TJ³Sat – The First Satellite Developed and Operated by High School Students

Carlos G. Niederstrasser
Orbital Sciences Corporation

Alishan Hassan, Jake Hermle, Adam Kemp, Alexander McGlothlin, Devan Samant, Joel Stein
Thomas Jefferson High School for Science and Technology

SSC09-XII-5
23rd AIAA/USU Small Satellite Conference
August 2009
• **Key to Success** – Do not simply start a spacecraft program; Create a curriculum around the concept

• TJHSST established a system engineering course aimed at Sophomores, Juniors, Seniors
 ➢ Introduce the art of engineering to the students
 ➢ Bring the students together in a collaborative team environment
 ➢ Center efforts around a large scale project (build a satellite!!!)

• Focus the curriculum on both technique and process
 ➢ Formulate potential missions and justify their validity
 ➢ Bring in industry experts to provide insight and answer questions
 ➢ Follow proper system engineering techniques – establish requirements, create budgets, decompose functionality into subsystems

"We want students getting their feet wet and muddy doing fun things with science in a vigorous way“ – Principal Evan Glazer
The First Satellite Developed and Operated by High School Students

TJ³Sat
Project Team

- Project team structure was developed by students with guidance from advisor and industry mentors
- The advisor/teacher serves as the program director
- The technical student lead is the systems engineer
- Subsystem leaders have been on project 2-3 years and mentor first year students

- Subsystem breakdown established by students to fit their working style and expertise
 - Subsystem teams are not the traditional teams seen on most student projects
 - Telecom – RF Communications
 - C&DH – Development of software (both ground and flight)
 - Power – power regulation, solar panels, batteries
 - Sensors & Instrumentation – spacecraft telemetry
 - Integration, Test, and Launch
 - Publicity – web site and outreach
TJ³Sat Mission

- Create resources to promote the aerospace industry within K-12
 - All effort has been documented and will be published online
 - Hardware design and software code to be released open source

- Allow public, especially students to interact with TJ³Sat primary payload
 - Elementary student sends “happy birthday” to classmates
 - High school teams receive an out-of-this-world cheer
 - Students use the satellite to deliver messages around the world

- Web site will also publish all TJ3Sat telemetry (temperatures, voltages, currents)
 - Can be used in Math and Physics classes to create real-world simulations of physical systems

- *Primary Payload* – TTL-03 Voice Synthesizer
TJ³Sat Concept of Operations

- Simple command and telemetry system
- Remote operation of voice synthesizer through the internet
- Voice recordings can be picked up using a handheld amateur radio
Communications & Data Handling

- Based on the Pumpkin Cubesat Kit FM430 flight module
- Texas Instruments MSP430 primary processor
- All software, including OS, custom-written from scratch
- Primary emphasis of software on telemetry collection and control of voice synthesizer payload

Sensors and Instrumentation

- Collects spacecraft state-of-health telemetry
- All telemetry collected using 1-Wire® interface
 - DS2438 – Smart Battery Monitor
 - DS2406 – Switch with output sensor for antenna deployment
 - DS18b20 – Temperature Sensor
- Telemetry collection rate can be varied for different purposes
 - i.e. use solar panel current for attitude determination
Telecom

● Stensat Transceiver
 ➢ Radio flight heritage on KatySat but custom-designed for TJ³Sat.
 – Students took active role on design of flight hardware
 ➢ Receiver operates via AFSK AX.25 1200 baud
 ➢ Transmitter operates via AFSK AX.25 1200 baud and FSK AX.25 9600 baud
 ➢ 1 Watt power output
 ➢ 4 Nitinol antennas deploy via heated resistor and nylon wire (UV will deteriorate wire if necessary)

● Groundstation (constructed primarily via donations from AMSAT)
 ➢ Kenwood TM-D700A radio
 ➢ Receiver and antennas located on school grounds
 ➢ Custom dual side band antennas with polarity switching

● Frequency Allocation
 ➢ Downlink: 437.320 MHz
 ➢ Uplink: 145.980 MHz
Power

- Topology based on schematic design supplied by Stensat, LLC
- Component selection carried out by students based on research and mentor recommendation
- All boards designed in-house and prototyped in-house using LPKF s42 PCB mil
- Prototypes tested and design meets all requirements

- Solar Panels – Six panels each with 18 Spectrolab TASC cells
 - Simple, low component design
 - Shunt regulator design to reduce excess power

- Battery Board – Four 1.2V NIMH cells supply 4.8v to bus
Integration, Test, and Launch

- Engineering model completed for initial testing
- All testing to be compliant with CalPoly requirements
 - Recently received TestPod and testing will begin this fall
- Preliminary testing to be conducted at TJ campus
 - Testing equipment includes 10^{-4} tor Thermal Vac, Vibration table, Oscilloscopes and reflow soldering capability
- Flight testing to be conducted at Orbital campus
 - Construction of flight ready hardware and circuitry
 - Testing of flight ready hardware
Learning Lessons Early in a Career

When asked about the important lessons they have learned, the students working TJ³Sat are particularly insightful:

- The importance of the engineering design process, including design reviews
- Good communication skills are critical. Standing in front of an audience of mentors and peers is daunting
- Mistakes are the most powerful and effective learning tool
- Electrostatic discharge can kill a solar panel
- Problem solving abilities are essential to any good system engineer
- Program continuity and transition between school years is a challenge

A “learn by doing” class like this has proven its worth over time and has taught students new skills and concepts that could not have been taught by a teacher.
Can my High School do a Cubesat?

- Can my High School design and build their own satellite rather than simply be involved as a recipient of an “outreach” program?

Conventional wisdom: NO

- Lacking knowledge base
- Insufficient resources
- Unqualified faculty

Visionary Response: YES

- Provide a lab-based curriculum that accommodates design projects
- Allow students to take the “same” class multiple years
- Create a structured program that focuses on the design process
- Use existing standards and COTS components
- Simplify the process
- Provide solid mentoring
Bringing It All Together

● Building a satellite is a great catalyst to instill students with a sense of discipline, teamwork, and accomplishment

● Systems Engineering is not just a discipline, it is also process, coordination, and continuous learning

● The students are learning important lessons in the most formative years of their future careers

SmallSat 2009 – Stay tuned for an update of TJ³Sat’s orbital operations!
Acknowledgements

● This project would not be possible without the involvement of numerous individuals and organizations. First and foremost, special thanks to Jason Ethier, TJHSST alumnus and Orbital intern, who had a vision and the motivation to make it a reality.

● Additional thanks are owed to the leadership of THJSST, including Adam Kemp and Dr. Anthony Wu and executive support from Orbital, including Dave W. Thompson, Antonio Elias, and Ray Crough. Providing their insight to the students has been an extensive team of mentors including Bob Bruninga (Naval Academy), Hannah Goldberg (JPL), Kevin Doherty and Ivan Galysh (Stensat LLC), John Brunschwyler (Orbital) and over 15 other Orbital employees.

● Orbital, AmSat, and the FAA donated a variety of equipment and flight hardware.

● Special Thanks to Matt Green, HaoQi Lee, Ken O’Keefe, Alexander McGlothlin, and Jeffery McGlothlin, for providing the pictures used in this presentation.