Data Inter-comparisons of the CrIS Interferometers on Suomi-NPP and NOAA-20

Joe Kristl, Kori Moore, Mark Esplin, Ben Esplin, Deron Scott

20 June 2018
Outline

• Goals
• Approach
• Comparison Data Selection
• Radiative Transfer Code Inputs
• Initial Results
• Next Steps
Goal of this Effort

- Monitor CrIS interferometers by direct data comparison
 - Both sensor datasets must be consistent for maximum value
 - Continuous monitoring supports early problem detection
- SNPP and N-20 are in same orbit, 50 minutes apart
 - Simultaneous Nadir Overpasses (SNOs) never occur
 - Views overlap, but with geometry and time difference
- Current comparisons use SNO with intermediate reference
 \[(N20 - \text{ref}) - (SNPP - \text{ref}) = N20 - SNPP\]
 - Spectral reference data sources are:
 - AIRS spectrometer (on Aqua satellite)
 - IASI interferometers A and B (on Metop satellites)
- This study investigates use of a radiative transfer code to create another reference for continuous comparisons
CrIS Interferometer on NOAA-20/SNPP

SNPP and NOAA-20 in Polar Orbit

±50° Cross Track Scans

CrIS Swath 2200 km

ATMS Swath 2500 km

3x3 array of CrIS FOVs (each at 14-km diameter)

Cross-track Infrared Spectrometer 2x Global Coverage Twice Daily
Temporal and Spatial Separation

- **View geometry:** zenith (nadir) angles 10° to 60°
 - Azimuth angles: ~ 180° different
- **Time separation:** 50 minutes
 - Changing weather conditions
 - Solar effects (heating/cooling)
- **Spatial resolution:** Comparable to CrIS footprint (14 km nadir)
Clear Conditions Comparison Example

Spectral Radiance

- **LWIR**
- **MWIR**
- **SWIR**

Brightness Temperature Difference
Approach

\[N20(\nu) - SNPP(\nu) = \Delta L_{atm}(\nu) + L_{error}(\nu) \]

\[\Delta L_{atm}(\nu) = \text{radiance difference due to } \Delta WX (\text{atm, surface } T) \]
\[L_{error}(\nu) = \text{error discrepancy of interest} \]

• Use atmospheric radiative transfer code to calculate \(\Delta L_{atm}(\nu) \)

\[\Delta L_{atm}(\nu) = RT_{calc}(\nu)_{N20} - RT_{calc}(\nu)_{SNPP} \]

Then \(N20(\nu) - SNPP(\nu) - \Delta L_{atm}(\nu) = L_{error}(\nu) \)

• This study uses MODTRAN 6 as the radiative transfer code (RTcalc)
 – 0.1 cm\(^{-1}\) band models, CorK, and line-by-line option
 – Convolved with sinc function to match CrIS resolution

• The real challenge lies in determining model inputs
 – Require atmospheric profiles that match each CrIS measurement to compensate for weather condition differences
Comparison Selection Criteria

- Clear sky conditions
 - Clouds are too variable over 50-minute time scale
- For initial testing: clear sky ocean conditions
- Forecast models include cloud cover outputs that support automatic detection of clear areas
 - Combine results from all models for a robust result
 - Effective initial filter of CrIS data
- Currently use GIS software to create clear sky mask from weather model cloud cover, then extract CrIS view intersections within this clear area
- Plan to extend this to include clear sky land conditions
 - Eventual goal of automated selection for hands-off operation
Radiative Transfer Model Inputs

- Difficult part is not the model, but rather the inputs to the model
- Atmospheric inputs with sufficient fidelity to distinguish differences on scales that matter to a CrIS comparison
 - Temporal: 50 minutes
 - Spatial: 20 km or less
- Regional models have needed temporal and spatial resolution
 - Global models are developing in same direction
- Primary data needed for CrIS bands
 - Altitude profiles of T, H$_2$O, O$_3$, CO$_2$, CO, CH$_4$, N$_2$O
 - Surface temperature + emissivity
Molecular Contributions to Spectrum

![Spectrum Diagram]

- LWIR
- MWIR
- SWIR

CrIS Bands
Sources of Atmospheric Profile Data

- Global and regional numerical weather models used in this study

<table>
<thead>
<tr>
<th>Model</th>
<th>Temporal</th>
<th>Spatial</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFS</td>
<td>6 hr, 1 hr</td>
<td>0.25, 28 km</td>
<td>global</td>
</tr>
<tr>
<td>GEOS-FP</td>
<td>6 hr, 1 hr, 3 hr</td>
<td>0.25 x 0.32, 28 km</td>
<td>global</td>
</tr>
<tr>
<td>RAP</td>
<td>1 hr, 1 hr</td>
<td>0.11, 11 km</td>
<td>regional</td>
</tr>
<tr>
<td>HRRR</td>
<td>1 hr, 1 hr</td>
<td>0.05, 3 km</td>
<td>regional</td>
</tr>
<tr>
<td>NAM</td>
<td>6 hr, 1 hr</td>
<td>0.05, 3 km</td>
<td>regional</td>
</tr>
</tbody>
</table>

- Regional models meet resolution requirements but are incomplete
 - Daily forecast products (not archives) must be used
 - Missing ozone, end above the troposphere
 - Hybrid profiles necessary to fill in missing pieces

- The forecast models are steadily advancing in coverage/resolution
- Anticipate global coverage with this resolution within a year or two
Coverage of Regional Models Used

Rapid Refresh (RAP)
~11 km resolution

GFS and GEOS-FP have global coverage ~0.25°

NAM and HRRR CONUS
~3 km resolution

NAM and HRRRv3 Alaska
~3 km resolution
Additional Profile Data (not yet used)

- Trace gas vertical profiles
 - ECMWF – CAMS Near-Real-Time
 - O$_3$, CH$_4$, some NOx (but not N$_2$O)
 - NASA GEOS-FP
 - CO$_2$ and CO
- Ocean surface temperatures
- GFS high-resolution global skin temperature
 - Hourly, ~11 km resolution
- ECMWF 3 hr weather forecasts
- ECMWF Hires
- Re-analysis datasets (ERA-5)
Creating MODTRAN Inputs

- Profile data obtained through database queries of weather data near spatial location of ground footprint and time.
- User-defined atmosphere profile inputs generated from this data:
 - Pressure, temperature, altitude, water, and ozone.
- When profiles are incomplete, the global models are searched and provide data used to fill gaps and upper atmosphere.
- Surface temperature obtained from weather model.
- Additional inputs obtained from some models:
 - Visibility
 - Aerosol inputs
- Geometry created from satellite location and view angle.
Sample Atmospheric Profiles

• Composite profiles
 – Global models fill gaps and upper atmosphere
Examples of Correction Improvement LWIR

- Green: Residual from N20 – SNPP
- Black: MODTRAN correction ($M_{SNPP} - M_{N20}$)

- Green: Same residual N20 – SNPP
- Red: Residual after SDL’s correction
Green: Residual from N20 – SNPP
Black: MODTRAN correction (M_{SNPP} – M_{N20})

Green: Same residual N20 – SNPP
Red: Residual after SDL’s correction
SWIR Full-resolution Band

- Green: Residual from N20 – SNPP
- Black: MODTRAN correction ($M_{SNPP} - M_{N20}$)

- Green: Same residual N20 – SNPP
- Red: Residual after SDL’s correction
Comparisons in Progress

- **Initial Results**
 - Reduce discrepancy from ~1 K down to the 0.1 K range
 - Compensates for nadir angle differences well
 - RAP and NAM model results performing better than HRRR

- **Small sample size**

<table>
<thead>
<tr>
<th>LWIR</th>
<th>AboveProf=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNum</td>
<td>Ref</td>
</tr>
<tr>
<td>0</td>
<td>0.775</td>
</tr>
<tr>
<td>1</td>
<td>0.814</td>
</tr>
<tr>
<td>2</td>
<td>1.660</td>
</tr>
<tr>
<td>3</td>
<td>0.560</td>
</tr>
<tr>
<td>4</td>
<td>0.567</td>
</tr>
<tr>
<td>5</td>
<td>1.870</td>
</tr>
<tr>
<td>6</td>
<td>2.063</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MWIR</th>
<th>AboveProf=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNum</td>
<td>Ref</td>
</tr>
<tr>
<td>0</td>
<td>0.750</td>
</tr>
<tr>
<td>1</td>
<td>1.656</td>
</tr>
<tr>
<td>2</td>
<td>0.719</td>
</tr>
<tr>
<td>3</td>
<td>0.738</td>
</tr>
<tr>
<td>4</td>
<td>0.903</td>
</tr>
<tr>
<td>5</td>
<td>0.860</td>
</tr>
<tr>
<td>6</td>
<td>0.813</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SWIR</th>
<th>AboveProf=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNum</td>
<td>Ref</td>
</tr>
<tr>
<td>0</td>
<td>0.679</td>
</tr>
<tr>
<td>1</td>
<td>1.090</td>
</tr>
<tr>
<td>2</td>
<td>2.259</td>
</tr>
<tr>
<td>3</td>
<td>0.662</td>
</tr>
<tr>
<td>4</td>
<td>1.025</td>
</tr>
<tr>
<td>5</td>
<td>1.558</td>
</tr>
<tr>
<td>6</td>
<td>0.714</td>
</tr>
</tbody>
</table>

1.141 0.180 0.197 0.201
Next Steps

• Initial results show encouraging trends
 – WX model data appears to have adequate temporal and spatial resolution to capture changes over the 50-minute interval between CrIS spectra
 – Current sample too small for any statistical conclusions yet

• MODTRAN 0.1 cm\(^{-1}\) band model option provides rapid answers at required fidelity

• SDL will work to refine these results and improve the profile selection
 – Additional profile and surface data sources will be added
 – Additional test cases to be added for comparisons over more of the sensor background signal range (near equator to poles)