Increasing the Accuracy of Orbital Position Information from NORAD SGP4 Using Intermittent GPS Readings

Michael Greene
Robert E. Zee

Space Flight Laboratory
University of Toronto

12 August 2009

23rd Annual Small Satellite Conference – Logan, Utah, USA
CanX-2

- Canadian Advanced Nanospace eXperiment 2
- 34x10x10cm; 3.5kg - Nanosatellite
- GPS Occultation: Investigate water vapor in the Troposphere & electron density in the Ionosphere
- Uses SGP4 for onboard orbital propagation
CanX-2

- TLE versus CanX-2 GPS lock – April 20, 2009

CanX-2 TLE vs GPS

CanX-2 GPS error estimates
Motivation

• GPS receiver obtains meter-level accuracy.
• Can we use the GPS receiver on CanX-2 to improve our propagated PVT estimates?
• Limited availability: - GPS occultation experiment
 - Very power hungry

Novatel OEM4-G2 GPS Receiver, courtesy of Novatel inc.

SFL Ground Station and Mission control
Objective

• Develop methodology to use GPS readings in SGP4
• Determine the accuracy of the SGP4 propagator using intermittent GPS measurements.
• Determine GPS duty cycle required to remain within a given error tolerance.

Purpose:

• Increase accuracy of orbital position information
• Increase reliability of the error estimates
• Account for the infrequent basis on which the TLEs are issued
Methodology

- GPS – For initial PVT acquisition (CanX-2)
- Convert osculating state vector into the mean orbital elements in TLE format – suitable for SGP4
 - VEC2TLE - *Ernandes (1994)*
- Retrieve TLE from NORAD - for B* term from most recent epoch
- Input into the SGP4 propagator
- Comparison to CanX-2 GPS measurements & STK’s HPOP
Results

Initial GPS PVT:

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>1σ Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>2808187.5186</td>
<td>1.9796</td>
</tr>
<tr>
<td>y</td>
<td>1330229.2195</td>
<td>1.6605</td>
</tr>
<tr>
<td>z</td>
<td>-6273855.7531</td>
<td>2.9577</td>
</tr>
</tbody>
</table>

Velocity (m/s) - ECEF

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>1σ Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>x-dot</td>
<td>-4697.6095</td>
<td>0.2366</td>
</tr>
<tr>
<td>y-dot</td>
<td>-5076.8138</td>
<td>0.1985</td>
</tr>
<tr>
<td>z-dot</td>
<td>-3185.8990</td>
<td>0.3535</td>
</tr>
</tbody>
</table>

Computed mean orbital elements:

<table>
<thead>
<tr>
<th>Time: 20 Apr 2009 06:57:53.000 UTCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoch [yyddd]</td>
</tr>
<tr>
<td>Inclination (i)</td>
</tr>
<tr>
<td>Right Ascension of the Ascending Node (Ω)</td>
</tr>
<tr>
<td>Eccentricity (e)</td>
</tr>
<tr>
<td>Argument of the Perigee (ω)</td>
</tr>
<tr>
<td>Mean Anomaly (M)</td>
</tr>
<tr>
<td>Mean Motion (n)</td>
</tr>
<tr>
<td>B* [1/Earth Radii]</td>
</tr>
</tbody>
</table>
Results

CanX-2 GPS lock Comparison – 12 minutes

- Errors (RIC) – Radial, In-track, Cross-track error
Results – 12 hours

HPOP Comparison

Error (km)

GPS Time (s) - Week 1528
Conclusion

• In order to remain within 2km, the GPS should update PVT every 6.5 hours.
 – Approximately once every 4 orbits (LEO)

• In order to remain within 1km, the GPS should update PVT every 4.5 hours.
 – Approximately once every 3 orbits (LEO)

• Assumptions
 – STK’s HPOP has no error
 – GPS error estimates are correct
Conclusion

• Advantages
 – Attitude determination estimate – Magnetometer/IGRF comparison → Minimal
 – Communications – scheduling/tracking → Minimal
 – Payloads – Autonomous Imaging → Valuable
 – On board processing → Valuable

• Feasibility
 – Minimal impact on the existing infrastructure
 – However does require code-upload.
The authors would like to thank the following contributors:

- Ontario Graduate Scholarships (OGS)
- Dr. Susan Skone, University of Calgary
- Defence Research and Development Ottawa
- Canadian Space Agency (CSA)
- Natural Sciences and Engineering Research Council of Canada (NSERC)
- MDA Space Missions
- Ontario Centres of Excellence (OCE)
- Sinclair Interplanetary
References

