.8.
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Deep Neural Networks

Given the grid search method testing different number of hidden layers, activation

functions, and layer widths (number of nodes) the best performing DNN in this study had

a [100,100,100,100] configuration meaning it had four hidden layers with 100 nodes in each

of the layers. Given the input size of 7 total inputs, and 2 outputs this results in a total of

31,300 trainable parameters, with the best performing activation function being ReLU.

3.2.3 Model Performances

With each model having its own strengths and weakness it is necessary to compare their

performances given the same data. In Table 3.8 each model configurations performance

given the tested parameters is shown compared to one another.
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Table 3.8: Statistical values of data-driven models using hydrological dataset.

Model Type Flow Dir. Density/SpCond NSE RMSE CC PBIAS

LR SN Density 0.7638 0.4860 0.8741 2.4018

NS Density 0.6838 0.5623 0.8277 22.8270

SN SpCond 0.7669 0.4828 0.8759 2.2797

NS SpCond 0.6897 0.5571 0.8313 21.7333

RF SN Density 0.8553 0.3804 0.9250 1.4067

NS Density 0.8181 0.4265 0.9047 4.8086

SN SpCond 0.8565 0.3788 0.9257 1.2454

NS SpCond 0.8187 0.4258 0.9051 5.4812

SVR SN Density 0.8146 0.4306 0.9026 -1.7867

NS Density 0.7971 0.4504 0.8932 -21.8328

SN SpCond 0.8128 0.4327 0.9016 -1.7047

NS SpCond 0.7859 0.4627 0.8873 -17.7138

DNN SN Density 0.8081 0.4381 0.8992 3.6342

NS Density 0.7914 0.4567 0.8898 -15.3282

SN SpCond 0.8090 0.4370 0.8997 -3.7007

NS SpCond 0.7840 0.4647 0.8860 -13.2196

From these results it is clear to see that RFs are the best performing method for flow

approximation using the hydrological dataset. Each of the methods besides LR perform

relatively similar to RF irrespective of the increase in complexity in the SVR and DNN

methods. Here RF methods are capable of performing well with a simplified means of

approximation, comparing known flow values to desired values using numerical decisions

based on input parameters. Though evaluation can be done purely numerically, these

models are assessed visually as well to highlight where predictions have issues and possible

reasons for those issues. These results are shown below in Fig. 3.6 and Fig. 3.7 showing

both configuration sets of models based on density information.
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Fig. 3.6: Model performance compared on the test dataset from hydrological dataset using
density.

Fig. 3.7: Model performance compared on the test dataset from hydrological dataset using
specific conductance.

Data-driven models depend on set conditions producing a set output, or something

close to it. They learn relationships after seeing enough data that map an input to an

output. Due to the fact that many different lake conditions can create a uni-directional

it makes it difficult to create a good mapping for the uni-directional flow cases. From the
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results shown in Figs. 3.6 and3.7, there is two main cases that can be seen where all models

struggle to produce correct results. Where both of these issue cases are seen at the extremes

where uni-directional flow dominates.

The first of these is in the SN flow prediction at the zero value. Here all models produce

a large range of predicted values for the same known value. Here a physical knowledge of

the GSL system is needed. For a uni-directional flow case to exist, there needs to be enough

head pressure from the northern arm to overcome the southern arm pressure. This can

be done by equalizing the WSE, since the rate of pressure increase in the northern arm

is greater with its higher density. This case is not unique though and can be created by

multiple lake conditions with a combination of wind shear influences and lowering lake

elevation. Where these influences change the relative density and WSE difference between

the two arms at the breach location. With these effects, uni-directional flow can exist for

multiple configurations of inputs, and is not exclusive to a single case.

The same is true for the uni-directional flow case with SN flow dominating. Here, where

NS flow is zero there is multiple configurations that lead to the southern arm hydrostatic

pressure dominating the flow. Much like the uni-directional NS flow case each of the models

struggle to produce the zero value given the different inputs. Here unlike the SN flow, there

is a smaller range of predicted values when given the zero condition. Within the breach

structure the NS flow is usually much less than that of the SN flow. This may contribute

to the data being more well suited around lower values and having increased variability as

higher values are experienced.

Taking the evaluation of these models one step further each of the models is evaluated

on monthly test data recorded by USGS. This dataset consists of the monthly measurements

recorded by USGS during site visits on a monthly to bi-monthly basis. This dataset consists

of 30 site visits with known lake conditions taken over the years of 2018-2022. This dataset

contains instances of WSE outside the range of tested WSE combined with density and

specific conductance data also outside the range used for training the data-driven models.

In machine learning each model is constrained by the dataset it is trained on. The larger
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the dataset, and larger the range of data, the more robust a model can become. This USGS

testing set is used to evaluate the performance of these models on real world data that can

be outside the range given in the training datasets. The model results are shown in Table

3.9 with visual performance shown in 3.8 and 3.9.

Table 3.9: Statistical evaluation of data-driven models using USGS test dataset.

Model Type Flow Dir. Density/SpCond NSE RMSE CC PBIAS

LR SN Density -0.9742 1.4051 0.8534 1045.6728

NS Density -7.7395 2.9563 -0.0001 363.3940

SN SpCond -1.2337 1.4946 0.8554 1121.2613

NS SpCond -7.4769 2.9115 0.1997 385.9927

RF SN Density 0.1617 0.9156 0.8109 562.8407

NS Density -37.0091 6.1652 -0.5087 705.8495

SN SpCond 0.0981 0.9497 0.7770 566.0585

NS SpCond -38.1942 6.2605 -0.5385 717.1367

SVR SN Density -2.8884 1.9719 0.3640 -657.8905

NS Density -65.8715 8.1775 -0.3755 779.9938

SN SpCond -1.2167 1.4888 -0.1286 338.4358

NS SpCond -7.4500 2.9069 -0.1477 362.3022

DNN SN Density -4.1230 2.2634 0.7747 1388.5421

NS Density -258.8707 16.1205 -0.5897 1556.0037

SN SpCond -0.0160 1.0080 0.7450 575.6174

NS SpCond -266.3037 16.3494 -0.6272 1629.6986
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Fig. 3.8: Model performance compared on the test dataset from USGS test dataset using
density.

Fig. 3.9: Model performance compared on the test dataset from USGS test dataset using
specific conductance.

From these results, each of the models breaks down as it sees values that are outside

the range it was trained for. The most robust model being RF with an NSE value of 0.16,

a value much lower than the performance seen during training. The most notable method

visually is the LR method where the prediction follows the correct trend, though needs an
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increase or decrease in the bias to create a more robust prediction. This result speaks to the

robustness of LR and its application in hydrological applications. Where during evaluation

on the hydrological dataset this method performs worse than all others, while preserving

the expected trend during evaluation on this USGS dataset.

Given the results of this USGS test evaluation using monthly data, it is clear to see

additional refinement is necessary to improve the robustness of any given method on flow

prediction in the GSL. One of the most fundamental methods would be finding a different

way to scale the data to preserve the variables distribution compared to nominal values of a

training dataset. Standard Scalar is used in this study to try and preserve the relationship

to nominal conditions. Using the relationship of the mean and standard deviation from

nominal conditions is expected to improve the robustness of data-driven methods for out

of dataset prediction. The opposite is seen in the USGS tested dataset, where originally

each model performed well, and then performed worse for this test set. With all of this

being said, the reduction in performance is expected because of the data-driven nature of

ML models.

Further evaluation of data-driven is done by comparing these models to the current

1D model prediction used by Utah’s Department of Natural resources (Utah DNR). This

model is the adaptation of Holley’s model from 1976 to the new trapezoidal NB channel.

Since LR and RF show the most robust performance for flow prediction these models are

compared. With the visual comparison shown in Fig. 3.10. The performance of the 1D

model on the test dataset used for all other models is shown in Table 3.10. It should be

noted that for flow prediction, the 1D model requires WSE for the north and south arms,

either respective densities and the bottom height of the channel.

Table 3.10: Performance of Utah DNR’s 1D model on hydrological test dataset.

Model Type Flow Dir. Density/SpCond NSE RMSE CC PBIAS

DNR 1D SN Density -241.0154 15.5568 0.0571 -83.1029

NS Density 0.1610 0.9159 0.5868 37.0227
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It is clear to see the current 1D model does not perform well for the new trapezoidal

cross-section. The limitations of the 1D model are apparent when seen in the visualization

compared to LR and RF shown in Fig. 3.10.

Fig. 3.10: Linear regression and random forest predictions compared to Utah DNR 1D
model for SN and NS discharges.

The major issues seen in the 1D model are shown at higher discharge measurements.

At lower SN and NS predictions the model is capable of producing a biased value that does

follow the desired trend. Much like the data-driven models, the SN prediction is unable to

produce correct results for zero discharge SN. Looking at the NS flow it is clear to see the

model is over confident there is no NS flow going through the breach; with zero predicted

discharge for true discharge flows up to approx. 120 cm/s. For conditions more generally

seen, i.e. the mid-range flows, the model does not perform as far off from prediction as the

higher end flows. Due to this fact, and the limitations of the 1D model it is clear to see the

use of the current 1D model should be confined to the mid-range discharges for prediction.
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3.2.4 Effects of input reduction in hydrological dataset

The comparison between the 1D model and the other data-driven models is not entirely

a fair evaluation between models; given the increased input complexity of the data-driven

models. To produce a more equivalent comparison between the LR, RF, and 1D models the

input complexity is reduced in the LR and RF models to more consistently represent the

data available to the 1D model. To do this first the wind data is removed and each model is

reevaluated. The breach WSE is then removed to provide as equivalent input to all models

as possible to the data available to the 1D model. For each of these models only the density

is used to be more representative of what the 1D model uses for density information. The

reduced model performance compared to the 1D model is shown in Table 3.11, with visual

comparison of LR and RF shown in Fig. 3.11.

Fig. 3.11: Performance of LR and RF with reducing dimensionality of input.
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Table 3.11: Statistical values of data-driven models reducing available inputs

Model Type Flow Dir. NSE RMSE CC PBIAS

DNR 1D SN -241.0154 15.5568 0.0571 -83.1029

NS 0.1610 0.9159 0.5868 37.0227

LR SN 0.7638 0.4860 0.8741 2.4018

NS 0.6838 0.5623 0.8277 22.8270

RF SN 0.8553 0.3804 0.9250 1.4067

NS 0.8181 0.4265 0.9047 4.8086

LR SN 0.7640 0.4858 0.8743 2.5849

RM: Wind NS 0.6394 0.6005 0.8008 29.4313

RF SN 0.8313 0.4107 0.9118 0.5802

RM: Wind NS 0.7914 0.4568 0.8899 2.9674

LR SN 0.7481 0.5019 0.8656 6.0021

RM: Wind & BWSE NS 0.6359 0.6034 0.7990 36.9333

RF SN 0.8118 0.4338 0.9011 0.6665

RM: Wind & BWSE NS 0.7836 0.4652 0.8858 4.3782

As input of each model is reduced performance does decrease in performance; though

they still out perform the 1D model’s performance. From this it is clear to see the data-

driven models are capable of making well conditioned prediction even with reduced input

comparable to the 1D input. The results shown in Fig. 3.11 show the problem at zero

discharge persists for both models as input is reduced. When comparing the different

performances each of the RF models exhibits a slight fanning out of the zero prediction

issue with reduced input, but the rest of the prediction remains similar.
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3.2.5 Bi-directional instance case study

Knowing that each of the models struggles to predict the uni-directional flow cases, how

do the models compare if one only uses the bi-directional cases? Such a comparison allows

one to see how the models are expected to perform for common operating conditions at the

GSL NB. This bi-directional subdivision of the dataset is created by removing instances

outside the 2σ bounds determined before, and then removing any remaining zero flow cases

from the SN and NS flow cases. These reductions place emphasis on instances where bi-

directional flow exists at the GSL. The developed models are tested on the new altered

test dataset and the resulting performance is shown in Fig. 3.12 with full statistical results

shown in Table 3.12.

Fig. 3.12: Model performance compared on the test dataset from bi-directional test dataset
using density.

Each of the models shows the desired trend with variable levels of banding across the

ideal line. Here RF is the clear best performing method to predict the bi-directional flows

as shown in Table 3.12. Compared to the other models the RF method has a lower band

of prediction around the ideal. This behavior may be due to how RF makes its predictions,

using the dataset to produce predictions given an ensemble of decision tree predictions.

Since the data is used to predict the final value, the trend is consistent with the trend seen

in the data.
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Table 3.12: Data-driven models performance using hydrological bi-directional dataset.

Model Type Flow Dir. Density/SpCond NSE RMSE CC PBIAS

LR SN Density 0.7832 0.4656 0.8945 1.6038

NS Density 0.6208 0.6158 0.8325 75.3972

SN SpCond 0.7820 0.4669 0.8931 1.6024

NS SpCond 0.6269 0.6109 0.8401 69.9187

RF SN Density 0.9164 0.2891 0.9580 1.1901

NS Density 0.8755 0.3529 0.9411 18.3916

SN SpCond 0.9223 0.2787 0.9608 0.8547

NS SpCond 0.8772 0.3505 0.9419 18.2915

SVR SN Density 0.8475 0.3905 0.9252 -0.3124

NS Density 0.7692 0.4804 0.8909 8.3991

SN SpCond 0.8429 0.3964 0.9231 -0.2232

NS SpCond 0.7687 0.4809 0.8916 9.7615

DNN SN Density 0.8297 0.4126 0.9180 5.4073

NS Density 0.7450 0.5050 0.8838 16.9023

SN SpCond 0.8328 0.4089 0.9203 -3.0367

NS SpCond 0.7527 0.4973 0.8909 18.4921

Comparing the full data test dataset with the uni-directional flow to the test set using

only bi-directional data is shown below in Table 3.13 with better performing values shown

in bold. In this table most methods are have a mix of which dataset produces the better

results.
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Table 3.13: Data-driven model performance compared using bi-directional and total hydro-
logical datasets.

Full Data Bi-Dir Data

Model Type Flow Dir. Density/SpCond NSE CC NSE CC

LR SN Density 0.7638 0.8741 0.7832 0.8945

NS Density 0.6838 0.8277 0.6208 0.8325

SN SpCond 0.7669 0.8759 0.7819 0.8931

NS SpCond 0.6897 0.8313 0.6269 0.8401

RF SN Density 0.8553 0.9250 0.9164 0.9580

NS Density 0.8181 0.9047 0.8755 0.9411

SN SpCond 0.8565 0.9257 0.9223 0.9608

NS SpCond 0.8187 0.9051 0.8772 0.9419

SVR SN Density 0.8146 0.9026 0.8475 0.9252

NS Density 0.7971 0.8932 0.7692 0.8909

SN SpCond 0.8128 0.9016 0.8429 0.9231

NS SpCond 0.7859 0.8873 0.7687 0.8916

DNN SN Density 0.8081 0.8992 0.8297 0.9179

NS Density 0.7914 0.8898 0.7450 0.8838

SN SpCond 0.8090 0.8997 0.8328 0.9203

NS SpCond 0.7840 0.8860 0.7527 0.8909

This is true for all models except for the RF model. The RF model sees a substantial

improvement in performance for the bi-directional dataset alone. This result shows that

RF methods are expected to outperform other machine learning methods for the common

bi-directional flow cases exhibited by the GSL.
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3.2.6 Hybrid DNN

Knowing the 1D model is unable to perform well by itself makes it seem that it might

be best to step away from this model. Instead, what if the outputs were instead coupled

with a DNN method to act as a refinement layer on the prediction to the desired prediction.

The combination of this data was integrated using two different methods, series and parallel

HNN methods. Density is used as the density information for the network to be consistent

with expected inputs to the 1D model. The similar architecture as the DNN is used with

implementation of an changed input layer to either combine the 1D approximation with the

current input (parallel) or to solely take the 1D outputs as the input to the HNN (series).

The performance of the HNN is shown in Table 3.14 with visual results shown in Fig. 3.14.

Table 3.14: Performance of HNN models on hydrological test dataset compared to DNN
baseline prediction.

Model Type Flow Dir. NSE RMSE CC PBIAS

DNN SN 0.8081 0.4381 0.8992 3.6342

Baseline NS 0.7914 0.4567 0.8898 -15.3282

Parallel SN 0.8066 0.4398 0.8986 3.3806

NS 0.7930 0.4549 0.8908 -13.3937

Series SN 0.6932 0.5539 0.8326 1.1895

NS 0.6527 0.5893 0.8109 -36.6672

Increasing the complexity of the input vector using the 1D input produces comparative

performance to the current DNN structure. There exists slight improvement to the percent

bias in predicted value on the test set but little other improvement between the DNN

and parallel HNN method. When comparing the series HNN there is a large decrease in

performance. This result comes from the decrease in input dimensionality for the model to

find representative methods to map input to output. The goal of the series model was to see

if using the 1D model output could act as a type of transfer learning from a physically-based
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numerical model to a data-driven model. Here it is clear to see this method decreases the

expected performance and instead requires different implementation. When comparing the

results visually one can see the physically-based numerical models influence in the system

as shown in Fig. 3.14.

Fig. 3.13: Comparative performance of DNN, HNN parallel, and HNN series models for
test data from development dataset.

Figure 3.14 shows the prediction trend of DNN dominates over the trends seen when

using the 1D model alone (see Fig. 3.10). Here the model is capable of predicting the higher

flow values. The spread of predicted values is the same amongst the different models both

the DNN and HNNs. This trend unexpected due to the reduced complexity in the series

HNN, though the different neural network structures seem robust enough to compensate

for the reduced dimensional input.

Further investigation of the capabilities of HNN are shown using data collected during

the 2021 year with predictions made using a velocity based DNN model. This is done

to show the expected performance of the HNN for conditions that are held outside the

range of training data. The results of this extrapolation study are shown in Fig. ?? with

performance metrics shown in Table 3.15
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Fig. 3.14: Comparative performance of DNN, HNN parallel, and HNN series models for
2021 extrapolation dataset.

Table 3.15: Performance of HNN models on hydrological extrapolation dataset compared
to DNN baseline prediction.

Model Type Flow Dir. NSE RMSE CC PBIAS

DNN SN -1.1855 1.4783 0.4118 -185.1622

Baseline NS -30.2852 5.5933 0.2077 -1232.1102

Parallel SN -0.8148 1.3471 0.2804 -205.4909

NS -33.4563 5.8699 0.1149 -1881.2663

Series SN -0.5250 1.2349 0.4398 -184.8581

NS -22.7670 4.8751 -0.0569 -1671.1950

From the results of this extrapolation study show that HNN does provide slight im-

provement to the performance of the DNN. Although this is true all methods perform poorly

and result in unreliable predictions. Due to this it can be seen that the application of a

HNN does not work well for the GSL dataset to improve upon the ability of the DNN to

generalize for data ranges outside of the training dataset.
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Additional methods have been used by other researchers to implement physically-based

numerical models by incorporating the solved equations into the loss function of the DNN.

These type of networks are known as Physics Informed Neural Networks (PINN) [41] though

they reside outside the scope of this study. The implementation of these PINNs seeks to

use a weighted loss function to combine the regular loss term like MSE with the physical

equations that govern the flow, and then updated the weights and biases using that weighted

loss function. Such a method increases the computational cost of model development,

where the goal here was to see if performance could be increased by using raw outputs of a

physically-based numerical model.

3.2.7 Velocity Dataset Data-driven Models

The implementation of data-driven models for the hydrological dataset and their re-

spective performances are shown in the previous sections of this study. With this data

there is a key issue, the dataset is dependent on four different instruments at USGS site

locations 10010024-10010027 all recording the proper data. Additionally, a monthly density

or specific conductance measurement must be recorded for the time period in question.

These data requirements limit the versatility of the produced model because if any of these

measurements are not record a full input vector can not be generated.

Instead of relying on all of these data collection sites, one can instead use the velocity

column data from USGS’s ADCP located at site 10010025. This data instead requires

a single measurement station to be operational to produce the required input vector to

a data-driven method. Using this Velocity dataset the LR, RF, SVR, and DNN models

are redeveloped and their respective performances are shown in Table 3.18, with model

configurations listed below.
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3.2.8 Model Configurations

Linear Regression

The resulting linear regression model using the velocity dataset is shown in Eq. 3.10

and 3.11 for SN and NS flow predictions respectively.

QSN = 0 · Cell0 + 0.5585 · Cell1 + 0.2144 · Cell2− 0.1982 · Cell3

+ 0.3907 · Cell4− 0.6506 · Cell5 + 0.1436 · Cell6 + 0.0687 · Cell7

+ 0.3971 · Cell8− 0.2929 · Cell9 + 0.3381 · Cell10 (3.10)

QNS = 0 · Cell0− 0.8253 · Cell1 + 0.8174 · Cell2− 0.3868 · Cell3

− 0.1471 · Cell4− 0.2135 · Cell5 + 0.0960 · Cell6 + 0.0366 · Cell7

− 0.1061 · Cell8 + 0.0426 · Cell9− 0.4817 · Cell10 (3.11)

Here it is seen that most velocities are considered with comparative weight except for

Cell 0. Since Cell 0 is the no slip boundary condition, it is understandable it is not used in

the LR model because the value does not fluctuate. Therefore, this velocity is not considered

in the model because it does not capture any of the variation seen in the dataset.

Random Forest

Using the velocity data, the RF model configuration uses a max depth of 20, 3 minimum

samples per leaf node and 500 decision trees (see Table 3.16). The variable importance used

in the RF model is shown in Fig. 3.15.

Table 3.16: Velocity based dataset RF model configuration.

Max Depth Min Samples N Trees

20 3 500
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Fig. 3.15: Variable importance of the velocity based random forest model showing impor-
tance of bounding cells to prediction.

It is interesting to note from Fig. 3.15 the two major contributors to the data separation

used in the RF method are Cell1 and Cell10; the ADCP’s bottom and top cells. The only

cell not considered is Cell0 because all samples share this common value of zero. Cells 2-9

are each considered with comparable importance, so from this analysis the main values to

be considered when separating the values in the RF model are the boundary cells from the

ADCP.

Support Vector Regression

With the velocity based SVR there is still a requirement to create two different models

to produce the two flow predictions through the NB. From the grid search method a best

performing model was developed. The model configurations for γ, C and kernel are shown

in Table 3.17.
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Table 3.17: Configurations for support vector regression using velocity dataset.

Flow Dir. kernel C γ

SN RBF 10 1

NS RBF 10 0.1

As seen before, each of the models uses the RBF kernel with the larger Gaussian

bandwidth required in the NS prediction.

Deep Neural Network

The DNN developed uses a [100,32,100,50,25] configuration with a 11 dimensional input

and 2 dimensional output. This DNN structure gives 14,057 trainable parameters for the

model, with the best performing activation function being ReLU.

3.2.9 Model Performance

Assessment of the overall performance of the developed models using the study perfor-

mance parameters are shown in Table 3.18.

Table 3.18: Statistical values of data-driven models using velocity test dataset comparing
model performance.

Model Type Flow Dir. NSE RMSE CC PBIAS

LR SN 0.6153 0.6202 0.7904 53.1379

NS 0.8449 0.3939 0.9194 207.3436

RF SN 0.8649 0.3676 0.9300 -1.8816

NS 0.8907 0.3305 0.9438 -40.0168

SVR SN 0.8497 0.3876 0.9219 1.3283

NS 0.8918 0.3289 0.9444 -141.4931

DNN SN 0.8642 0.3685 0.9297 -4.1568

NS 0.8923 0.3282 0.9463 -497.5495
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Comparing these results to those shown in Table 3.8 there is a clear improvement to

data-driven model performance when using the velocity dataset. There are multiple con-

tributing factors that can account for this increase in performance. One possible reason

being the dimensionality increase from the velocity input data. Every data-driven model

relies on creating relationships between input parameters, heavily reliant on the dimension-

ality of that input.

The difference between methods is how those input dimensions are utilized for decision

making. Random forest develops a separation scheme using each dimension based on value.

Linear regression uses each dimension to create a single equation to predict flow. Support

vector regression uses the high dimension to create a hyperplane to explain the data and

create an equation for prediction. Where methods like DNN use the increased dimensions

to develop additional relationships between input and output metrics through their layer

structure. Therefore, increasing the dimension can improve the overall prediction of the

model, but this must be considered carefully. One can increase the dimension of input by

increasing the dataset size without adding any additional information.

An example of this flaw is seen in the inclusion of Cell 0 for flow prediction using

the velocity dataset. When physically modeling the system numerically, it makes sense to

include the boundary condition to ensure the proper flow is produced, whereas using data-

driven models it doesn’t make sense because the value explains no variability. Without any

variation in this value each model is unable to create a distinction between points using this

data. Therefore, this data is ignored in the dataset and instead increases the computation

cost without yielding any additional data or benefit.

While this is true, there are cases one can increase the dimensionality of input by

creating derived parameters for data-driven model by combining known data inputs. This

is analogous to non-dimensionalization in fluid mechanics; where using base data you can

create more refined variables that are shared amongst multiple configurations. Using these

methods to create derived data, it reduces the computational burden on data-driven models
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to formulate these relationships itself. Instead they are given as data input at the beginning

allowing the model to create other relationships not as readily apparent.

There are many ways to increase the dimensionality of a dataset, here the dimension-

ality is increased by using a different set of features available in the compiled dataset. With

the increased dimensionality the models improve and the improvement is clearly seen in

Table 3.18. Though this new dataset improves the overall performance of most data-driven

models, there is a decreased performance in the LR method. Additionally, looking at the

visual performance of the network, the same prediction issues persist for flow predictions

at extreme flow events (see Fig. 3.16).

Fig. 3.16: Model performance compared on the test dataset from velocity dataset.

Here it is seen the ML models using the velocity dataset are still unable to accurately

predict the SN discharge during uni-directional NS flow cases. Overall though there is

refinement of the prediction along the ideal trend, for both discharge predictions the spread

of values is reduced at higher discharge values. The improvements in performance show

the velocity dataset is more well suited for flow prediction at the GSL NB using data-

driven methods. These data-driven models are then compared to monthly measurements

conducted by USGS and the results are shown below in Table 3.19 and Fig. 3.17
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Fig. 3.17: Model performance of velocity based ML methods compared on the test dataset
from USGS test dataset.

Table 3.19: Statistical values of data-driven models using USGS test dataset

Model Type Flow Dir. NSE RMSE CC PBIAS

LR SN -0.0113 1.0056 0.2989 -68.5238

NS 0.0674 0.9657 0.7393 92.3748

RF SN 0.6110 0.6237 0.8163 157.5445

NS -0.3257 1.1514 0.4747 92.9523

SVR SN 0.5727 0.6536 0.7955 146.7213

NS 0.7341 0.5156 0.8909 25.2771

DNN SN 0.6094 0.6250 0.8196 169.0855

NS 0.7361 0.5138 0.8793 24.6457

These results show the velocity based data-driven models are more well suited to ap-

plications outside the dataset. There is a caveat here though, USGS does not record the

velocity profile at the time of measurement using the ADCP because it is under mainte-

nance during these measurements. Due to this, the measurement had to be taken from
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the closest instance to the measurement time. This is done assuming field measurements

can only be handled when lake conditions are calmer. Therefore, the lake is assumed to be

in a quasi steady state. With the inferred data from the full dataset the relationships are

similar to those seen during development. This knowledge can be why the predicted values

are more well conditioned during this test. The velocity based models are not compared

to the 1D prediction because the required data for the 1D model is not contained in the

velocity dataset, and the 1D model’s performance was already assessed in the hydrological

dataset of this study.

3.2.10 Limitations of Data-driven Models and Monitoring Site Data

With any data-driven models there are limitations to how they perform, and what

they can be used on. Here it was seen that both datasets performed worse than training

performance when used on the USGS monthly test dataset. This difference in performance

is due to the relationships contained in the data. The USGS monthly test data lies outside

the training dataset values for the hydrological dataset, with the velocity dataset models

performing closer to expected values due to the velocity data available in the USGS test

dataset being from the development set of the velocity models. With these results it is clear

to see training performance is expected only for data that lies within the data similar to

trends used for training the model. Therefore, the larger and wider datasets is, the more

robust a data-driven model is expected to be for that prediction.

One of the major limitations one needs to be aware of in the GSL monitoring data is the

variability within sampled values in each of the sampling locations. These measurements

are made by field instruments that have inherent variability in their measurement. This

means for any given measurement there is a band of values the instrument can output as

the desired measurement due to the uncertainty from the instrument itself.

Due to this uncertainty in field measurements, you will see variability in the overall

prediction from any of the ML methods; because fluctuations in the measurements will result

in fluctuations in the prediction. Therefore, one must consider how the models compare

on a performance level, and also assess each one’s sensitivity to changes in input. Doing
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so one can assess which method is the most robust to real world monitoring with noise

and uncertainty in measurements collected. Where all methods might give comparable

performance metrics for a given data set, but have varying levels of sensitivity to any one

input’s value range.

Another major limitations of development of data-driven models for GSL flow predic-

tion is when changes are made to the physical structure affecting the available dataset and

therefore model performance. The major control structure used in the GSL NB channel

is the north side control berm. This berm contributes to the amount of NS flow allowed

into the southern arm. The berm helps to maintain the salinity of the southern arm of the

lake. All data-driven models developed in this study are formulated for an as build berm

condition, known as the 0ft berm at a height of 4183 ft above NVGD. As the salinity of the

southern arm rose in recent years, the berm was raised to 4ft in February 2023, and later

raised to 9ft in July 2023 to restrict the NS flow. These changes influences the governing

physics by physically altering the channel geometry.

Due to the change to the actual physical system, the data sets developed for a 0ft

berm can no longer be used for current GSL predictions because the systems are no longer

consistent. When the physical system is changed all data previously collected can not be

used, because the flow dynamics are now changed. Using the current datasets to predict

flow in a system that is no longer the same will result in erroneous values. If further data-

driven models are expected to be developed a new data set must be generated with correct

physical features considered. In order to effectively train data-driven models there needs to

be a large enough dataset to train the model on what truth is. The USGS flow prediction

data is only recorded until January of 2020, when the 0ft berm existed. USGS monthly

measurements do exist after the berm was raised, but there are only 13 available instances.

With a limited number of data points, data-driven models do not make sense due to lack of

information to properly train the models. Instead there needs to be an additional method

to predict the flow through the breach unrestricted by a dataset focused on the physical

methods of flow through the NB.
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CHAPTER 4

OBJECTIVE 4: PHYSICALLY-BASED NUMERICAL MODELING OF GSL NB

FLOWS USING INDEX AND SHALLOW WATER BASED MODELS

4.1 Methodology

The following chapter will describe the application of physically-based numerical mod-

els for rapid prediction of GSL NB flows. This chapter will explain the methodology for

developing the physically-based numerical models, how these models are applied to the

GSL problem, and their accompanying results. The physically-based numerical models of

this study are the Generalized Area-Based Index Model (GABI) and the Steady Shallow

Water Exchange-flow Model (SSWEM); a new derivation of the 1D equations of Holley and

Waddell [1] for a trapezoidal breach structure.

4.1.1 Generalized Area Based Index Model

At a fundamental level, the discharge of a system can be determined as long as the

velocity and geometric characteristics of the flow system are known. Using this data, one

can simply multiply the velocity by a given cross-section to estimate a discharge value.

The Generalized Area-Based Index Model (GABI) predicts SN and NS discharges based on

the NB geometry and the velocity measurements available via USGS data site 10010025;

where the geometry is provided by bathymetry measurements of the NB. For USGS velocity

measurements the water column is divided into 10 separate cells where the average velocity

is recorded by the ADCP for each of the cell sections (see Fig. 4.1). A zeroth cell is added

to cover the blanking distance between the ADCP and the first available velocity cell.
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Fig. 4.1: New Breach geometry and velocity cell locations utilized by GABI for area formu-
lation.

With the geometric data available, the GSL system still presents an interesting issue

because of the two-layer flow characteristics give the three distinct flow cases; bi-directional

flow and uni-directional flow either SN or NS. Therefore, in order for GABI to estimate the

flow an interface location (HI) between the two flow layers must first be estimated. GABI

predicts the interface location using a simplified hydrostatic analysis to determine the point

at which the north and south hydrostatic pressures are equal. The hydrostatic interface

location is estimated using Eqs. 4.1, 4.2 and can be seen in Fig. 4.2.

HI = 0.5 ∗ (HN +HS)−
(

ρS
ρN − ρS

)
∗∆WSE (4.1)

∆WSE = HS −HN (4.2)

Where HI is the height of the interface above the channel bottom, HS and HN are the

water heights of each arm above the channel base, and ρ is the respective density of each

side of the lake.
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Fig. 4.2: Great Salt Lake New Breach cross-section for hydrostatic assessment, where flow
above the pressure point is SN directional, and anything below it is assumed to be NS flow.

Using the height of equal pressure (HI) from the bottom, anything above this point is

assumed to be SN flow, and anything below this point is NS flow. Given that the interface

location will not fall exactly on a dividing line between cells, the GSL cross-section is

further subdivided into N number of sub sections to increase resolution of the geometry

to divide the two flow layers. This refined geometry presents a problem for the velocity

measurements. The velocities measures taken by the ADCP are a cell average and do not

give exact locations of measurement for each cell. Therefore, in this study each velocity

from the ADCP is set to the mid line of the respective cell and linear interpolation is used

between points to assess the appropriate velocity for each of the subdivided cross-sections.

It is important to note that changes in the berm geometry have a major influence on

the flow. The berm structure is assumed to be a non-permeable obstruction to the flow.

Due to this, heights below the berm structure are not considered to contribute to the overall

discharge. Therefore, for GABI, only cells above a set base height are considered. For this

study the base height is set to the berm elevation. From analysis of different simulations

and monthly measurements it is seen that uni-directional flow exists most commonly when

the pressure point resides 0.3048 m (1 ft) below the base elevation. Therefore, the discharge

calculation for GABI is discretized from this height location to the maximum water surface

elevation using N subsections. If the pressure point is below this location, uni-directional
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SN flow is assumed, and if the pressure point is at or above the maximum water surface

elevation a uni-directional NS flow is assumed. Bi-directional flow exists when the pressure

point location HI satisfies HI ≥ Hberm − 0.3048m. Lastly a weir style discharge occurs

when only one water elevation is above the berm elevation.

GABI uses five different classifications for discharge calculation with conditions listed

in Table 4.1. The five flow cases are; no flow, bi-directional flow, SN flow, NS flow, and weir

discharge flow. The no flow condition exists when neither north or south WSE are above

the base elevation set for the model.

Table 4.1: Flow case scenarios

Flow Cases HI HN HS

No Discharge NA < Hberm < Hberm

Bi-directional ≥ Hberm − 0.3048m > Hberm > Hberm

SN Flow ≤ Hberm − 0.3048m > Hberm > Hberm

NS Flow ≤ Hberm > max(HN , HS) > Hberm > Hberm

Weir Discharge NA < Hberm > Hberm

Note: Weir discharge must have only one lake side elevation is greater than Hberm

The weir discharge case is calculated using Eq. 4.3. For the specific case of the GSL, the

CD value is determined using the weir geometry using the geological survey circular 397 [42].

Given the berm trapezoidal shape and the respective h
L value given the berm width and

height being a maximum of 0.133 the CD value for this application is 2.9. The length is

approximated using the berm height of 1,277.72 m (4192ft) given the February 2023 change

in berm elevation, giving an estimate of 30.48m (100ft). For the discharge calculation all

measurements must be in English units for use in 4.3. The GSL weir discharge calculation

is shown in Eq. 4.4

Q = CD ∗ L ∗H3/2 (4.3)

Q = 2.9 ∗ 100 ∗H3/2 (4.4)
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Where H here is the height of the water upstream relative to the top of the control

berm measured in ft (see Fig. 4.3).

Fig. 4.3: Longitudinal view of weir discharge structure for obtaining required H of discharge
calculation dependent on the associated berm height.

Therefore, knowing the geometry, interface location, base height, and having a set of

velocities for each cell, the GABI model can predict the expected discharge. The solving

procedure for flow predictions using GABI is as follows:

1. Obtain system information for: velocity, geometry, base height, lake elevations, and

desired number of subdivisions

2. Discretize domain from base height to maximum surface elevation by N subdivisions

3. Solve for the HI location using Eq. 4.1

4. Assess necessary flow case

5. Iterate through all subsections to calculate the discharge

6. Classify discharge to appropriate flow direction based on cell height relative to HI

7. Repeat process for each time instance of input dataset
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4.1.2 Steady Shallow Water Exchange-flow Model

The exchange flows of the GSL are not only driven by a difference in water surface

elevation, but have dependencies on the local density gradient between the two arms of the

lake. The higher density in the northern arm of the Lake allows for a bi-directional flow to

exist driven by an increase in hydrostatic pressure overcoming pressure from the south arm

within the NB channel. To model this behavior the Steady Shallow Water Exchange-flow

Model (SSWEM) is developed to consider these flow dynamics.

To understand the dynamic fluid transport, this study needs to be able to understand

the governing equation of the flow. Similar to other hydraulic systems, one can resolve

the system by using momentum and energy transport. Before utilizing the momentum

and energy transport of the system, first the geometry of the NB channel is identified to

understand the method by which the lake transports these flows.

The NB is an open channel with a trapezoidal cross-section (see Fig.4.4). In the original

flow model for the GSL created by Holley and Waddell [1] cross-section is a rectangular

cross-section of a concrete box culvert (see Fig.4.5). With the opening of the NB, these

original equations continue to be used, with adaptations to compensate for the changed

cross-section of the channel while maintaining the same flow assumptions. The main flow

assumptions used by Holley and Waddell were.

1. The culvert is a simple box culvert

2. The culvert never flows full

3. The flow is steady

4. The flow in each layer is one-dimensional and gradually varied

5. There is no entertainment across the interface

These assumptions allow the system to resolve the expected discharge for given Lake

conditions of north WSE, south WSE, and their respective densities. This flow model uses

an iterative scheme, assuming an initial discharge for a given layer, solving for the boundary
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conditions, then checking the accuracy of those boundary conditions to the known lake

conditions. If this set of lake conditions is incorrect, the conditions are then adapted and

run again until the system of equations converges on a desired flow regime with its associated

discharge measurement. While this method works well for box culverts, the adaptation of

the original derivation does not hold for the new channel geometry. Due to this fact, the

governing equations are derived for the new trapezoidal cross-section.

Fig. 4.4: Great Salt Lake, New Breach simplified trapezoidal cross-section.
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Fig. 4.5: Longitudinal view of box culvert, from the work of Holley and Waddell [1].

Knowing the original derivation does not generate true governing equations for the flow

in a trapezoidal cross-section, this study can begin the development of SSWEM using the

conservation of linear momentum. SSWEM uses the following assumptions to resolve the

system.

1. The flow is incompressible

2. The channel never flows full

3. The flow is steady

4. The flow in each layer is one-dimensional and gradually varied

5. There is no entrainment across the interface

6. The channel floor is level

Using the conservation of linear momentum yields Eq. 4.5 for the base of the derivation.

ρi

(
dui
dt

+ ui
dui
dx

)
= −dPi

dx
+

dτxy
dy

+
dτxz
dz

+ ρigS0i + ρigEli (4.5)
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Where i denotes the layer of the flow, 1 = upper layer, while 2 = lower layer, and u is

the velocity of the layer at any given point, τ is the shear stress in a given plane. S0 is the

slope of the channel, for this application it is assumed zero but is included for completeness

of Eq. 4.5. Lastly, El is the equivalent distributed entrance loss for a given length of the

channel. Simplifying given the assumption of a level channel, i.e. S0 = 0, yields Eq. 4.6

where the slope S0 no longer needs to be considered. Though it should be noted that in the

upper layer formulation the change in lower layer height must be considered as this slope

parameter.

ρi

(
ui
dui
dx

)
= −dPi

dx
+

dτxyi
dy

+
dτxzi
dz

+ ρigEli (4.6)

The entrance loss is not considered as a single loss for SSWEM, nor the original deriva-

tion due to a smooth water surface in the channel. When looking at the GSL NB channel,

the flow has a smooth transition from one side to the other, without large hydraulic jumps

in the water surface at the entrance or the exit of the channel. Due to this fact, the en-

trance losses is distributed over the length of the channel based on the discretization of the

domain. The entrance loss formulation is shown in Eq. 4.7, with the distributed entrance

loss is shown in Eq. 4.8

HEi = Ki
U2
i

g
(4.7)

Eli =
HEi

L
(4.8)

Where HE is the entrance loss, K is the loss factor dependent on the inlet structure,

and L is the length of the NB channel in the X direction. Using the assumptions for this

study and the simplified linear momentum equation (Eq. 4.6), the upper and lower layer

governing equations are solved. Integrating this equation over the y and z domains of the

sectional slice yields Eq. 4.9, with the known cross-section shown in Fig. 4.6. Where the

flow area calculation is shown in Eq. 4.10, given the assumption that both side slopes are

equal resulting in θ1 = θ2, allowing for the slope to be simplified in Eq. 4.11.

Ai

(
ρi

(
ui
dui
dx

)
+

dPi

dx

)
=

2ai
cos(θ)

τwi +B0iτbi + (B0i + Sai)τsi + ρigAiEli (4.9)
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Ai = ai

(
B0i +

S

2
ai

)
(4.10)

S = S1 + S2 (4.11)

Θ = tan−1(S/2) (4.12)

Fig. 4.6: cross-sectional view of GSL NB channel in the YZ plane.

Where A is the flow area, a is the given layer height, and τb and τs are the lower and

upper shear stresses of the cross-section, τw being the wall shear stress, and Pi is the wetted

perimeter of the flow. Using these equations, the upper and lower layer linear momentum

is resolved as shown in Eqs. 4.13, 4.14.

ρ1gA1

(
u1
g

du1
dx

+
da1
dx

+
da2
dx

)
=

2a1
cos(θ)

τw1 +B01τb1 + ρ1gA1El1 (4.13)

ρ2gA2

(
u2
g

du2
dx

+ (1− ϵ)
da1
dx

+
da2
dx

)
=

2a2
cos(θ)

τw2 +B02τb2 + (B02 + Sa2)τi + ρ2gA2El2

(4.14)

ϵ =
ρ2 − ρ1

ρ2
=

∆ρ

ρ2
(4.15)
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Dividing these equations by their respective cross-section, gravity, and layer density

yields the equations for the velocity and layer height change over the x domain.

u1
g

du1
dx

+
da1
dx

+
da2
dx

=

2a1
cos(θ)τW1 +B01τI1

a1ρ1g
(
B01 +

S
2 a1

) + El1 (4.16)

u2
g

du2
dx

+ (1− ϵ)
da1
dx

+
da2
dx

=

2a2
cos(θ)τW2 +B02τB + (B02 + Sa2)τI2

a2ρ2g
(
B02 +

S
2 a2

) + El2 (4.17)

Where u is velocity, a is layer height, τ is shear stress, P is wetted perimeter of the

layer, El is the entrance loses, S is the combined side slopes, ρ is the fluid density, B0 is the

base width of the fluid layer at its lowest point, and θ is the angle of the wall with respect

to the horizontal. Here the subscripts 1 and 2 denote upper and lower layer, W denotes the

wall location, I denotes the interface location, and B denotes the bottom of the channel.

These layers of flow can also be expressed using the continuity condition given the

assumption that there is one set discharge for each layer over the cross section of the

channel. This assumption’s expression and implication on continuity can be seen in Eq.

4.18.

dQi

dxi
= 0 = Ui

dai
dxi

+ ai
dUi

dxi
(4.18)

Where Q is the set discharge given the layer, U is the velocity, and a is the respective

layer height given a specific location.

With the linear momentum and continuity equations, the gradually varying flow can be

integrated over the length of the channel. These equations still need to resolve the overall

shear stress to be solvable. Thus, to determine the shear stresses for each of the section

edges, this study uses Manning’s equation for shear stress (see Eq. 4.19).

τ =
f

8
ρi|Ui|Ui (4.19)
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Where the f value is calculated using Eq. 4.20, for English units, those readily available

for the GSL system.

fi =
3.62g

R
1/3
Hi

n2
i =

116.7

R
1/3
Hi

n2
i (4.20)

Where RH is the hydraulic radius (see Eq. 4.21), and ni is the manning friction factor

for the given interface.

RHi =
Ai

Pi
(4.21)

Where Pi is the wetted perimeter and Ai is the area of the cross-section. With this

understanding the final portion of this equation is to know what the respective hydraulic

radius is for each of the subsections inside the single cross-section. Each layer cross-section

can be subdivided into a surface (As), bottom (Ab), and wall (Aw) flow regions shown in

Fig. 4.7.

Fig. 4.7: Subdivisions of single flow layer cross-section for respective shear considerations.

From this the total area of the cross-section must be equal to the sum of the individual

parts (Eq. 4.22) where shear forces influence the flow.

Ai = Asi +Abi +Awi (4.22)



73

The hydraulic radius is solved using Manning’s equation (see Eq. 4.23b).

Q = UA =

(
1.49

n

)
A R

2/3
H S

1/2
0 (4.23a)

U =

(
1.49

n

)
R

2/3
H S

1/2
0 (4.23b)

Where U is the relative velocity of the flow, RH is the hydraulic radius, and S0 is the

slope of the channel. Using these equations one can solve for the hydraulic radius of each

sub section of the flow layer. Starting with the upper layer, the influences of surface shear

are ignored due to the free surface, instead the walls and lower surface shear are considered.

The total area of the upper layer is shown in Eq 4.24a.
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A1 = a1

[
B01 +

a1S

2

]
= AI +AW = PI1RI1 + PW1RW1 (4.24a)

PI1 = B01 (4.24b)

PW1 =
2a1

cos(θ)
(4.24c)

Where the subscript W and I are the wall and interface locations respectively. Using

Manning’s equation (Eq.4.23b) one can solve for the ratio expression for the hydraulic radii

in the upper layer.

RI1

RW1

=

(
nI1

nW1

)3/2(u1 − u2
u1

)3/2

(4.25a)

RI1 = RW1

(
nI1

nW1

)3/2(u1 − u2
u1

)3/2

(4.25b)

RW1 = RI1

(
nI1

nW1

)−3/2(u1 − u2
u1

)−3/2

(4.25c)

Substituting these expressions into Eq. 4.24a for the wall and interface radius, the

expression of each radii can be found as follows.

RW1 =
a1

[
B01 +

a1S
2

]
2a1

cos(θ) +B01

[(
nI1
nW1

)3/2 (
u1−u2
u1

)3/2
] (4.26a)

RI1 =
a1

[
B01 +

a1S
2

]
B01 +

2a1
cos(θ)

[(
nI1
nW1

)−3/2 (
u1−u2
u1

)−3/2
] (4.26b)

Using these solved radii the expected shear stresses can be expressed on the upper

region due to the wall and interface locations as shown in eqs. 4.27b,4.27a

τW1 =
116.7ρ1η

2
W

8R
1/3
W1

[ |u1| u1] (4.27a)

τI1 =
116.7ρ1η

2
I

8R
1/3
I1

[ |u1 − u2| (u1 − u2)] (4.27b)
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Transitioning to the lower layer flow, shear influences due to the top surface must be

considered, it being the interface location between the upper and lower regions, yielding the

following for the lower area consideration.

A2 = a2

[
B02 +

a2S

2

]
= AI2 +AW2 +AB2 = PI2RI2 + PW2RW2 + PB2RB2 (4.28a)

PI2 = B01 (4.28b)

PW2 =
2a2

cos(θ)
(4.28c)

PB2 = B02 (4.28d)

Using the same methods as the upper layer, the hydraulic radii ratios are solved and

shown below.

RI2

RW2

=

(
nI2

nW2

)3/2(u1 − u2
u1

)3/2

(4.29a)

RI2

RB2

=

(
nI2

nB2

)3/2(u1 − u2
u1

)3/2

(4.29b)

RB2

RW2

=

(
nB2

nW2

)3/2

(4.29c)

Substituting these ratios into Eq. 4.28a the following hydraulic radii can be solved.

RW2 =
a2

[
B02 +

a2S
2

]
2a2

cos(θ) + [B02 + a2S]

[(
nI2
nW2

)3/2 (
u1−u2
u2

)3/2
]
+B02

[(
nB2
nW2

)3/2
] (4.30a)

RI2 =
a2

[
B02 +

a2S
2

]
2a2

cos(θ)

[(
nW2
nI2

)3/2 (
u2

u1−u2

)3/2
]
+ [B02 + a2S] +B02

[(
nB2
nI2

)3/2 (
u2

u1−u2

)3/2
] (4.30b)

RB2 =
a2

[
B02 +

a2S
2

]
2a2

cos(θ)

[(
nW2
nB2

)3/2
]
+ [B02 + a2S]

[(
nW2
nB2

)3/2 (
u1−u2
u2

)3/2
]
+B02

(4.30c)



76

With these radii the expected shear stresses on the lower region due to the interface,

wall, and bottom locations can be expressed as shown in Eqs. 4.31a, 4.31b, 4.31c

τI2 =
116.7ρ2η

2
I

8R
1/3
I2

[ |u1 − u2| (u1 − u2)] (4.31a)

τW2 =
116.7ρ2η

2
W

8R
1/3
W2

[ |u2| u2] (4.31b)

τB2 =
116.7ρ2η

2
B

8R
1/3
B2

[ |u2| u2] (4.31c)

Solving these hydraulic radii allows for the expected shear terms to be calculated for

Eqs. 4.16, 4.17. With these terms solved for, there needs to be boundary condition closure

of this model. Boundary conditions are enforced using energy equations. Specifically, using

Bernoulli’s equation (Eq. 4.32) to relate the energy from the larger lake bodies to the

expected energy at the entrance and exit of the NB.

P1 + ρ
v21
2

+ ρgh1 = P2 + ρ
v22
2

+ ρgh2 (4.32)

Where P is pressure, V is velocity, g is gravitational acceleration, ρ is density of the

fluid, and h is the water height from a given datum location. Here the subscript 1 and 2

are for two different locations in the same water flow, not denoting different layers of flow

like in the rest of this study.

Using Eq. 4.32, three different location pairs are considered; 1) between the south lake

arm and the southern end to the NB for the upper layer flow, 2) between the north lake

arm and the upper layer flow at the northern end of the NB, and 3) between the north

lake arm and the lower layer on the northern side of the NB. For all of these cases the lake

elevation is taken from a datum placed at the height of the northern control berm placed

in the NB channel. Where as built conditions of the control berm are set at an elevation of

4183 ft (1275 m) from the National Geodetic Vertical Datum (NGVD).
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Taking eq 4.32 and applying it to case one listed above yields the following energy

boundary condition.

HS = a1S + a2S +
u21S
2g

= a1S + a2S +
1

2g

 Q1

a1S

[
B01 +

a1SS
2

]
2

(4.33)

Where Hs is the WSE of the southern arm from the prescribed berm datum, a is the

respective layer heights, u is the layer velocity,S is the combined slope of the two channel

sides, and s subscript denotes the southern end of the NB. Considering the upper layer on

the northern end of the NB, the conditions are set between an infinitesimally thing layer

that forms beyond the breach before the southern and northern water start to mix. Here

the velocity of the upper layer is near zero and rests at the height of the northern arm of

the lake. Relating these positions yields the following boundary condition.

HN = a1N + a2N +
u21N
2g

− hx (4.34)

Where HN is the WSE of the northern arm from the prescribed berm datum, hx is

the exit losses, and N subscript denotes the northern end of the NB. The energy between

the northern arm and the lower layer entrance on the northern end of the NB is shown in

Eq. 4.35. Equations 4.33, 4.34, 4.35 ensure that lake boundary conditions can be enforced

when solving the system.

HN =
ρ1
ρ2

a1N + a2N +
u22N
2g

=
ρ1
ρ2

a1N + a2N +
1

2g

 Q2

a2N

[
B02 +

a2NS
2

]
2

(4.35)

Using the equations found in this section, one can solve for the two layer heights

throughout the NB using the SSWEM. The procedure of computation is dictated by a

specific flow case. This will be done by starting with initial conditions for the GSL namely,

WSE for the two arms, and their respective densities. For this study, development is

conducted for the uni-directional SN and NS cases; leaving bi-directional flow to future
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work. Solving for the uni-directional cases, each flow has unique methods to the initial set

up of the problem, but the solving method is the same.

The first step of modeling the change in layer height given lake conditions using Eqs.

4.16,4.17,4.32 is to assess the change in velocity expressed in terms of the layer height

changes. This is done by rearranging the continuity equation to yield Eq. 4.36.

dUi

dxi
=

−Ui

ai

dai
dxi

(4.36)

Using this one can rewrite the upper and lower layer linear momentum equations using Eq.

4.36 to eliminate the need for change in velocity considerations and only have layer height

dependencies.

−U2
1

ga1

da1
dx

+
da1
dx

+
da2
dx

= T1 (4.37)

−U2
2

ga2

da2
dx

+ (1− ϵ)
da1
dx

+
da2
dx

= T2 (4.38)

Where T is the representation of the shear forces for a given layer. This reduction

is used to improve the readability of the overall solution, though does not add additional

information to the solver.

T1 =

2a1
cos(θ)τW1 +B01τI1

a1ρ1g
(
B01 +

S
2 a1

) + El1 (4.39)

T2 =

2a2
cos(θ)τW2 +B02τB + (B02 + Sa2)τI2

a2ρ2g
(
B02 +

S
2 a2

) + El2 (4.40)

This study develops the uni-directional flow cases, and leaves bi-directional flow cases

for future development. The solving procedure of the bi-directional would be similar to that

of the uni-directional flow cases. The solving procedure of SSWEM is: assess a maximum

discharge allowed for each layer of flow, use the energy boundary conditions to calculate the

entry heights for each layer, integrate the change in layer height over the domain using a

predictor corrector explicit stepping, check how the solved discharges compare to the known
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lake conditions given, iterate on the solution if necessary to finalize expected discharges,

and then repeat the process for each flow instance desired.

Uni-directional SN Flow Case

Therefore, using Eq. 4.37 the uni-directional SN case can be determined by setting

da2
dx = 0. The maximum discharge possible can be determined by the maximum cross-

sectional area, and the available velocity head between the two sides of the lake. The

maximum SN discharge is solved using Eq. 4.41

Q1Max =
√

2 ∗ g ∗ (HS −HN ) ∗
(
HS ∗

(
B01 +

HS ∗ S
2

))
(4.41)

Equation 4.41 sets the max discharge and the minimum discharge is set to 0 cms (0

cfs). The tested discharge is the average of these discharge bounds. The beginning layer

height is determined using the tested discharge and the energy boundary condition in Eq.

4.33, setting a2s = 0. The beginning layer height is iteratively solved for due to a1s not

being cleanly separable.

Using this beginning layer height the system is integrated across the channel length us-

ing an explicit predictor corrector method; the runge-kutta 2 method. This stepping scheme

helps to smooth the transition between one cell to the next and help reduce instabilities in

the stepping procedure.

After the stepping routine reaches the north exit, the layer height is checked against

the required energy condition, Eq. 4.34 setting the lower layer height to zero. This yields a

requirement that the upper layer height at the north end (a1N ) of the breach must satisfy

the following Eq. 4.42.

a1N ≥ HN ∗
(
ρ2
ρ1

)
(4.42)
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This condition is checked to assess the solved height relative to expected conditions.

If the height is too high the minimum discharge is set to the tested discharge, and if the

height is too low the maximum discharge is set to the tested discharge. Either way the

system iterates until the simulated height is within a desired threshold of the condition set

by Eq. 4.42.

Another essential parameter to ensure throughout solving the domain is that the upper

layer flow remains supercritical. Where the critical conditions requires that the flow layer’s

densimetric Froude number (Eq. 4.43) does not fall below 1. If the flow layer becomes sub

critical a uni-directional flow case is not possible. To check this method the layer velocity

is compared to the flow requirement (Eq. 4.44).

Fri =
Ui√

ϵ ∗ g ∗ ai
(4.43)

Ui ≥
√
ϵ ∗ g ∗ ai (4.44)

Where Fr is the densimetric Froude number, ϵ is the density, U is the layer velocity, a is

the layer height, and g is gravitational acceleration. If this number does become subcritical

the assumption of uni-directional flow is violated and then the existence of two layers is

known and the solver must account for both layers of flow.

Uni-directional NS Flow Case

Solving for the uni-directional NS flow case is remarkably similar to the methodology

of the USN case. In this case the integration of the domain is done from north to south

instead of south to north. In this case da1
dx = 0 simplifies the boundary conditions and the

layer integration. Solving for the maximum discharge allowed yields the following equation

given the available velocity head between the two arms (Eq.4.45).

Q2Max =
√

2 ∗ g ∗ (HN −HS) ∗
(
HN ∗

(
B02 +

HN ∗ S
2

))
(4.45)



81

Given a set maximum discharge, the minimum discharge is set to 0, and the test

discharge is set to the average of the two discharges. The entrance height of the flow layer

can be determined using Eq. 4.35, setting a1n = 0, requiring an iteratively solved layer

height entering the channel. The layer height requirement at the exit of the channel is that

the flow layer height remains greater than the south arm height, Eq. 4.46.

a2S ≥ HS (4.46)

Using the same method as before, the flow layer is iterated across the domain. If the

height is below the required condition (Eq. 4.46) the maximum discharge is set to the test

discharge. Whereas if the height satisfies this condition but the comparative height to the

south arm water height is not within the desired threshold the minimum discharge is set to

the test discharge. Similar to the uni-directional SN case, if the flow falls below the critical

densimetric Froude number the single layer flow case is no possible and a bi-directional flow

case must be assessed. The discharge is iteratively solved for until the height requirement

fall within the required threshold.

4.2 Results

4.2.1 Generalized Area Based Index Model

The purpose of GABI’s development is to specifically handle cases for which there is

not enough data to use ML modeling techniques. These cases stem from changes to the

berm elevation in February and July of 2023 to a 4 ft and 9 ft berm height from the channel

floor. Though the modeling technique is fundamentally based and less glamorous then more

complicated modeling techniques, it still shows promise in being able to predict where other

models are unable to.

Through the development of GABI, the model shows a bias in both discharge mea-

surements. In order to correct for this bias, GABI is tested on the 0 ft berm cases and the

overall discharge is compared to USGS predicted discharge. Using this data a bias shift
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is calculated to ensure GABI predicts within 5 percent of the total discharge. From this

analysis the correction factors to the GABI predicted discharge are shown in Eqs. 4.47,

4.48.

Q1adj = Q1 ∗ 1.25 (4.47)

Q2adj = Q2 ∗ 0.70 (4.48)

The use of a correction factor is not uncommon in models due to the limitations imposed

due to the assumptions used. GABI assumes there exists uniform velocity across the total

cross section in each cell subdivision. This assumption excludes the effects of wall shear

forces leading to frictional losses in each cell. These missing forces account for much of the

disparity seen between USGS predictions and GABI predictions. To further refine this code

one could create a correction factor for each individual cell. Basing the bias of the cells on

the location in the water column height, proximity to walls, and an expected influence on

subcell velocities. This kind of correction would be more robust, but is outside the scope of

this study. Using all USGS monthly measurements, both the raw and adjusted outputs of

GABI are used to approximate the discharges, the results are shown in Fig. 4.8, with full

performance listed in Table 4.2
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Fig. 4.8: Performance of GABI model compared to USGS monthly recorded measurements
both with raw output and adjusted output, showing an overall improvement using a bias
shifted discharge prediction.

Here it is clear to see that GABI shows a clean linear trend compared to USGS mea-

surements. This trend is what led to the understanding that a bias shift is necessary to

correct for missing information. Using the bias improves the SN prediction NSE value by

0.227, and the NS value by 0.319, both substantial improvements from the base develop-

ment. Looking at the SN discharge there is still a tendency to under predict even with the

bias correction. Whereas the NS discharge plot shows an improved distribution around the

ideal prediction line.
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Table 4.2: Statistical performance values of GABI compared to USGS monthly discharge
measurements

Model Type Flow Dir. NSE RMSE CC PBIAS

GABI (raw) SN 0.375 0.791 0.904 40.8591

NS 0.399 0.7751 0.889 -15.04

GABI (adj) SN 0.602 0.6307 0.904 26.07

NS 0.718 0.531 0.889 19.472

Vel. DNN SN 0.6094 0.625 0.820 12.787

NS 0.736 0.514 0.879 -14.0983

Adjusting the discharge output from GABI allows for increase performance and the

ability to compensate for some of the idealized assumptions made during development.

Table 4.3: Model performance compared using the bias adjusted GABI predictions and
monthly USGS measurements

SN Flow [cms] NS Flow [cms]

Date USGS GABI % Error USGS GABI % Error

Jul-2018 20.620 11.320 -45.110 28.320 21.610 -23.670

Aug-2018 29.170 16.060 -44.940 15.430 16.620 7.700

Sep-2018 24.230 0.000 -100.000 18.100 25.230 39.490

Apr-2019 52.110 50.230 -3.590 4.560 0.000 -100.000

May-2019 74.200 71.740 -3.310 0.550 0.000 -100.000

Jun-2019 63.140 65.260 3.390 5.350 1.500 -72.040

Jul-2019 41.350 35.200 -14.860 15.490 12.170 -21.410

Aug-2019 24.980 38.610 54.590 22.420 12.820 -42.840

Oct-2019 18.180 5.400 -70.320 23.760 28.870 21.550

Jun-2020 35.130 6.630 -81.120 21.770 23.810 9.350

Continued on next page
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Table 4.3 – continued from previous page

SN Flow [cms] NS Flow [cms]

Date USGS GABI % Error USGS GABI % Error

Jul-2020 25.400 13.670 -46.180 17.780 20.470 15.090

Oct-2020 26.420 12.340 -53.270 11.870 14.010 18.090

Dec-2020 29.170 22.050 -24.400 9.540 9.200 -3.590

Apr-2021 36.530 34.780 -4.790 6.850 5.440 -20.650

May-2021 29.730 24.740 -16.790 11.950 11.500 -3.750

Jun-2021 30.600 24.090 -21.240 10.560 9.500 -10.030

Jul-2021 28.180 18.560 -34.130 8.830 9.050 2.470

Sep-2021 21.940 23.280 6.100 12.060 1.330 -88.990

Nov-2021 34.540 15.370 -55.520 3.400 0.930 -72.620

May-2022 33.690 18.820 -44.130 3.800 0.700 -81.540

Jun-2022 29.450 19.450 -33.950 4.870 1.100 -77.500

Jul-2022 19.990 7.820 -60.890 3.140 0.000 -100.000

Aug-2022 14.700 8.450 -42.470 0.310 0.000 -100.000

Aug-2022 7.540 0.110 -98.520 0.340 4.530 1243.920

Aug-2022 9.290 4.880 -47.420 0.420 0.000 -100.000

Sep-2022 3.990 2.380 -40.450 0.085 0.510 500.560

Sep-2022 0.000 0.000 0.000 10.050 1.340 -86.670

Nov-2022 3.630 1.850 -49.080 0.740 0.000 -100.000

4.2.2 Steady Shallow Water Exchange-flow Model

The primary results of this study are the development of SSWEM using a trapezoidal

cross-section, shown in the methodology section of this document. The focus of this study is

to begin the development of this model and getting it to perform as expected. For this study

two main cases are focused on, the uni-directional SN case, and the uni-directional NS case.

Each of these flow cases allow for a simplified approach to solving the layer propagation
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through the channel not having to consider the influence of the second layer. The results

of the initial stages of the solver development are shown in Figs. 4.9, 4.10. Using SSWEM,

additional parameters are able to be monitored such as the rate of change across the channel

and the layer velocity compared to the critical value. The additions are shown in the figure

representations, where the original model only provides a final discharge approximation.

Fig. 4.9: Results of discharge simulation of uni-directional SN flow, including velocity track-
ing, and rate of change in layer height displayed

Fig. 4.10: Results of discharge simulation of uni-directional NS flow, including velocity
tracking, and rate of change in layer height displayed

The inclusion of additional data monitoring allows for increased visualization of the

physics compared to the original model developed by Holley and Waddell. Instead of cre-

ating a black box model yielding only discharge values, the newer version allows one to

see if and where a flow may become subcritical. This understanding gives a user a better
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intuition where a trapped flow layer may exist, consistent with the arrested wedge regime

seen in the modeling of Holley and Waddell [1].

From the results shown in both Fig. 4.9 and Fig. 4.10 it is clear to see both layers

remain super critical throughout the channel length. It is interesting to note the rate of

change in the layer shows a non-linear trend as the model progresses down the channel.

This result is due to the shear forces in the model. The shear forces scale with velocity

squared, instead of scaling linearly. This being true, the overall change in layer height over

the channel though still exhibits a linear trend consistent with what is expected from a

gradually varying flow.

The initial development of SSWEM shows promise in being able to increase access and

interpretability to information compared to previous models used. There are still additional

modeling efforts to fully develop SSWEM, the first of which being a procedure to model

the bi-directional flow through the breach. Current instabilities that exists in the 1D model

are demonstrated at higher discharge values. An example of this is shown in Fig. 4.11,

demonstrated using a uni-directional SN flow case with higher discharge value.

Fig. 4.11: Example of instabilities in solver code brought by higher discharge values, example
case shown using uni-directional SN flow case.

Instabilities within SSWEM become more noticeable as the discharge, and by extension

velocity, increases. This in turn increases the expected shear forces, which influences the

rate at which the layer height change. The reduced layer height increases the velocity from

the continuity constraint set by Eq. 4.18. Since an explicit solving technique (Eq. 4.49) is
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used, the solving method is constrained by a stability condition. As the velocity is increased

the required step size becomes smaller and smaller. Therefore, to fix this issue one would

need to increase the resolution of the domain to allow for smaller steps to be taken. Another

method to fix this stepping instability is to utilize an implicit solver technique (Eq. 4.50).

Implicit solvers are unconditionally stable, meaning you can take larger step sizes while

generating a correct rate of change to the next position. The difference between an implicit

and explicit solver is in what variables the rate of change is dependent on.

aj+1 = aj +
daj
dx

∗∆x (4.49)

aj+1 = aj +
daj+1

dx
∗∆x (4.50)

Where a is the layer height, and j in this case denotes the current and next cell solved

for in the flow layer. In these equations it is seen that the implicit solve rate of change is

dependent on the next step’s variables, while the explicit is only dependent on the current

step. The difficulty for this specific application using an implicit solved method comes in

the dependencies of shear on velocity and velocities dependence on layer height. Due to

this fact, the implicit stepping technique is difficult to implement because aj+1 and aj are

not cleanly separable. With the difficulty of implicit stepping, this study only implements

explicit stepping.

4.2.3 Future SSWEM solver developments

Given the results of SSWEM, it is clear the new implementation has further develop-

ment required. The main issue with the new implementation is the missing consideration

of the new berm geometry. With the dynamic changes made to the control berm structure,

it is necessary for modeling to account for such changes.

The inclusion of the control berm in the solving method can be achieved by breaking

the channel into separate sections. Solving for the flow layers in each channel subsection

iteratively. The subsections are broken into three segments: the north end of the NB to the
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berm, flow across the berm, and then the berm to the south end of the NB shown in Fig.

4.12.

Fig. 4.12: Section solve method for 1D model implementation to include effects of a control
berm to the flow dynamics.

Solving the NB flows using this subsection method allows the berm to be considered as a

flow constriction between the north and south ends of the channel. Due to this constriction,

the flow will encounter another loss term distributed over the length of the berm surface.

Therefore, to consider the berm geometry one needs to solve two additional energy equations

at the beginning and end of the breach. This can be done using the same energy equations

found in the berm-less SSWEM solver shown in this study. Therefore, when integrating

over the length of the berm the upper and lower layer flows will be governed by equations

similar to those shown in Eqs. 4.51, 4.52.

−U2
1

ga1

da1
dx

+
da1
dx

+
da2
dx

= T ∗
1 (4.51)

−U2
2

ga2

da2
dx

+ (1− ϵ)
da1
dx

+
da2
dx

= T ∗
2 (4.52)
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Where T ∗ is the representation of the shear forces for a given layer with the inclusion of

berm loss factors. This reduction is used to improve the cleanliness of the overall solution,

though does not add additional information to the solver.

T ∗
1 =

2a1
cos(θ)τW1 +B01τI1

a1ρ1g
(
B01 +

S
2 a1

) + El1 + Eb1 (4.53)

T ∗
2 =

2a2
cos(θ)τW2 +B02τB + (B02 + Sa2)τI2

a2ρ2g
(
B02 +

S
2 a2

) + El2 + Eb2 (4.54)

Where here the Ebi term is the distributed loss factor resulting from the losses due to the

berm constricting the flow path. This loss is formulated consistent with flow constrictions

following Eq. 4.55

Ebi = Ki ∗
U2
i

gLb
(4.55)

Where K is the loss factor given berm geometry, U is the velocity of the layer over

the berm, and Lb is the length of the top of the berm. The layer heights will be solved

the same way as the general method, though they will have to conform to the additional

energy boundary conditions at the start and end of the berm. This solving technique is

not currently implemented and is instead left for future development. This study instead

provides the developed fundamental understanding required include berm influences on

layer height propagation.
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CHAPTER 5

DISCUSSION

This chapter will discuss the results of this study an their impact and contributions to

ongoing research to understand buoyancy-drive exchange flows of the GSL and predict the

associated flow discharges values. The results of this study provide valuable insight to the

capabilities of machine learning for flow prediction, and the limitations when considering ML

methods for a physically-based system. In addition to this contribution, this research also

shows how physically-based numerical models can be utilized to overcome data constraints

of machine learning methods when systems do no allow for proper dataset size.

The culmination of this research encompasses a large contribution to increase prediction

speed, versatility, and fidelity of GSL models. This research shows when encountering

data limitations there are still various ways one can solve a complex system when relying

on fundamental principles. It also shows, when given a proper dataset one can utilize

advancements in computation methods to generate reliable discharge predictions to inform

future management projects for the GSL faster than more expensive CFD simulations.

5.1 Machine Learning Models

The results of this study demonstrate that complex buoyancy-driven exchange flow in

the GSL NB can be modeled using machine learning methods. The ML methods of this

study include linear regression, random forests, support vector regression, and deep neural

networks. The training dataset comes from USGS data collection sites located around the

breach. These models enhance the ability to predict GSL flows, while leveraging existing

data from USGS monitoring sites.

However, with four different monitoring sites, there can be issues with all monitoring

sites consistently giving the full dataset required for flow prediction. There are multiple

instances were one or more sensors may fail to record their designated data, creating gaps in



92

the data and resulting in a reduced dataset. This limitation is an inherent challenge when

working with real world systems, were consistent monitoring is not always guaranteed.

This limitation has a profound impact on the dataset size available for machine learning

models. Using linear interpolation and knowing the physical trends at the GSL, data gaps

can be filled, though this is done conservatively. To further improve the dataset, increased

consistency in monitoring sites and reliability of measurement methods are essential. Ad-

ditionally, improvement could be achieved by increasing the number of data sampling sites

to create redundancies, ensuring consistent data collected. Despite these known data lim-

itations, machine learning methods demonstrate their capability for flow prediction using

multiple dataset configurations.

Through the development of ML models using the hydrological dataset, random forest

methods performed best based on the performance metrics of this study. Each model ex-

hibited issues at the high and low discharge values, especially at the zero discharge in SN

flow. This problem is likely caused by the case disparity between bi-directional and uni-

directional flow cases. The focus of the machine learning methods is on the bi-directional

flow cases because these are the most predominant case shown in the dataset. To minimize

this class disparity, one could decrease the dataset size further to create closer class dis-

tributions. However, doing so would further limit the machine learning methods due to a

decreased number of data instances.

While the developed models perform worse at extreme discharge locations, removing

these cases from the dataset typically improves the general performance of the models.

Among the models, the RF model performs best, with an SN NSE value of over 0.90, with

an NS NSE of close to 0.9. This result shows the ML models are well behaved for the general

bi-directional flow cases, though have lower performance in the uni-directional cases. When

comparing the developed models to the monthly USGS measurements each of the methods

performance decreases. This decline is due to behaviors not seen in the training set being

present in the monthly dataset. The USGS measurements may exhibit different patterns
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in the dataset that the ML models are unable to predict. The reduced performance is

attributed to out of dataset instances, though SN predictions still do fairly well.

Comparing the linear regression and random forest models to the current 1-D model

showed machine learning models perform better. The 1-D model was originally developed

for the box culverts placed in the causeway to allow for exchange flow. With the new NB, the

original development breaks down, and is unable to handle the larger flow cases. This results

in a trend of over-prediction seen in 1-D model results for SN flow, and under-prediction in

the NS flows.

Utilizing the flow predictions from the 1-D model, hybrid neural networks were created.

This method was expected to increase the fidelity of the machine learning models by includ-

ing information from a physically-based numerical model. The results indicate the inclusion

of this data does not drastically change the model performance given the parallel method,

and greatly reduces performance with the series model. A better method to utilize in the

future may be PINN models, where the flow equations are incorporated as additional loss

factors for gradient formulation in the neural network. This type of network was outside

the scope of this project, but may provide a better way to incorporate the desired physical

constraints on the network.

Further utilization of the dataset focused on velocity data collected from a single sensor.

Given the known limitations of multiple sensors, using a single sensor allows for more

consistently available data. This approach increased the instances in the dataset from ≈

24,000 to ≈ 52,000 useable instances. The consistent velocity data, increased dimensionality

of input, and dataset size improved the performance of the machine learning models. From

these results the RF models still outperformed other models and proved to be the best

method of prediction.

While these models are capable of performing well, machine learning models are limited

by the dataset used for their development. Due to physical changes to the GSL NB structure

via the control berm, the as-built dataset used in this study is unable to train models for

the current NB structure with a 9 ft berm. The changes in berm height to the 4 ft and 9
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ft configurations physically alter the flow dynamics in the NB and there is not enough data

to create machine learning models for these flow structures. If machine learning is desired

for these structures, additional monitoring must be conducted to produce flow predictions

and generate a dataset for model development.

5.2 Physically-Based Numerical Models

From the results of this study, machine learning models are capable of predicting the

buoyancy-driven exchange flow at the GSL. However, due to changes in the physical flow

structure at the NB there is not enough data to use machine learning models for flow

prediction of the 4ft and current 9ft flow cases.

To overcome this issue the physically-based models were derived, allowing for flow

prediction based primarily on physical conditions at the NB. The first of these models is

GABI, which uses known channel geometry and measured velocity measurements. This

method allows for flow prediction in cases where machine learning can not predict like in

the presence of a raised control berm. GABI primarily contributes by being able to predict

discharge when other methods can not. However, GABI still has its own limitations due

to idealized assumptions used for velocity consideration in the discharge solving method.

Further development can be conducted to improve GABI’s accuracy by localizing bias to

individual cells instead of full flow layers.

A more refined approach to solving for discharge based on physical conditions is SS-

WEM, where gradually varied shallow water equations are derived using the trapezoidal

cross-section instead of a box culvert geometry. Where SSWEM is not constrained by a

dataset and instead is a physics based model that uses fundamental principles to create the

appropriate flow equations.
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The contribution of SSWEM, compared to the current 1-D model, is demonstrated in

the additional variable monitoring available. The current 1-D model functions as a black-

box model, taking in lake conditions and producing discharge approximations. In contrast,

SSWEM provides more than just discharge; it includes velocity data, layer height, and rate

of change throughout the channel length. This additional data allows users of the model to

better understand the flow dynamics and gain deeper insights into the GSL system.

To further enhance the SSWEM, it should be segmented into three subsections totaling

the length of the channel. This segmented approach allows for the addition of the berm

influence through an additional distributed loss term. Utilization of SSWEM will enable

researchers and GSL management to make informed decisions by considering all physical

characteristics of the GSL NB channel. Future efforts can either utilize this model or imple-

ment additional monitoring to build larger datasets suitable for creating machine learning

models to predict flow. Given the current monthly to bi-monthly sampling frequency, there

will not be sufficient data to effectively utilize machine learning. Therefore, such endeavors

should not be pursued until larger datasets become available.
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CHAPTER 6

CONCLUSION

In conclusion, the results of this study represent a significant contribution to the capa-

bility to predict buoyancy-driven flows in the Great Salt Lake using both machine learning

and physically based modeling methods. Modeling a real-world physical system is inher-

ently complex and challenging, no matter the scale. This study has demonstrated effective

modeling of the GSL using multiple methods and has provided valuable insights into the

limitations of each method based on data availability and underlying assumptions.

The primary objective of this study evaluate and quantify the efficacy of ML models

to predict the NB flows. This study has shown that random forest predictors have the

highest performance amongst the ML models used. Each of the developed ML methods

represent a contribution to improve rapid prediction and computational cost compared to

more extensive CFD simulations. Furthermore, these ML models have shown improved

performance over the current 1D modeling system used for predicting exchange flows.

Utilizing the outputs of the current 1D model, hybrid networks were developed to

serve as a transfer learning process from physical to data-driven approaches. However,

the results of this study indicate that this approach does not yield improvement over a

standard ML method. To enhance this approach further, the use of PINNs is necessary to

integrate flow equations into the gradient descent method of the model. This understanding

emphasizes that incorporating physical parameters into a ML method must extend further

than additions to the data, and instead be considered in the model training process.

From the physically based models developed in this study, it was seen that GABI

provides a capability to estimate discharge for instances other models can not. Machine

learning models struggle to predict scenarios outside the scope of their training set, even

more when the physical parameters of the flow system are changed. The lack of discharge

data given the changed geometry limits the further development of ML methods. Whereas
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GABI requires only velocity considerations and an understanding of the channel cross sec-

tion to generate predictions. Due to this fact GABI is a significant contribution to the

prediction capabilities available at the GSL given a changing berm structure.

In addition to the contributions of GABI, the initial development of a new 1D solving

method has demonstrated the capability to predict channel discharges based solely on lake

water elevations and corresponding densities. This model enhances the ability to solve 1D

gradually varied flow while incorporating the impacts of a changing berm structure. Fur-

thermore, the new 1D model facilitates the availability of flow layer data, thereby enabling

deeper insights into the dynamics of flow layers as they move through the NB channel.

In summary, this study not only serves to increase the understanding of the efficacy of

ML methods to predict complex flow behavior ,but also highlights considerations regarding

the limitations of monitoring sites and models used for prediction. This research clarifies the

scenarios where ML methods are suitable for flow prediction and underscores the necessity

of employing physically based systems when appropriate. Additionally, this study lays the

groundwork for future developments and enhancements to the new 1D modeling method.

This study has set the foundation for improvements to the currently implemented 1D solver

by considering the trapezoidal cross section and effects of a flow constriction due to a

changing berm geometry. These contributions enhance the capabilities of researchers and

water management personnel to forecast buoyancy-driven exchange flows in the Great Salt

Lake, thereby improving overall system management.
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