Validations of detector-based radiometric calibrations using fixed-point blackbodies

H.W. Yoon, C. Gibson, J. Woodward, P. Shaw

NIST
Outline

1. Thermodynamic radiometric temperatures of ITS-90 fixed-points
2. Development of transfer standard-quality radiation thermometers
3. Reduction of size-of-source effect (SSE) with novel optical designs and reduction of photocurrent measurement uncertainties
4. Use of fixed-points for validations of spectroradiometric scales
5. Proposal to NASA GSFC for validations of their facility
Fundamental Scales

Electrical Substitution Radiometry

Schwinger Equation

Planck Radiance

\[P(E, R, \theta, \lambda) = \frac{4e^2 c R}{3\lambda^4} \gamma^{-4}(1 + \chi^2)^2 \left[K_{2/3}^2(\xi) + \frac{\chi^2}{(1 + \chi^2)} K_{1/3}^2(\xi) \right] \]

\[L_\lambda = \frac{c_1}{n^2 \lambda^5 \left(e^{c_2/n\lambda T} - 1 \right)} \]
International Temperature Scale of 1990 (ITS-90)

[Diagram showing temperature scale and fixed points with equations for S(To) and S(Ti)]
Thermodynamic temperatures

Ideal gas thermometry
• Constant-volume gas thermometry (< 900 K)
 \[PV = nRT \]
• Acoustic gas thermometry (< 550 K)
 \[kT = \left(\frac{m}{\gamma} \right) v^2 \]

Noise thermometry (< 1300 K)

Detector-based radiometry
• Total radiation thermometry (60 K to 400 K)
 \[M(T) = n^2 \sigma T^4 \]
• Spectral radiation thermometry (1300 K to > 3000 K)
 \[L(\lambda, T) = \frac{c_{1L}}{n^2 \lambda^5 \left(\exp \left(\frac{c_2}{n\lambda T} \right) - 1 \right)} \]
Current Differences $T - T_{90}$

- $T - T_{90}$
- T / K
- T_{90} / K
- Temperature / K

- Constant Volume Gas NBS 1989
- Radiation NPL 1991
- Radiation PTB 1996
- Radiation PTB 2002
- Acoustic Gas NIST 2002
- Constant Volume Gas NBS 1976
- R-JNT NIST 2006
Planck radiances of ITS-90 fixed points

Derivative of the Wien Approximation

\[\frac{dL}{L} = \frac{c_2}{\lambda} \frac{\Delta T}{T^2} \]

For example, at Sn point uncertainty of 40 mK at 505 K at wavelength of 1600 nm leads to 0.17% in radiance.
Primary Radiometric Thermometry (MeP-K)

\[L_{b,\lambda}(\lambda, T) = \left(\frac{2hc^2}{\lambda^5} \right) \frac{1}{\exp(hc/\lambda kT) - 1} \]

Absolute primary radiometric thermometry

All measurements of the quantities involved must be traceable to the corresponding units of the SI, in particular, the watt and the meter.

Planck radiances have units of W/(cm^2 nm sr). Each of these units must be made traceable to their SI realizations.
Detector-based temperature realization in SIRCUS

Diagram showing a laser, cryogenic electrical substitution radiometer, precision aperture, Si-trap detector, integrating sphere, and radiation thermometer.
Setup of the RT in NIST Integrating Sphere Facility (SIRCUS)

Radiation Thermometer

Integrating Sphere
SIRCUS spheres and their spatial uniformities (achieving 0.01 % transfer uncertainty ?)

- 25 mm
- 38 mm
- 305 mm
$\cos^4 \theta$ dependence for Lambertian sources

Lambertian source has irradiance out-of-plane dependence of

$$E(r) = E(d) \cos^4 \theta$$
Angular \cos^4 output of the NIST 308 mm diameter integrating sphere
Reproducibility of the SIRCUS calibrations

2 month SIRCUS calibration reproducibility of 0.02 %
Uncertainties in the SIRCUS calibrations

<table>
<thead>
<tr>
<th>SIRCUS Uncertainty Components ((k = 1))</th>
<th>Type</th>
<th>[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Trap responsivity</td>
<td>A</td>
<td>0.025</td>
</tr>
<tr>
<td>2 Aperture Area</td>
<td>A</td>
<td>0.004</td>
</tr>
<tr>
<td>3 Distance</td>
<td>B</td>
<td>0.01</td>
</tr>
<tr>
<td>4 Sphere Spatial and Angular Uniformity</td>
<td>B</td>
<td>0.025</td>
</tr>
<tr>
<td>5 Amplifier gain</td>
<td>B</td>
<td>0.005</td>
</tr>
<tr>
<td>6 Temperature coefficient of Trap</td>
<td>B</td>
<td>0.002</td>
</tr>
<tr>
<td>7 Temporal Stability of Trap</td>
<td>B</td>
<td>0.013</td>
</tr>
<tr>
<td>Combined Standard Uncertainty ((k = 1))</td>
<td></td>
<td>0.040</td>
</tr>
<tr>
<td>Expanded Uncertainty ((k = 2))</td>
<td></td>
<td>0.080</td>
</tr>
</tbody>
</table>

Each of these uncertainty components should be experimentally determined and validated.
1. Use of graphite-epoxy rods (structural stability TCE < -0.5 ppm/K)
2. Use of a Lyot stop to reduce SSE
3. Development of calibration scheme for integrated preamplifier (low noise at low photocurrents)
Internal view of radiation thermometer: chassis of graphite-epoxy rods
Effect of the Lyot stop

![Graph showing the effect of the Lyot stop on SSE σ(d, 2 mm) vs. Source Diameter (d) [mm].]
Current Measuring Electrometers or Preamps Accuracy (%)

Comparison of Current Measurement Capability

<table>
<thead>
<tr>
<th>Expanded Uncertainties [%]</th>
<th>1.00E-10</th>
<th>1.00E-09</th>
<th>1.00E-08</th>
<th>1.00E-07</th>
<th>1.00E-06</th>
<th>1.00E-05</th>
<th>1.00E-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stanford SR570</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Keithley/428</td>
<td>2.5</td>
<td>2.5</td>
<td>1.4</td>
<td>0.5</td>
<td>0.34</td>
<td>0.31</td>
<td>0.31</td>
</tr>
<tr>
<td>Keithley/6517</td>
<td>1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Keithley/6487</td>
<td>0.3</td>
<td>0.2</td>
<td>0.15</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Keithley/6485</td>
<td>0.4</td>
<td>0.4</td>
<td>0.2</td>
<td>0.15</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Keithley/2400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.035</td>
<td>0.033</td>
<td>0.031</td>
</tr>
<tr>
<td>Keithley/6430</td>
<td>0.15</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Keithley/263</td>
<td>0.25</td>
<td>0.065</td>
<td>0.065</td>
<td>0.035</td>
<td>0.025</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>NIST SDX</td>
<td>0.006</td>
<td>0.004</td>
<td>0.0022</td>
<td>0.0015</td>
<td>0.0013</td>
<td>0.001</td>
<td>0.001</td>
</tr>
</tbody>
</table>

- Current Measuring Electrometers or Preamps Accuracy (%)
Metal-fixed point furnace and cells
Detector-based radiance responsivity

\[i_c = \int S_L \cdot L(\lambda, T) d\lambda \]
Calculated photocurrents vs. temperature

\[i_c = \int S_L \cdot L(\lambda, T) d\lambda \]
Representative signals versus time: Co-C
Summary of Au point measurement in 2003

- **May 15, 2003**: 1337.344 K
- **May 23, 2003**: 1337.33 K
- **May 28, 2003**: 1337.344 K

NIST: 1337.344 K

ITS-90: 1337.33 K

Sequence Number
What are the current uncertainties at NIST for detector-based calibrations with 1 year use?

<table>
<thead>
<tr>
<th>Uncertainty Component</th>
<th>[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Spectral Radiance Responsivity</td>
<td>0.040</td>
</tr>
<tr>
<td>2 Temporal Stability of Responsivity</td>
<td>0.050</td>
</tr>
<tr>
<td>3 Plateau Identification</td>
<td>0.005</td>
</tr>
<tr>
<td>4 Emissivity</td>
<td>0.010</td>
</tr>
<tr>
<td>5 Preamplifier Gain</td>
<td>0.025</td>
</tr>
<tr>
<td>6 Dark current drift</td>
<td>0.015</td>
</tr>
<tr>
<td>7 Size-of-source effect</td>
<td>0.010</td>
</tr>
<tr>
<td>Total Uncertainty in Signal</td>
<td>0.072</td>
</tr>
<tr>
<td>Expanded Uncertainty (k =2)</td>
<td>0.144</td>
</tr>
<tr>
<td>Temperature Uncertainty [K] (k =2)</td>
<td>0.116</td>
</tr>
</tbody>
</table>
Conclusion

1. Thermodynamic temperature measurements for non-contact thermometry are being performed at many NMIs.

2. NIST was/is leading the effort by developing new radiometric techniques and radiometer designs.

3. Measurements of thermodynamic temperatures of ITS-90 fixed points are extremely demanding tests of laser-based radiometric calibration facilities.