JPSS-2 VIIRS
Prelaunch Geometric Performance and Characterization

Ping Zhang, SSAI/GSFC
Guoqing (Gary) Lin, SSAI/GSFC
Robert Wolfe, GSFC/Code 619

CALCON
Logan, UT
June 17 2019
The NASA/NOAA Visible Infrared Imaging Radiometer Suite (VIIRS) is one key instrument onboard JPSS missions (SNPP and J1-4).

- Provide long-term measurements of geophysical variables, as well as operational weather forecasting and disaster relief and other applications.
- Spectral coverage from 0.4 to 12.5 microns
- Nadir resolution at ~375 m and ~750 m
- Afternoon orbit with 16 days repeat cycle
DNB image of Spain showing lights in urban centers and clouds over the Atlantic Ocean. Image courtesy of NASA's Direct Readout Laboratory.
Wiskbroom imaging system with a rotating telescope assembly (RTA)

A half angle mirror (HAM) de-rotates the incoming rays from the RTA into a fixed aft-optics assembly (AOA)

Visible and near infrared (VisNIR) focal plane assembly (FPA)
Short- and mid-wave infrared (SWMWIR) FPA
Long-wave infrared (LWIR) FPA
Day-night band (DNB) FPA
Outline

- JPSS-2 VIIRS prelaunch geometric performance assessment focuses on the sensor’s spatial response and band-to-band co-registration
- Spectral Band registration
 - Band-to-band co-registration
 - Scan Line Spread Function
 - Factors affect the JPSS-2 VIIRS DNB LSF anomaly
 - DN Range
 - Aggregation mode and Gains
 - Detectors
- DNB simulations with LSF anomaly use NPP data
The SBR difference between HAM side A and B can be caused by misalignment of the mirror plane of symmetry to the HAM motor axis.
• On average, about 10% of M-band sample (20 arc sec)
difference is found between HAM 1 and HAM 0 Pre J2
motor axis rework.
• Post Motor Axis rework, track direction SBR difference
between two HAM side reduced to 0.01 M-band sample at
both 0 and 23 degree scan angle.
J2 VIIRS focal length variation

- TV Hot Track SBR with -7° scan angle
- Slit spacing 3.002 M-samples for VisNIR FPA ~ 0.017% longer EFL

- TV Hot Track SBR with -7° scan angle
- Slit spacing 3.008 M-samples for S/MWIR and LWIR FPA ~ 0.27% longer EFL
Outline

• JPSS-2 VIIRS prelaunch geometric performance assessment focuses on the sensor’s spatial response and band-to-band co-registration
 • Spectral Band registration
 • Band-to-band co-registration
 • Scan Line Spread Function
 • Factors affect the JPSS-2 VIIRS DNB LSF anomaly
 – DN Range
 – Aggregation mode and Gains
 – Detectors
 • DNB simulations with LSF anomaly use NPP data

Zhang et al, June 2019
• J2 VIIRS track/scan direction SBR compared to band I1/I2 average.
• Track variations within each FPA is less than 0.02 M sample
• Using timing adjustments, scan SBR errors in VISNIR and LWIR reduced to within in +/-0.03 M sample
Outline

• JPSS-2 VIIRS prelaunch geometric performance assessment focuses on the sensor’s spatial response and band-to-band co-registration

• Spectral Band registration
• Band-to-band co-registration
• Scan Line Spread Function

• Factors affect the JPSS-2 VIIRS DNB LSF anomaly
 – DN Range
 – Aggregation mode and Gains
 – Detectors

• DNB simulations with LSF anomaly use NPP data
The construction of LSF in scan direction is affected by time (RTA rotation angular speed).

The variation of the spacing (phase) and opening (throughput) of the slits will have effects on the scan LSF construction.
To properly handle the horizontal banding and vertical banding challenges, we developed a method to correct phase bias and throughput bias.
JPSS 2 VIIRS M band DFOV

J2 VIIRS DFOV meets specification (1.14~1.39)
JPSS 2 VIIRS MTF Results

J2 VIIRS MTF meets specification
JPSS 2 VIIRS I band LSF and DFOV

J2 VIIRS I band DFOV meets specification
• JPSS-2 VIIRS prelaunch geometric performance assessment focuses on the sensor’s spatial response and band-to-band co-registration
 • Spectral Band registration
 • Band-to-band co-registration
 • Scan Line Spread Function
• Factors affect the JPSS-2 VIIRS DNB LSF anomaly
 – DN Range
 – Aggregation mode and Gains
 – Detectors
• DNB simulations with LSF anomaly use NPP data
JPSS2 DNB LSF Anomaly vs DN Ranges

AGG18 HGA C8

AGG18 HGA C10
JPSS2 DNB LSF Anomaly vs DN Ranges

LSF normalized to Max at 1 sample interval right to Centroid (J2 DNB Scan LSF Agg18 HGS-C008)

LSF normalized to Max at 1 sample interval right to Centroid (J2 DNB Scan LSF Agg18 HGS-C010)
JPSS2 DNB LSF Anomaly vs Agg Mode/Gain

LSF normalized to Max at 1 sample interval right to Centroid (J2 DNB Scan LSF Agg18)

- Ambient
- TVNom
- TVCold

LSF normalized to Max at 1 sample interval right to Centroid (J2 DNB Scan LSF Agg22)

- Ambient
- TVNom
- TVCold

LSF normalized to Max at 1 sample interval right to Centroid (J2 DNB Scan LSF Agg31)

- Ambient
- TVNom
- TVCold

Zhang et al, June 2019
Logarithm fit between Max dn and side lobe @ 1 sample interval
Intercept indicate the maximum % Side lobe when max dn=1

\[\text{SideLobe} = \text{Slope} \times \ln(\text{maxdn}) + \text{Intercept} \]
Outline

• JPSS-2 VIIRS prelaunch geometric performance assessment focuses on the sensor’s spatial response and band-to-band co-registration
 • Spectral Band registration
 • Band-to-band co-registration
 • Scan Line Spread Function
 • Factors affect the JPSS-2 VIIRS DNB LSF anomaly
 – DN Range
 – Aggregation mode and Gains
 – Detectors
• DNB simulations with LSF anomaly use NPP data
Simulated DNB night radiance with side lobe effect from previous pixel

\[
R'[i, j] = R[i, j] - \left(\text{Slope} \times \ln \left(\frac{R[i, j]}{\text{rad2dn}} \right) + \text{Intercept} \right) \times R[i, j]
\]

\[
+ \left(\text{Slope} \times \ln \left(\frac{R[i, j - 1]}{\text{rad2dn}} \right) + \text{Intercept} \right) \times R[i, j - 1]
\]
Examples (2018002.2212)

- **R**: Simulated DNB night radiance TV
- **G**: Simulated DNB night radiance Ambient
- **B**: NPP DNB night radiance

Red color indicates the effects of side lobe
\[R'[i, j] = R[i, j] - \left(\text{Slope} \times \ln \left(\frac{R[i, j]}{\text{rad2dn}} \right) + \text{Intercept} \right) \times R[i, j] \]
\[+ \left(\text{Slope} \times \ln \left(\frac{R'[i, j - 1]}{\text{rad2dn}} \right) + \text{Intercept} \right) \times R[i, j - 1] \]
Conclusion

• In general, JPSS-2 VIIRS’ prelaunch geometric performance is good.
• Axis rework reduced JPSS-2 VIIRS half-angle mirror (HAM) side difference from 10% (about 20 arcsec) mis-registration of an M-band sample to 1%
• Using timing adjustments, the initial band-to-band co-registration errors between VisNIR and LWIR bands in the scan direction had been corrected to within +/-0.03 M sample.
• M-band and I-band DFOV/MTF meet specification
• Electronics anomaly caused Day Night Band (DNB) scan-direction Line Spread Function (LSF) anomaly.
 – Incorrect voltage setting causes the charge in the current sample to remain behind in the transfer gate and be deferred into the next sample in the scan direction
 – Impact is mild