Lithology and Internal Structure of the San Andreas Fault at depth based on characterization of Phase 3 whole-rock core in the San Andreas Fault Observatory at Depth (SAFOD) Borehole

By Kelly K. Bradbury¹, James P. Evans¹, Judith S. Chester², Frederick M. Chester², and David L. Kirschner³

¹Geology Department, Utah State University, Logan, UT 84321-4505
²Center for Tectonophysics and Department of Geology and Geophysics, Texas A&M University, College Station, Texas 77843
³Department of Earth and Atmospheric Sciences, St. Louis University, St. Louis, Missouri 63108

Abstract

We characterize the lithology and structure of the spot core obtained in 2007 during Phase 3 drilling of the San Andreas Fault Observatory at Depth (SAFOD) in order to determine the composition, structure, and deformation processes of the fault zone at 3 km depth where creep and microseismicity occur. A total of approximately 41 m of spot core was taken from three separate sections of the borehole; the core samples consist of fractured arkosic sandstones and shale west of the SAF zone (Pacific Plate) and sheared fine-grained sedimentary rocks, ultrafine black fault-related rocks, and phyllosilicate-rich fault gouge within the fault zone (North American Plate). The fault zone at SAFOD consists of a broad zone of variably damaged rock containing localized zones of highly concentrated shear that often juxtapose distinct protoliths. Two zones of serpentinite-bearing clay gouge, each meters-thick, occur at the two locations of aseismic creep identified in the borehole on the basis of casing deformation. The gouge primarily is comprised of Mg-rich clays, serpentinite (lizardite ± chrysotile) with notable increases in magnetite, and Ni-Cr-oxides/hydroxides relative to the surrounding host rock. The rocks surrounding the two creeping gouge zones display a range of deformation including fractured protolith, block-in-matrix, and foliated cataclasite structure. The blocks and clasts predominately consist of sandstone and siltstone embedded in a clay-rich matrix that displays a penetrative scaly fabric. Mineral alteration, veins and fracture-surface coatings are present throughout the core, and reflect a long history of syn-deformation, fluid-rock reaction that contributes to the low-strength and creep in the meters-thick gouge zones.

1. Introduction

The composition, texture, and internal structure of fault zones reveal how slip is accommodated during faulting and reflect the potential role of fluids during fault zone evolution.
(e.g. Chester and Logan, 1986; Evans, 1990; Chester et al., 1993; Knipe et al., 1993; Evans and Chester, 1995; Caine et al., 1996; Evans et al., 1997; Vrolijk and van der Pluijm, 1999; Faulkner et al., 2003; Wibberley et al., 2008). Though much of our understanding of active faulting in the continental crust is derived from examination of inactive, exhumed faults, it is clear that the composition and structure of these rocks may be modified during uplift and exhumation.

Therefore to clarify fault structure and the physical and chemical processes of deformation at depth, it is critical to compare the results of the surface studies to research on samples obtained by drilling into active, large-displacement fault zones (Ohtani et al., 2000; Hickman et al., 2004; Reches and Ito, 2007; Tobin et al., 2007). Defining fault zone characteristics using core recovered by drilling is challenging because of the limited sample size, poor core retrieval, and potentially complex subsurface geology, especially in large displacement faults. Core-based studies, however, reduce the impact of exhumation-related overprinting that can obscure fault rock textures and geochemical signatures, and help reduce the uncertainty associated with using exhumed fault zones as a proxy for the analysis of in situ processes and mechanical behavior of active faults (e.g., Ohtani et al., 2000; Isaacs et al., 2007).

The San Andreas Fault Observatory at Depth (SAFOD) borehole near Parkfield, CA (Fig. 1) transects the San Andreas Fault (SAF) at approximately 3 km depth where aseismic creep occurs just 10's to 100's of meters up-dip from a region of persistent micro-earthquake activity (Hickman et al., 2004; 2007; Ellsworth et al., 2005; Thurber et al., 2004; 2006; Zoback et al., 2010). Numerous workers have hypothesized that the aseismic creeping behavior and low strength of the SAF in this region are related to the presence of key minerals and specific fluid-rock reaction processes (e.g. Allen, 1967; Irwin and Barnes, 1975; Wallace, 1990; Moore et al., 1996; Scholz, 2002; Hickman et al., 2004; Schleicher et al., 2006; 2009; 2010; Solum et al., 2006; Moore and Rymer, 2007; Tembe et al., 2006; 2009; Carpenter et al., 2009; 2011; Holdsworth et al., 2011; Janssen et al., 2010; Lockner et al., 2011; Mittempergher et al., 2011). In this paper, we add to the existing data set by systematically describing the rock units captured by coring and providing petrographic and geochemical analyses of 30 whole-rock samples to help constrain deformation processes and fluid-rock reactions within the near-fault environment.
1.1. Geologic Setting

The SAFOD borehole is in the central California Coast Ranges southwest of the surface trace of the SAF and north of the town of Parkfield, CA (Fig. 1a). This area lies within a transitional zone between the central creeping segment and the segments of the SAF that produce great earthquakes (Allen, 1968; Unsworth et al., 1997; Hickman et al., 2004; Rymer et al., 2006). Direct measurements indicate the fault creeps 2 to 3 cm/yr (Titus et al., 2005; 2006) with most deformation concentrated in a 10-m wide zone at the surface (Hickman et al., 2004). Aseismic creep and microseismicity at SAFOD occurs between 2.5 to 12 km depth (Thurber et al., 2006). Historical ruptures on the Parkfield segment, with M_w of approximately 6.0, including the M_w 6.0 earthquake in 2004, have occurred approximately 10 km south of the SAFOD location (Fig. 1; Harris and Arrowsmith, 2006).

Rocks exposed east of the SAF near SAFOD include folded and faulted Tertiary through Jurassic siliciclastic rocks, mélange of the Jurassic Franciscan Formation, and sheared serpentinite (Bailey et al., 1964; Dickinson, 1966; Dibblee, 1971; Sims, 1990; Page et al., 1998; Rymer et al., 2004; Thayer and Arrowsmith, 2006). Tertiary sedimentary rocks and Mesozoic Salinian granitoids are exposed to the west of the drill site (Dibblee, 1973; Sims, 1990). Prior to SAFOD drilling, geophysical studies attributed a shallow, high P-wave velocity region southwest of the SAF to Salinian granitoids and a distinct low-velocity region northeast of the SAF to the Franciscan Formation (Unsworth et al., 1997; McPhee et al., 2004; Thurber et al., 2004; Unsworth and Bedrosian, 2004; Zhang and Thurber, 2005; Hole et al., 2006).

1.2 SAFOD Borehole and Sampling

The SAFOD borehole was drilled approximately 1.8 km west of the surface trace of the SAF on the Pacific Plate and extends vertically downward to approximately 1.5 km, then is deviated at an angle of approximately 55° from vertical and trends northeastward (Fig. 1b). Herein we report depths along the borehole in meters measured depth (m MD) to represent the distance below the drill rig floor (http://www.earthscope.org/data/safod). The borehole crosses the active SAF and penetrates the North American Plate reaching a total measured depth of 3.9 km (Hickman et al., 2007). Borehole observations indicate that the nearest earthquake clusters are located within 100 m, and are directly below the borehole trajectory (Fig. 1c; Zoback et al., 2010). The location and distribution of earthquakes over the broader region is characterized by a
complex pattern of seismicity consistent with the presence of multiple active slip surfaces in the shallow crust at SAFOD (Thurber et al., 2010).

Bradbury et al. (2007) identified the presence of Salinian granitic rocks in the SAFOD borehole based on cuttings retrieved during Phase 1 drilling between 760 and 1920 m MD. A deformed fault-bounded block of Paleocene-Eocene arkosic sedimentary rocks is juxtaposed with the eastern side of the Salinian block along the Buzzard Canyon fault (BCF) and extends eastward to the SAF zone (Fig. 1b; Hole et al., 2006; Springer et al., 2009). Geophysical data, and cuttings composed of abundant fragments of cataclasite, calcite veins, fine-grained sheared lithics, and flakes of serpentinite, suggest that this block is cut by multiple faults between 1920 and 3300 m MD. Juxtaposition of granite and sedimentary rocks is consistent with significant slip on the BCF, and Springer et al. (2009) suggest that the fault strands within the fault-bounded block also may have accommodated considerable displacement. Farther downhole, on the northeast side of the SAF, well-indurated siltstones and mudstones of the uppermost Cretaceous Great Valley sequence were identified in cuttings and Phase 2 spot core recovered from the easternmost end of the borehole (Bradbury et al., 2007; Pares et al., 2008; Springer et al., 2009).

Sidetrack drilling off of the main hole during Phase 3 intersected the SAF zone at a relatively high angle (Fig. 1c). From the sidetrack holes, approximately 41 m of 10 cm diameter, whole-rock core was successfully retrieved (Figs. 1-2) from three continuous intervals between 3141.4 and 3312.7 m MD. The intervals are referenced by hole and core run, i.e., Runs 1-3 in Hole E, Runs 1-3 in Hole G, and Runs 4-6 in Hole G. The Phase 3 core was cut at the drill site into sections 15 to 90 cm long. The depths of specific features captured in the Phase 3 core are slightly different than the depths of correlative features determined from the geophysical logs taken in the main hole (refer to Zoback et al., 2010 for detailed discussion).

A zone of low seismic velocity (LVZ, Fig. 1c) was indentified from the geophysical logs of the main borehole drilled in Phase 2. The interval between 3192 and 3413 m MD displays $V_p$ and $V_s$ values that are 10 to 30% lower than those for rocks to the east and west (Fig. 1d). This zone has relatively high porosity and is cut by multiple slip planes (Boness and Zoback, 2006; Li et al., 2004; Li and Malin, 2008; Zoback et al., 2010; Jeppson et al., 2010). Zoback et al. (2010) interpret this 200-m wide zone of reduced seismic velocity and resistivity as a fault-related damage zone of the currently active SAF. Deformation within the granitic rocks and arkosic sandstones west of the SAF suggest a thicker overall damage zone that reflects multiple episodes
of movement along relict and active faults (Chester et al., 2010). Pronounced casing
deformation, caused by fault creep, occurs at two localities that are characterized by anomalously
low $V_p$, $V_s$, and resistivity, and low total natural gamma signatures. The two regions of fault
creep are referred to as the Southwest Deforming Zone (SDZ), located at 3192 m MD, and the
Central Deforming Zone (CDZ), located at 3302 m MD (Fig. 1d; Zoback et al., 2010). The SDZ
and CDZ were successfully sampled during Phase 3 by coring Runs 1-3 in Hole G and coring
Runs 4-6 in Hole G, respectively. Coring runs 1-3 in Hole E targeted an inferred structural
boundary between sedimentary rocks of Salinian and Great Valley affinity on the west and east,
respectively.

2. SAFOD Phase 3 Core Characterization

Lithology, composition, and mesoscale structural features of Phase 3 core are
summarized here (Appendix A1 Table A1; Fig. 2) on the basis of descriptions made at the drill
site during drilling (by J. Chester, F. Chester, D. Kirschner), at the U.S.G.S in Menlo Park, CA
(by K.K. Bradbury and J. Evans), and at the IODP Gulf Coast Repository (GCR) in College
Station, TX (by K.K. Bradbury and J. Evans). The descriptions (Appendix A2 Table A2) are
expanded from those we prepared for the Core Photo Atlas (www.earthscope.org/safod) based
on drill site descriptions. We used standard well-site and core-logging methods (Blackbourn,
1990), optical microscopy, X-ray diffraction, and X-ray fluorescence to characterize the
lithology, meso- to micro-scale structure, mineral composition, and geochemistry in the near-
fault environment. Detailed sample analyses were based on thirty samples taken at
approximately 65 cm spacing over the entire depth range of Phase 3 spot core. Additional
analyses of samples from Phase 3 core are reported in the Phase 3 Core Photo Atlas
(www.earthscope.org/safod) and in several other publications [e.g., Bradbury and Evans, 2010;
Chester et al., 2010; Hadizadeh, et al., 2010; Janssen et al., 2010; 2011; Morrow et al., 2010;
Rybacki, et al., 2010; van Diggelen, et al., 2010; Schleicher, et al., 2010; White and Kennedy,
2010; Holdsworth et al., 2011; Lockner et al., 2011; Mittempergher, et al., 2011; Moore and
Rymer, 2011).

Phase 3 core contain a compositionally heterogeneous mix of clastic sedimentary rocks
fractured and sheared to different degrees (Appendix A1 Table A1; Figs. 2-4). We divide the
core into several basic lithologic/structural units: arkosic sandstone (3141.4 - 3144.6 m MD and
3145.8 - 3152.6 m MD), black silty shale (3144.6 - 3145.8 m MD), black ultrafine-grained cataclasite (3193.9 – 3196.4 m MD), foliated phyllosilicate-rich fine-grained rock with heterogeneous clasts and/or interlayers that together display an overall block-in-matrix texture where blocks are composed of siltstone, sandstone, and shale (3186.7 - 3193.9 m MD, 3198.4 - 3199.5 m MD, 3294.9 – 3296.6, and 3299.1 - 3312.7 m MD), and pronounced zones of foliated fault gouge associated with the SDZ and CDZ (3196.4 – 3198 m MD and 3296.6 - 3299.1, respectively). The majority of the core is intensely fractured and sheared. The matrix of the gouge in these zones exhibits a pervasive foliation wrapping around isolated cm-scale clasts that have a strong preferred orientation (Sills et al., 2009; 2010). The westernmost multilateral hole (Hole E) encountered a mixture of arkosic sandstones and fine-grained sedimentary rocks. Three distinct rock types exist (Appendix A1 Table A1; Fig. 2-3): 1) a greenish-gray to dark-greenish gray lithic arkose (Fig. 4a); 2) a dark grayish-black silty shale/mudstone with coarser interlayers (Fig. 4b); and 3) a brownish-red feldspathic arkosic sandstone (Fig. S1a-d).

Thin white veins that are less than a mm in width and mm- to cm in length cut the green arkosic sandstone, and are oriented sub-parallel and oblique to the core axis. Several clasts within the arkosic sandstones are offset up to several millimeters by this fracture system (Fig. 4a). A second through-going fracture set, distinguished by dark reddish-brown staining, is oriented ~ 70°-130° relative to the axis of the core, and has an average spacing of ~ 30 cm (Fig. S2a). Zircon fission-track dates of cuttings from approximately the same depth suggest an average age for these rocks of approximately 64 to 70 Ma ago (Springer et al., 2009). Samples contain abundant quartz and feldspar, and minor amounts of muscovite, biotite, magnetite, chlorite, serpentine, and pyroxene (Appendix A1 Table A1). Subrounded to angular grains are supported by a fine-grained mixture of illite-smectite clays and scattered zeolites (Appendix A2 Table A2; Figs. 5a and S2a). XRF analyses indicate relatively high concentrations of Al₂O₃, likely reflecting the abundance of clays within the fine-grained matrix (Appendix A3 Table A3). In thin-section, several grains show irregular boundaries, elongated geometries, and pressure solution seams (Fig. 5a-c).

At 3144.6 m MD, a ~ 0.5 m thick interval composed of dark grayish-black silty shale/mudstone (Appendix A1 Table A1; Fig. 2) is juxtaposed with the green lithic arkose along a sharp boundary. The most notable features in the shale/mudstone interval are polished and slickenlined fracture surfaces that have a distinct vitreous luster or mineralization (Figs. 4b and...
S2b). The larger, elongate, sub-angular to angular quartz and feldspar grains surrounded by fine matrix within the fractures display a weak preferred orientation, consistent with deformation and/or low-temperature neocrystallization/alteration processes (Figs. 5a-c; Appendix A1 Table A1; Yan et al., 1997; Ree et al., 2005). A distinct altered green mineral (serpentine, chlorite, and/or palygorskite?) and associated magnetite, are present in the coarser layers. Abundant opaque oxide/hydroxide grains are scattered throughout the finer-grained matrix, and are concentrated within microstylolites and irregularly shaped regions. At 3144.6 m MD, the main mineral constituents identified by XRD are quartz and plagioclase, with minor amounts of magnetite, palygorskite(?), illite, and lizardite (Appendix A2 Table A2). Lithologically, this unit is similar to rocks of the 3067 m MD fault, cored during Phase 1 (http://www.icdp-online.org/; Springer et al., 2009). Major element analyses, however, indicate that the shale/mudstone unit sampled during Phase 3 has relatively higher concentrations of Al₂O₃ and TiO₂, with a corresponding decrease in silica (Appendix A3 Table A3). Near the base or eastern boundary of this unit (~3145.8 m MD), a thin discontinuous lens of light olive-gray siltstone forms the contact with arkosic sandstone (Appendix A1 Table A1; Fig. 2). This contact is oriented at a moderate- to high-angle to the core axis. Pressure solution seams and small-scale offsets are also present near this contact (Fig. 5c).

Lower in Hole E, a reddish-brown arkosic sandstone is encountered (Figs. 2-3 and 4c). This unit is similar to the Paleocene- to Eocene arkosic sequence sampled during Phase 2 drilling and described in detail by Springer et al. (2009). Potential source rocks for the unit includes the Salinian granitic terrain and associated volcanic arc rocks (Springer et al., 2009). Dark-reddish brown lamina and coarse layers (~ 0°- 20° relative to the core axis) are offset by several through-going conjugate slip surfaces oriented at 55°-120° to the core axis with a minimum ≤ 10 cm spacing. Many of these surfaces bound mm-cm thick zones of cataclasite (Fig. S2c). Another predominate set of slip surfaces, having apparent offsets of less than 3 cm, intersect the core and are characterized by a straight fracture surface morphology. This latter set is commonly coated with a thin film of red to white clay or displays polished slickenlines that are parallel to the apparent dip (relative to the core axis) of the fracture (Fig. S2d; 30°-60° to the core axis). The primary minerals in the sandstone include quartz, feldspar, and mica (Appendix A2 Table A2). XRD analyses of the fracture coatings reveal smectite (nontronite?) clay, calcite, ± laumontite, and ± palygorskite (Appendix A2 Table A2). Pressure solution seams are comprised of fine-
grained clays and/or opaque oxides/hydroxides. These features are roughly oriented sub-parallel and oblique to the dominant through-going fracture set. Microscale analyses show multiple episodes of cataclasite generation in zones < 1mm to 5 mm thick (Fig. 5d). Deformation extends beyond the discrete slip surfaces for several mm where quartz and feldspar grains greater than 0.5 mm are intensely fractured, altered, and locally show evidence for pressure solution (Fig. 5d). Development of irregular quartz grain morphologies surrounded by an interlocking network of fine-grained clay, quartz, and feldspar (Fig. 5d) suggest dissolution and neocrystallization associated with low-temperature alteration and/or fluid-rock interactions (Yan et al., 1997; Ree et al., 2005). Whole-rock geochemistry (XRF) of the arkosic sandstones west of the SDZ show elevated concentrations of SiO₂, Al₂O₃, CaO, K₂O, and Na₂O and decreased concentrations of FeO, MgO, relative to rocks sampled east of the SDZ and/or deeper in the borehole. The fracture surfaces that are coated with clays and oxides/hydroxides are one exception to the above (Appendix A3 Table A3).

Core was not collected between 3152.6 – 3186.7 m MD (Fig. 2). Over this interval, the wireline logs recorded abrupt reductions in V_p and V_s in the vicinity of 3155 m MD (Zoback et al., 2010; Fig. 1d). These velocity reductions are interpreted to represent the change in composition from arkosic sandstone to rocks rich in phyllosilicates (Jepson et al., 2010; Zoback et al., 2010). A noticeable increase in cataclasite was found in the cuttings within this interval (Bradbury et al., 2007) suggesting that this sharp boundary represents a fault.

Core collected in Hole G, from 3186.7 to 3199.5 m MD, captured a foliated cataclasite, locally displaying block-in-matrix structures, that contains clasts and blocks of siltstones and very-fine grained sandstones, and a ~3 meter interval of very fine-grained, cohesive, massive black rock (~3193.9 to 3196.4) that is interpreted to be an ultracataclasite (e.g., Janssen et al., 2010). The fine-grained matrix of the foliated cataclasite is cut by a few narrow shear zones and displays a penetrative scaly fabric that is similar to an argille scaglioise fabric (Bianconi, 1840; Cowan, 1985; Pini, 1999; Vannucchi et al., 2003; Camerlenghi and Pini, 2009). The cataclasite matrix surrounds elongate, irregular-shapes lenses, clasts, and larger blocks of the sedimentary host rocks. Several clasts exhibit pinch-and-swell structures and are laced with thin, short calcite veins that do not extend into the surrounding matrix. These veins often are oriented at high angles to the matrix foliation. Black, irregular, injection-like features occur near fracture surfaces at ~3186.8, 3192.5, 3193.7, and 3989.7 m MD (Figs. 2, 4, S1, and S3; Appendix A1 Table A1).
The foliated gouge of the SDZ (Zoback et al, 2010) was intersected between 3196.4 and 3198 m MD. The boundary of the gouge with the foliated cataclasite to the west is sharp, compositionally distinct, and oriented at a high angle to the core axis (Figs. 2, 3, and 7). The matrix of the gouge is an incohesive, dark grayish-black to greenish-black phyllosilicate-rich, ultra fine-grained zone that displays a scaly fabric with pronounced anastomosing polished slip surfaces. Clasts of the surrounding host rocks, including serpentine, are dispersed throughout the gouge and account for up to 10% of the total gouge volume (Sills, 2010) (Appendix A1 Table A1; Fig. S3d). In contrast to the pinch-and-swell textures and fractured clasts of the foliated cataclasites to the east, the clasts within the foliated gouge are elongate, have smooth boundaries (Sills, 2010), and exhibit a greater degree of alteration (Fig. 7). Lens-shaped fragments or phacoids of the gouge matrix (Figs. S3d and 7), split apart easily and reveal polished and sometimes striated surfaces. A ~ 30 cm thick block of massive, serpentinite occurs within the foliated gouge interval. The boundaries of this block also are sharp and oriented at a high angle to the core axis. The block is cut by numerous white (calcite and chrysotile) veins that are up to several mm-thick and are oriented sub-parallel to the core axis (Fig. 7). The eastern boundary of the serpentinite block is defined by a 4-cm-thick zone of altered and sheared blue-green serpentinite that displays an earthy luster and contains fragmented veins oriented roughly perpendicular to the core axis. (Appendix A1 Table A1; Fig. 7a). Clasts of serpentinite within the core catcher are sheared and appear altered, and generally are elongated parallel to the foliation (Figs. S3d and 7).

The small section of core captured to the east of the SDZ in Hole G displays considerably less deformed sedimentary rock. Within the blocks or interlayers, bedding is intact and defines alternating layers of finely laminated, light gray to gray-green, fine-grained silty sandstone and silty shale/mudstone (Fig. S1d). Calcite veins dissect the silty sandstone but terminate abruptly against the shaley layers (Fig. S1d). Contacts between laminae in some cases appear to be dark seams with stylolitic geometries and may suggest solution processes. Clay smears are developed along the mesoscopic slip surfaces that are oriented at high-angles to the core axis. Quartz and plagioclase (albite) are the predominate minerals comprising the siltstone layers. Veins of calcite and chlorite ± smectite ± illite phases are noted in the sheared shaley layers (Appendix A2 Table A2a-b). Serpentine (lizardite and chrysotile) was also noted in some analyses of the clasts within the foliated gouge materials at 3197.9 m MD (Appendix A2 Table A2).
No core was collected between 3199.5 m MD and 3294.9 m MD. Hole G (Runs 4, 5, and 6) captures rock from 3294.9 - 3312.7 m MD. Over this interval the lithology and deformation vary significantly. Core Run 4 intersected a distinctive, interlayered Mg-rich siltstone and sandstone unit that is cut by numerous mesoscale faults and finer, more distributed shear surfaces (Appendix A1 Table A1-A2).

The foliated gouge layer of the CDZ was intersected between 3296.6 and 3299.1 m MD, correlating to the region of active casing deformation at 3302 m MD in the main borehole (Zoback et al., 2010; Appendix A1 Table A1; Figs. 1-3, 8, S4). The matrix of the CDZ is remarkably similar to that of the SDZ, consisting of phyllosilicate-rich gouge with a penetrative foliation that is oriented approximately perpendicular to the core axis (Fig. S4). Like the SDZ, the gouge contains matrix-supported, elongate clasts that parallel the foliation (Figs. S5 and 8a-b; Sills et al., 2009). The boundaries of several clasts are sheared, and many display numerous calcite veins, some up to 1 to 2 mm wide (Fig. 8b). Whole-rock XRD powder samples near ~3297 m MD indicate the presence of saponite, serpentine (lizardite ± chrysotile), quartz, and feldspar (Appendix A2 Table A2). Geochemical data from this interval show significantly elevated concentrations of MgO and Ni-oxides, suggesting potential fluid-assisted alteration of serpentinite (O’Hanley, 1996; Appendix A3 Table A3; Fig. S5). These data are consistent with those reported by others (e.g., Schleichler et al., 2010; Holdsworth et al., 2010; Moore and Rymer, 2011).

East of the CDZ, there is a mixture of alternating fine-grained sandstone, siltstone, and shale that is fractured and sheared to varying degrees. The dimensions of deformed blocks range up to 190 mm (Figs. 4 and S1). The long axes of the blocks exhibit a preferred orientation that is inclined ~40° to 90° to the core axis. In general, the block size increases towards the base of Hole G with a corresponding decrease in block asymmetry. Exceptions to the overall trend occur within the comminuted, fine-grained shear zones. Slip surfaces bounding the blocks, and layers of cataclasite, breccia, and noncohesive rubble are inclined ~40 to 50° to the core axis. Polished, striated surfaces on disaggregated fragments are nearly ubiquitous throughout Hole G. Mesoscale sulfide lenses, concretions, and nodules are present throughout the core and increase in occurrence towards the base of Hole G. Gouge and other highly sheared fault rocks within Hole G (Black fault rock, SDZ, and CDZ in Appendix A1 Table A1) account for over 13% by volume of the total core sampled. Cuttings below ~3313 m MD contain a greater number of cataclasite
fragments and show a greater degree of alteration (Bradbury et al., 2007), supporting the
suggestion that fault-related damage extends further east and to deeper depths (Zoback et al.,
2010).

Numerous veins, approximately 1-mm-thick, cut the Phase 3 core. These primarily are
concentrated within the sandstones, but also lace the serpentinite blocks and the black ultra-fine
grained rocks surrounding the SDZ and CDZ (Figs. 6 and 7). Cross-cutting relationships suggest
that there were at least two episodes of vein formation (Figs. 6-8).

4. Discussion

We characterize the SAFOD Phase 3 core samples from the San Andreas Fault zone at
approximately ~ 3 km depth as compositionally heterogeneous and structurally complex at the
meter scale, i.e., at a scale that is important to earthquake rupture nucleation and propagation
(Sibson, 2003). The ~ 41 m of core is comprised of a mixture of fractured arkosic sandstones,
penetratively sheared siltstones and shales, cataclasite to ultracataclasite, and foliated
serpentinite-bearing clay fault gouge, alternating with blocks of less-deformed fine-grained
sandstone and siltstone. Over 60% by volume of the core is comprised of sheared phyllosilicate-
rich layers, gouge and ultracataclasite, and lenses of other fault rocks (Fig. 2).

West of the SDZ, at a MD of approximately 3150 m (Zoback et al., 2010), the arkosic
rocks exhibit localized brittle structures documenting evidence for repeated episodes of
deformation. These structures display variations in the composition and texture of fracture-fill,
differences in shear fracture morphology, and distinct cross-cutting relationships (Tables A1-
A3). The structural relations are consistent with episodic fluid-rock interactions and brittle fault-
related damage generation associated with slip on the San Andreas Fault. Generation of fault-
related damage farther west of 3150 m MD also is indicated by structures observed in image
logs, features of cuttings, and core-samples collected during Phases 1 and 2 (Bradbury et al.,
2007; Springer et al., 2009). The approximately 200 m-thick damage zone identified between
3192 and 3413 m MD on the basis of seismic velocity, resistivity and other log data (Zoback et
al., 2010) is likely a minimum estimate of the total extent of fault-related damage. On the basis
of core studies, a better estimate would be at least 350 m, starting at 3050 m MD (Chester et al.,
2007, 2010; Heron et al., 2011; Jeppson et al., 2010). The intensity of damage does not appear
uniform within this interval, and likely reflects the presence of multiple principal slip surfaces
and fault rock lenses with overlapping damage zones. In addition, it is unlikely that all surfaces
and damage zones are active at any one time (Malin et al., 2006; Chester et al., 2010).

Along the western boundary of the SDZ, the sheared black and black-stained rocks (Figs. 4 and S1) that contain injection structures (Figs. 6e-f and S3b-c) and foliated cataclasite (Fig. 6e-f) are unique. Geochemical analyses indicate that these rocks are rich in carbonaceous material (Fig. 3). The localized black staining may indicate hydrocarbons are migrating or have recently migrated along fractures in the SDZ. Two distinct mud gas-rich zones were identified in the SAFOD borehole at 2700 - 2900 m MD and at depths greater than 3550 m MD. Smaller interstratified lenses rich in CO$_2$ and hydrocarbons were found between 3150-3200 m MD, and nearly pure hydrocarbons exist between 3310-3340 m MD (Fig. 2; Wiersberg and Erzinger; 2008). Additionally, small tar seeps are present along the surface trace of the SAF up-dip of the SAFOD borehole. Oxygen and carbon isotopes within carbonate veins located throughout the Phase 3 core, including the SDZ and CDZ, also are consistent with carbonates having precipitated from a fluid charged with hydrocarbons (Kirschner et al., 2008). Given the regional geology, the source of hydrocarbons likely is the Great Valley Formation (Ingersoll et al., 1977).

Janssen et al. (2010) cited evidence for comminuted materials similar to crush-origin pseudotachylytes within the black rocks at ~3194 m MD, based on SEM and TEM observations, and Holdsworth et al. (2011) suggests these textures are related to local fluidization or injection during transient overpressure of pore fluids during slip events. Similar features are found in active and ancient fault zones elsewhere and have been attributed to a mixture of comminution, fluidization, and thermal pressurization processes (Ujiie et al., 2007; Rowe et al., 2005; Wibberley and Shimamoto, 2005; Brodsky et al., 2009; Meneghini et al., 2010). While we observe injection- and fluidization-type features at the microscale (Fig. 6b), diagnostic evidence for pseudotachylyte in our samples is absent at the optical scale. Accordingly, the black rocks (Figs. 6 and S3) may reflect: 1) ancient ultracataclasite, and thus, as suggested by Holdsworth et al. (2011) could be regions that slipped seismically in the past; 2) a concentration of damage associated with repeated microearthquakes; and 3) hydrocarbon migration and gas-charged fluids entering fractures during deformation, associated with transient fluid pressure changes (Mittempergher et al., 2011).

The block-in-matrix structures and scaly clay fabrics that characterize the regions surrounding the SDZ and CDZ (Figs. 3-4) are similar to block-in-matrix structures of
sedimentary rock in tectonic mélange (Hsü, 1968; Raymond, 1984; Medley and Goodman, 1994; Festa et al., 2010). Although similar scaly clay fabrics are observed in numerous exhumed exposures of Franciscan mélange and in sheared serpentine outcrops within the San Andreas Fault system (Bradbury and Evans, 2009; Moore and Rymer, 2009, 2010), these rocks do not display diagnostic mineralogical assemblages or conclusive evidence of originating from the Franciscan tectonic mélange. The rocks may result from 1) repeated episodes of deformation, fragmentation, and mixing related to strike-slip faulting (Fagereng and Sibson, 2010; Festa et al., 2010) producing foliated cataclasite; 2) pre-SAF deformation of the protolith, e.g. slivers of altered Franciscan mélange entrained within the fault zone; or 3) a combination of SAF-related shearing superposed on the initial block-and-matrix mélange fabric. Given the penetrative nature of the thin, anastomosing surfaces within the matrix encompassing the blocks, the block-in-matrix structure may reflect continuous deformation processes related to aseismic creep and stable frictional sliding (Faulkner et al., 2003; Colletini et al., 2009).

The penetrative and highly sheared scaly fabric of the serpentine-bearing, clay-rich fault gouge that correlates with the actively creeping SDZ and CDZ, reflects the presence of meso- to micro-scale anastomosing slip surfaces that are coated with clays and opaque oxide-hydroxides. These surfaces locally weave around lens-shaped porphyroclasts of compacted matrix material (Sills et al. 2010), reworked cataclasite, and other lithologies, and display striated and polished slip surfaces (Figs. 6-8). Schleicher et al. (2010) identify illite-smectite and chlorite-smectite as the main phases comprising the clay coatings along such surfaces within the matrix materials near ~3066 m and ~3300 m MD, and suggest these coatings may influence slip and aseismic creep through dissolution-precipitation processes. Experimental work on clay-rich samples from SAFOD and other exhumed fault rocks also demonstrates the potential for clay to influence the frictional properties of clay-lined fractures (e.g., Tembe et al., 2006; Morrow et al., 2007; Solum and van der Pluijm, 2009).

The composition and distribution of serpentine and related alteration products may play a key role in the evolving mechanical behavior of the SAF system in the region (Reinen et al., 1991; Moore, 1996; 1997; 2007, 2009, 2010). Saponite, the Mg-rich smectite phase that is an alteration product of serpentine in the presence of fluids (e.g., Moore and Rymer, 2010), is very abundant within the SDZ and CDZ gouge (Appendix A2 Table A2) and frequently comprises alteration rims on serpentine clasts. Saponite is very weak in shear and displays a coefficient of
sliding friction that approaches $\mu = 0.05$ (Morrow et al., 2010; Lockner et al., 2011). The XRD analyses of samples indicate the foliated gouge contains significant quantities of lizardite and chrysotile. Experimental work has demonstrated that small amounts (~15% bulk wt. %) of serpentine may significantly reduce the overall frictional strength of fine-grained materials (Escartin et al., 2001), though even high concentrations of serpentine do not lead to friction coefficients as low as seen in smectites (e.g., Morrow et al., 1984; 2000; Moore et al., 1996; 1997; Reinen, 2000; Evans, 2004; Andreani et al., 2005). Many previous field studies have noted the presence of serpentinite and weak clays along the central segment of the SAF, and numerous laboratory experiments have explored the mechanical role of these phases in promoting fault creep (e.g., Allen, 1968; Irwin and Barnes, 1975; Reinen et al., 1991; Ikari et al., 2009). Data from these studies suggest that these phases can explain fault zone weakening, nondilatant brittle deformation, and the aseismic creep, and they may influence the fluid-flow properties of the fault zone locally (e.g., Escartin, et al., 1997; Carpenter et al., 2009; 2011; Solum and van der Pluijm, 2009; Schleicher et al., 2009; Morrow et al., 2000; 2007; Lockner et al., 2011). These suggestions are supported by the correlation of active creep in the chemically and mineralogically distinct foliated gouge layers rich in serpentinite and saponite (e.g., Moore and Rymer, 2010).

Geochemical data from the core shows that the major element composition of the SDZ and CDZ is dramatically different than the surrounding rocks (Bradbury and Evans, 2010). This is consistent with data presented by Holdsworth et al. (2010) on several other samples. Core samples from rock in Hole E, and farther west, have higher levels of $\text{Al}_2\text{O}_3$ with moderate to higher levels of $\text{SiO}_2$ as compared to core samples taken to the east (Fig. S5a). In the SDZ, $\text{MgO}$ concentrations are elevated significantly compared to surrounding host rocks and show a corresponding decrease in $\text{SiO}_2$ (Fig. S5c). $\text{SiO}_2$ concentrations are variable in sampled rocks between the SDZ and CDZ and are associated with relative increases in $\text{Al}_2\text{O}_3$ or $\text{CaO}$ (Fig. S5d). Within the CDZ, $\text{MgO}$ concentrations are once again elevated with $\text{SiO}_2$ decreasing (Fig. S5e). In both the SDZ and CDZ, elemental Ni and Cr concentrations are elevated (Appendix A3 Table A3), approaching ore-grade values (Candela and Piccoli, 2005), and may suggest either significant fluid-assisted alteration of serpentinite to clay (O’Hanley, 1996) or represent mineralogical signatures potentially inherited from the protolith material. East of the CDZ to ~
3313 m MD, SiO\textsubscript{2} levels are again highly variable with associated increases in Al\textsubscript{2}O\textsubscript{3} levels (Fig. S5f).

Isotopic data identifies at least two populations of carbonate veins showing variable composition in the host rocks, whereas elements such as strontium and calcium are more uniformly distributed inside the foliated gouge of the SDZ and CDZ (Kirschner et al., 2008).

Thus, it appears the incorporation of serpentinite into the two layers of foliated gouge, mechanical mixing and grain size reduction, and the alteration to clay, combine to produce profoundly weak layers of gouge and promote long-lived concentrated shear and aseismic creep along the SDZ and CDZ intersected by the borehole at SAFOD.

5. Conclusions

In situ sampling and laboratory analysis of SAFOD Phase 3 core samples provides an opportunity to characterize the composition, internal structure, and weakening processes of an active fault zone undergoing shear and fluid-rock reactions at approximately 3 km depth.

Combining core-scale descriptions and analysis of 30 samples collected across the SAF zone, we find the fault zone consists of broad zone of variable damage (> 300 m wide) that surrounds multiple narrower zones of highly sheared and altered rock containing complex internal structures. West of the SDZ, arkosic sequences and shales exhibit brittle deformation features and evidence of cementation. Adjacent to the southwest boundary of the SDZ, black fault rocks contain evidence of multiple episodes of slip and cataclasite and ultracataclasite generation with increases in magnetite, iron-sulfides, and organic carbon. Serpentinite- and smectite-bearing foliated gouge layers correlating with the SDZ and CDZ display highly sheared, scaly fabrics with a significant enrichment in Mg-rich clays, and Ni- and Cr-oxides relative to the surrounding rocks. The northeastern boundary of the CDZ is characterized by increases in magnetite and iron-sulfide. These data point to the influence of both mechanical and chemical processes of weakening and localization of shear to at least two discrete and active zones of creep in the SAFOD borehole.
ACKNOWLEDGEMENTS

This work was supported by NSF-EarthScope grants EAR-044527 and 0643027 to Evans, EAR-0454525 and EAR-0643339 to J. Chester and F. Chester, and EAR-0346190 and -45431 to Kirschner. Bradbury received supplementary support for sample analyses and travel to the IODP Gulf Coast Repository (GCR) from DOSECC, SEG Foundation, AAPG, SPWLA Foundation, and the GDL Foundation. XRF analyses were performed by WSU laboratory. We thank Bradley Weymer and Phil Rumford at the GCR Laboratory for cutting and processing the SAFOD core, their patience in helping us to obtain our core samples, and for their efforts towards caring and preserving this core. A special thanks is due to USU Undergraduate student, Dave Richie, for help grinding several samples for XRD analyses. Finally, we thank the principal investigators of the SAFOD project, William Ellsworth, Steven Hickman, and Mark Zoback for their hard work and dedication to the SAFOD project, and to Diane Moore and an anonymous reviewer for thoughtful reviews of this manuscript.

References


Heron, B., Chester, J.S., Chester, F.M., Guillemette, R., 2011, Densification and Alteration of Siliciclastics Adjacent to the San Andreas Fault at SAFOD: Implications for Seismic Velocity Structure and Fluid Flow, AAPG Abstracts with Programs #90124.


Hickman, S., Zoback, M., Ellsworth, W., Boness, N., Malin, , Roecker, S., and Thurber, C., 2007, Structure and properties of the San Andreas Fault in central California: recent results from the SAFOD experiment:


Ingersoll, R., Rich, E.I., and Dickinson, W.R., 1977, Great Valley Sequence, Sacramento Valley, California:

Geological Society of America Cordilleran Section Fieldtrip Guidbook, 72.


Van Diggelen, E., Holdsworth, R.E., de Bresser, J.H., Spiers, C., Smith, S.A., Walker, R.J., and Bowen, L., 2010, The microstructural character and evolution of fault rocks from SAFOD and potential weakening mechanisms along the San Andreas Fault, AGU Fall Meeting, abstract #T52B-06.


**FIG. CAPTIONS**

**Fig. 1:** SAFOD study area information: a) Location of SAFOD site in central California. The central creeping segment of the San Andreas Fault (SAF) is highlighted in gray with the locked portions of the fault shown in red. Locations of large historical ruptures including the 2004 and 1966 M 6.0 Parkfield earthquakes near SAFOD; b) Borehole geometry (not to scale) and lithologic summary for the SAFOD main borehole and the inferred locations of the Buzzard Canyon Fault (BCF) and the SAF based on cuttings analyses (Bradbury et al., 2007); c)
Approximate locations of the 2007 Phase 3 cores relative to the SAFOD main borehole (modified after Hickman et al., 2005; Zoback et al., 2010). The origin represents the position of the SAFOD borehole with the distance to the east in meters shown on the x-axis. The position in meters measured depth (m MD) of the two regions of casing deformation associated with actively slipping segments of the SAF are marked as the Southwest Deforming Zone (SDZ) and the Central Deforming Zone (CDZ) following Zoback et al. (2010). The shaded region in red represents the extent of a fault-related damage zone based on geophysical data with approximate locations of microseismicity shown in the stippled red areas and faults indicated by dashed red lines (Zoback et al.; 2010); d) The extent of the low velocity zone (LVZ) determined from borehole geophysical logs (after Jeppson et al., 2010) between ~ 3-4 km MD. A dashed red-line highlights this measured shift to lower seismic velocities and the position of this feature relative to the inferred active plate boundary (Bradbury et al., 2007; Holdsworth et al., 2010), the SDZ, and the CDZ (after Zoback et al., 2010).

**Fig. 2:** Schematic summary of SAFOD Phase 3 core lithology and deformation (not to scale). Sample locations and lithologic information are displayed relative to each coring run and represent an integration of our results described in Tables A1-A3. Listed core depths are in meters measured depth (m MD) based on values measured during drilling and reported in the Phase 3 Core Photo Atlas ([www.earthscope.org/safod](http://www.earthscope.org/safod)). Refer to the Supplementary Material in Zoback et al. (2010) for details concerning depth correlation methods for comparing core features to the borehole geophysical log data. The rocks associated with casing deformation and the SDZ and CDZ (Hickman et al., 2005) are highlighted in red with a dashed red line along the outer core indicating the corresponding region of low velocity or damage zone of Zoback et al. (2010). Drilling mud gas-rich zones (Weirsberg and Erzinger, 2008) are denoted with a black line along the outer core.

**Fig. 3.** Schematic illustration of the complex internal structure of Phase 3 core and corresponding mineralogical or elemental trends. Also refer to Fig. S5 for a summary of geochemical data. Line weight thicknesses reflect the relative quantity of each mineral constituent within a particular sample as examined through whole-rock geochemical methods (XRD and/or XRF). Greater line thickness corresponds to a greater relative abundance whereas thin lines represent present in moderate to small quantities within the sample analyzed, and dashed lines indicate a
discontinuous or localized distribution. The most notable trends include: 1) the presence of large amounts of serpentinite (lizardite ± chrysotile) and saponite within the SDZ and CDZ; 2) quartz and feldspars decrease within the SDZ and CDZ; 3) magnetite and garnet phases along with pyrite mineralization border the SDZ and CDZ and increase locally within block-in-matrix materials; and 4) Nickel-oxides and chromium-oxides show elevated concentrations in the narrow zones of the SDZ and CDZ; 5) carbonates increase within the broader shear zone including the two narrow zones of the SDZ and CDZ; and 5) palygorskite is present locally throughout much of the core (likely associated with fracture fillings) but is not within the SDZ and only present in the very base of the CDZ.

**Fig. 4.** Images of representative lithologies and structural features present within Phase 3 Core: a) green arkosic sequence at 3142 m with coarse feldspar fragments and volcanic lithic fragments showing small-scale offsets; b) sheared black silty shale/mudstone at 3144.6 m with exposed fracture surface exhibiting vitreous luster and a greenish hue; c) View of reddish-brown arkosic unit parallel to axis of core; d) penetrative anastomosing fabric and cataclasite within sheared black rock at 3193.7 m (Appendix A1 Table A1). Carbonate veins and cataclasite are interlayered with black staining parallel to the foliation direction; e) shiny surfaces are common along sheets separated from the core and parallel to the plane of foliation in the sheared black rock; f) pinch-and-swell shaped clasts entrained within matrix materials forming a heterogeneous block-in-matrix structure; g) fine-grained siltstone clast with a slightly folded shape yet significantly less deformed than surrounding friable matrix; and h) sheared shaley matrix and large siltstone clasts near ~3311 m MD that highlight the overall trend of larger clasts exhibiting less intense deformation with fewer intraclast veins near the base of Phase 3 core.

**Fig. 5.** Deformation at the micro-sale in Hole E core material sampled (Fig. S2) west of the main trace of the SAF plate boundary (Figs. 1-2): a) view under cross polarizer light of carbonate alteration and clay development within this matrix supported unit and also along adjacent intergranular microfractures (see white arrow) where it appears that progressive grain elongation occurs adjacent to outer margins of the slip zone; deformation lamellae are present in quartz grains in the upper left in and middle bottom photo; grain boundary migration (gbr) features in quartz grains suggest low temperature, fluid alteration and neocrystallization and/or high strain recrystallization; larger dark quartz grain shows evidence for pressure solution (ps) that extends
into surrounding matrix; indentation, interpenetration, and truncation of grains are evidence for
diffusive mass transfer processes (Blenkinsop, 2000; Rutter, 1983); b) myrmekite intergrowths
and fractured feldspar in grains floating within the clayey matrix; pressure solution seams occur
in several grains; c) thin-section photograph illustrates angular grains boundaries, distinct green
grains with abundant magnetite, and the presence of pressure solution seams; d) At 3147.5 m
MD as viewed under cross polarizer light, reactivated fractures and multi-layered cataclasite plus
associated microscale fracturing are evidence for multiple episodes of slip. Note the bounding
slip surface is coated with dark iron-oxides (magnetite?) and neocrystallized clay. Beyond the
boundaries of the main slip surfaces, grains are intensely fractured and show additional evidence
for various stages of cataclasis between fractured grains and the subsequent healing of fractures.

Fig. 6. Deformation and alteration adjacent to the SDZ of Zoback et al. (2010): a) Between
3186.7 to 3193.3 m MD, the rocks within the foliated cataclasite unit exhibit an alignment of
phyllosilicates and oxides within the finer matrix materials from the meso- to micro-scale (b) and
cataclasite features surrounding clasts of various lithologies and/or compacted cataclasite support
fluid-like injection and brecciation processes (c); d) black staining associated with fracture
system near 3192.5 m MD; e) well-developed foliation within phyllosilicate-rich gouge and
rough alignment of quartz and various altered grains; note high-angle hairline fracture system
dissecting foliation; f) silty-shale clast mantled with clay and attached to adjacent fragment of
compacted gouge (?), forming flow patterns within the matrix; note high angle fractures coated
with iron-oxides (magnetite) that dissect the foliated matrix; g) Sheared interval of black fault
rock/cataclasite along the western boundary of the SDZ; h) at the micro-scale the black fault rock
exhibits multiple episodes of fault slip offsetting ultracatclasite layers with several phases of
mineralization related to fluid-rock interactions as evident by vein geometries and compositions
(Appendix A2 Table A2) and the concentration of opaque minerals (magnetite) parallel to the
foliation direction; i) slip localization within clay and serpentine-rich (lizardite ± chrysotile)
gouge; a crosscutting network of veins and open fractures is also observed; j) scaly clay fabric
from the core catcher at 3197.8 m MD correlates to the rocks associated with active casing
deformation near ~ 3192 m MD in the borehole; k) garnet (andradite(?)) see Appendix A2 Table
A2) porphyroclast in fault gouge of the SDZ; l) altered lithics and calcite embedded within
sheared phyllosilicate-rich matrix characterizing the fault gouge of the SDZ.
Fig. 7. Rocks associated with the SDZ zone of casing deformation as measured in the
geophysical logs near ~ 3192 m MD (Zoback et al., 2010) otherwise identified as Hole G Run 2
Section 7 Phase 3 SAFOD core. Due to the geological significance of this core, no samples have
been taken to date: a) sketch of the internal structure highlighting cm-scale zones of finite width
with varying composition and textures; b) and c) thin-section grain mounts at 3197.0 m MD are
comprised of lizardite and chrysotile (foliated clast) based on XRD analyses; calcite, quartz, and
ordered interlayered chlorite-smectite clays were also identified (Appendix A2 Table A2b); d)
foliated phyllosilicate-rich fault gouge at 3197.1 m MD is comprised of quartz, plagioclase, illite,
and caclite with interlayered chlorite-smectite ± chlorite ± smectite ± serpentine (Appendix A2
Table A2b); e) view of clay mantled clast in plane polarized light, note concentration of
magnetite grains surrounding clast that are likely associated with serpentine minerals; and f)
view in polarized light with gypsum plate inserted highlights intraclast deformation with
domainal fabrics due to recrystallization processes.

Fig. 8. Deformation and alteration adjacent to and within casing deformation near 3302 m MD or
the CDZ of Zoback et al. (2010): a) scaly clay fabric in the fault gouge illustrating both
distributed deformation and slip localization within the discrete fracture zones near the right edge
of the photo; b) development of S-C fabric in serpentinite-bearing clay gouge is highlighted;
opaque stringers or grains are comprised of magnetite and appear concentrated within regions
associated with altered clasts; clasts (cl) and altered clasts (acl) show development of preferred
orientation through rotation in the fine matrix. View is under cross-polarizer light with gypsum
plate inserted; c) altered and reworked cataclasite grain embedded within the fine foliated
phyllosilicate-rich matrix support repeated episodes of brittle deformation; abundant calcite veins
dissect the cataclasite; view is under cross polarizer light; d) highly rounded, clay mantled, and
altered serpentinite (lizardite ± chrysotile) clast within the fault gouge; e) volcanic lithic clast
(basic or basalt composition) documents variability within clast compositions and the great
degree of mixing within the fault gouge; and f) photomicrograph of scaly clay fabric dissected by
numerous carbonate veins.

Fig. S1. Additional images of representative lithologies and structural features present within
Phase 3 Core: a) reddish-brown arkose shown in cross-sectional view in Fig. 4c at 3151 m; b)
black staining and clay alteration on open fracture surface; c) black staining (carbon rich?) along
contact between fracture surface and sheared shale surface shown in b); d) finely laminated and
interbedded siltstone and shales. Note carbonate veins in siltstone layers/blocks do not extend
into surrounding shaley layers while shale is smeared along small-scale slip surfaces; and e)
matrix of shaley layers continues to be friable with a sheared and/or shiny luster on nearly every
open fracture surface.

Fig. S2. Meso-scale deformation observed in Hole E core sampled west of the main trace of the
SAF plate boundary (Figs. 1-2, 4): a) Evidence for low-temperature deformation and fluid-rock
interactions are indicated by white arrows within the green-arkosic unit and include highly
altered feldspars, reddish-brown staining parallel to fracture surfaces, and white hairline veins
Refer to Figure 4a-b); b) sheared and highly fractured black shale with distinct glassy fracture
surfaces that separates the two arkosic units in Hole E (Refer to Figure 4c); c) cataclasite bands
offset by younger phase of slip and cataclasite generation (Refer to Figure 4d); d) slickenlined
fracture surfaces are common throughout this unit (Refer to Figure 4d).

Fig. S3. Deformation and alteration adjacent to the SDZ of Zoback et al. (2010) at the meso-
scale: a) Between 3186.7 to 3193.3 m MD, the rocks within the foliated cataclasite unit exhibit
an alignment of phyllosilicates and oxides within the finer matrix materials from the meso- to
micro-scale (See also Fig. 6) and cataclasite features surrounding clasts of various lithologies
and/or compacted cataclasite support fluid-like injection and brecciation processes (Fig. 6b); b)
black staining associated with fracture system near 3192.5 m MD; c) Sheared interval of black
fault rock/cataclasite along the western boundary of the SDZ (See also Fig. 6e-f); and d) scaly
clay fabric from the core catcher at 3197.8 m MD (Refer also to Fig. 6g-h) correlates to the rocks
associated with active casing deformation near ~ 3192 m MD in the borehole.

Fig. S4. Deformation and alteration adjacent to and within casing deformation near 3302 m MD
or the CDZ of Zoback et al. (2010): a) close-up image of foliated fault core gouge with large
clay mantled and partially altered clast of serpentinite (lizardite); b) close up image of the core at
3297.8 m MD showing the orientation of the fabric is generally perpendicular to the core axis
(redline); note green, rounded or eye shaped clasts embedded in the finer matrix. Refer to Fig. 8
for micro-scale observations near this depth.
**Fig. S5.** XRF whole-rock powder geochemistry of Phase 3 core samples. Major element variations for selected oxides relative to silica and illustrated as a function of structural position across the SAFOD borehole and SAF: a) On the Pacific plate between 3100-3150 m MD, higher concentrations of Al$_2$O$_3$ and SiO$_2$ are associated with Salinian granitoid and arkosic sedimentary rocks; b) On the North American Plate, between 3185 - 3195 m MD, the rocks have moderate Al$_2$O$_3$ and high SiO$_2$ concentrations associated with sheared fine-grained sandstones, siltstones and shales associated with the Franciscan and Great Valley protolith; c) In the SDZ, MgO concentrations are high whereas SiO$_2$ are very low due to the presence of serpentine and smectitic clays; d) Between the SDZ and CDZ, Al$_2$O$_3$ and CaO concentrations are generally increasing with variable amounts of SiO$_2$ due to the presence clay alteration and localized carbonate veins; e) In the CDZ, MgO concentrations increase again with low SiO$_2$ as serpentine and other phyllosilicates increase; and f) East of the CDZ, Al$_2$O$_3$ concentrations generally increase and SiO$_2$ concentrations show greater variability. XRF sample processing was completed by staff at Washington State University in the GeoAnalytical Laboratory, Pullman, Washington.
Table A1. Lithologic and structural descriptions for SAFOD Phase 3 Core.

<table>
<thead>
<tr>
<th>Core Interval &amp; Depth (m MD)</th>
<th>Depth (m MD) (f MD)</th>
<th>Lithologic Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Interval 1 Hole E Runs 1 Sections 1-4</td>
<td>3144.6 – 3144.6</td>
<td>Greenish Gray</td>
<td>Dark greenish-gray pebbly medium to coarse-upper arkosic sandstone occurs from the top of Hole E Core Run 1 Section 1 to the middle of Core Run 1 Section 4. It is comprised of three subunits distinguished on the basis of grain size. From 3142.4 to approximately 3141.9 m and from 3142.8 to 3144.6 m, the matrix is a coarse to very coarse, subangular to subrounded sand. Pebbly clasts comprise 5 to 15 % of these subunits, and are subrounded to subangular, equant to slightly elongate (2:1 aspect ratio), dominantly feldspathic, and to 2.5 cm in diameter. These clasts are mostly matrix supported in a grey-green silty sand matrix. The intervening subunit, from 3141.9 to 3142.8 m, has a similar matrix but distinctly fewer and smaller (granule size) clasts. Overall unit is massive and fines upwards and displays a slight interlocking grain texture. Coarse lenses contain subangular quartz, feldspar, and mica grains, with distinct irregularly shaped, dark reddish-brown volcanic lithics and rare flakes of serpentinite. Thin-section analyses suggest a weak fabric of slight interlocking grain texture within the matrix suggestive of deformation and/or weak metamorphism.</td>
</tr>
<tr>
<td>Core Interval 1 Hole E Run 1 Sections 4-5</td>
<td>3144.6-3145.8</td>
<td>Silty Shale and underlying Siltstone</td>
<td>A dark grayish-black siltstone extends from the middle of Core Run 1 Section 4 to nearly the bottom of Core Run 1 Section 5. Approximately 90% of this unit is comprised of mesosopically homogeneous silt and clay size particles; the remainder consists of several subunits composed of fine to medium sands with pebbles less than 0.5 cm in diameter. One of the coarser subunits, located in the center of Section 5, is greenish-black in color and approximately 10 cm thick. The other subunit is a light olive-gray siltstone that shows faint pressure solution seams and shearing near contact with the underlying grayish-red pebbly sandstone. Clasts in the coarser subunits are subrounded and predominately feldspathic in composition. A few thin (up to mm thick), non-quartz silicate veins are present. Subunit contacts are either gradational or are associated with distinct shear zones. The siltstone spanning the bottom of Section 4 and top of Section 5 is fractured and displays a weak scaly fabric.</td>
</tr>
<tr>
<td>Core Interval 1 Hole E Run 1 Sections 6-8, Run 2 Sections 1-6</td>
<td>3145.8-3152.6</td>
<td>Grayish-Red Pebbly Sandstone</td>
<td>A grayish-red to brownish-gray pebbly sandstone exists between the fault contact located near the base of Core Run 1 Section 5 and the bottom of Core 2 Section 6. The matrix is composed of coarse- to very coarse subrounded sand. Clasts are up to 3 cm in diameter, subrounded to angular, elongate with aspect ratios up to 3 to 1, and dominantly feldspathic in composition. Bedding is defined by grain size variations, alignment of elongated clasts and Liesegang-type iron-oxide staining, and is subparallel (within 20 to 30 degrees) to the core axis. Several generations of fractures and mesoscale faults crosscut this unit. The mesoscale faults consist of layers of cataclasite that are up to 0.5 cm thick. Most of the fractures and faults are reddish- to dusky-brown, presumably from the oxidation of iron.</td>
</tr>
<tr>
<td>GAP IN CORE</td>
<td></td>
<td></td>
<td>Within this interval is the geologic boundary between the Pacific and North American Plates (Zoback et al., 2010; Springer et al., 2010; Bradbury et al., 2007).</td>
</tr>
<tr>
<td>Core Interval 2 Hole G Core Run 1 Sec 1-6 to Core Run 2 Sec 1-3</td>
<td>3186.7-3193.9</td>
<td>Foliated Siltstone-Shale with Block-in-Matrix Fabric</td>
<td>The foliated siltstone-shale cataclasite extends from the top of Hole G Core Run 1 Section 1 to the middle of Core Run 2 Section 4. The cataclasitic foliation is defined by a scaly fabric in the finer-grained portions, cm-thick color banding and shape fabrics formed by elongate, irregular-shaped lenses and porphyroclasts of siltstone and fine- to very fine-grained sandstone, and serpentinite. Clasts set within this fine matrix are commonly elongated, forming irregular stringers or pinch-and-swell structures with thin cross-cutting veins trending at high angles to the long axes of the clast. These lenses and porphyroclasts contain fine-grained calcite cement and pyrite(?), with numerous thin, short carbonate and zeolite veins that often are oriented at high angles to the foliation.</td>
</tr>
<tr>
<td>Core Run 2 Hole G Sec 4-5</td>
<td>3193.9-3195.8</td>
<td>Black Fault Rock</td>
<td>Black fine- to ultra-fine grained massive and dense sheared fault rock extends from the middle of Core Run 2 Section 4 to the top of Core Run 2 Section 7. Bounding slip surfaces with extensive calcite veining parallel to the foliation direction occur at 3193.9 and 3195.8 m. Unit is dense and rich in magnesium oxides, exhibiting slight magnetism with abundant shorter veins oblique to perpendicular to foliation of bounding shear surfaces. Numerous thin (up to mm-thick) calcite veins and small calcite-bearing mesoscale faults run parallel to oblique to the foliation direction. Near the base of the unit – 3195.8 m it grades into a cataclastic siltstone and shale that appears to be sheared. Split surfaces are highly reflective and some are striated.</td>
</tr>
<tr>
<td>Core Run 2 Hole G</td>
<td>Interval</td>
<td>Description</td>
<td>Details</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>Sections 6-9</td>
<td>3196.4-3198 (10,486.8-10,492.3)</td>
<td>Foliated Fault Gouge (SDZ)</td>
<td>Foliated gouge from the 3192 m zone of casing deformation is associated with the Southwest Deforming Zone (SDZ) after Zoback et al. (2010) and appears near the top of Core Run 2 Section 7 and continues to the bottom of the Run 2 core catcher. The gouge is a dark grayish-black, intensely sheared fault rock that is composed of particles that, for the most part, are &lt;10 μm in diameter (defined using a 10X hand lens). The matrix is noncohesive and displays a wavy foliation defined by pervasive microscale shears that create a penetrative, micro-scaled fabric. Split surfaces are reflective and striated. Visible clasts ranging up to several cm in diameter make up 5% or less of the volume. Clast lithologies include serpentinite, very fine-grained sandstone and siltstone, compacted clay, and altered limestones of unknown composition. Millimeter-size fragments of white (calcite?) extensional shear veins also are present. Foliations are sinuous and run approximately perpendicular to the core axis, and clasts are elongated approximately parallel to the foliation. Overall, the mesoscale structure is fairly homogeneous. The upper contact of the gouge with the bounding black cataclastic siltstone and shale is inclined and sharp. The gouge also contains a block of serpentinite, approximately 30 cm thick, which is fractured and cut by white (calcite) veins up to several mm thick that are oriented both subparallel and subperpendicular to the core axis. The upper contact of the serpentinite block with the gouge is defined by an irregular, inclined, thin zone of sheared serpentinite, whereas, the lower boundary of the serpentinite block is marked by a 4-cm-thick zone of sheared bluish-green serpentinite that displays fragmented, offset and reoriented veins. The sheared serpentinite and underlying gouge are juxtaposed along a sharp, curvilinear surface that is approximately perpendicular to the core axis.</td>
</tr>
<tr>
<td>Core Run 3 Hole G</td>
<td>3198.4-3199.5 (10,493.5-10,497.2)</td>
<td>Interlayered Siltstone &amp; Mudstone/Shale with Block-in-Matrix Fabric</td>
<td>A sheared siltstone and mudstone comprised of a thinly-bedded, dark, grayish-black shale, a grayish-black to olive-gray siltstone and very fine-grained sandstone. Bedding is approximately normal to the core axis, and is highly disrupted by offset along discrete mesoscale faults and by distributed shear of the shale. Coarser grained layers and lenses are well-cemented and cut by numerous shears and thin calcite veins that are oriented at high angles to the layering. Cataclastic shale is present at the top and base of the section. A drilling-induced highly fractured zone occurs in the middle of the section.</td>
</tr>
<tr>
<td>GAP IN CORE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Run 4 Hole G</td>
<td>3294.9-3296.6 (10810.0-10815.5)</td>
<td>Siltstone</td>
<td>A sheared siltstone and sandstone characterized by greenish-black and dark greenish-gray, thinly bedded siltstone and very fine- to medium-grained sandstone that are disrupted by offset along discrete mesoscale faults and by more distributed shearing in the finer-grained layers. The more deformed bands of sandstone and sheared siltstone are dusky-brown, producing an obvious variegation. An approximately 15-cm-thick layer of greenish-gray sandstone occurs at the base of this unit; it displays a progressive loss of grain-scale cohesion with proximity to the contact with the foliated gouge below.</td>
</tr>
<tr>
<td>Core Run 4 Section 2 to the bottom of Core Run 4 Section 5</td>
<td>3296.6-3299.1 (10,815.5-10,823.9)</td>
<td>Foliated Fault Gouge (CDZ)</td>
<td>The foliated gouge associated with the 3302 m zone of casing deformation or the Central Deforming Zone (CDZ) after Zoback et al. (2010), is similar in nature to the foliated gouge near the 3192 m fault, extends from the bottom of Core Run 4 Section 2 to the bottom of Core Run 4 Section 5. The gouge is a dark grayish-black, intensely sheared fault rock that is composed of particles that, for the most part, are &lt;10 μm in diameter (defined using a 10X hand lens). The matrix is noncohesive and displays a wavy foliation defined by pervasive microscale shears that create a penetrative, micro-scaled fabric. Split surfaces are reflective and striated. Visible clasts ranging up to several cm in diameter make up about 5% or less of the volume. Porphyroclast lithology includes serpentinite, very fine-grained sandstone and siltstone. Millimeter-size fragments of white (calcite?) veins also are present. Foliations are approximately perpendicular to the core axis and clasts are elongated parallel to the foliation. Overall, the mesoscale structure is fairly homogeneous. The contacts with the bounding cataclastic rocks are distinct and sharp, and are probable surfaces of shear or mm-thick shear zones. Near the base of the gouge there are small blocks of serpentinite and sandstone that are up to 10 cm thick and separated by clay gouge.</td>
</tr>
<tr>
<td>Core Run 4 Section 5 to the top of</td>
<td>3299.1-3301.5 (10,823.9-)</td>
<td>Sheared Siltstone/ Mudstone with Block-in-Matrix</td>
<td>A highly sheared, dark grey to black finely laminated calcareous siltstone and mudstone unit extends from the bottom of Core Run 4 Section 5 to the top of Core Run 5 Section 2. Much of the unit is highly sheared but contains lenses or clasts of less deformed horizons. The sheared, somewhat foliated fabric plus any disrupted lithologic layering and...</td>
</tr>
<tr>
<td>Core Run 5 Section 2</td>
<td>10831.7</td>
<td>Fabric</td>
<td>~ 5.9 % of the total core</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>some thin discontinuous veins are oriented at a moderately high angle to the core axis. Commonly the intrablock/clast veining does not extend into the surrounding matrix.</td>
</tr>
<tr>
<td>Core Run 5 Section 2 to the top of Core Run 5 Section 4</td>
<td>3301.5 - 3303.3 (10831.7-10837.6)</td>
<td>Interlayered Siltstone to Very Fine-grained Silty Sandstone with Block-in-Matrix Fabric</td>
<td>~ 4.4 % of the total core</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Greenish-black to gray brown siltstone and very fine-grained massive sandstone extends from the top of Core Run 5 Section 2 to the top of Core Run 5 Section 4. The top portion of this unit contains several sharp, very dark shear surfaces with a dominant foliation inclined at ~75° to the core axis. The lower portion of this unit is mostly undeformed, very fine-grained siltstone with several distinct fractures. Locally, a meshlike network of indurated dark grey faults dip both up and down the core axis.</td>
</tr>
<tr>
<td>Core Run 5 Section 4 to the bottom of Core Run 5 Section 7</td>
<td>3303.3 - 3305.9 (10837.6-10846.2)</td>
<td>Sheared and Fractured Siltstone to Very Fine Sandstone with Block-in-Matrix Fabric</td>
<td>~ 6.4 % of the total core</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Medium dark-gray to light-gray siltstone to very fine sandstone extends from the top of Core Run 5 Section 4 to the bottom of Core Run 5 Section 6 (and possibly into Section 7, which has not yet been examined in detail). This unit fines downward and is dominated by deformation features consisting of 2 to 8 cm thick gouge/shear (clay-rich?) zones, all at ~40° to the core axis, and numerous parallel to subparallel alternating zones of cataclasite, breccia and/or noncohesive rubble. These deformed zones are interspersed with less sheared siltstone. Within this sequence are 1 to 4 cm long subrounded clasts of finely laminated siltstone to fine sandstone of similar composition to overlying units. Some boundaries of these clasts are sheared, and a few clasts contain 1 to 2 mm wide calcite veins. Pyrite is present locally within this unit. A more deformed zone starts at about 3304.8 m and extends to the bottom of this unit. This deformed zone consists of very fine-grained dark greenish gray/black siltstone and mudstone with numerous sheared surfaces and a breccia zone containing mm-sized fragments and polished striated surfaces.</td>
</tr>
<tr>
<td>Core Run 6 Section 1 to the top of Core Run 6 Section 5</td>
<td>3307.4 - 3311 (10851.0-10862.9)</td>
<td>Sheared and Fractured Claystone, Mudstone and Siltstone with Block-in-Matrix Fabric</td>
<td>~ 7.8 % of the total core</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A dark gray black calcareous mudstone/claystone extends from the top of Core Run 6 Section 1 to the top of Core Run 6 Section 5. This unit contains a mixture of rubble zones (caused by drilling) of sheared material exhibiting a scaly fabric, and numerous subangular matrix blocks within these sheared zones. Much of the unit consists of fractured and deformed rocks with the larger clasts appearing less-deformed relative to the overlying units. Striated surfaces are still common on smaller fragments within the sheared zones. The brecciated dark-gray siltstone/mudstone and sheared siltstone is cut by several “microbreccia” zones. The dominant shear fabric is at high angles to the core axis. Especially in the upper sections, the core is quite friable and slightly soft to the touch where it is moist and contains some clay. This unit appears to coarsen into predominately siltstone and becomes slightly more indurated toward its base, where there is a transition zone containing interspersed sheared zones in a dark-gray to greenish-black finely laminated siltstone and dark gray mudstone.</td>
</tr>
<tr>
<td>Core Run 6 Section 5 to the bottom of Core Run 6 Section 6</td>
<td>3311-3312.7 (10862.9-10868.5)</td>
<td>Sheared Claystone and mudstone gouge</td>
<td>~ 4.2 % of the total core</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sheared, grayish black claystones and mudstones within a brecciated and foliated sheared siltstone extend from the top of Core Run 6 Section 5 to the bottom of Section 6. Two large indurated clasts with prominent calcite veining are near the top of this unit. Two fold hinges of the folded foliation are present in the central part of the unit.</td>
</tr>
</tbody>
</table>
Table A2. Microscale observations and whole-rock powder X-ray diffraction (XRD) results from select Phase 3 whole-rock core and powdered samples. XRD compositions are listed in order of the relative estimation of different phase proportions. The identification of phases is based on analyses of the bulk XRD patterns using X’Pert High Score software as part of the X’ Pert Pro XRD system. For phases in the shales and/or fine-grained gouges not visible at the thin-section scale, verification is required by further analyses. Within these phyllosilicate-rich materials many of the peaks may overlap, thus, mineral identifications can be challenging for phases present in only small quantities. We also used optical microscopy of cuttings (Bradbury et al., 2007) for correlation. In terms of reporting these minor to trace phases, we chose a minimum threshold score match of ~15. A) Samples analyzed by author at Utah State University; B) For comparative reference, samples prepared and analyzed at similar depth intervals at the U.S.G.S. Menlo Park Office by D.E. Moore (Phase 3 Core Photo Atlas v. 3-4 at http://www.earthscope.org/observatories/safod) are included.

<table>
<thead>
<tr>
<th>Sample Location</th>
<th>Geologic Featured Sample</th>
<th>Meso- to Micro-scale Observations</th>
<th>XRD Mineralogical Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>3142 m* [10308.4 ft] ER1S1</td>
<td>Lithic Arkosic Sandstone</td>
<td>Subangular quartz and feldspar grains show intra/inter granular fracturing; concentration and weak alignment of phyllosilicate grains within matrix; etched quartz grain boundaries and overgrowth structures, diffusion of grain boundaries, grain boundary migration; alteration of biotite to chlorite; fibrous clay matrix with crystallization and/or replacement by calcite and clay minerals</td>
<td>Quartz + Plagioclase (Albite &amp; Anorthite) + Microcline + Muscovite Mica + titanium aluminosilicate + Ankerite ± Polygorskite ± Illite ± Zeolite</td>
</tr>
<tr>
<td>3144 m [10315 ft] ER1S3</td>
<td>Lithic Arkosic Sandstone</td>
<td>Extensive intra/inter-granular microfrazing; cataclastic bands are present; slightly recrystallized; deformation lamellae and pressure solution seams occur in coarser quartz fragments; grains are subangular to subrounded; irregular mafic volcanic lithics (basalt?) suggest glass has converted to clay</td>
<td>Quartz + Plagioclase (Albite + Anorthoclase) + Microcline ± Ankerite ± Lizardite ± Sepiolite ± Cr-oxide</td>
</tr>
<tr>
<td>3144.6 m* [10317 ft] ER1S4</td>
<td>Sheared Silty Black Shale/ Mudstone</td>
<td>Texturally immature with abundant angular grains, increased magnetite concentration, green mineral (serpentine &amp;/or palygorskite)</td>
<td>Quartz + Plagioclase (Albite) + Magnetite + Lizardite ± Palygorskite ± Illite</td>
</tr>
<tr>
<td>3146.3 m* [10322.6 ft] ER1S6</td>
<td>Feldspathic Arkosic Sandstone</td>
<td>Extensive fracturing and grain comminution/cataclasism; concentration of oxides/hydroxides along slip surfaces; calcite exhibiting deformation twinning is present in veins; pressure solution seams occur in coarse quartz fragments; all grains pervasively fractured</td>
<td>Quartz ± Albite ± Microcline</td>
</tr>
<tr>
<td>3146.3 m [10322.6 ft] ER1S6</td>
<td>Shear zone</td>
<td>Narrow slip surfaces (~ 1 mm thick) marked by opaque oxides/ hydroxides with pervasive microfrazing; alteration enhanced microcracking along feldspar cleavage planes; numerous extensional microcracks</td>
<td>Quartz ± Albite ± Mica ± Smectite (Nontronite?)</td>
</tr>
<tr>
<td>3147.5 m [10326.4 ft] ER1S7</td>
<td>Feldspathic Arkose</td>
<td>Extensive cataclasism, microfrazing, and microfaults with multiple offsets ~ 1-3 mm.</td>
<td>Quartz</td>
</tr>
<tr>
<td>3147.5 m [10326.4 ft] ER1S7</td>
<td>Fracture Surface Coating</td>
<td>Cataclasite and clay with felty mineral growth along fracture surfaces</td>
<td>Quartz ± Albite ± Orthoclase ± Smectite (Nontronite?) ± Palygorskite</td>
</tr>
<tr>
<td>3150.3 m* [10335.6 ft] ER2S2</td>
<td>Feldspathic Arkosic Sandstone</td>
<td>Extensive cataclasism, microfrazing, and microfaults with multiple offsets ~ 1-3 mm.</td>
<td>Quartz ± Albite ± Mica ± Smectite (Nontronite)</td>
</tr>
<tr>
<td>GAP IN CORE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3157.4 m [10457.3 ft] GR1S1</td>
<td>Clast</td>
<td>Clast entrained within fine-grained phyllosilicate-rich gouge; clast contains fine to very-fine grained zones of microbreccia offset by carbonate and/or zeolite veins; opaque lined microcracks link to zones of injected cataclasite comprised of opaque</td>
<td>Quartz + Magnetite ± Albite ± Kaolinite ± Polygorskite ± Zeolite (Gismondine) ± Garnet (Ti-rich Andradite)</td>
</tr>
<tr>
<td>3187.5 m*</td>
<td>Foliated Phyllosilicate-rich Matrix</td>
<td>Claystone and cataclasite; Extensive microbrecciation with multiple generations of carbonate-filled to clay-rich intraclasts that mostly predate surrounding foliated cataclasite; Fractures filled with opaque groundmass form boundaries parallel to cataclasite foliation direction and connect to multiple high-angle to perpendicular zones of injected cataclasite surrounded by opaque ground mass; several clasts are rimmed by recrystallized and/or reworked cataclasite</td>
<td>Quartz + Kaolinite + Magnetite + Albite + Palygorskite + Calcite = Garnet (Ti-rich Andradite)</td>
</tr>
<tr>
<td>3189 m</td>
<td>Finely laminated Siltstone and Shale Clast and/or Layer</td>
<td>Cataclasite with opaque groundmass surrounds altered and reworked cataclastite fragments containing intraclast veins; numerous anastomosing to stylolitic opaque fractures bound multiple layers/generations of cataclasite</td>
<td>Quartz + Magnetite + Albite = Palygorskite = Calcite = Zeolite (Gismondine) = Lizardite = Garnet</td>
</tr>
<tr>
<td>3190.1 m*</td>
<td>Finely laminated Siltstone and Shale Clast and/or Layer</td>
<td>Similar to sample 3189 m above; Extensive vein development and alteration within siltstone clast</td>
<td>Smectite (Nontronite) + Magnetite + Albite ± Kaolinite ± Palygorskite</td>
</tr>
<tr>
<td>3191.5 m*</td>
<td>Foliated Phyllosilicate-rich Matrix</td>
<td>Opaque pressure solution seams form weak fabric within clast; localized injection of fine-grained opaque groundmass/cataclasite.</td>
<td>Quartz + Calcite + Kaolinite + Albite ± Garnet (Ti-rich Andradite + Almandine) ± Palygorskite ± Carbon</td>
</tr>
<tr>
<td>3192.7 m*</td>
<td>Black Cataclasite to Ultracataclasite</td>
<td>Ultrafine sheared black matrix rock with quartz porphyroclasts and larger lens-shaped clasts of cataclasite with crack-seal (?) calcite veins</td>
<td>Quartz + Carbon + Magnetite + Palygorskite + Mica ± Illite ± Lizardite ± Cr-oxide + hydroxides ± Ni-oxide ± hydroxides ± Garnet (Almandine)</td>
</tr>
<tr>
<td>3192.7 m*</td>
<td>Fracture Surface Coating</td>
<td>Ultrafine multilayered sheared matrix with quartz porphyroclasts</td>
<td>Quartz + Mica + Carbon (Graphite?) ± Chrysotile = Magnetite ± Palygorskite</td>
</tr>
<tr>
<td>3193 m</td>
<td>Black Cataclasite to Ultracataclasite</td>
<td>Ultrafine dark altered groundmass surrounding altered rounded to subrounded grains of similar composition; quartz porphyroclasts and isolated amygdules of unknown composition are visible</td>
<td>Quartz + Magnetite ± Mica ± Garnet (Almandine) ± Palygorskite</td>
</tr>
<tr>
<td>3193.9 m*</td>
<td>Foliated Cataclasite</td>
<td>Ultrafine alternating black to dark brown to light brown (pp) foliated to brecciated groundmass cross cut by numerous vein cycles</td>
<td>Quartz + Magnetite + Albite ± Chlorite-Serpentine ± Sepiolite ± Nontronite ± Fe-Ni-oxides</td>
</tr>
<tr>
<td>3194.6 m</td>
<td>Black Cataclasite to Ultracataclasite</td>
<td>Similar to 3193.9 m</td>
<td>Quartz + Magnetite + Montmorillonite-Illite + Calcite ± Anorthite ± Titanite</td>
</tr>
<tr>
<td>3195.8 m</td>
<td>Black Cataclasite to Ultracataclasite</td>
<td>Ultrafine cataclasite, less foliated than similar rocks above; extensive irregular fracture geometries surrounding clasts of microbreccia and reworked foliated cataclasite</td>
<td>Quartz + Opal-A + Sepiolite ± Allevardite ± Zeolite (Stilbite) ± Fe-oxide</td>
</tr>
<tr>
<td>3196.28 m</td>
<td>Black Cataclasite to Ultracataclasite</td>
<td>No thin section available</td>
<td>Quartz + Montmorillonite + Albite ± Zeolite (Analcime?) ± Calcite ± Lizardite ± Saponite ± Ni-oxide-hydroxide</td>
</tr>
<tr>
<td>3197.7 m*</td>
<td>Foliated Fault Gouge (SDZ)</td>
<td>Fine-grained foliated matrix with sandstone, serpentine, and garnet porphyroclasts; several porphyroclasts are mantled with opaque oxides or clays forming eye-shaped to bow-tie flow patterns suggestive of high-shear; anastomosing foliated gouge exhibits well-developed S-C fabric</td>
<td>Quartz + Montmorillonite + Albite + Nontronite + Nickel-oxide-hydroxide + Serpentine (Lizardite) ± Zeolite (Dickite) ± Magnetite</td>
</tr>
<tr>
<td>3197.9 m</td>
<td>Foliated Fault Gouge (SDZ)</td>
<td>Similar to 3197.72 m above with a greater variety of porphyroclast compositions</td>
<td>Quartz + Montmorillonite + Albite + Nontronite + Nickel-oxide-hydroxide + Serpentine (Lizardite) ± Zeolite (Dickite) ± Magnetite</td>
</tr>
<tr>
<td>Depth (m)</td>
<td>Sample Code</td>
<td>Description</td>
<td>Comment</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>3197.9 m</td>
<td>GR3S8B</td>
<td>Serpentinite Clast (SDZ)</td>
<td>Fine foliated serpentine, matrix is quartz-phyllite and phyllosilicate-rich gouge matrix.</td>
</tr>
<tr>
<td>3198.7 m</td>
<td>GR3S1</td>
<td>Finely Laminated Sheared Siltstone and Shale</td>
<td>Siltstone clast is cut by discrete carbonate veins that parallel mm-thick zones of cataclasis; serpentinite forms central vein filling of several microfractures.</td>
</tr>
<tr>
<td>3205 m</td>
<td>GR4S1</td>
<td>Banded Siltstone</td>
<td>Subangular to angular grains within silt-rich layers; detrital serpentinite grains; quartz-rich matrix; abundant aragonite.</td>
</tr>
<tr>
<td>3205 m</td>
<td>GR3S2</td>
<td>Fracture Surface Coating</td>
<td>Subangular to angular silty layers alternating with sheared clayey matrix; calcite and aragonite in veins.</td>
</tr>
<tr>
<td>3205.6 m</td>
<td>GR4S4</td>
<td>Sheared Siltstone and Shale</td>
<td>Shear localization in clay-rich zones with altered fibrous minerals parallel to open extensional fractures; calcite microveins crosscut fine laminations.</td>
</tr>
<tr>
<td>3206 m</td>
<td>GR4S4</td>
<td>Foliated Fault Gouge (CDZ)</td>
<td>Foliated fault gouge; Carbon ± Al-Hydroxide (Gibbsite?)</td>
</tr>
<tr>
<td>3209.9 m</td>
<td>GR4S6B</td>
<td>Sheared Siltstone</td>
<td>Calcite ± Quartz ± Opal-A + Nontronite + Albite + Serpentine (Antigorite + Lizardite) ± Magnesite ± Cr-oxide-hydroxide.</td>
</tr>
<tr>
<td>3301.2 m</td>
<td>GR5S1</td>
<td>Sheared Silty Shale</td>
<td>Silty shale dissected by &gt;3 mm-thick calcite vein containing at least 3 cycles of veins parallel to fracture surface that offset another series of mm-to micro veins running at moderate to high angles.</td>
</tr>
<tr>
<td>3301.7 m</td>
<td>GR5S2</td>
<td>Massive Siltstone</td>
<td>Etched grain boundaries in quartz support dissolution processes; calcite microveins and disseminated throughout fine clayey matrix; microfaults with cataclastite marked by opaque oxides/hydroxides.</td>
</tr>
<tr>
<td>3302.6 m</td>
<td>GR5S3</td>
<td>Massive Siltstone</td>
<td>Similar to 3301.7 m above.</td>
</tr>
<tr>
<td>3303.6 m</td>
<td>GR5S4</td>
<td>Foliated Phyllosilicate-rich Matrix</td>
<td>Fine silky shale matrix cut by few veins, faint opaque oxide stained or white-vein filled microfractures are visible.</td>
</tr>
<tr>
<td>3304.6 m</td>
<td>GR5S5</td>
<td>Foliated Phyllosilicate-rich Matrix</td>
<td>Siltstone interlayered with massive, irregularly fractured claystone containing reduction spots; Large irregular pyrite grain is present; microfaults are visible within clay-rich clast.</td>
</tr>
<tr>
<td>3305.1 m</td>
<td>GR5S7</td>
<td>Foliated Phyllosilicate-rich Matrix</td>
<td>Interlayered foliated siltstone and massive claystone with faint cataclastite and microbrecciation visible.</td>
</tr>
<tr>
<td>3307.1 m</td>
<td>GR6S4</td>
<td>Foliated Phyllosilicate-rich Matrix</td>
<td>Finely laminated siltstone alternating with claystone; numerous hairline fractures cut oblique to lamination direction; a few opaque stylolitic fractures run parallel to the lamination direction.</td>
</tr>
</tbody>
</table>
3311.1 m [10863.2 ft]  
**GR6S5**

**Foliated Phyllosilicate-rich Matrix**

Highly altered clay-rich clast dissected by numerous carbonate and zeolite(?) veins surrounded by fine-grained massive clast; reworked clasts and serpentinite form irregular fabric

Quartz + Calcite ± Anorthite ± Opal-A ± Serpentine (Lizardite) ± Carbon ± Cr-oxide-hydroxide ± Ni-oxide-hydroxide ± Zeolite

---

3312.1 m* [10866.5 ft]  
**GR6S6**

**Foliated Phyllosilicate-rich Matrix**

Finely laminated siltstone offset by numerous calcite-filled microfaults and cut by mm-scale calcite veins with well developed crystal structure

Quartz + Opa ± Albite + Mg-oxide + Ti-Al-Silicate ± Kaolinite ± Lizardite ± Calcite ± Zeolite

---

*Indicates corresponding X-ray florescence sample listed in Table 3.

**B)**

<table>
<thead>
<tr>
<th>Sample Location</th>
<th>Geologic Feature Sampled</th>
<th>XRD Mineralogical Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>3190.6 m [10468 ft] GR1S5</td>
<td>Foliated Siltstone-Shale Cataclasite</td>
<td>Quartz ± Plagioclase (Albite) ± mixed layer clays (I/S?) ± Calcite (?) ± Chlorite</td>
</tr>
<tr>
<td>3192.3 m [10473.5 ft] GR2S2</td>
<td>Foliated Siltstone-Shale Cataclasite</td>
<td>Quartz ± Plagioclase (Albite) ± Illite (phengite) ± Calcite + Chlorite ± mixed layer clays (I/S?)</td>
</tr>
<tr>
<td>3196.5 m [10487.1 ft] GR2S7</td>
<td>Foliated Fault Gouge (SDZ)</td>
<td>Quartz ± Plagioclase (Albite) ± Calcite ± Serpentine ± Chlorite-Smectite (Corrensite?)</td>
</tr>
<tr>
<td>3196.9 m [10488.8 ft] GR2S7</td>
<td>Sheared Serpentine-bearing Fault Gouge (SDZ)</td>
<td>Serpentine (Lizardite ± Chrysotile) + Quartz ± Calcite + Chlorite-Smectite (Corrensite?)</td>
</tr>
<tr>
<td>3197.2 m [10489.4 ft] GR2S7</td>
<td>Foliated Fault Gouge (SDZ)</td>
<td>Quartz ± Plagioclase (Albite) ± Calcite ± Illite (phengite?) ± Chlorite-Smectite (Corrensite?) ± Serpentine?</td>
</tr>
<tr>
<td>3197.7 m [10491.3 ft] GR2S6</td>
<td>Serpentine Porphyroclast (SDZ)</td>
<td>Serpentine (Lizardite ± Chrysotile)</td>
</tr>
<tr>
<td>3206.7 m [10815.9] GR4S3</td>
<td>Foliated Fault Gouge (CDZ)</td>
<td>Quartz ± Calcite ± Chlorite + interlayered Chlorite-Smectite (Corrensite?) clays ± Smectite ± Chlorite ± Serpentine</td>
</tr>
<tr>
<td>3207.1 m [10817.2] GR4S3</td>
<td>Foliated Fault Gouge (CDZ)</td>
<td>Quartz ± Calcite + Chlorite + interlayered Chlorite-Smectite (Corrensite?) clays ± Smectite ± Chlorite ± Serpentine</td>
</tr>
<tr>
<td>3301.3 m [10831.2] GR5S2</td>
<td>Sheared Siltstone and Mudstone</td>
<td>Quartz ± Plagioclase (Albite) ± Illite (phengite) ± Calcite + Chlorite ± mixed layer clays (I/S?)</td>
</tr>
<tr>
<td>3308.6 m [10855.7] GR6S2</td>
<td>Sheared and Fractured Claystone/Mudstone/Siltstone</td>
<td>Quartz ± Plagioclase (Albite) ± Illite (phengite) ± Calcite + Chlorite ± mixed layer clays</td>
</tr>
<tr>
<td>3310.3 m [10860.5] GR6S4</td>
<td>Sheared and Fractured Claystone/Mudstone/Siltstone</td>
<td>Quartz ± Plagioclase (Albite) ± Illite (phengite) ± Calcite + Chlorite ± mixed layer clays</td>
</tr>
</tbody>
</table>
Table A3. Whole-rock geochemistry of selected SAFOD Phase 3 samples: A) Unormalized Major Elements (Weight %); B) Unnormalized Trace Elements (ppm).

### A)

<table>
<thead>
<tr>
<th>Sample Depth</th>
<th>FeO*</th>
<th>MgO</th>
<th>TiO₂</th>
<th>Ga</th>
<th>Nd</th>
<th>Cu</th>
<th>Pb</th>
<th>Th</th>
<th>La</th>
<th>Ni</th>
<th>Y</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>3142 m</td>
<td>0.042</td>
<td>220</td>
<td>173</td>
<td>20</td>
<td>15</td>
<td>7.7</td>
<td>2.2</td>
<td>7.7</td>
<td>1.1</td>
<td>7.7</td>
<td>6</td>
<td>7.7</td>
</tr>
<tr>
<td>3144.6 m</td>
<td>2.70</td>
<td>5.33</td>
<td>0.64</td>
<td>1.05</td>
<td>4.38</td>
<td>3.30</td>
<td>2.77</td>
<td>3.72</td>
<td>6.41</td>
<td>1.77</td>
<td>7.7</td>
<td>6.41</td>
</tr>
<tr>
<td>3146.6 m</td>
<td>0.042</td>
<td>1.05</td>
<td>0.028</td>
<td>0.029</td>
<td>0.023</td>
<td>0.047</td>
<td>0.128</td>
<td>0.087</td>
<td>0.068</td>
<td>0.150</td>
<td>0.177</td>
<td>0.068</td>
</tr>
<tr>
<td>3148.6 m</td>
<td>1.06</td>
<td>2.26</td>
<td>0.35</td>
<td>0.36</td>
<td>1.57</td>
<td>1.59</td>
<td>2.06</td>
<td>2.32</td>
<td>21.70</td>
<td>1.70</td>
<td>0.74</td>
<td>3.64</td>
</tr>
<tr>
<td>3150.6 m</td>
<td>1.87</td>
<td>2.20</td>
<td>2.31</td>
<td>1.75</td>
<td>0.68</td>
<td>0.68</td>
<td>1.09</td>
<td>4.0</td>
<td>18.18</td>
<td>1.90</td>
<td>5.88</td>
<td>24.90</td>
</tr>
<tr>
<td>3152.6 m</td>
<td>3.09</td>
<td>3.03</td>
<td>3.24</td>
<td>3.57</td>
<td>1.17</td>
<td>0.97</td>
<td>0.75</td>
<td>1.50</td>
<td>3.31</td>
<td>1.70</td>
<td>1.30</td>
<td>10.18</td>
</tr>
<tr>
<td>3154.6 m</td>
<td>4.81</td>
<td>4.63</td>
<td>3.36</td>
<td>4.17</td>
<td>2.81</td>
<td>2.57</td>
<td>3.28</td>
<td>1.45</td>
<td>0.43</td>
<td>2.33</td>
<td>1.53</td>
<td>0.19</td>
</tr>
<tr>
<td>3156.6 m</td>
<td>0.153</td>
<td>0.342</td>
<td>0.038</td>
<td>0.061</td>
<td>0.281</td>
<td>0.251</td>
<td>0.177</td>
<td>0.201</td>
<td>0.105</td>
<td>0.180</td>
<td>0.227</td>
<td>0.084</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>

### B)

<table>
<thead>
<tr>
<th>Sample Depth</th>
<th>FeO*</th>
<th>MgO</th>
<th>TiO₂</th>
<th>Ga</th>
<th>Nd</th>
<th>Cu</th>
<th>Pb</th>
<th>Th</th>
<th>La</th>
<th>Ni</th>
<th>Y</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>3142 m</td>
<td>0.042</td>
<td>220</td>
<td>173</td>
<td>20</td>
<td>15</td>
<td>7.7</td>
<td>2.2</td>
<td>7.7</td>
<td>1.1</td>
<td>7.7</td>
<td>6</td>
<td>7.7</td>
</tr>
<tr>
<td>3144.6 m</td>
<td>2.70</td>
<td>5.33</td>
<td>0.64</td>
<td>1.05</td>
<td>4.38</td>
<td>3.30</td>
<td>2.77</td>
<td>3.72</td>
<td>6.41</td>
<td>1.77</td>
<td>7.7</td>
<td>6.41</td>
</tr>
<tr>
<td>3146.6 m</td>
<td>0.042</td>
<td>1.05</td>
<td>0.028</td>
<td>0.029</td>
<td>0.023</td>
<td>0.047</td>
<td>0.128</td>
<td>0.087</td>
<td>0.068</td>
<td>0.150</td>
<td>0.177</td>
<td>0.068</td>
</tr>
<tr>
<td>3148.6 m</td>
<td>1.06</td>
<td>2.26</td>
<td>0.35</td>
<td>0.36</td>
<td>1.57</td>
<td>1.59</td>
<td>2.06</td>
<td>2.32</td>
<td>21.70</td>
<td>1.70</td>
<td>0.74</td>
<td>3.64</td>
</tr>
<tr>
<td>3150.6 m</td>
<td>1.87</td>
<td>2.20</td>
<td>2.31</td>
<td>1.75</td>
<td>0.68</td>
<td>0.68</td>
<td>1.09</td>
<td>4.0</td>
<td>18.18</td>
<td>1.90</td>
<td>5.88</td>
<td>24.90</td>
</tr>
<tr>
<td>3152.6 m</td>
<td>3.09</td>
<td>3.03</td>
<td>3.24</td>
<td>3.57</td>
<td>1.17</td>
<td>0.97</td>
<td>0.75</td>
<td>1.50</td>
<td>3.31</td>
<td>1.70</td>
<td>1.30</td>
<td>10.18</td>
</tr>
<tr>
<td>3154.6 m</td>
<td>4.81</td>
<td>4.63</td>
<td>3.36</td>
<td>4.17</td>
<td>2.81</td>
<td>2.57</td>
<td>3.28</td>
<td>1.45</td>
<td>0.43</td>
<td>2.33</td>
<td>1.53</td>
<td>0.19</td>
</tr>
<tr>
<td>3156.6 m</td>
<td>0.153</td>
<td>0.342</td>
<td>0.038</td>
<td>0.061</td>
<td>0.281</td>
<td>0.251</td>
<td>0.177</td>
<td>0.201</td>
<td>0.105</td>
<td>0.180</td>
<td>0.227</td>
<td>0.084</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>
San Francisco
Los Angeles
SAFOD
~ 48 mm/yr
1989 M 6.9
1906 M 7.8
1857 M 7.9
2004;1966 M 6.0
Pilot Hole

Boxed area highlights area of Phase III coring intervals between ~ 3141 to ~ 3313 m MD shown in Fig. 1c

Cross Section N 45 E

Geologic Plate Boundary

SDZ 3192 m MD
CDZ 3302 m MD
3413 m MD

Hole E Runs (1,2,3)
Hole G Runs (1,2,3)
Hole G Runs (4,5,6)
Damage Zone

Hole G Runs (4,5,6)

N 45 East (m)

True Vertical Depth (K.B., m)

1150 1200 1250 1300 1350 1400

- 2550 - 2600 - 2650 - 2700 - 2750 - 2800

1150 1250 1350

- 2600 - 2700 - 2800

1200 1300 1400

- 2750 - 2650

1200 1300 1400

- 2550

- 2550 - 2700 - 2800

- 2600 - 2700 - 2800

Hole G Runs (4,5,6)

Damage Zone

SDZ 3192 m MD
CDZ 3302 m MD
3413 m MD

Hole E Runs (1,2,3)

Hole G Runs (1,2,3)

Hole E Runs (1,2,3)

SDZ

CDZ

Low Velocity Zone (LVZ)

Geologic Plate Boundary

3157 m MD
~ 3157 m MD

1920 m MD

~ 3998 m MD

arkosic sandstones ± siltstone
sandstones, siltstones, mudstones, shales

Boxed area highlights area of Phase III coring intervals between ~ 3141 to ~ 3313 m MD shown in Fig. 1c

4000 m MD

3000 m MD

3157 m MD

3192 m MD

3302 m MD

3413 m MD

Vp

Vs

4

5

2

2.5

3

Low Velocity Zone (LVZ)

3413 m MD

~ 1920 m MD

~ 3998 m MD

~ 3998 m MD

~ 3998 m MD
Lithologic/Structural Units of Phase 3 Core

- Lithic arkose
- Feldspathic Arkose
- Silty black shale/mudstone
- Foliated siltstone-shale with block-in-matrix fabric
- Black cataclasite to ultracataclasite
- Siltstone with carbonate veining
- Banded siltstone
- Massive graywacke
- Cataclasite with veins
- Serpentine-bearing clay gouge
- Serpentinite

Deformation Features
- Block-in-matrix fabric
- Foliated gouge defined by penetrative slip surfaces
- Black fault rock ~ cataclasite to ultracataclasite
- Clay gouge
- Fractured zone

Additional Features
- Region of anomalously low velocity or damage zone (after Zoback et al., 2010)
- Mud gas-rich zone (after Weirsberg & Erzinger, 2008)
- Core images shown in Figure 3
- Whole-rock Samples: Results shown in data tables for XRD (Table 2) and XRF (Table 3)
- Thin-section Sample Locations

Volume Fraction of Each Unit

<table>
<thead>
<tr>
<th>Unit Description</th>
<th>Volume Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block-in-matrix fabric</td>
<td>4%</td>
</tr>
<tr>
<td>Foliated gouge defined by penetrative slip surfaces</td>
<td>3.3%</td>
</tr>
<tr>
<td>Black fault rock ~ cataclasite to ultracataclasite</td>
<td>1%</td>
</tr>
<tr>
<td>Clay gouge</td>
<td>3%</td>
</tr>
<tr>
<td>Fractured zone</td>
<td>42.5%</td>
</tr>
<tr>
<td>Siltstone with carbonate veining</td>
<td>16.6%</td>
</tr>
<tr>
<td>Banded siltstone</td>
<td>14%</td>
</tr>
<tr>
<td>Massive graywacke</td>
<td>6%</td>
</tr>
<tr>
<td>Cataclasite with veins</td>
<td>3%</td>
</tr>
<tr>
<td>Serpentine-bearing clay gouge</td>
<td>7.6%</td>
</tr>
<tr>
<td>Serpentinite</td>
<td>0.7%</td>
</tr>
</tbody>
</table>

Whole-rock Samples: Results shown in data tables for XRD (Table 2) and XRF (Table 3)
**Lithologic/Structural Unit*** | **Features** | **Quartz** | **Feldspar** | **Serpentine (Lizardite ± Chrysotile)** | **Garnet** | **Magnetite** | **Carbonates** | **Zeolites** | **Illite** | **Smectite (Nontronite)** | **Smectite (Saponite)** | **Ni-oxides/hydroxides** | **Cr-oxides/hydroxides** | **Carbonates** |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
~3141 | Brittle Deformation | Moderately fractured zone with system of iron-oxide stained discrete fractures; irregular volcanic lithics; small faults with mm-cm scale thickness and offset | ![Image](image1.png) | ![Image](image2.png) | ![Image](image3.png) | ![Image](image4.png) | ![Image](image5.png) | ![Image](image6.png) | ![Image](image7.png) | ![Image](image8.png) | ![Image](image9.png) | ![Image](image10.png) | ![Image](image11.png) | ![Image](image12.png) | ![Image](image13.png) |
~3152 | | Sheared black silty shale | ![Image](image14.png) | ![Image](image15.png) | ![Image](image16.png) | ![Image](image17.png) | ![Image](image18.png) | ![Image](image19.png) | ![Image](image20.png) | ![Image](image21.png) | ![Image](image22.png) | ![Image](image23.png) | ![Image](image24.png) | ![Image](image25.png) | ![Image](image26.png) |
~3187 | Brittle - Distributed Deformation | Fracture intensity increases with system of discrete slickenlined slip surfaces; cataclasite bands; local stylolytic seams | ![Image](image27.png) | ![Image](image28.png) | ![Image](image29.png) | ![Image](image30.png) | ![Image](image31.png) | ![Image](image32.png) | ![Image](image33.png) | ![Image](image34.png) | ![Image](image35.png) | ![Image](image36.png) | ![Image](image37.png) | ![Image](image38.png) | ![Image](image39.png) |
~3200 | Brittle - Cataclastic-Ultracataclastic | Sheared fine-grained interval comprised of black injection-like staining & ≤ cm-scale thick zones of cataclasite to ultra-cataclasite; extensive veining at the ≤ mm scale | ![Image](image40.png) | ![Image](image41.png) | ![Image](image42.png) | ![Image](image43.png) | ![Image](image44.png) | ![Image](image45.png) | ![Image](image46.png) | ![Image](image47.png) | ![Image](image48.png) | ![Image](image49.png) | ![Image](image50.png) | ![Image](image51.png) | ![Image](image52.png) |
~3295 | Brittle - Deforming Zone (SDZ) | Serpentinite-bearing fault gouge | ![Image](image53.png) | ![Image](image54.png) | ![Image](image55.png) | ![Image](image56.png) | ![Image](image57.png) | ![Image](image58.png) | ![Image](image59.png) | ![Image](image60.png) | ![Image](image61.png) | ![Image](image62.png) | ![Image](image63.png) | ![Image](image64.png) | ![Image](image65.png) |
~3313 | Brittle-Distributed Deformation | Block-in-matrix fabric: pinch-and-swell shaped to phacoidal clasts with veins are embedded within a phyllosilicate-rich matrix | ![Image](image66.png) | ![Image](image67.png) | ![Image](image68.png) | ![Image](image69.png) | ![Image](image70.png) | ![Image](image71.png) | ![Image](image72.png) | ![Image](image73.png) | ![Image](image74.png) | ![Image](image75.png) | ![Image](image76.png) | ![Image](image77.png) | ![Image](image78.png) |

---

*Refer to Figure 2 for key to lithologic units and Table A1 for detailed descriptions.*
Foliated Phyllosilicate-Rich

Cataclasite - Ultracataclasite

Foliated Fault Gouge (SDZ)

Images:
- (a) at 3187.2 m
- (b) at 3189.7 m
- (c) at 3192.8 m
- (d) at 3192.8 m
- (e) at 3194.8 m
- (f) at 3196.1 m
- (g) at 3197.7 m
- (h) at 3197.7 m
Mode I fracture surface
calcite veining
slip surface
Hole G Run 2 Section 7
Top Core Features
3196.4 m 3196.7 m 3197.0 m
Foliated Fault Gouge
Sheared Black Rock
Foliated Fault Gouge with Clasts
Foliated Fault Gouge
with Clasts
Sheared Black Rock
Clay Gouge
Finer Clay Gouge
Fine Clay Gouge
Serpentinite
3197.1 m
3197 m
xp
Foliated Fault Gouge
Foliated Fault Gouge (CDZ)

3297.5 m

3197.8 m