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ABSTRACT

Finite-Time Control Strategies for Rendezvous and Proximity Operations

by

John Tamotsu Akagi, Doctor of Philosophy

Utah State University, 2024

Major Professor: Matthew W. Harris, Ph.D.
Department: Mechanical and Aerospace Engineering

Finite-time control laws guarantee a system will converge to an equilibrium point at

some finite time, but often lack the ability to incorporate additional objectives. The goal

of this dissertation is to develop strategies for finite-time control so that the convergence

time, state, and control bounds can be considered while maintaining the convergence guar-

antees of the finite-time controller. Four different control approaches are examined in this

dissertation: model predictive control, common Lyapunov functions, backstepping, and

switching surfaces. For these approaches, the relationship between the tuning parameters

and the convergence time, state errors, and control usage is examined and then used to

design control laws that incorporate these objectives. For some approaches, explicit bounds

on control usage or convergence time are able to be determined while for other approaches,

optimization problems are developed which guide system behavior while still maintaining

the finite-time guarantees. For control laws which rely on a switching function, the hyper-

bolic tangent function is used to approximate the function and minimize control chatter.

The scaling factor used with the hyperbolic tangent is included as a tunable parameter and

is tuned to minimize chatter while still maintaining the desired system properties. The

tuned control laws are tested and verified in simulation using the spacecraft rendezvous

system, with both the simplified Clohessy-Wiltshire dynamics and the two-body nonlinear



iv

dynamics. The results show that the proper tuning of these finite-time control laws does

allow for control over these secondary objectives, and strategies are developed to guide the

tuning of each law.

(191 pages)
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PUBLIC ABSTRACT

Finite-Time Control Strategies for Rendezvous and Proximity Operations

John Tamotsu Akagi

One common metric to use when designing a controller is the time that the system will

take to reach the desired state. Unfortunately, many approaches to developing controllers

only guarantee that the system will approach, but not exactly reach, the desired state. This

can become a limitation in time-sensitive situations where rapid and complete convergence is

necessary. One group of control methods, known as finite-time control, does guarantee both

faster convergence and that the desired state will be reached, but often fails to define exactly

what time that will occur, how much control will be used to get there, and how much error

the system will experience before arriving. This dissertation examines a selection of control

laws which guarantee finite-time stability. Each control law has parameters which can be

selected, and the relationship between those parameters and the controller performance are

analyzed. This allows for easier and faster design of controllers which guarantee finite-time

convergence and also allows for other system behaviors to be designed for. The tuned control

laws were tested and validated in simulations which modeled the rendezvous between two

spacecraft.
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CHAPTER 1

INTRODUCTION

When designing a controller for a system, various competing factors must be consid-

ered so that the controller can meet design objectives while respecting computational and

physical constraints. For example, a spacecraft controller may leverage a simple, low-fidelity

model because the onboard computer lacks the computational power available to an Earth-

based computer. The controller may need to avoid saturating the actuators, preserve safe

distances between spacecraft, and complete tasks within an allotted time. A common trade-

off in control design is between control usage and system responsiveness. The challenge in

designing a controller is then balancing the different constraints and trade-offs such that

the overall objectives can be met. The goal of this dissertation is to develop strategies for

finite-time control so that the convergence time, state, and control bounds can be considered

while maintaining the convergence guarantees of the finite-time controller.

1.1 Stability Classifications

A controller’s primary goals are to stabilize a system operating point and drive the

system to that operating point. One common classification of controllers is based on the

time required to converge to the desired state. When the system approaches the desired

state in the limit as time goes to infinity, it is known as asymptotic convergence. When

there is some time when the system exactly reaches the desired state, it is known as finite-

time convergence. When the controller also stabilizes the operating point, the points are

then asymptotically stable and finite-time stable, respectively. Each of these classifications

can be further sub-divided based on the mathematical guarantees available.
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1.1.1 Asymptotic Stability

When the origin of a system is asymptotically stable, the state approaches zero in the

limit as time goes to infinity. As such, the system does not have a well-defined time at which

it “arrives” at the desired state. One approach to quantify how fast the system converges is

to measure how long it takes to reach certain benchmarks. Two common ones are the rise

time, which is the time it takes to reach some percentage of the final value, and the settling

time, which is when the system approaches and stays within some band of the final value

[1]. However, there are not universally agreed upon ranges for these and they can differ

between engineers.

Another approach is to bound the system response by a known function. This is

the approach to define exponential stability where the error function is bounded by an

exponentially decaying function. While the error still only approaches zero asymptotically,

exponential stability does guarantee a minimum rate for the decrease in error.

Despite the lack of a definitive convergence time, asymptotic control remains useful and

the most prevalent form of control in the literature. For example, state-space techniques,

such as pole placement and linear quadratic regulation, for control of linear time-invariant

systems asymptotically stabilize the origin. Additionally, the control input is simply a linear

combination of the system states so the control laws are simple to implement and execute

quickly. This may be satisfactory when having an easily implemented, stabilizing controller

is sufficient or when computing resources are limited.

1.1.2 Finite-Time Stability

In contrast to asymptotic stability, finite-time stability guarantees that the system

under consideration converges to the desired state in finite time. The relationship between

the initial conditions of the system and the convergence time is known as the settling-time

function. The relationship between the controller’s tuning parameters, the settling-time

function, and other performance metrics is often difficult to quantify. Thus, the design of
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finite-time controllers may prove difficult in practice. Addressing this difficulty is a key

element of this dissertation.

Sub-classifications of finite-time stability are available based on properties of the settling-

time function. Fixed-time controllers are finite-time stable but also have a known upper

bound on the settling-time function which allows for a known, worst-case convergence time.

Predefined-time controllers are a further subcategory where the upper bound for the settling-

time function is an explicit tuning parameter in the control law. Finally, prescibed-time

controllers have been developed which allow for precise selection of the settling time.

These additional refinements allow for a greater degree of understanding and con-

trol over the convergence time bound. However, with the exception of prescribed-time

controllers, this is subtly different from controlling the actual convergence time since the

bound could be conservative to the point that it does not actually provide any useful guid-

ance. Additionally, due to the focus on quantifying the convergence time, these controllers

generally do not give any weight to other considerations such as state or control constraints.

1.2 Finite-Time Approaches

There is no singular approach to designing finite-time controllers and each approach

has its own strengths, limitations, and applications. In general, these approaches build

on other asymptotically-stabilizing, nonlinear techniques but add additional elements that

provide the finite-time guarantees.

In [2–5], backstepping is used to develop the controller. Backstepping is an approach

where each individual state in a system is stabilized as if it were a subsystem with the input

being the following state. By repeating the process for each state, while maintaining the

stability requirements for each lower state, the overall system can be stabilized about the

origin. In addition to backstepping, [3] includes a tuning function which is used to set the

convergence time, resulting in a predefined-time controller, while [4,5] use adaptive elements

to estimate unknown parameters.

Input-to-state stability is a control approach where the magnitude of system states

are bounded by functions of the states, time, and control magnitude. By adjusting the
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requirements on the bounding function so that it goes to zero in finite-time, the input-to-

state stability approach can be used to guarantee finite-time stability [6]. This approach

was also used in [7], to generate fixed-time controllers, and [8] which examined impulsive

systems.

Another nonlinear control approach is based on the control changing as the system

reaches or crosses some set of designated surfaces. These arise naturally in minimum-time

problems [9,10] which results in the “bang-bang” control where the controls have a constant,

maximum magnitude but change directions as surfaces are reached. A related concept is

sliding mode control, where the controller forces the system to a surface which is known to

converge to the desired state. While in general, the convergence to the surface is finite-time,

the convergence along the surface is asymptotic. However, by modifying the surface, the

convergence along the surface can also be finite-time. This results in terminal sliding mode

control which was developed and explored in [11–13].

Prescribed-time control laws have their roots in proportional navigation control laws

which use time-varying control gains which approach infinity as the terminal time is reached.

The first instance of a specific prescribed-time control law was presented in [14] which

applied a time-varying control gain to the system and then designed a feedback law to

stabilize the new system. This was shown to be successful at stabilizing the system with a

bounded control when the system states were perfectly known.

One approach to prescribed-time control laws is to use a nonlinear function that goes

to infinity as the prescribed time is approach and then transform it to a function which

acts over an infinite time horizon. By controlling the performance of the transformed

system, the original system can then be made to achieve prescribed-time convergence. This

approach, known as time scaling, was introduced in [15] and expanded on in work such as [16]

which used a “generalized finite-time gain function” to convert a baseline, non-finite time

control law to a prescribed-time one. A more in-depth overview of prescribed-time control

can be found in [17] which details approaches and applications for prescribed-time control
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in single-input-single output systems, multi-input-multi-output systems, and distributed

control systems.

1.3 Finite-Time Applications

Finite-time controllers have been used in a variety of settings where the convergence

guarantees are desirable. In [18], a fixed-time controller is used with an autonomous vehicle

to bound the convergence time needed to obtain a desired trajectory, even in the presence

of disturbances or actuator faults. Similarly, in [19], a finite-time controller was developed

for an autonomous vehicle which used a fuzzy logic controller to address disturbances in

the system. For spacecraft applications, a sliding surface based, fixed-time controller was

developed for a spacecraft rendezvous scenario in [20] where the surface could be tuned to

obtain the desired convergence time. A spacecraft attitude control system was considered in

[21], which guaranteed predefined-time stability, and [22], which developed a predefined-time

controller for precision Mars landing missions. A list of additional finite-time applications

includes aircraft aerial refueling [23], output feedback tracking [24], chemical processes [25,

26], as well as many others referenced in [27].

For this work, a spacecraft rendezvous scenario is used as the model for which the finite-

time controllers are developed. Spacecraft rendezvous has been explored since the earliest

days of spaceflight [28,29] and been used in notable applications such as the Moon landings,

construction and operation of the International Space Station, and repair missions to the

Hubble Space Telescope. These techniques continue to be important as spacecraft constel-

lations become both larger and more common and access to space becomes cheaper and

more accessible. As a result, there are both more opportunities for spacecraft rendezvous

missions, such as on-orbit spacecraft servicing or debris removal, and a greater need for

spacecraft to be able to operate safely in close proximity to each other. These provide a

useful case where the faster convergence of finite-time controllers can be beneficial. By

rejecting perturbations faster than asymptotic controllers the overall safety of a spacecraft

formation is increased.
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For each scenario in this work, a spacecraft system is considered which consists of the

spacecraft being controlled and a reference orbit. The spacecraft uses one of the control

laws under consideration to maneuver to a designated state, generally the origin, relative to

the reference orbit. This approximates a spacecraft rendezvous problem where the “chaser”

spacecraft is controlled to rendezvous with a passive “target” spacecraft.

This approach can be expanded to include multiple spacecraft operating in formation

by, for example, defining trajectories or waypoints for each individual spacecraft to follow

using the finite-time control laws. While Chapter 4 does have the control being applied to

follow a trajectory, the other control laws only target a single state.

1.4 Dissertation Outline

This dissertation is divided into the following chapters.

1.4.1 Background

In Chapters 2 and 3, the necessary background material for this dissertation is pre-

sented. Chapter 2 presents an overview of stability definitions and the Lyapunov conditions

for stability. Additionally, a brief summary of some common linear and nonlinear control

design approaches are introduced.

Each control law developed in this dissertation is applied to a spacecraft rendezvous

problem for testing. Chapter 3 details the dynamics needed to understand this system from

both an inertial perspective, as viewed from the Earth, and a relative perspective, where the

motion of one spacecraft is viewed with respect to the other. Additionally, separation of the

in-plane and cross-track dynamics and their transformation to chained-integrator systems

through the Brunovsky transformation is detailed.
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1.4.2 Tube-Based Model Predictive Control

In Chapter 4, a robust version of model predictive control (MPC), known as tube-based

MPC [30], is developed for the spacecraft system. Standard MPC works by repeatedly solv-

ing an optimization problem at each control update step. The optimization problem gen-

erally considers the dynamics, state and control constraints, and an objective function that

weights how heavily the MPC should seek to minimize state errors and control usage and

finds the state and control trajectories that solve the problem. The first step of the control

solution is then applied to the system and the process repeats itself. Tube-based MPC adds

a linear feedback term to the standard MPC which, when properly selected, guarantees the

system will satisfy the state and control constraints in the presence of perturbations.

For this work, the perturbations of the spacecraft rendezvous problem are estimated and

then used to define a tube-based MPC which can keep the spacecraft within the allowable

bounds. It is then tasked with following a guidance trajectory which calculates a correction

maneuver over a fixed time horizon. This results in a system which has predefined-time

stability for the nominal system and is able to asymptotically reject perturbations.

1.4.3 Common Lyapunov Control

Chapter 5 develops a common Lyapunov control [31] which finds a common Lyapunov

function that stabilizes both the system of interest and a second reference system. This

Lyapunov function can then be used to calculate a control which guarantees finite-time

convergence. The connection between the common Lyapunov functions and the convergence

time and control bounds are developed. Then, a semidefinite program is developed that

finds a suitable set of Lyapunov functions while also minimizing the convergence time and

control bounds.
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1.4.4 Backstepping Control

A predefined-time backstepping control based on the work in [3] is presented in Chapter

6. This approach uses a tuning function that is selected to satisfy certain constraints at time

t = 0 and t = Tf where Tf is the predefined-time bound. Since any Tf can be chosen, and

the tuning function selected to satisfy the conditions, the upper bound on the convergence

for any initial condition is easily tunable.

Within these constraints, the tuning function can be selected to satisfy other require-

ments. This work examines the connection between the tuning function and the control

magnitude applied to the system. Then, the tuning function is selected in such a way to

minimize the maximum control magnitude while still satisfying the predefined-time condi-

tion.

1.4.5 Switching Surface Control

In Chapter 7, three different control laws based on switching surface principles are

examined. In each case, the control law is dependent on the system’s state relative to some

set of surfaces and the applied control changes as a function of these surfaces.

The first control law is based on the minimum-time solution [32, 33] to the double

integrator problem which results in the creation of a switching surface. The control law

then applies the maximum allowable control magnitude with the direction determined by

the system state, relative to the surface, and a single change in the direction when the

surface is reached. This work applies this solution to the spacecraft rendezvous problem

through the Brunovsky transformation. Additionally, the switching surface is optimized so

that the maximum control is minimized over the full rendezvous trajectory.

The second and third control laws [2, 34] in this chapter are similar to each other

in that they each drive the system towards, and keep it on, some surface which results

in the convergence of the system to the origin. The switching function associated with

this surface is, nominally, a discontinuous function but the practical benefits of using a



9

continuous function are shown. Additionally, the design space of allowable parameters and

the associated impact on the convergence time and control usage is explored.

1.4.6 Conclusions and Future Work

The final chapter, Chapter 8, summarizes the conclusions made in each of the preceding

chapters. Additionally, the possible avenues for future work which build on this dissertation

are discussed.

Code and Data Availability

The code used in this work can be found on GitHub [35] and a version archived at the

time of publication is available at [36]. The specific simulation data presented in the results

for this work are available at [37].
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CHAPTER 2

CONTROLS BACKGROUND

2.1 Stability Definitions

Consider a system of the form

ẋ = f(x) (2.1)

where f : D → Rn is the dynamics, D ⊂ Rn is an open neighborhood of the origin, and

f(0) = 0. The origin is then referred to as an equilibrium point.

We introduce various notions of stability according to the following definitions. Each

definition is assumed to only hold on some neighborhood of the equilibrium point resulting

in local stability of the appropriate type. If the definition holds for all x ∈ Rn then the

equilibrium point is globally stable.

Definition 2.1.1 ([38, Definition 2.1]). The equilibrium point of (2.1) is stable if for all

ε > 0 there exists some δ > 0 such that for all t ≥ t0,

∥x(t0)∥ < δ =⇒ ∥x(t)∥ < ε

The equilibrium point is unstable if it is not stable.

Definition 2.1.2 ([38, Definition 2.1]). The equilibrium point of (2.1) is asymptotically

stable if it is stable and δ can be chosen such that

∥x(t0)∥ < δ =⇒ lim
t→∞

x(t) = 0.
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Definition 2.1.3 ([38, Definition 4.5]). The equilibrium point of (2.1) is exponentially stable

if there exist positive constants c, k, and λ such that for all ∥x(t0)∥ < c,

∥x(t)∥ ≤ k∥x(t0)∥e−λ(t−t0)

Exponential stability has the same principle limitation as asymptotic stability, namely

that there is no guarantee that the system will reach the equilibrium point in finite time.

However, note that the norm of x is bounded by k∥x(t0)∥e−λ(t−t0) so the maximum possible

value of ∥x(t)∥ can be calculated for t ≥ t0 which can be useful, even if the exact value is

unknown.

Definition 2.1.4 ([34, Definition 1][39, Definition 1]). The equilibrium point of (2.1) is

finite-time stable if it is asymptotically stable and ∃δ > 0 such that ∀t ≥ T (x0), ∀||x(t0)|| <

δ, x(t, x0) = 0 where T is the settling-time function, whose domain is the region of attrac-

tion [38, Section 8.2] and codomain is R≥0.

The settling-time function may or may not be known for a given system. However, it

is important to note that the convergence time may be arbitrarily large and, ultimately,

effectively slower than an equivalent system which “only” has an asymptotically stable

equilibrium point.

Definition 2.1.5 ([34, Definition 2]). The equilibrium point of (2.1) is fixed-time stable if

it is finite-time stable and the settling-time function T (x0) is bounded, i.e., ∃Tmax > 0 such

that T (x0) ≤ Tmax for all ||x0|| < δ.

2.2 Lyapunov Functions

One common way to analyze stability is through the use of Lyapunov functions. The

definitions are given for systems where the dynamics are Lipschitz continuous, although

similar definitions can be given for systems with a discountinuous right hand side using

Filipov solutions [40].
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Definition 2.2.1 ([38, p. 116]). A continuously differentiable function V : D → R is a

Lyapunov function for (2.1) if

V (0) = 0 and V > 0 on D \ {0} (Positive Definite) (2.2)

V̇ ≤ 0 on D. (2.3)

A Lyapunov function can be thought of, figuratively in some cases and literally in

others, as the energy of the system. Since the derivative is non-increasing, the “energy” of

the system will never increase and the system states must remain bounded. The following

theorem formalizes this analogy.

Theorem 1 ([38, Theorem 4.1]). The origin of (2.1) is stable if there exists a Lyapunov

function.

Example 2.2.1. Consider the system defined as

ẋ1 = x2

ẋ2 = −x1
(2.4)

which has a single equilibrium point at x =

[
0 0

]T
. Also, consider a candidate Lyapunov

function defined as

V =
1

2
x21 +

1

2
x22. (2.5)

Note that V is positive definite with a value of 0 at the equilibrium point. Taking the

derivative with respect to time and substituting the dynamics gives

V̇ = x1ẋ1 + x2ẋ2 (2.6)

= x1x2 − x2x1 (2.7)

= 0 (2.8)
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Thus, given an initial state x0, the system will never leave the level surface with value V (x0)

and the equilibrium point is stable. △

If a Lyapunov function with a more restrictive derivative constraint can be found then

asymptotic stability is guaranteed.

Theorem 2 ([38, Theorem 4.1]). Let V : D → R be a continuously differentiable function

such that

V (0) = 0 and V > 0 on D \ {0} (Positive Definite) (2.9)

V̇ (0) = 0 and V̇ < 0 on D \ {0} (Negative Definite) (2.10)

Then, x = 0 is asymptotically stable.

Now, the system cannot remain at its present Lyapunov function value but must de-

crease over time, tending towards the V (x) = 0 state which is already defined to be the

equilibrium point.

Example 2.2.2. Consider the system

ẋ =

 0 3

−2 −1

x (2.11)

and a candidate Lyapunov equation

V = xT

11
12

1
4

1
4

5
4

x. (2.12)

Since the eigenvalues of the symmetric matrix in the candidate Lyapunov function

are positive, the function is positive definite which fulfills the first requirement. Taking the
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time derivative of the candidate Lyapunov function and substituting in the system dynamics

gives

V̇ = xT

11
12

1
4

1
4

5
4

 ẋ+ ẋT

11
12

1
4

1
4

5
4

x

= xT


11

12
1
4

1
4

5
4


 0 3

−2 −1

+

 0 3

−2 −1


T 11

12
1
4

1
4

5
4


x

= xT

−1 0

0 −1

x
= −x21 − x22

(2.13)

which is negative for all x1, x2 ̸= 0 and zero for x1 = x2 = 0. Thus, the derivative of the

candidate Lyapunov function is negative definite. Since we have a positive definite function

with a negative definite derivative, the origin of the system is asymptotically stable. △

Example 2.2.3. Consider the same system as the previous example

ẋ =

 0 3

−2 −1

x (2.14)

which was shown to be asymptotically stable.

Now consider an alternate candidate Lyapunov function

V =
1

2
x21 +

1

2
x22 (2.15)

which is positive definite.
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Taking the derivative gives

V̇ = x1ẋ1 + x2ẋ2

= 3x1x2 − 2x1x2 − x22

= (x1 − x2)x2

(2.16)

Now note that V̇ is positive when (x1−x2) > 0 and x2 > 0. Thus, V̇ is not negative definite

and the system cannot be defined to be either asymptotically stable or unstable based on

this choice of V . △

As shown in Example 2.2.3, the fact that a system is asymptotically stable does not

mean that any positive definite function will work as a Lyapunov function. Thus, a Lya-

punov analysis can be used to prove that a system is stable but failure to find one cannot

be used to prove the converse. Moreover, even if a system is stable, a suitable Lyapunov

function may be non-trivial to discover.

This is likely the largest weakness of a Lyapunov-based approach for analyzing sys-

tems. While some classes of functions, such as quadratic functions, are generally effective

Lyapunov candidates, there is no systematic approach to developing a Lyapunov function.

Ultimately, a Lyapunov analysis comes down to the creativity and experience of the engineer

and is very much both an art and a science.

Theorem 3 ([41, Lemma 1]). Consider the system described in (2.1) and suppose there

is a continuously differentiable function V : D → R. Additionally, suppose there are real

numbers α > 0 and 0 < λ < 1 such that V is positive definite on D and V̇ + αV λ ≤ 0 on

D. Then the equilibrium point is finite-time stable.

Example 2.2.4. Consider the system, modified from the one found in [41],

ẋ = (1−N)x− β|x|ηsign(x) (2.17)
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with constant values N > 1, β > 0, and −1 < η < 1. Additionally, consider a candidate

Lyapunov function
V = x2

V̇ = 2xẋ

(2.18)

The Lyapunov derivative of the system is then

V̇ = 2(1−N)x2 − 2β|x|ηsign(x)x (2.19)

Since N > 1, the term 2(1−N)x2 is always negative meaning that

V̇ ≤ −2β|x|ηsign(x)x

= −2β|x|η+1

= −2βV (η+1)/2

(2.20)

With β > 0, and −1 < η < 1, this satisfies the requirements for finite-time stability.

△

In general, finding a suitable Lyapunov function and control law that can guarantee

finite-time stability is not a well-defined process. As a result, direct application of Lyapunov

functions is generally not the easiest approach to take when trying to design a controller.

Instead, various methods have been developed which generate both a control law and a

suitable Lyapunov function for specific classes of systems. These can then be applied to any

suitable system to obtain a control without the need to create a new Lyapunov function for

each system. To better understand the finite-time approaches in later chapters, standard

techniques for asymptotic stability are now presented. They form the foundation for the

finite-time techniques.
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2.3 Control Techniques for Linear Systems

While Lyapunov-based control is broadly applicable, there are specific techniques that

can be applied to linear systems. Consider a linear time-invariant (LTI) system of the form

ẋ = Ax+Bu (2.21)

with x ∈ Rn, u ∈ Rm, A ∈ Rn×n, and B ∈ Rn×m where the objective is to design some

feedback control law of the form u = ϕ(x) where ϕ : Rn → Rm.

2.3.1 Controllability

We first address the controllability of the system.

Definition 2.3.1 ([42, Definition 9.1][43, Definition 12.2]). The linear system (2.21) is called

controllable on [t0, t1] if given two times t0 < t1, then for any initial state x(t0) = x0 there

exists an input signal u such that the corresponding solution of (2.21) satisfies x(t1) = 0.

The question of controllability can be answered by constructing the controllability

matrix as

C =

[
B AB A2B . . . An−1B

]
(2.22)

and applying the following theorem.

Theorem 4 ([43, Theorem 12.1]). The LTI system (2.21) is controllable if and only if

rank C = n. (2.23)

If the system has been verified to be controllable, then work can begin on developing the

control law. Various approaches have been developed to easily determine suitable control

laws without needing to explicitly test different Lyapunov functions. These approaches are

based on the following Theorem.

Theorem 5 ([43, Theorem 8.2]). Given a linear time invariant system of the form ẋ = Ax

with x ∈ Rn and A ∈ Rn×n, the following statements are equivalent:
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1. The system is asymptotically stable

2. The system is exponentially stable

3. All the eigenvalues of A have strictly negative real parts

4. For every symmetric positive definite matrix Q, there exists a unique solution P to

the following Lyapunov equation:

ATP + PA = −Q (2.24)

5. There exists a symmetric positive definite matrix P for which the following Lyapunov

matrix inequality holds:

ATP + PA < 0 (2.25)

From the third property, an approach to developing a suitable control law can be found.

Given the system (2.21) let K ∈ Rn×m be a feedback gain matrix such u = −Kx resulting

in the system being defined to be

ẋ = (A−BK)x. (2.26)

Defining the closed-loop system as Ã = A − BK, the closed-loop eigenvalues can be com-

puted as

det
(
λI − Ã

)
= 0 (2.27)

which will give a characteristic equation as a function of the elements of K and the eigen-

values. Provided the (A,B) system is controllable, the feedback terms can then be selected

to match some nominal characteristic equation composed of the desired eigenvalues [43].
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Example 2.3.1. Consider the system

ẋ =

 0 1

−1 −3

x+

0
1

u (2.28)

where the desired pole placement for the closed-loop feedback system is s = −1± 1i.

Introducing the feedback gain K =

[
k1 k2

]
with the control law being u = −Kx gives

the closed-loop system as

Ã =

 0 1

−1 −3

−

0
1

[
k1 k2

]

=

 0 1

−1− k1 −3− k2


(2.29)

The poles of the system are then found as the solution to

det
(
sI − Ã

)
= 0

det


 s −1

1 + k1 s+ 3 + k2


 = 0

s2 + (3 + k2)s+ (1 + k1) = 0

(2.30)

Since the desired pole placement is known, we can find the desired characteristic equa-

tion as

(s+ 1 + 1i)(s+ 1− 1i) = 0

s2 + s− si+ s+ 1− 1i+ si+ 1i+ 1 = 0

s2 + 2s+ 2 = 0

(2.31)

Comparing the two characteristic equations the necessary feedback gains to obtain the

desired pole placement are found to be k1 = 1 and k2 = −1 with the closed-loop system
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found to be

ẋ =

 0 1

−1 −3

x+

0
1

u
u =

[
1 −1

]
x

(2.32)

△

2.3.2 Optimal Control

While setting the poles of a system, as shown in the preceding section, is an effective

means of finding a stabilizing control law, there are generally additional factors that should

be considered. These can include the desired convergence time, allowable control inputs,

state deviations, and the balance among these factors. The optimal control framework gives

a way to express these factors, as well as additional constraints, and find the control, if it

exists, which satisfies them.

Optimal control can be applied to continuous or discrete systems which have linear or

nonlinear dynamics. This section will present the problem for a continuous system with

general dynamics function but not detail the corresponding methods for discrete systems. As

will be seen in the next section, when using optimal control with linear systems, additional

methods are available to find solutions.

A general problem is stated as follows [32]:

min J = ϕ(tf , xf ) +

∫ tf

t0

ℓ(t, x, u) dt (2.33)

s.t. ẋ = f(t, x, u) (2.34)

ψ(tf , xf ) = 0 (2.35)

x(0) = x0 (2.36)

u(t) ∈ Ω (2.37)
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where ϕ : Rn × Rm → R is the terminal cost, ℓ : R × Rn × Rm → R is the running cost,

f : R × Rn × Rm → Rn are the system dynamics, ψ : R × Rn → Rp are the p terminal

constraints, x0 ∈ X0 ⊂ Rn is the initial system state, and Ω ∈ U ⊂ Rm is the allowable set

of control inputs. The objective function is designed to account for the desired behavior

of the system. By adding additional weight to the control portion of ℓ, for example, the

resulting control law is incentivized to reduce the control usage although this will likely

result in additional state deviations.

When solving an optimal control problem, two functions must first be introduced.

First, the Hamiltonian, defined as

H(t, x, u, λ0, λ) = λ0ℓ(t, x, u) + λT f(t, x, u) (2.38)

and second, the endpoint function, defined as

G(tf , xf , λ0, ν) = λ0ϕ(tf , xf ) + νTψ(tf , xf ) (2.39)

where λ0 ∈ {0, 1}, λ is a continuous function with values in Rn, and ν ∈ Rp is a constant

value with dimension equal to the number of terminal constraints.

From these two equations, the following necessary conditions for optimality can be

derived.

λ̇ = −∂H
∂x

(Costate Equation)

Ḣ =
∂H

∂t
(Hamiltonian Equation)

λf =
∂G

∂xf
(Transversality Condition)

Hf = −∂G
∂tf

(Transversality Condition)

u ∈ argminω∈ΩH(t, x, ω, λ0, λ) (Pointwise Minimum Condition)

(λ0, λ) ̸= 0 (Non-triviality Condition)
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A similar set of conditions exist for discrete systems.

Example 2.3.2 ([32, Example 5.2]). Consider the rectilinear motion dynamics

ẋ = u (2.40)

with an initial position of x(0) = 0. The objective is to reach a desired final position of

x(tf ) = 1 at a desired arrival time of tf = t∗f while minimizing control usage.

The problem can be described as

min

∫ tf

0
u2 dt

s.t. ẋ = u

x(0) = 0

x(tf ) = 1

tf = t∗f

(2.41)

Constructing the Hamiltonian and endpoint functions gives

H = λ0u
2 + λu

G = ν1(x(tf )− 1) + ν2(tf − t∗f )

(2.42)

which results in the costate, Hamiltonian, and transverality conditions being

λ̇ = 0

Ḣ = 0

λf = ν1

Hf = −ν2

(2.43)

From these conditions, we can see that λ and H are both constant. Examining the

Hamiltonian equation, we can see that if H and λ are constant (and λ0 is always constant)

then u must necessarily be constant as well.
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Examining the pointwise minimum condition gives

u ∈ argmin λ0u2 + λu. (2.44)

Using standard optimizaiton techniques, we can take the derivative with respect to u and

find the zero giving

0 = λ0u+ λ (2.45)

If λ0 = 0, then the only possible solution is λ = 0 which violates the triviality constraint.

Thus, λ0 = 1. Therefore, the minimum is found at u = −λ.

From the equation of motion, we get

x(tf ) =

∫ tf

0
u dt

= u tf

(2.46)

which, when applying the final desired state and time, gives

u =
1

t∗f
(2.47)

Using this solution gives

λ = − 1

t∗f

H = −1

2

1

t∗2f

ν1 = − 1

t∗f

ν2 =
1

2

1

t∗2f

(2.48)

showing that all the conditions are met.

△
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2.3.3 Linear Quadratic Regulator

As a subset of optimal control, we can develop a Linear Quadratic Regulator (LQR)

which is a feedback control law that will stabilize the system while minimizing an objective

function consisting of state deviations and control usage terms. LQR is a very specific

subset of the optimal control problem discussed above as it requires a linear system and is

unable to include constraints. However, it does provide a way to balance control usage and

state deviations while stabilizing the system.

We consider the continuous, linear optimal control problem where the system is of the

form

ẋ = Ax+Bu (2.49)

where A ∈ Rn×n and B ∈ Rn×m. We also introduce an objective function

J =

∫ ∞

0
x(t)TQx(t) + u(t)TRu(t) dt (2.50)

where Q ∈ Rn×n and R ∈ Rm×m are symmetric positive definite matrices. These represent

the penalty associated with larger state error and control usage and allow the system response

to be tuned between the size of the control input and the speed of the system response.

The control law can then be selected as shown in the following theorem, adapted

from [43, Theorem 21.1] and [44, Section 9.2.3].

Theorem 6. Assume that (A,B,Q1/2) is controllable and observable. Then, the solution

to the optimal control problem can be expressed in state feedback form as

u = −Kx (2.51)

with K = R−1BTP where P is the symmetric, positive definite solution to the algebraic

Riccati equation

ATP + PA+Q− PBR−1BTP = 0 (2.52)

This control stabilizes the system and minimizes the LQR objective function.
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2.4 Control Techniques for Nonlinear Systems

Unlike linear systems, nonlinear systems are so varied in their structure that there is

no general approach guaranteed to result in a suitable control law. However, there are some

general techniques that can be attempted.

2.4.1 Feedback Linearization

Feedback linearization is a method where the nonlinearities in the system are canceled

by the control law.

Example 2.4.1. Consider the system

ẋ1 = −x1 − 3x2

ẋ2 = x1x
2
2 + u.

(2.53)

Now, letting u = v − x1x
2
2, the system can be expressed as

ẋ1 = −x1 − 3x2

ẋ2 = v

(2.54)

which is a linear system and the control law for v can be developed using the linear control

techniques discussed above. Letting v = −x2, the linearized system is then

ẋ1 = −x1 − 3x2

ẋ2 = −x2
(2.55)

which is asymptotically stable.

Substituting v into u gives the control law for the actual, nonlinear system as

u = −x2 − x1x
2
2. (2.56)

△
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The example shows a simple case, but it is not uncommon for systems to have nonlin-

earities in states which do not have direct control inputs. This precludes the approach used

above where the nonlinearities are moved into the control but does not necessarily mean

that feedback linearization is infeasible. As shown in the following definition, if an accept-

able transformation can be found, then the system can be put into a form where feedback

linearization is appropriate.

Definition 2.4.1 ([38, Definition 13.1]). A nonlinear system

ẋ = f(x) + g(x)u (2.57)

where f : D → Rn and g : D → Rn×m are sufficiently smooth on a domain D ⊂ Rn is said to

be feedback linearizable if there exists a diffeomorphism T : D → Rn such that Dz = T (D)

contains the origin and the change of variables z = T (x) transforms the system into the form

ż = Az +Bγ(x)[u− α(x)] (2.58)

where (A,B) is controllable and γ(x) is nonsingular for all x ∈ D.

The existence of a suitable transformation may not be immediately obvious, but the

necessary and sufficient conditions are given in [38] as well as the conditions used to develop

the transformation. While these are beyond the scope of this material, the following example

shows an application which uses a transformation to obtain a feedback linearized system.

Example 2.4.2 ([38, p. 507]). Consider the system

ẋ1 = a sinx2

ẋ2 = −x21 + u

(2.59)

where the control cannot directly be used to cancel out the nonlinearities in the x1 dynamics.
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However, we now apply the transformation

z1 = x1

z2 = a sinx2

(2.60)

and take the derivatives, giving

ż1 = ẋ1

= a sinx2

= z2

ż2 = a cos(x2)ẋ2

= a cos(x2)(−x21 + u)

(2.61)

Note that now the system takes the desired form ż = Az +Bγ(x)(u− α(x)) with

A =

0 1

0 0


B =

0
1


γ(x) = a cos(x2)

α(x) = x21

(2.62)

The linearizing control can be chosen as

u = x21 + v
1

a cosx2
(2.63)

which results in

ż1 = z2

ż2 = v

(2.64)
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where v can be chosen using linear control techniques.

Examining the inverse transform gives

x1 = z1

x2 = sin−1
(z2
a

) (2.65)

which is well defined for −a ≤ z2 ≤ a.

△

2.4.2 Backstepping

Backstepping is a control method where the dynamics of the first state is individually

considered as if it is directly controllable. The next state is then designed so that it satisfies

the stability requirement for the previous state and is, itself, stable. This process continues

until the final state, where the actual control enters the system, is reached.

Theorem 7 ([38, Lemma 14.2]). Consider the system

η̇ = f(η) + g(η)ξ (2.66)

ξ̇ = u. (2.67)

Let ϕ(η) be a stabilizing state feedback law for (2.66) with ϕ(0) = 0 and V (η) be a Lyapunov

function that, for all η ∈ D, satisfies

∂V

∂η
[f(η) + g(η)ϕ(η)] ≤ −W (η) (2.68)

for some positive definite W (η). Then, the state feedback control law

u =
∂ϕ

∂η
[f(η) + g(η)ξ]− ∂V

∂η
g(η)− k[ξ − ϕ(η)] (2.69)

stabilizes the origin of the system with V (η) + [ξ − ϕ(η)]2/2 as a Lyapunov function.
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We begin with a somewhat trivial example for clarity and then move to a more mean-

ingful example.

Example 2.4.3. Consider the integrator system

ẋ1 = x2

ẋ2 = u

(2.70)

We begin by considering the equation ẋ1 = x2 and treating x2 as the input. Letting

x2 = ϕ(x1) be the control law that stabilizes the ẋ1 system we can choose ϕ(x1) = −x1 with

V (x1) = x21/2. This results in V̇ = −x21 showing that it is stable.

We now introduce a change of variables, z2 = x2 − ϕ(x1) = x2 + x1 resulting in the

system

ẋ1 = −x1 + z2

ż2 = u− x1 + z2

(2.71)

with a combined Lyapunov function of

Vc =
1

2
x21 +

1

2
z22

V̇c = −x21 + z2u+ z22

(2.72)

By choosing u = −2z2, the Lyapunov stability condition is satisfied.

Undoing the coordinate transformation shows the closed-loop system in the original

coordinates to be

ẋ1 = x2

ẋ2 = −x1 − x2

(2.73)

The eigenvalues of this system are −1 ± i showing that the origin is globally exponentially

stable.

△
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A second, less trivial, example is now shown to demonstrate how backstepping can be

used to address nonlinearities that are not directly connected with the control input.

Example 2.4.4 ([38, Example 14.8]). Consider the system

ẋ1 = x21 − x31 + x2

ẋ2 = u

(2.74)

Now, we examine only the first state of the system

ẋ1 = x21 − x31 + x2 (2.75)

and treat x2 as the control input. Let us choose x2 = −x21 − x1 which gives the resulting

dynamics as

ẋ1 = −x31 − x1 (2.76)

which is asymptotically stable as can be seen by using the Lyapunov function V = 1
2x

2
1 giving

V̇ = −x41 − x21 (2.77)

which is clearly negative definite in x1.

We will define ϕ : R → R to be ϕ(x1) = x2 or

ϕ = −x21 − x1 (2.78)

We now backstep by introducing a new variable z defined as

z = x2 − ϕ(x1)

z = x2 + x21 + x1

x2 = z − x21 − x1

(2.79)
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Using the change of variables gives

ẋ1 = −x1 − x31 + z

ż = ẋ2 + 2x1ẋ1 + ẋ1

= u+ (2x1 + 1)(−x1 − x31 + z)

(2.80)

Using Vc = 1
2x

2
1 +

1
2z

2 gives the derivative as

V̇c = x1(−x1 − x31 + z) + z(u+ (2x1 + 1)(−x1 − x31 + z))

= −x21 − x41 + z(u+ (2x1 + 1)(−x1 − x31 + z) + x1)

(2.81)

Taking

u = −(2x1 + 1)(−x1 − x31 + z)− x1 − z (2.82)

results in the Lyapunov function derivative being

V̇c = −x21 − x41 − z2 (2.83)

which is negative definite and thus the system is asymptotically stable.

Comparing the theorem to this example shows the following. For the original system,

we have x1 = η and x2 = ξ with f(x1) = x21 − x31 and g(x1) = 1. The feedback law for ẋ1,

assuming x2 is the control input, was defined to be ϕ(x1) = −x21 − x1 and was shown to be

stabilizing using the Lyapunov function V = 1
2x

2
1. Recall that V̇ = −x21 − x41 so choosing

W = x21 + x41 gives a positive definite W such that for all x1 ∈ D,

V̇ =
∂V

∂x1
[f(x1) + g(x1)ϕ(x1)]

= −W (x1)

(2.84)
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Examining the control law as stated in the theorem gives

u =
∂ϕ

∂x1
[f(x1) + g(x1)x2]−

∂V

∂x1
g(x1)− k[x2 − ϕ(x1)]

= (−2x1 − 1)(x21 − x31 + x2)− x1(1)− k(x2 + x21 + x1)

= (−2x1 − 1)(−x31 + z − x1)− x1 − kz

= −(2x1 + 1)(−x31 − x1 + z)− x1 − kz

(2.85)

which matches the control law found previously with k = 1.

△

While the example only considers a two state system, backstepping can be applied to

systems with multiple states assuming that they meet the requisite structure. Though not

a complete survey of linear and nonlinear control techniques, they form the foundation of

techniques in later chapters for finite-time control.
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CHAPTER 3

SPACECRAFT DYNAMICS BACKGROUND

This work applies various control laws and approaches to rendezvous and proximity

operations (RPO) applications which involve spacecraft operating in close proximity to each

other. RPO applications arise in applications such as distributed spacecraft sensing, in-

spection, construction, refuelling, and docking. This chapter gives a brief overview of the

necessary background required to understand the specific application of spacecraft RPO

operations used.

In this chapter, we first describe the dynamics and perturbations associated with or-

bital motion. Then, the Clohessy-Wiltshire (CW) relative orbital dynamics are introduced.

Finally, the Brunovsky transformation is introduced as a way to convert the relative orbital

dynamics into a form that can easily be used with various control laws.

3.1 Two-Body Motion

The motion of a single spacecraft in orbit around the Earth is often described in the

Earth Centered Inertial (ECI) frame. This frame is centered on the Earth with the X-axis

pointing in the vernal equinox direction, the Z-axis aligned with the Earth’s rotation, and

the Y-axis completing a right-handed coordinate frame [45]. While the frame translates with

the motion of the Earth, it does not rotate.

In this frame, the motion of a spacecraft can be described using the two-body model as

ṙ = v

v̇ = − µ

∥r∥3
r + aD + aT

(3.1)

where µ is the gravitational parameter of the two-body system, aD is the disturbance accel-

eration, and aT is the thrust acceleration. For the Earth, µ = 3.986 004 418×1014m3/s2 [45].
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The first term is the two-body term. It is the gravitational acceleration experienced by

the spacecraft due to the Earth. While this is a primary effect on the spacecraft, a number of

additional effects are also present to lessening degrees. These include gravity perturbations

due to the central body not being a sphere, drag effects due to the body’s atmosphere, solar

radiation pressure due to the Sun, and third-body perturbations resulting from the gravi-

tational influence of other bodies, such as the Sun or Jupiter, acting on the spacecraft [46].

Since the magnitude of these forces and accelerations vary, it is generally effective to only

model the most impactful ones and assume the others are sufficiently insignificant with the

cutoff being determined by the desired application.

In this work, a number of control laws are applied to RPO problems with the spacecraft

assumed to be in a Low-Earth orbit (LEO). While a precise cutoff limit for what defines

LEO is nebulous, it roughly encapsulates orbits with an altitude below 2000 km [47]. For

this work, the orbits are well within that bound and exist around 500 km where the primary

perturbations acting on a spacecraft are J2 gravity perturbations and drag.

3.1.1 Gravity Perturbations

Since the Earth is not sphere shaped, the gravitational force experienced by a spacecraft

is not identical at every point along its orbit. Through experimentation, the gravitational

field of the Earth has been fitted to a spherical harmonic model which gives the gravitational

force expected depending on a spacecraft’s position [48,49]. Depending on the desired level

of precision, this model can include as many terms as desired. The dominating coefficient

in the model, J2, results from the Earth bulging slightly at the equator and being flatter at

the poles and is what is used in this work.

In the ECI frame, the additional acceleration due to the J2 perturbation is [45]

aJ2 =
3

2

J2µR
2
E

∥r∥4

[
x

∥r∥

(
5
z2

∥r∥2
− 1

)
î+

y

∥r∥

(
5
z2

∥r∥2
− 1

)
ĵ +

z

∥r∥

(
5
z2

∥r∥2
− 3

)
k̂

]
(3.2)

where RE is the radius of the Earth; J2 is the J2 coefficient; î, ĵ, and k̂ are unit vectors

pointing along each of the ECI axes; and, r =

[
x y z

]T
is the position vector in ECI
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space. This acceleration is then added to the nominal acceleration resulting from the nominal

two-body motion.

3.1.2 Drag Perturbation

Although the Earth’s atmosphere thins and becomes less dense as one’s altitude in-

creases, atmospheric drag is still a main cause of perturbations for spacecraft operating in

the lower range of LEO. The drag model is given as [45]

adrag = −1

2
ρ∥vrel∥

CDA

m
vrel (3.3)

where ρ is the atmospheric density, vrel is the velocity of the spacecraft relative to the Earth’s

atmosphere, CD is the coefficient of drag, and A is the spacecraft’s surface area. Although

the model is conceptually straightforward, a number of simplifying assumptions are made.

The atmospheric density model uses a linear interpolation of the US Standard Atmo-

sphere 1976 model and does not account for any effects due to solar activity [50]. The relative

velocity of the spacecraft to the atmosphere is calculated as

vrel = v − ωE × r (3.4)

where r and v are the spacecraft position and velocity in the ECI frame and ωE is the angular

velocity of the Earth. Furthermore, it is assumed that the atmosphere rotates perfectly with

the Earth.

The coefficient of drag CD and surface area A are both highly dependent on the ge-

ometry and attitude of the spacecraft. Instead, a simplified “cannonball” model is used to

approximate the spacecraft as a sphere which then has a surface area and CD independent

of the actual orientation.

Once the drag perturbation is calculated, it is added to the nominal accelerations acting

on the spacecraft.
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3.1.3 Thruster Dynamics

For this work, it is assumed that the spacecraft has individual thrusters acting along

each axis of the spacecraft. Additionally, no attitude dynamics are modeled and it is assumed

that the spacecraft can instantaneously orient itself to achieve the desired thrust vectors.

Given a desired acceleration of ad ∈ R3, and the spacecraft’s current mass m, the

necessary thrust FT ∈ R3 is

FT = mad (3.5)

Then, the change in mass can be modeled as [45, Chapter 11],

ṁ =
1

g0Isp
∥FT ∥1 (3.6)

where g0 = 9.81m/s is the standard gravity and Isp is the specific impulse of the engine.

Note that the 1-norm is used to calculate the total thrust usage since we are assuming thrust

along three orthogonal axes.

With the mass changing over time, we can now calculate the total ∆V used over the

course of a simulation. ∆V is a measure of the total control used by a spacecraft which

accounts for engine performance and the mass of the spacecraft which enables it to be a

standard point of comparison.

Given the initial mass of a spacecraft m0 and the final mass mf , the ∆V is calculated

as ([45], Chapter 11)

∆V = Ispg0 ln
m0

mf
(3.7)
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Table 3.1: Spacecraft physical parameters used for simulating the dynamics.

Parameter Value
Initial Mass 24 kg

Surface Area 0.048m2

CD 2.2

Isp 160 s

3.1.4 Spacecraft Parameters

One common spacecraft form factor is the CubeSat design [51]. These are defined in

terms of a base unit, known as a ‘U’, which is a cube with edge lengths of 10 cm. From this,

larger spacecraft designs are defined based on how many base units it is comprised of, such

as 2U, 6U, and 12U .

The standardized approach for these small satellites gives rise to numerous benefits

which have increased access to space [52]. CubeSats are relatively cheap to build when

compared with traditional spacecraft due to their small size and use of commercially avail-

able parts. The standardization of the form factor means that multiple CubeSats can be

deployed from a single launch vehicle which defrays the launch cost for any single CubeSat.

Furthermore, due to the small form factor, CubeSats can be launched as secondary payloads

to larger, traditional satellites.

For this work, the physical spacecraft parameters are based on a 12U CubeSat design [51]

and shown in Table 3.1. Additionally, a propulsion system is assumed based on a hybrid

propulsion system designed for CubeSats [53] with an Isp of 160 s.

3.2 Relative Spacecraft Motion

While computing the motion of a spacecraft in the ECI is useful, in RPO applications it is

generally more helpful to understand the relative motion of one spacecraft to another. To this

end, a linearized model known as the Clohessy-Wiltshire (CW) equations were developed.
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3.2.1 Local Vertical, Local Horizontal Frame

The CW equations are developed in the relative Local-Vertical, Local-Horizontal (LVLH)

frame. The LVLH frame is centered on a spacecraft in orbit with the X-axis pointing along

the spacecraft’s ECI position vector, the Z-axis pointing along the spacecraft’s orbit’s angu-

lar momentum vector, and the Y-axis completing a right-hand rule. Given r and v of the

reference spacecraft in ECI space, this is calculated as [45]

îLV LH =
r

∥r∥

k̂LV LH =
r × v

∥r × v∥

ĵLV LH = k̂LV LH × îLV LH

(3.8)

with the transformation matrix from ECI to LVLH being

T =


îTLV LH

ĵTLV LH

k̂TLV LH

 (3.9)

Given two spacecraft with ECI position states rA, rB, velocity states vA, vB, and accel-

eration states aA, aB, the relative states are calculated in the ECI frame as [45]

Ω =
rA × vA
∥rA∥2

Ω̇ = −2
vAṙA
∥rA∥2

Ω

rrel = rB − rA

vrel = vB − vA − Ω× rrel

arel = aB − aA − Ω̇× rrel − Ω× (Ω× rrel)− 2Ω× vrel

(3.10)
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This can then be converted to the LVLH frame as

rLV LH = Trrel

vLV LH = Tvrel

aLV LH = Tarel

(3.11)

3.2.2 Clohessy-Wiltshire Equations

The CW dynamics describe the motion of one spacecraft relative to a second in an

LVLH frame centered on the reference spacecraft. Since the CW dynamics are a linear

approximation of the orbital motion, their accuracy degrades as the distance between the

two spacecraft increases. Additionally, the linearization assumes a circular orbit so accuracy

degrades as the eccentricity of the reference orbit increases. For all the applications used

in this work the CW dynamics provide satisfactory levels of accuracy and are used for the

control dynamics.

The dynamics themselves are expressed as [45,49]

ẋ = Ax+Bu

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3ω2 0 0 0 2ω 0

0 0 0 −2ω 0 0

0 0 −ω2 0 0 0



B =



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1



(3.12)
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where ω is the mean orbital motion of the spacecraft defined to be

ω =

√
µ

a3
(3.13)

with a being the semi-major axis of the reference orbit.

The X- and Y-axes are often referred to as the in-plane dynamics, while the Z-axis is

referred to as the out-of-plane, or cross-track, dynamics. Note that the in-plane and out-

of-plane dynamics are decoupled and can be controlled separately. Examining the in-plane

dynamics, the system is completely controllable with controls along the X- and Y-axes.

Similarly, the out-of-plane dynamics are also completely controllable with control along the

Z-axis.

More interestingly, examining the controllability matrix for the in-plane dynamics with

control only along the Y-axis gives

C =

[
B AB A2B A3B

]

=



0 0 2ω 0

0 1 0 −4ω2

0 2ω 0 −2ω3

1 0 −4ω2 0


(3.14)

with rank(C) = 4 showing that the in-plane dynamics are completely controllable using only

control along the Y-axis. Since the force due to drag acts along the Y-axis, this means that

differential drag techniques can be used to control the in-plane dynamics without the use of

any propellant.

The case where both X- and Y-axes have allowable control inputs will be referred to

as the dual-input, in-plane dynamics. Similarly, the case where control inputs are only

allowed along the Y-axis will be referred to as the single-input, in-plane dynamics. For the

out-of-plane dynamics, control is always assumed to enter along the Z-axis.
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3.3 CW Brunovsky Transformation

Given a linear system, there are multiple ways to describe the system in a form

ẋ = Ax+Bu (3.15)

where x ∈ Rn is the states and A ∈ Rn×n and B ∈ Rn×m and the dynamics and control

matrices, respectively [43]. However, depending on the situation, some realizations are more

useful than others. Some common realizations include minimum realizations, controllable

canonical form, and observable canonical form.

One form that is used repeatedly in this work is the Brunovsky transformation which

converts a system into a chain of integrators with the control appearing on the last state [31].

This results in a simple system allowing for easy application of control laws.

Writing the original system as

ẋ = Ax+Bu (3.16)

with x ∈ Rn and u ∈ R, the Brunovsky form can be found as

AB = T−1
B (A+BC)TB

BB = T−1
B B

z = T−1
B x

v = u− Cx

ż = ABz +BBv

(3.17)

where C is the Brunovsky linear feedback term, TB is the transform matrix, u is the control

of the original system, and v is the control for the Brunovsky form. If C and TB are chosen
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properly then AB and BB will reduce to the Brunovsky forms

AB =



0 1 0 . . . 0

0 0 1 . . . 0

...
...

... . . . ...

0 0 0 . . . 1

0 0 0 . . . 0


(3.18)

BB =



0

0

0

1


(3.19)

While this is for a single input system, multi-input systems can also be transformed.

The resulting system then consists of independent subsystems which each take the form

ż = ABz +BBv (3.20)

with the dimensions varying depending on the underlying system. The control v can then be

determined with a suitable control law which acts on the Brunovsky systemAB andBB using

the transformed state z = T−1
B x. The control u, which is actually applied to the system, is

then found as u = v + Cx. In [54], a method is given for how to compute the Brunovsky

form but the CW system is simple enough that that method was not used in this work.

For the out-of-plane dynamics, the Brunovsky form is obtained by moving the n2z term

into the control resulting in

TB,z =

1 0

0 1


Cz =

[
ω2 0

] (3.21)
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For the in-plane dynamics, there are two possible Brunovsky transformations depending

on how many control inputs are available. If controls are allowed along both the X- and Y-

axes, the transformation is found to be

TB,xy =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


Cxy =

−3ω2 0 0 −2ω

0 0 2ω 0


(3.22)

which produces the Brunovsky form

ẋxy =



0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0


xxy +



0 0

1 0

0 0

0 1


vxy (3.23)

Note that this creates two independent subsystems, and separate controllers can be designed

to find the Brunovsky controls for each subsystem. However, as a result of the transformation,

the actual controls applied to the in-plane dynamics are not independent of each other.

If we consider the case where only the Y-axis is used to control the in-plane dynamics,

then the Brunovsky form is obtained with

TB,y =



0 2ω 0 0

−3ω2 0 1 0

0 0 2ω 0

0 −3ω2 0 1


Cy =

[
0 0 ω

2 0

]
(3.24)
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Once a suitable Brunovsky transformation is found, a control law can be designed

using the simplified form and used to find the control v. This can then be converted using

Equation 3.17 to find the control u which is then applied to the nominal system. While the

Brunovsky form allows for easy implementation of control laws due to the simple dynamics,

the use of the feedback gain C in the transformation does introduce a complicating factor.

Since this is determined when performing the Brunovsky transformation, it exists out-

side any control law design and its effects on the system response cannot be modified. While

this is not necessarily a problem, it does introduce difficulties when attempting to shape the

control inputs to achieve some goal such as minimizing or constraining control.

3.4 Simulation Implementation

In this work, the simulations are propagated using either using a fixed step Runge-

Kutta 4th order solver or an adaptive step 4th and 5th order solver. The control laws are

implemented using a sample-and-hold approach where the states at each step are measured,

the control input is calculated, and then the control is held constant over the integration

timestep. This approach to integration and control updates requires the proper selection

of timesteps. If the integration timesteps are too large, then higher frequency effects in

the system will not be accurately represented and the propagation will diverge from the true

dynamics. Similarly, if the control update timesteps are too long, the system will be unable to

respond to perturbations. Conversely, as the timesteps decrease, the computational resources

required to simulate the controlled system increase. This can result in problems simulating

the system within a reasonable time frame and may not accurately reflect the response rate

of physical actuators. This section provides a brief analysis to justify the selection of the

timesteps used in this work.

Note that while the Runge-Kutta solvers sample the dynamics at subincrements of the

integration timestep, the control input is held constant over the full timestep and is only

based on the initial states at the start of the integration step. The sample-and-hold approach

calculates and applies the control inputs over the full integration step and does not change,

even when an adaptive step solver is used. Thus, the adaptive step can help improve the
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accuracy in the integration of the dynamics, but it does not change the system performance

by increasing the update rate of the control law. Again, the choice between fixed or adaptive

step integrators is made with the goal of balancing accuracy and computational requirements.

An analysis is first performed to determine how increasing the integration timestep of

the simulation increases the error. The perturbed, uncontrolled two-body dynamics are

simulated over 1.5 hrs, roughly a single orbit, with each simulation using a timestep that

ranges from 1 × 10−3 s to 10 s. The dynamics are propagated using a fixed step Runge-

Kutta 4th order solver with the initial conditions for each simulation shown in Table 3.2 and

spacecraft properties as presented in Table 3.1. Each trajectory is sampled at a 10 s rate,

corresponding to the longest timestep, and compared to the trajectory with a 1 × 10−3 s

timestep. This simulation with the 1×10−3 s timestep is used as the reference and represents

the true trajectory that would be expected for the actual system.

Table 3.2: Orbital elements used to define the reference orbit for the timestep analysis.

Parameter Value
Semimajor Axis 6878 km

Eccentricity 1× 10−4

Inclination 25◦

Right Ascension of the Ascending Node 45◦

Argument of Perigee 0◦

True Anomaly 0◦

The difference between each trajectory and the reference are shown in Figure 3.1. For

each simulation, the error increases over time relative to the 1 × 10−3 s reference, resulting

from the accumulation of small errors in the integration. The simulations with timesteps of 1 s

or less are generally indistinguishable and have a final position error on the order of 10−5m.

For the timesteps of 5 s and 10 s the errors are noticeably larger, with the 10 s timestep having

a final error on the order of 10−2m. This indicates that these larger timesteps are not able

to fully capture the perturbations, although for this work, an integration error of 10−2m

over the course of an orbit is acceptable. Overall this shows that the integrated dynamics

are sufficiently close to the actual dynamics.
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Fig. 3.1: Position errors for the perturbed two-body dynamics over a range of timesteps.
Errors are calculated relative to a simulation with a timestep of 1× 10−3 s.

In order to explore the effect of changing the control update timestep, two different

controllers are tested with timesteps ranging from 1× 10−3 s to 10 s. As with the integration

error analysis, the resulting trajectories are sampled every 10 s and then compared to the

simulation with the 1 × 10−3 s step. Each control is implemented as a sample-and-hold,

where the control input is calculated at each timestep and then held constant until the next

update. In each simulation, the integration step and control update have identical timesteps.

The first control law is a linear feedback control designed around the continuous CW

dynamics of the form

ẋ = Ax+Bu (3.25)

u = −Kx (3.26)

where A ∈ R6×6 and B ∈ R6×3 correspond to the CW matrices and K ∈ R3×6 is a feedback

matrix. For this analysis, the K matrix is selected such that the eigenvalues of the closed
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loop system are

λ(A−BK) = −
[
.06 .05 .04 .03 .02 .01

]
(3.27)

which shows the closed-loop system is stable since all the eigenvalues have strictly negative

real parts [43, Theorem 8.2]. Note that although the control law is designed assuming a

continuous system, the control is only updated at discrete times.

A second control law was designed around the discretized CW dynamics

x[k + 1] = ADx[k] +BDu[k] (3.28)

where AD ∈ R6×6 and BD ∈ R6×3 are found as [43, Section 6.1]

AD = exp (A∆t) (3.29)

BD =

∫ ∆t

0
exp ((∆t− τ)A)B dτ (3.30)

with δt being the control update timestep. Note that this approach assumes the control u[k]

is constant over the period from step k to k + 1.

Similar to the continuous dynamics, a feedback control law can be developed as

u[k] = −KDx[k] (3.31)

with the requirement that the eigenvalues of the closed loop system exist within the unit

circle [43, Theorem 8.4]. The feedback matrix KD is then selected so the eigenvalues of the

closed-loop system are

λ(AD −BDKD) = −
[
.06 .05 .04 .03 .02 .01

]
(3.32)

which satisfies the stability requirement. This control law approach is tested over the same

range of timesteps as the continuous control. SinceAD andBD are dependent on the timestep

selection, the control law is recalculated for each choice of timestep.
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The continuous and discretized linear feedback controllers are both tested using the

perturbed two-body dynamics. For each simulation, a desired inertial orbit is defined as

shown in Table 3.2 with the initial states of the spacecraft set as

x0 =

[
390m 390m 390m 1.5m/s 1.5m/s 1.5m/s

]T
(3.33)

relative to the desired orbit in the LVLH frame. At each control update step, the LVLH state

of the spacecraft relative to the desired orbit is found and used to calculate the feedback

control. This is then applied to the perturbed two-body dynamics.
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Fig. 3.2: Position error relative to the reference trajectory with a continuous time feedback
control law. The reference trajectory is updated with a 0.001 s stepsize.

The results for the continuous control are presented in Figure 3.2 and show that each of

the simulations exhibit two distinct phases. Due to the differing timesteps, each simulation

exhibits some initial error which decreases over time as the control law is able to drive

the system to the desired trajectory. Note that the trajectories for each simulation are

separated based on the control update timesteps, with the longer timesteps having higher
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errors. Eventually each simulation reaches a point of minimum error between the 20min and

30min times, and then exhibits steady state behavior where the error only gradually rises

over time. Comparing this steady-state behavior to the uncontrolled simulations (Figure 3.1)

shows that the controlled errors are of the same order of magnitude as the uncontrolled errors.

This suggests that after 30min, the differences are driven by the integration error with little

relative difference due to the controller timestep selection.
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Fig. 3.3: Position error relative to the reference trajectory with a discrete time feedback
control law. The reference trajectory is updated with a 0.001 s timestep.

The results for the discretized feedback control law are shown in Figure 3.3. In contrast

to the continuous control law, there is much less separation between the different simulations

with only the 5 s and 10 s timesteps having noticeable separation. Additionally, the simu-

lations with timesteps less than 5 s do not show any transitory period where the trajectory

differs from the reference. The 5 s and 10 s timestep simulations do initially diverge from the

reference, but are able to converge much faster with the steady-state response being reached

by about 1min, rather than the 20min that are seen in the continuous control. Also, the
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steady-state response mirrors the uncontrolled results and suggests that the differences are

driven by integration error, not controller performance.

Overall, the use of the discrete solution to the CW dynamics allows for better consistency

across a range of timesteps since the control model is able to explicitly account for the impact

of the control inputs. Thus, as the timesteps increase, there is not a significant jump in the

error like there is with the continuous controller. The obvious exception to this is with

the 5 s and 10 s timesteps, which have large initial errors since they are able to model the

nominal dynamics but do not reject the perturbations as quickly. Overall, the controllers

and timesteps examined were able to successfully stabilize the system about the origin, with

the main difference being in the transitory error. Once the systems converged, the error

between the different timesteps was due to the integration effects.

For this work, the timesteps used for the integration and control updates range from

0.05 s to 10 s, depending on the specific control approach, with the 10 s timestep only used for

control laws developed with the discrete dynamics. Based on the analysis of the uncontrolled

dynamics, the maximum integration error is expected to be on the order of 10−2m over an

orbit. This is an acceptable level of error for this work and demonstrates that the fixed-

step propagation method is able to capture the perturbations in the system. Overall, the

integrated solution is shown to be sufficiently accurate and the results from this work are

expected to closely mirror the response of an actual spacecraft system.

The controlled results are specific to the continuous and discrete feedback controllers

used, but the general trends help understand how the selection of the timestep and dynamic

model change the system response. Since the sample-and-hold control implementation neces-

sarily discretizes the control inputs, designing the controller around the discretized solution

to the dynamics helps reduce error as the timestep increases. However, not every control law

accommodates discretized dynamics, so a continuous control can be developed and approx-

imated by using a sufficiently small timestep for the control update. Differences between

the trajectories due to the increase in timestep were seen to be as high as 102m with the

differences decreasing as the timesteps got smaller.
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Since this changes the trajectory compared to one generated by a truly continuous

control law, it can pose problems in cases where the control law is designed to remain

within specified bounds. This impact can be minimized in practice through approaches such

as adding a factor of safety to the state bounds or decreasing the timestep. Despite the

performance degradation, the control law can still stabilize the system about the origin over

a range of timesteps. For the control laws in this work, it is expected that some negative

effects will be seen due to the control discretization, but that system convergence can still

be achieved by selecting proper tuning parameters and timestep durations.
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CHAPTER 4

TUBE-BASED MODEL PREDICTIVE CONTROL

Model predictive control (MPC) is a technique which is based on the optimal control

techniques described in Section 2.3.2 but attempts to address some of their shortcomings. In

particular, optimal control laws are open-loop where a desired trajectory and control profile

are found to satisfy some objective function and set of constraints. However, this ignores

system errors, perturbations, and modeling inaccuracies which mean that blindly applying

the inputs determined by the optimal control will result in a final system state that does not

match the one predicted by the control law. In contrast, MPC repeatedly optimizes over a

fixed horizon which results in a closed-loop controller.

In this chapter, a tube-based MPC is developed which guarantees convergence of the

system in the presence of a known range of perturbations. This is tested in a simulated orbital

environment with J2 and drag perturbations and shown to be successful in maintaining

control of a spacecraft.

An overview of both nominal and tube-based MPC is given in Section 4.1 followed by

the specific implementation for formation flying in Section 4.2. The simulation framework

and results are then presented in Section 4.3.

4.1 Model Predictive Control

MPC works by solving an optimal control problem over some finite-time horizon. The

first control of the solution is then applied to the system whereupon the system states are

measured and the optimal control problem is solved again from this new state, and the

process repeats. Since the time horizon over which the control problem is being solved is

continually moving forward, MPC is also known as a Receding Horizon Control (RHC).
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4.1.1 Nominal MPC

Consider the discrete, time-invariant, linear system

x(k + 1) = Ax(k) +Bu(k), k = 0, . . . , N − 1 (4.1)

where x ∈ Rn and u ∈ Rm at each index k. The purpose of MPC is to find a trajectory

x(k) and control profile u(k) that satisfies the dynamics, as well as some set of additional

constraints, while minimizing an objective function.

The objective function is often comprised of two components, p : Rn → R and q :

Rn × Rm → R, which can be referred to as the terminal and transient costs, respectively.

They are generally used to reduce the error between the x(k) and some desired trajectory

and minimize the amount of control used. By adjusting the weights within the terminal

and transient cost functions, the behavior of the system can be tuned to better match some

desired behavior.

The X and U sets define the acceptable bounds of the system to maintain safety and

match the available control. Additionally, the terminal set Xf defines the allowable set of

final system states. In the event that Xf = 0, then the terminal cost p becomes redundant.

In contrast to standard feedback control, the inclusion of these constraints guarantees that

the state and control bounds of any solution are safe and allowable. However, solutions can

only be guaranteed for initial conditions which exist within the allowable initial condition

set X0 ⊂ X .
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Given an initial condition x(t) ∈ X0, the MPC formulation can be written in as

min
u

J(x, u) = p(xN ) +

N−1∑
k=0

q(xk, uk)

s.t. xk+1 = Axk +Buk k = 0, . . . , N − 1

xk ∈ X , k = 0, . . . , N − 1

uk ∈ U , k = 0, . . . , N − 1

xN ∈ Xf

x0 = x(t) ∈ X0

(4.2)

which finds a solution over the N steps in the planning horizon. The control solution

u∗(x(k)) = [u∗0(x(k)) . . . u
∗
N−1(x(k))] (4.3)

can then be applied to the system which results in the trajectory

x∗(x(k)) = [x∗1(x(k)) . . . x
∗
N (x(k))] (4.4)

In practice, the MPC is recalculated repeatedly to generate a closed-loop solution. At

each control step, the control solution u∗(x(k)) is found and the first control u∗0(x(k)) applied

to the system. The state is then measured to obtain a new initial condition x0 = x(k + 1),

the MPC is solved again with this new initial condition, and u∗0(x(k + 1)) is applied to the

system. The closed-loop system can then be described as

x(k + 1) = Ax(k) +Bu∗0(x(k)), k ≥ 0 (4.5)
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4.1.2 Tube-based MPC

Tube-based MPC [30,55,56] is a modification of the standard MPC that guarantees the

system will remain within specified bounds, even when the system is affected by perturba-

tions. In general, there are two ways to approach the problem. One approach [56] generates

the region by calculating the reachable set at each point along the time horizon considered

by the control law given the current state and possible perturbations. This reachable set is

then recalculated each time the control is calculated. A second approach [30], and the one

detailed below, generates a single set that contains all possible reachable sets. While less

computationally intensive, since it only needs to be precomputed a single time, it does result

in a more conservative reachable set.

Tube-based MPC has been used previously in conjunction with spacecraft systems such

as in [57] and [58], where it was used in autonomous rendezvous and docking applications.

For [57], an adaptive control law is used to generate the reachable sets on-orbit with time-

varying dynamics. In contrast, [58] precomputes a time-invariant boundary which is then

used at each point along the control law.

Consider a system of the form

x(k + 1) = Ax(k) +Bu(k) + w(k) (4.6)

where w ∈ W is the perturbation. The set W is a compact convex subset of Rn containing

the origin in its interior. Similarly, consider the nominal, unperturbed system

x(k + 1) = Ax(k) +Bu (4.7)

where u is the nominal MPC solution, u0(x(k)), as calculated above.

We now introduce a feedback policy for the perturbed system as

u(k) = ū(k) +K(x(k)− x̄(k)) (4.8)
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where K ∈ Rm×n is a feedback gain.

With this feedback policy, the perturbed system dynamics are

x(k + 1) = ADx(k) +BDū(k) +BKe(k) + w(k) (4.9)

where e(k) = x(k)− x̄(k) is the error between the perturbed and nominal systems.

Using the error equation, we can write the error dynamics as

e(k + 1) = AKe(k) + w(k) (4.10)

where AK = AD +BDK and, through the proper selection of K, we can guarantee that AK

is a stable matrix.

With this selection ofK, and the resultingAK , we can now determine how to restrict the

boundaries on the nominal MPC so that the original bounds are guaranteed to be maintained.

We first define set multiplication as follows [30]: Let K ∈ Rm×n, then KA = {Ka|a ∈ A}.

With this, we introduce the uncertainty set SK(k) as

SK(k) =

k−1∑
i=0

Ak
KW (4.11)

Similarly, we introduce the set addition function as A⊕B = {a+ b|a ∈ A, b ∈ B}. The

titular tube can now be defined as

X(i;x(0)) = {x̄(i)} ⊕ SK(i), i = 1, . . . , N (4.12)

where X(i;x(0)) is the uncertain region at step i, centered on the nominal solution x̄(i).

Note that we assume no measurement errors so at the current step x̄(0), the tube is simply

the current state X(0, x̄(0)) = {x̄(0)}.

We now consider how the state and control constraints of the nominal MPC must be

constricted to guarantee the perturbed system remains within the allowable bounds. Let Z̄

be the set of state-control constraints for the deterministic system such that (x̄(k), ū(k)) ∈ Z̄
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for all k = 0, . . . , N and assume that Z̄ is polytopic. The task is now to find how much the

constraints for the uncertain system, Z, must be reduced so that if (x̄(k), ū(k)) ∈ Z̄, then

(x(k), u(k)) ∈ Z, for all k = 0, . . . , N .

Let Z be described as a set of scalar inequalities cz ≤ d with z ∈ Z or, equivalently,

cxx+ cuu ≤ d with x ∈ X and u ∈ U . We introduce an offset θi with i = 0, . . . ,∞ defined as

θi = max
e

{cxe+ cuKe|e ∈ SK(i)}

= max
w


i−1∑
j=0

cxA
i
Kw|w ∈ W


(4.13)

where each element of θi is determined individually. Once θ∞ is found, if cz + θ∞ ≤ d is

satisfied for the nominal system, then cz ≤ d is satisfied for the perturbed system.

However, since θ∞ is difficult to compute, the following approximation is used from [30,

59]. Since AK is stable, for all α ∈ (0, 1), there exists a finite integer N such that AN
K ⊂ αW

and KAN
KW ⊂ αKW. Then,

θ∞ ≤ θN + αθ∞ (4.14)

or,

θ∞ ≤ (1− α)−1θN (4.15)

The tightened constraints can then be written as

cz̄ ≤ d− (1− α)−1θN (4.16)

Assuming that W is a box, a suitable N and α can be calculated [30] as

α = max

(
maxw∈W ∥AN

Kw∥∞
maxw∈W ∥w∥∞

,
maxw∈W ∥KAN

Kw∥∞
maxKw∈W ∥w∥∞

)
(4.17)

where W is the set of vertices of W. By calculating α in this way for increasing values of N ,

a suitable α ∈ (0, 1) can be found.
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Once a suitable α and N are found, the upper bound of θ∞ can be calculated. This,

in turn, allows for the calculation of the reduced constraints z̄ which can be used in the

nominal MPC formulation to calculate the nominal control ū∗(x(k)). Then, at each step,

the controller compares the first state of the solution from the previous iteration, x∗1(x(k−1)),

to the actual current state x(k) to generate the addition feedback termK(x(k)−x̄∗1(x(k−1))).

The closed-loop, tube-based MPC formulation is then

x(k + 1) = Ax(k) +B
[
ū∗0(x(k)) +K(x(k)− x̄∗1(x(k − 1))

]
(4.18)

4.2 Spacecraft Application

One common approach to maintaining a spacecraft’s state is to define a volume of

space that the spacecraft must remain in and then design control laws that maintain that

constraint [60–63]. This application of tube-based MPC is developed from [62] which used

an MPC to follow a guidance trajectory. The same guidance and control architecture is used

here, but with a guaranteed boundary maintenance using the robust MPC formulation.

When a correction maneuver is required, the guidance law calculates a trajectory that

guides the spacecraft from its current state to the nominal, desired orbit. This solution

examines a time horizon of around an orbit and a half to allow the guidance law to leverage

fuel-efficient maneuver points such as apogee or perigee. This guidance trajectory is then

given to the tube-based MPC control which finds a solution that follows the guidance tra-

jectory and rejects perturbations which may occur. The MPC is rerun at each step of the

simulation but optimizes over a much shorter time horizon than the guidance trajectory, on

the order of tens of minutes.
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4.2.1 Guidance Trajectory

We first define the guidance dynamics using the error states. Let the desired trajectory

be

xd = [xd(0), xd(1), . . . , xd(N)] (4.19)

such that

xd(k + 1) = ADxd(k) (4.20)

Given the nominal, controlled dynamics as

x(k + 1) = ADx(k) +BDug(k) (4.21)

the error states eg(k) = x(k)− xd(k) can be found to be

eg(k + 1) = ADeg(k) +BDug(k) (4.22)

Note that in this formulation, the bounding constraints on the guidance trajectory can

be a time-invariant set which describe the maximum allowable state error relative to the

desired trajectory. Since the guidance trajectory is an open-loop control which plans the fuel

optimal transfer trajectory, we do not account for perturbations in this portion and these

constraints are not adjusted.

The purpose of the guidance law is to compute a fixed time, fuel optimal trajectory that

guides the spacecraft from its current state back to the desired orbit. Given the guidance

time horizon, Ng, bounds on control inputs, umax, umin ∈ Rn
>0, and bounds on error states

eg,max, eg,min ∈ Rm
>0, the guidance error trajectory eg,k ∈ Rn and control ug,k ∈ Rm can be
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calculated as follows:

min
xg,k,ug,k

1

2

Ng−1∑
k=0

∥ug,k∥1

s.t. eg,k+1 = ADeg,k +BDug,k k = 0, 1, . . . , Ng − 1

eg,0 = x(t)− xd(t)

eg,Ng = 0

eg,k ≤ eg,max

eg,k ≥ −eg,min

ug,k ≤ ug,max k = 0, 1, 2, . . . , Ng − 1

ug,k ≥ −ug,min k = 0, 1, 2, . . . , Ng − 1

(4.23)

where x(t) and xd(t) are the actual and desired states at the current time t. Since the guidance

trajectory has an error constraint of eg,Ng = 0 for the terminal state and an adjustable time

horizonNg, the guidance law can be considered to be a predefined-time control law. However,

in practice, the open-loop guidance law will be unable to reject perturbations which results

in the system failing to reach the terminal state.

One consequence of orbital dynamics is that there are points along an orbit where a given

maneuver is the most fuel efficient, for example: perigee, apogee, and the intersection of two

orbital planes. This has two major implications in the generation of the guidance trajectory.

First, a fuel optimal trajectory can experience prolonged periods with significant state errors

while it waits for the optimal point to maneuver. This means that if the guidance law were

incentivized to minimize the transient state error via a transient error term in the objective

function, it would maneuver too early, expending unnecessary control usage. Second, the

time horizon over which the guidance law optimizes must be sufficiently long to encompass

the fuel optimal points.

The guidance trajectory is only computed once, at the beginning of a course correction

maneuver. Once the solution is found, the error trajectory and control profile are saved and

used with the tube-based MPC.
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4.2.2 MPC Control

The MPC control law is tasked with following the trajectory found by the guidance law

despite perturbations. It is built on the optimization formulation shown below in Equa-

tion 4.35, which is similar to the guidance law. However, while the guidance law is only run

a single time when the spacecraft begins a maneuver, the MPC is re-run each simulation

step.

Since an optimal trajectory has already been found by the guidance law, the MPC is

able to calculate deviations from the guidance trajectory over a shorter time horizon, Nc.

From the stored trajectory and control profile, the MPC selects the period that corresponds

to the current interval it is optimizing over. Given the current step of the guidance trajectory

that the MPC control law is on, nc ∈ {1, . . . , Ng},

ed,ℓ = eg,n ℓ = 0, . . . , Nc;n = nc + ℓ, (4.24)

unom,ℓ = ug,n ℓ = 0, . . . , Nc − 1;n = nc + ℓ (4.25)

The guidance error trajectory is used as the desired states, ed,ℓ, while the associated control

profile is used as the nominal control inputs, unom,ℓ. Note that for any n > Ng,

ed,ℓ = 03×1 (4.26)

unom,ℓ = 03×1 (4.27)

which represents the spacecraft staying on the drifting, desired orbit after the end of the

guidance trajectory.

Looking at the MPC error state dynamics, the total error between the current position

and the overall desired trajectory is

e(k) = x(k)− xd(k) (4.28)
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which is the same definition that is used for the guidance trajectory. Comparing this error

to a previously found guidance trajectory error eg(i) for i = 1, . . . , Ng, gives the MPC error

as
em(k) = e(k)− eg(k)

= x(k)− xd(k)− eg(k)

(4.29)

which has dynamics of

em(k + 1) = ADem(k) +BD(u(k)− ug(k)) (4.30)

where u(k) is the total control applied to the nominal system at step k. For simplicity, we

define um(k) = u(k)−ug(k) as the input calculated by the MPC. In other words, the MPC is

calculating an adjustment to the guidance control solution to compensate for perturbations.

Similar to the guidance trajectory generation, we can now define a set of time-invariant

boundaries for the MPC. While the guidance boundaries are centered around the desired

trajectory, the MPC boundaries are centered on the guidance trajectory. This means that

when designing the boundary constraints, we have to consider that the guidance error and

MPC error can stack such that the total error between the spacecraft’s desired state and

current state does not exceed the bounds set on the guidance trajectory. This is of note

when designing the formation since we have to use the set sum of the two boundary con-

straints. In the case of “box constraints” where each element is bounded individually, this

can trivially be done by element-wise addition of the constraints to find the total keep-in

volume. Additionally, the total control constraint is also divided between the guidance and

MPC portions so that the sum of the control for the two parts will not be greater than the

total available control.

Let us define the total error that the spacecraft must remain within as

|e| ≤ emax

|e| ≥ −emin

(4.31)
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where emax, emin ∈ Rn
>0 and the absolute value and inequalities are applied elementwise.

Then we can set the guidance bounds eg,max, eg,min ∈ Rn
>0 and MPC bounds em,max, em,min ∈

Rn
>0 such that

emax = eg,max + em,max

emin = eg,min + em,min

(4.32)

For the tube-based MPC, the em,max bounds are constricted to generate the bounds ēm,max

which guarantee the spacecraft remains in the em,max bounds, even in the presence of per-

turbations.

Similarly, the allowable control bounds are split between the guidance and MPC. Given

the total control bounds as
|u| ≤ umax

|u| ≥ −umin

(4.33)

with umax, umin ∈ Rm
>0, the guidance and MPC control bounds can be set as

umax = ug,max + um,max

umin = ug,min + um,min

(4.34)

with ug,max, ug,min, um,max, um,min ∈ Rm
>0. Again, the um,max and um,min constraints for the

tube-based MPC are constricted to ūm,max and ūm,min.
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The MPC then optimizes over its time horizon and at each step along the guidance

trajectory, a new solution is found as

min
x,u

1

2
|| Ru0 ||1 +

1

2

Nc−1∑
k=1

[
|| Qxe,k ||1 + || Ruk ||1

]
s.t. ek+1 = ADek +BDum k = 0, 1, . . . , Nc − 1

em,0 = x(t)− xd(t)− eg(t)

em,k ≤ ēm,max k = 1, 2, . . . , Nc

em,k ≥ −ēm,min k = 1, 2, . . . , Nc

um,k ≤ ūm,max k = 0, 1, 2, . . . , Nc − 1

um,k ≥ −ūm,min k = 0, 1, 2, . . . , Nc − 1

(4.35)

Once the control law finds the solution of controls, uℓ, that solve the optimization

problem, the actual applied control input is determined as

u = unom,0 + um,0 +K(em,0 − em,1(t− 1)) (4.36)

where K is the tube-based MPC gain, em,0 is the current MPC error, and em,1(t− 1) is the

predicted MPC error em,1 from the solution at the previous timestep. This is applied to the

system, the new state is then measured, the control law is re-initialized, and the next optimal

control is found. The control law runs until the full guidance trajectory has been executed.

The guidance trajectory guarantees that the unperturbed, open-loop system will con-

verge to the desired state in finite-time. Adding the tube-based MPC to reject perturbations

reduces the guarantee of the closed-loop system to asymptotic convergence. Since the total

allowable error in the system is the combination of the guidance and MPC errors, and since

the guidance error is defined to be zero at the conclusion of the guidance trajectory, the final

allowable, terminal error for the full system is simply the nominal bounds used to construct

the tube-based MPC. Thus, finite-time convergence to a region of the origin is guaranteed

with the upper bound of the region determined by the size of the MPC bounds.
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4.2.3 Perturbations

In much of the formation flying literature referenced previously [60–62], the existence

of perturbing forces is implied but not directly accounted for. Although control laws are

developed to reject the perturbing forces, the expected effect of the perturbations on the

controllers are only minimally examined.

In [60], the planning error box is introduced as a constriction of the total keep-in bound-

ary to account for the difference in the planning and actual dynamics. To guarantee feasibility

for all initial conditions, a scaling variable was introduced into the trajectory optimization

problem which allowed the planning error box to grow as needed. However, this negates the

purpose of the error boxes since the keep-in boundary is no longer absolute and cannot be

used to plan non-overlapping volumes.

In [61, 62], a smaller set is also used to account for the difference in model and actual

dynamics. Furthermore, the switching condition to turn on the controller is based on the

predicted trajectory of the spacecraft which is designed to initiate correction maneuvers

before the spacecraft reaches a state where there is no feasible solution. These methods did

not provide guarantees that feasible solutions would always exist, but testing in simulations

implied that they were sufficient for the given formation definition.

In general, spacecraft perturbations are well understood but computationally expensive

to implement in a spacecraft model. This is particularly relevant when applied to MPC

since the optimization process requires rapidly propagating multiple possible spacecraft tra-

jectories. In [46], a list of perturbation sources are given, as well as how the impact of

those perturbations varies with a spacecraft’s altitude. For Low-Earth Orbits (LEOs), the

spacecraft is primarily affected by drag and J2 effects caused by the oblateness of the Earth

with other effects due to third-bodies, solar radiation pressure, and other gravitational ef-

fects present but at relatively lower levels. By analyzing the anticipated orbit regime, the

relevant perturbations can be estimated and used to design the controller to stabilize the

system in the presence of those perturbations.



66

For this work, the only perturbations accounted for are drag and J2 but the approach

can be expanded to include any number of desired perturbing forces.

In order to meaningfully calculate the robust boundaries, we first need to determine

the set W of possible perturbations. The perturbations result from the use of the linearized

CW dynamics for the guidance and control laws while the actual dynamics for the system

include J2 and drag effects. The perturbations are experimentally determined by initializing

two spacecraft and propagating them both using the CW dynamics and the full nonlinear

dynamics. The the difference in the final states then determines the perturbation. By doing

this over multiple initial states which attempt to span the full range of possible orbits, an

estimate of the maximum possible perturbations can be determined.

Given an update timestep dt and a corresponding AD and BD for the state transition

matrix and control input matrix, respectively, we now consider the perturbed MPC dynamics

using the error states. Recall that

em(k) = x(k)− xd(k)− eg(k) (4.37)

and consider that we use x(0), xd(0), and eg(0) to compute em(0), all of which are in the

LVLH frame. Since the eg sequence is a reference trajectory and only computed using the CW

dynamics, it is unaffected by perturbations. We now find em(1) using both the CW dynamics

and the perturbed dynamics and compare them to obtain an estimate of the perturbations

in the LVLH frame. To do this, we first convert x(0), xd(0), and um(0) to the ECI frame,

propagate with the nonlinear dynamics, and then convert back to the LVLH frame, resulting

in xE(1) and xEd (1), and then calculate eEm(1) as

eEm(1) = xE(1)− xEd (1)− eg(1) (4.38)

Then, we can propagate em using Equation 4.30 as

eLm(1) = AD(x(0)− xd(0)) +BDum(0)−ADxg(0)−BDug(0) (4.39)
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The difference in the two updated states is then the resultant of the perturbation w

w = eLm(1)− eEm(1)

= ADx(0) +BDum(0)− xE(1)−ADxd(0) + xEd (1)

(4.40)

This is then calculated over a range of initial conditions expected to span those encountered

by the control when in use. The set W is then chosen as a set that bounds all observed

perturbations.

4.2.4 Solution Feasibility

Since the guidance dynamics use the time-invariant error states, feasibility can be

proven, given a polytopic initial error set EG
0 and allowable sets EG and UG for the allowable

errors and controls, respectively.

The guidance trajectory assumes a terminal time tf which is a function of the dis-

cretization timestep and the number of steps Ng in the guidance trajectory. This assures

predefined-time convergence of the spacecraft to the desired trajectory for the open-loop,

unperturbed system. However, due to the constraints on the guidance trajectory, it must be

shown that a feasible solution exists for all e0 ∈ EG
0 given the horizon Ng and allowable sets

EG and UG.

Theorem 8. Consider the discrete, time-invariant system

x(k + 1) = ADx(k) +BDu(k) (4.41)

with a set of allowable states X , initial conditions X0 ⊂ X , and control constraints U , which

are all polytopes that contain 0 in their interior. Now consider the problem of finding a
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solution to the problem

xk+1 = ADxk +BDuk k = 0, 1, . . . , N − 1

x0 ∈ X0

xN = 0

xk ∈ X k = 1, . . . , N

uk ∈ U k = 0, 1, 2, . . . , N − 1

(4.42)

If a solution exists for each vertex of X0, then the problem is feasible for all x0 ∈ X0.

Proof. First note that the equality constraints can be stacked to obtain a single equality

constraint



−I 0 . . . 0 0 B 0 . . . 0

A −I . . . 0 0 0 B . . . 0

...
... . . . ...

...
...

... . . . ...

0 0 . . . A −I 0 0 . . . B

0 0 . . . 0 I 0 0 . . . 0





x1

x2
...

xN−1

xN

u0

u1
...

uN−1



=



−ADx0

0

...

0

0


(4.43)

and since it is a linear system of equations, any convex combination of solutions is also a

solution. Since X0 is a polytope, any point in the set can be expressed as a convex combination

of the vertices where the coefficients are non-negative and sum to 1. Furthermore, since the

state constraints A and control constraints U are convex sets, convex combinations of each xk

and uk−1, k = 1, . . . , N by those same coefficients will remain in their respective sets. Thus,

if a feasible solution exists for each vertex of X0, a feasible solution exists for all x0 ∈ X0.
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MPC generally solves the optimization problem at regular intervals with updated initial

conditions at each step along the simulation. With standard MPC, this is necessary so that

the MPC can measure the errors cause by perturbations and recalculate the control to close

the loop. In that case, feasibility must be assured for each subsequent step along the system’s

closed-loop trajectory.

However, with tube-based MPC, the feedback gain fulfills that role of rejecting pertur-

bations. Thus, tube-based MPC can solve the optimization problem for the initial conditions

and find an open-loop solution. Recall that the selection of the feedback gain and the con-

striction on the bounds for the tube-based MPC problem are selected based on the expected

perturbations such that the system is guaranteed to not exceed the overall allowable bounds.

The system can then follow the solution and use the feedback gain to reject perturbations

based on the difference between the solution and the actual trajectory without needing to

repeatedly solve the optimization problem. While the system may exceed the constricted

tube-based MPC bounds due to perturbations, the feedback gain keeps the system within

the overall desired bounds. Thus, feasibility only needs to be proven for the initial condition.

In practice it can still be beneficial for the tube-based MPC to recalculate solutions

periodically based on the updated system states. This allows the MPC to design fuel-

efficient trajectories that account for the experienced perturbations instead of solely relying

on the feedback gain. However, as a result of the perturbations, subsequent steps may find

the system to be outside the allowable, constricted bounds used by the tube-based MPC and

result in an infeasible problem. In these situations, an updated solution cannot be generated,

but the previous solution the system has been following until this point is still valid. The

system can continue to use this previous solution until the boundary conditions are satisfied

to generate a new, updated solution. Thus, feasibility only needs to be guaranteed for

the initial tube-based MPC formulation and for subsequent states a new solution can be

generated, if possible, or the previous solution can continued to be followed.

Applying the theorem shows that feasible solutions can be guaranteed for both the

guidance and control portions of the formation flying architecture by checking the vertices
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of the initial conditions. This approach does have some limitations, however. First, the

boundary constraints must be polytopic sets with a finite number of vertices which eliminates

bounding sets defined by spheres or ellipses. Second, the computation time needed increases

proportionally to the number of vertices used in the bounding set. However, both these

limitations can be mitigated by using a simpler set, of which the desired constraints are

a subset, to check feasibility. Then, if the problem is feasible for this set, the problem is

guaranteed to be feasible for the actual bounds.

Assuming that there is a feasible trajectory, we now show that an optimal trajectory

exists. This is done by applying the Weierstrass Theorem which places conditions on the

objective function f and constraint set X .

Theorem 9. [Weierstrass Theorem [32, Theorem 3.3]] If f is continuous and X is closed

and bounded, then f attains a minimum and maximum on X .

Applying this to the guidance trajectory problem, the objective function is

JG =
1

2

Ng−1∑
k=0

∥ug,k∥1 (4.44)

which is continuous and the constraints are closed and bounded. Thus, if a feasible guidance

solution exists, there is an optimal solution. Similarly, the MPC objective function is

JMPC =
1

2

Ng∑
k=1

∥em,k∥1 +
1

2

Ng−1∑
k=0

∥um,k∥1 (4.45)

which is also continuous and satisfies the Weierstrass Theorem. Additionally, the constraint

sets for the state errors and control usage are closed and bounded for both the guidance

and MPC problems. Thus, if the guidance and MPC problems are feasible, then there is an

optimal solution to each.
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4.3 Results

This section details the application of tube-based MPC to the formation flying architec-

ture used in [62]. Since the architecture itself was already demonstrated, this portion only

demonstrates that the tube-based MPC approach is sufficient to keep a spacecraft within

the allowable bounds. When applied to a full spacecraft formation, the same approach can

be applied to each spacecraft in the formation.

We first estimate the bounds of the possible perturbations based on the anticipated er-

rors. These perturbations are then used to determine the constricted bounds for MPC which

will guarantee that the spacecraft will remain in the allowable bounds despite perturbations.

The controller is then tested using the CW dynamics with perturbations added, as well as

using the full nonlinear dynamics with J2 and drag perturbations.

4.3.1 Perturbation Calculation

The perturbations were estimated using the method in 4.2.3. For each perturbation

sample, a reference orbit was selected as

xEL
ref =



a ∈ U (6 728 000m, 7 378 000m)

e ∈ U (0, 0.01)

i ∈ U (0◦, 90◦)

Ω ∈ U (0◦, 360◦)

ω ∈ U (0◦, 360◦)

ν ∈ U (0◦, 360◦)


(4.46)

where xEL
ref is the initial reference state in Keplerian coordinates, semi-major axis a, eccen-

tricity e, inclination i, right ascension of the ascending node Ω, argument of perigee ω, and

true anomaly ν. This state is then converted to ECI coordinates.
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The sample state used for xd is then chosen in the LVLH frame relative to the reference

as

xd =



U (−1000m, 1000m)

U (−1000m, 1000m)

U (−1000m, 1000m)

U (−50m/s, 50m/s)

U (−50m/s, 50m/s)

U (−50m/s, 50m/s)


(4.47)

The sample state used for x is chosen as

x = xd +



U (−1000m, 1000m)

U (−1000m, 1000m)

U (−1000m, 1000m)

U (−10m/s, 10m/s)

U (−10m/s, 10m/s)

U (−10m/s, 10m/s)


(4.48)

with the control input chosen as

u =


U (−0.25m/s2, 0.25m/s2)

U (−0.25m/s2, 0.25m/s2)

U (−0.25m/s2, 0.25m/s2)

 (4.49)

The possible xd states cover the expected range of desired relative orbits while the x state

covers the expected range of allowable error. The possible u values represent the maximum

allowable controls that can be added to the system.
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After sampling 50 000 points, the maximum magnitude for the perturbations along each

axis were found to be

wmax =



0.071 13m

0.072 76m

0.017 42m

0.019 09m/s

0.017 63m/s

0.000 51m/s


(4.50)

For simplicity, and to account for the fact that this is only a sample-based estimate, the

perturbation set used to design the Tube-based MPC is expanded slightly to

W =

{
w | |w| ≤

[
0.1m 0.1m 0.1m 0.02m/s 0.02m/s 0.02m/s

]T}
(4.51)

where the absolute value and inequality are applied element-wise.

4.3.2 Allowable Bounds

The bounds for each portion of the control architecture are as presented in Table 4.1.

The overall design constraint for this work was chosen to keep the spacecraft within 500m of

the desired trajectory along each axis. A velocity constraint of 10m/s difference along each

axis was also selected. This overarching constraint was then divided between the guidance

and MPC portions with the guidance constraints set at 425m and MPC set at 75m with the

velocity error divided between them at 5m/s each.

With the estimation of the perturbations and the nominal bounds for the MPC de-

cided, the robust MPC bounds can be calculated. The K feedback was selected so that the

closed-loop, discrete system would have the poles indicated in Table 4.2. Then, applying

Equations 4.13, 4.16, and 4.17 with N selected to be 250, resulted in α = 1.160 16 × 10−4
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Table 4.1: Bounds for each portion of the control architecture. Norms and inequalities are
all elementwise.

To
ta

l

G
ui

da
nc

e

|e0| ≤



350m
350m
350m
1m/s
1m/s
1m/s



M
PC

|e0| ≤



20m
20m
20m

0.25m/s
0.25m/s
0.25m/s



|e| ≤



500m
500m
500m
10m/s
10m/s
10m/s

 |e| ≤



425m
425m
425m
5m/s
5m/s
5m/s

 |e| ≤



60m
30m
40m
4m/s
4m/s
4m/s



|u| ≤

0.02m/s20.02m/s2

0.02m/s2

 |u| ≤

0.01m/s20.01m/s2

0.01m/s2

 |u| ≤

0.006m/s20.006m/s2

0.006m/s2



and

ēm,max = ēm,min =



61.278277084557388

32.244247139161274

43.980983091803651

4.866698144017604

4.774377684097654

4.815934382031404



ūm,max = ūm,min =


0.006895504931198

0.007028254091638

0.007329580334443



(4.52)

For simplicity, these bounds were further restricted to convenient values, as shown in Ta-

ble 4.1.

Finally, the bounds for the initial conditions e0 were selected and verified by testing

that for each vertex of the initial conditions, there is a feasible solution that exists within the

allowable bounds and which terminates at the origin. The initial bounds are separated for the
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guidance and MPC portions, with the guidance initial conditions representing the maximum

error between the guidance initial condition and the desired trajectory. Similarly, the MPC

initial error is the largest initial error between the MPC initial condition and the initial state

of the guidance trajectory. Due to the use of the error states in the problem formulation,

the guidance and MPC feasibility were able to be verified independent of each other. While

the initial condition bounds shown in Table 4.1 satisfy the feasibility constraints, there is no

guarantee that these are the largest possible sets that guarantee feasibility.

4.3.3 Perturbed CW Dynamics

We first test the robust control formulation using the CW dynamics and manually

adding random perturbations that exist within W. The parameters used in this simulation

are found in Table 4.2.

Table 4.2: Parameters used in the simulation

dt 10 s
Ng 800 steps
Nm 30 steps
n 0.0011 1/s
Qmpc 0.001 I
Rmpc I
Poles

[
0.85 0.85 0.95 0.95 0.9 0.9

]
W |w| ≤

[
0.1m 0.1m 0.1m 0.02m/s 0.02m/s 0.02m/s

]T

For this, the desired trajectory xd is set to be the origin over the full duration of the

guidance law. The initial state for the guidance trajectory is randomly selected from one of

the vertices that bounds the possible initial guidance states (Table 4.1). Once the guidance

trajectory is planned, the initial state is then perturbed such that the initial MPC error em(0)

lies on a random vertex of the allowable MPC initial bounds. At each step, the spacecraft

state is updated as

x(i+ 1) = ADx(i) +BDu(i) + w(i) (4.53)
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wherew(i) is randomly chosen suchw(i) ∈ U (−1, 1)∗W where U is the uniform distribution.

For discretizing the system, a timestep of 10 s and a mean motion of 0.0011 1/s were used.

The control gain K in the Tube-MPC feedback gain was selected to give the discrete system

the poles are indicated in Table 4.2.

A total of 50 simulations are run with the initial conditions randomly selected from the

bounding vertices. In Figure 4.1, the guidance trajectories for all the simulations are shown

and in Figure 4.2, the control profiles are shown. Note that in all cases, the states and controls

remain within the allowable bounds. The final error for all the states averages zero across all

the simulations but, due to the perturbations, each individual simulation has some non-zero

error. Looking at the control profiles, the large spikes result from the guidance control as it

tends towards using impulsive-like controls in the fuel-optimal locations. Additionally, each

axis also has a pattern of smaller controls which come from the tube-based MPC attempting

to reject the perturbations.

Fig. 4.1: Error trajectory calculated for guidance and MPC law over 50 randomized simula-
tions.
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Fig. 4.2: Total control acceleration, consisting of guidance, MPC, and feedback, over 50
simulations.

In order to better examine the terminal behavior and overall convergence, the position

errors and control magnitudes are presented on a log scale. In Figures 4.3 and 4.4, the position

errors for the in-plane subsystem and cross-track subsystem are shown, respectively. For the

in-plane errors, they show a gradual decrease until they converge to approximately 10−1m

and then exhibit chattering behavior. The convergence times have some variation but overall,

each converges within the convergence time bound, and the bound does not appear to be

overly conservative.

While the cross-track subsystem (Figure 4.4) also is able to converge within the allowed

bounds, the error trajectories are quite different. In general, only two main trajectories are

visible, although some minor deviations exist within those, as opposed to the wider range of

trajectories seen with the in-plane dynamics. Additionally, the system shows very distinct

oscillations before converging on the origin where chattering occurs.



78

0 20 40 60 80 100 120 140

Time (min)

10-4

10-2

100

102

104

E
rr

or
 (

m
)

In-Plane Position Error

Fig. 4.3: In-plane position errors for the CW
dynamics using the guidance and tube-based
MPC.
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Fig. 4.4: Cross-track position errors for the
CW dynamics using the guidance and tube-
based MPC.

In Figures 4.5 and 4.6, the control magnitudes for the two subsystems are shown. Some

larger peaks in the control trajectories can be seen, but overall, the controls for both sub-

systems exhibit large amounts of chatter and a very non-smooth trajectory.

0 20 40 60 80 100 120 140

Time (min)

10-5

10-4

10-3

10-2

10-1

|u
| 2 (

m
/s

2 )

In-Plane Control Norm

Fig. 4.5: In-plane control for the CW dy-
namics using the guidance and tube-based
MPC.
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Fig. 4.6: Cross-track control for the CW dy-
namics using the guidance and tube-based
MPC.

This demonstrates that the guidance and control algorithm is able to successfully control

the spacecraft when the simulation dynamics match the model dynamics and the pertur-
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bations are within the bounds used for designing the controller. One item of note is that

many of the constraints appear to be poorly fit for the system. For example, examining

the allowable bounds for the velocities show that the actual velocities never approach the

bounds. While this is not necessarily detrimental to the system, it does suggest that the

bounds can be adjusted to boundaries more relevant to a desired application. Addition-

ally, the total control never reaches the control boundary while the guidance control does

occasionally hit its maximum control boundary. This suggests that there may be benefit

in reducing the amount of control available to the MPC and increase that available to the

guidance trajectory.

4.3.4 Two-Body Dynamics

Once the control was shown to work with the perturbed CW dynamics, it was tested

using the two-body, nonlinear dynamics. The General Mission Analysis Tool (GMAT) [64]

was used to simulate the dynamics via the MATLAB API with J2 and drag perturbations.

A single reference orbit and desired relative orbit (Table 4.3) was used for all simulations.

For each simulation, a guidance trajectory was found that corresponded to a random vertex

of the allowable boundary volume. Once a guidance trajectory was found, the state was

perturbed so that the initial condition corresponded to a random vertex of the allowable

MPC error. The simulation then ran for the duration of the guidance trajectory with the

control at each step being calculated from the guidance control, MPC control, and feedback

control and then propagated to the next step using the nonlinear dynamics. The parameters

for the controls are identical to those used for the perturbed linear dynamics (Table 4.2)

while the physical parameters used for the spacecraft are given in Table 4.4.

In Figures 4.7 and 4.8, the total errors for in-plane and cross-track subsystems, respec-

tively, are shown for 50 randomly initialized simulations. Overall, the plots look similar to

the CW results, with the in-plane error smoothly converging to the origin and the cross-

track showing oscillations. However, at the end of the simulations there is significantly less

chattering and the average errors are lower. This indicates that the perturbation estimate

used with the CW dynamics was overly conservative.
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Table 4.3: Reference orbit in Keplerian coordinates and desired orbit in ROEs.

Reference Orbit

a = 6878 000m
e = 1× 10−4

i = 170◦

Ω = 126◦

ω = 0◦

ν = 0◦

Relative Orbit

δa = 0
δλ = 0.1
δex = 0.000 145 4
δey = 0
δix = 0.000 145 4
δiy = 0

Table 4.4: Spacecraft parameters used for the nonlinear spacecraft propagation.

Parameter Value
Initial Wet Mass 24 kg
ISP 160 s
Projected Surface Area 0.048m2

CD 2.2

The tube-based MPC only guarantees that the position error at the end of the guidance

trajectory will be within the nominal bound used with the MPC. This sets an upper bound

on the terminal position error. However, for both the in-plane and cross-track results, the

errors are much less than this upper bound showing that in practice, closer convergence to

the origin can be achieved.
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Fig. 4.7: In-plane position errors for the two-
body dynamics using the guidance and tube-
based MPC.
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Fig. 4.8: Cross-track position errors for the
two-body dynamics using the guidance and
tube-based MPC.

In Figures 4.9 and 4.10, the corresponding plots are shown for the in-plane and cross-

track controls, respectively, with the two-body dynamics. In contrast to the perturbed CW

dynamics, the in-plane controls now have a visible overall trajectory. There are large peaks in

the control from the guidance solution, but otherwise the control profile is relatively smooth

as it rejects perturbations. However, there are still some chattering effects, especially at the

end of the simulations. The cross-track control is smoother than its counterpart that was

applied to the perturbed CW model (Figure 4.4) but less smooth than the in-plane control.

Some of this may result from the fact that the average control magnitude is roughly an order

of magnitude smaller than the in-plane control, so small chattering effects are magnified.

However, the control still follows a similar pattern, where the guidance solution results in

spikes in control usage to mimic impulsive maneuvers, and the MPC applies smaller amounts

of control to reject perturbations.



82

0 20 40 60 80 100 120 140

Time (min)

10-10

10-8

10-6

10-4

10-2

100

|u
| 2 (

m
/s

2 )

In-Plane Control Norm

Fig. 4.9: In-plane control for the two-body
dynamics using the guidance and tube-based
MPC.
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Fig. 4.10: Cross-track control for the two-
body dynamics using the guidance and tube-
based MPC.

Overall, this control usage is higher than what was seen in [62], despite the keep-in

volumes being roughly similar sizes. This appears to result from the switching condition used

in [62] which initiated a correction maneuver based on estimating the future trajectory of

the spacecraft. This means that the actual initial conditions for the guidance and MPC laws

for the nominal approach are actually smaller than the designated boundaries. In contrast,

the simulations in this analysis use all initial conditions which lie on the boundary of the

allowable space. Additionally, the tube-based MPC velocity constraints are much larger

than what were seen in [62]. While this allows for greater flexibility in finding guidance and

MPC solutions, it also increases the control needed to return to the desired trajectory.

4.4 Conclusion

This chapter details the use of tube-based MPC to develop a robust controller that is

proven to stabilize the spacecraft system despite the presence of nonlinear dynamics and

perturbing forces. A guidance law was used to find a fuel optimal trajectory that returns

the spacecraft back to the desired state within a fixed time horizon. An MPC is then used

to follow that trajectory and reject perturbations. The maximum possible perturbations

were estimated by comparing the linear CW dynamics to the nonlinear dynamics and then
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used to constrict the boundaries on the MPC. When used in conjunction with a feedback

control, the restricted bounds guarantee that the perturbed system will remain within the

nominal desired boundary while not exceeding the allowable control. Thus, while finite-time

convergence is not guaranteed in the presence of perturbations, the closed-loop control does

guarantee finite-time convergence to a known bound.

The guidance and control laws were tested using both perturbed linear dynamics and

nonlinear dynamics. In both cases, the system was able to converge on the desired state and

reject perturbations. Control usage was higher, however, for the perturbed linear dynamics,

indicating that the estimated perturbing forces were a conservative estimate. The guidance

and control laws can easily be fit into the formation flying architecture detailed in [62],

allowing for robust stability of the spacecraft formation.
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CHAPTER 5

FINITE-TIME CONTROL VIA COMMON LYAPUNOV FUNCTIONS

Control using common Lyapunov functions has been used to guarantee stability of

switched and hybrid systems [65–68]. The use of common Lyapunov functions was extended

in [31] to define a controller that ensures finite-time stability for single-input LTI systems

in Brunovsky form. The design and tuning of the controller, as applied to the relative orbit

maintenance problem, are explored in this chapter.

5.1 Common Lyapunov Theory

Consider a system of the form

ẋ = Ax+Bu (5.1)

where A ∈ Rn×n and Bn×1 are in the Brunovsky form

A =



0 1 0 . . . 0

0 0 1 . . . 0

...
...

... . . . ...

0 0 0 . . . 1

0 0 0 . . . 0


, B =



0

0

...

0

1


(5.2)

Let K ∈ R1×n be a feedback gain such that the closed-loop matrix As = A+BK is Hurwitz.

We also introduce a function δ : R>0 → Rn×n as

δ(T ) =



T−n 0 . . . 0

0 T−n+1 . . . 0

...
... . . . ...

0 0 . . . T−1


(5.3)
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Note that with δ, we can make the following connections:

δ(T )Aδ(T )−1 = T−1A

δ(T )B = T−1B

d

dT
δ(T ) = T−1Mδ(T )

(5.4)

where M is defined to be

M =



−n 0 . . . 0

0 1− n . . . 0

...
... . . . ...

0 0 . . . −1


(5.5)

and is noted to be a stable matrix. The connection between the (A,B) system and the M

system is shown by finding the dynamics of y = δ(T )x as

ẏ = T−1(Ay +Bu+ ṪMy) (5.6)

We can now introduce the main results presented in [31] as follows.

Conjecture 1 ([31, Theorem 1]). There exists a gain K such that As = A+ BK is stable

and As and M posses a common quadratic Lyapunov function. This is of the form

QAs +AT
s Q = −P

QM +MQ = −R
(5.7)

where Q, P , and R are symmetric positive definite matrices.

Theorem 10 ([31, Theorem 2]). Suppose that V = xTQx is a common quadratic Lyapunov

function for two stable matrices As andM . Define a function T : Rn → R such that T (0) = 0

and

xT δ(T )Qδ(T )x = 1 (5.8)
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for x ≠ 0. Then, u = Kδ(T (x))x brings any state for the system (A,B) to the origin in finite

time.

5.1.1 Control Analysis

From the control law, we can now determine relationships between system performance

and the Q, P , and R matrices.

The rate of change of T is found to be [31]

Ṫ = −x
T δ(T )Pδ(T )x

xT δ(T )Rδ(T )x
(5.9)

Since P and R are, by definition, positive-definite matrices, the T value will always be

decreasing. For convenience, let y = δ(T )x. Then, finding the magnitude of Ṫ gives

∥Ṫ∥ =
∥yTPy∥
∥yTRy∥

(5.10)

Since P and R are symmetric, positive-definite matrices,

λmin(P )∥y∥2 ≤ ∥yTPy∥ ≤ λmax(P )∥y∥2

λmin(R)∥y∥2 ≤ ∥yTRy∥ ≤ λmax(R)∥y∥2
(5.11)

where λmin(·) and λmax(·) represent the minimum and maximum eigenvalues of the indicated

matrix, respectively. With this, the bounds on Ṫ are independent of y and can be found as

λmin(P )

λmax(R)
≤ ∥Ṫ∥ ≤ λmax(P )

λmin(R)
(5.12)

Given an initial T0 at time t0 = 0, the time tf that the system will reach T = 0 is bounded

as

T0
λmin(R)

λmax(P )
≤ tf ≤ T0

λmax(R)

λmin(P )
(5.13)
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Similarly, the bound on the control can be examined as

∥u∥ = ∥Ky∥

≤ ∥K∥∥y∥
(5.14)

With y constrained such that yTQy = 1, the bounds on y can be found as

∥yTQy∥ = 1

λmin(Q)∥y∥2 ≤ ∥yTQy∥ ≤ λmax(Q)∥y∥2

λmin(Q) ≤ 1

∥y∥2
≤ λmax(Q)

1√
λmin(Q)

≥ ∥y∥ ≥ 1√
λmax(Q)

(5.15)

The upper bound on u can then be written as

∥u∥ ≤ ∥K∥√
λmin(Q)

(5.16)

Note that this is a global bound, independent of the current state x, due to the yTQy = 1

constraint.

This analysis gives some insight into how Q, P , and R can be tuned in order to influence

the system behavior. By selecting matrices with appropriate eigenvalues, the bounds on the

convergence time and maximum control can be shifted. However, the three matrices cannot

be selected independently due their relationships via the common Lyapunov constraint.

5.1.2 Parameter Tuning

From the analysis on the bounds for the convergence time and maximum control, the

key parameters are identified to be λmin(Q), λmax(R), and λmin(P ). Specifically, by in-

creasing λmin(Q), the maximum control bound is decreased, and by decreasing the ratio of

the λmax(R) to λmin(P ), the final time is minimized. In order to adjust these variables,

a semidefinite program [69] is used to maintain the common Lyapunov constraint as a lin-

ear matrix inequality (LMI) while pushing the eigenvalues of Q, P , and R in the desired
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directions. The problem is formulated as

min
qmin,rmax,pmin

− qwqmin + rwrmax − pwpmin

s.t. QAs +AT
s Q = −P

QM +MQ = −R

qminI ≤ Q ≤ qubI

pminI ≤ P ≤ pubI

rlbI ≤ R ≤ rmaxI

qmin ≥ qlb

pmin ≥ plb

rmax ≤ rub

(5.17)

where qub, pub, rub ∈ R>0 are the upper allowable bounds, qlb, plb, rlb ∈ R>0 are the lower

allowable bounds, and qw, pw, rw ∈ R≥0 are weights. The lower bounds on Q, P , and R

drive the smallest eigenvalue of the respective matrix while the upper bounds constrain

the maximum eigenvalue of each. The objective function is minimized by increasing the

minimum eigenvalues of Q and P and decreasing the maximum eigenvalue of R, which drives

the bounds on the maximum control and convergence time towards the desired behavior.

5.2 Results

The common Lyapunov control parameters are explored using the CW dynamics with

single-input in-plane controls to determine how effective the control and convergence time

bounds are. Multiple controllers are developed using the parameter tuning method with

varying acceptable ranges for the common Lyapunov matrices, which are then applied to

the CW dynamics. From the results, the correlation between the theoretical bounds and the

actual performance is compared. A single controller with suitable behavior is then selected

and applied to the perturbed two-body dynamics.
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Table 5.1: Parameters used in Equation 5.17 for the optimization of the control law.

Parameter Value
qub

[
10−1 . . . 102

]
pub 1× 105

rub 1× 105

qlb
[
10−3 . . . 101

]
plb

[
10−3 . . . 101

]
rlb

[
10−3 . . . 101

]
α

[
0 . . . 1

]
qw 1
pw α
rw 1− α

5.2.1 Parameter Selection

The CW dynamics were divided into the single-input in-plane and cross-track sub-

systems and transformed into the Brunovsky form. For each subsystem, a controller was

designed using Equation 5.17 and the system was simulated and analyzed to determine the

practical impact of the Q, P , and R eigenvalues.

For each simulation, the stabilizing feedback gain K was chosen using an LQR formu-

lation with a state error weight of QLQR = 1I and control weight of RLQR = 0.01I, where I

is an identity matrix of appropriate size for the relevant subsystem.

The control was then designed for each subsystem by solving the optimization problem

(Equation 5.17) using the parameters shown in Table 5.1. The optimization problem was

modeled using YALMIP [70] and solved using SDPT3 [71,72]. For better numerical stability,

the problem was scaled to units of kilometers and hours.

The controller was designed with three parameters which were varied for each individual

simulation. The upper bound on Q, qub, was chosen from 10 values in the range indicated,

equally spaced on a log scale. Likewise, the optimization had an identical lower bound on

Q, P , and R which was selected from 10 values in the given range, equally spaced on a log

scale. Finally, the scaling between the P weight, pw, and the R weight, rw, was defined to

be α and selected from 10 value in the indicated range, equally spaced on a linear scale.
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Fig. 5.1: Convergence time, shown on a log10
scale, for the in-plane dynamics. Simulations
that did not converge within the simulation
time are marked with a black dot.
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Fig. 5.2: Convergence time, shown on a log10
scale, for the cross-track dynamics. Simula-
tions that did not converge within the simu-
lation time are marked with a black dot.

The primary variable under consideration is the balance between the P andR weightings

using the α parameter. For larger values of α, the objective function is weighted towards

increasing the minimum eigenvalue of P while, for smaller values of α, the emphasis is

on decreasing the maximum eigenvalue of R. Similarly, increasing the upper bound on Q

allows for a larger design space and higher possible values of λmin(Q). Although not strictly

necessary, the varying of the parameters for plb, rlb and qub is also designed to explore a larger

range of possible solutions. However, this results in some initial conditions being infeasible,

due to the overlap between the upper and lower bounds on Q, and those are removed from

consideration for the remainder of the analysis.

Each simulation begins with an initial condition

x0 =

[
390m 390m 390m 1.5m/s 1.5m/s 1.5m/s

]T
(5.18)

and the controller attempts to drive the system to the origin. Each simulation runs for 8 hrs

with a control update step of 5 s. In total, 319 simulations were run.

In Figures 5.1 and 5.2, the convergence time is shown for each of the simulations as a

function of λmin(Q) and λmax(R)/λmin(P ). The convergence time is defined as the time that
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the subsystem converges to within 0.1m of the origin. For some controllers, the convergence

time exceeds the 8 hr simulation runtime and are marked with black dots.

From Equation 5.13, the upper bound on the convergence time decreases as the

λmax(R)/λmin(P ) ratio decreases. For the in-plane subsystem (Figure 5.1), a decrease in the

convergence time can be seen as the ratio decreases from a value of 100 to 14. However, for

values of the ratio larger than 100, there does not appear to be any change in the convergence

time as the ratio varies. For the cross-track subsystem (Figure 5.2), the ratio does not seem

to have a practical effect on the convergence time.

However, for both subsystems, the convergence time tends to decrease with the λmin(Q)

value. This is explained by the fact that the convergence time is a function of T0 which, in

turn, is a function of Q. Overall, the choice of Q to determine T0 seems to have a stronger

impact on the overall convergence time, relative to the R to P ratio. However, for very small

λmin(Q), around 10−4, the convergence times appear to increase again, showing that the

trend is generally applicable but not guaranteed.

For comparison, the upper convergence time bound is shown in Figures 5.3 and 5.4

for the in-plane and cross-track subsystems, respectively. Here, the decrease in the upper

bound with the decreasing R to P ratio is seen as well. Additionally, the decrease in the

convergence bound with decreasing λmin(Q) is also seen. However, the upper bound is

significantly higher than the observed times, showing that the bound is a very conservative

estimate of the convergence time.

In Figures 5.5 and 5.6, the maximum observed control for the in-plane and cross-track

subsystems are shown, respectively. The points with a red border indicate control magnitudes

which exceed the theoretical maximum. As predicted by Equation 5.16, as λmin(Q) increases,

the instantaneous control of each subsystem tends to decrease. Since the controller only acts

on the Brunovsky dynamics, the Brunovsky transformation introduces an additional control

which is unaccounted for. For many of the simulations, the control bound is sufficiently

large, and the Brunvosky control sufficiently small, that the addition is not enough to exceed
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namics.

the expected bounds. However, for tighter control bounds, the additional control is enough

to exceed the limit.

Fig. 5.5: Maximum control for the in-plane
dynamics. Points outlined in red exceed the
theoretical bounds.

Fig. 5.6: Maximum control for the cross-track
dynamics. Points outlined in red exceed the
theoretical bounds.

For comparison, the theoretical limits are shown in Figures 5.7 and 5.8 for the in-

plane and cross-track dynamics, respectively, which show the expected correlation between

λmin(Q) and the control bound. Additionally, these bounds are less conservative than the
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convergence time limits. The difference between the convergence time bound and the ob-

served times differed by two or more orders of magnitude. However, the control bounds and

observed controls only differ by a factor of 2 to 5.
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Fig. 5.7: Maximum control bound for the in-
plane, CW dynamics.
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Fig. 5.8: Maximum control bound for the
cross-track, CW dynamics.

5.2.2 Unperturbed CW Dynamics

To verify the performance of the controller and the usefulness of the optimization ap-

proach, a series of simulations were also run using the unperturbed CW dynamics. A single

pair of common Lyapunov controllers was used for each simulations with one controlling the

single-input in-plane subsystem and one controlling the cross-track subsystem. The con-

troller was developed by selecting bounds on Q, P , and R that generally corresponded to

low control usage and fast convergence time. These bounds were then used in the optimiza-

tion approach to generate the control matrices, shown in Table 5.2. The same stabilizing

feedback gain K which was used in the preceding analysis was also used for this controller.

A total of 50 simulations were run with the initial states randomly selected from those

that satisfied

|x0| =
[
390m 390m 390m 1.5m/s 1.5m/s 1.5m/s

]T
(5.19)
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Table 5.2: Matrices and associated eigenvalues of the controller for the in-plane (IP) and
cross-track (CT) subsystems.

Parameter Matrix Eigenvalues

QIP


0.3007 0.3094 0.1368 0.0061
0.3094 0.6249 0.3303 0.0148
0.1368 0.3303 0.3303 0.0148
0.0061 0.0148 0.0148 0.0061



0.0055
0.0782
0.1785
1.0000



PIP


0.1221 0.0000 0.0000 0.0000
0.0000 0.1221 0.0000 0.0000
0.0000 0.0000 0.1221 0.0000
0.0000 0.0000 0.0000 0.1221



0.1221
0.1221
0.1221
0.1221



RIP


2.4060 2.1656 0.8207 0.0305
2.1656 3.7494 1.6514 0.0591
0.8207 1.6514 1.3213 0.0444
0.0305 0.0591 0.0444 0.0123



0.0108
0.4038
1.0272
6.0472


QCT

[
0.9977 0.0475
0.0475 0.0477

] [
0.0453
1.0001

]

PCT

[
0.9504 0.0000
0.0000 0.9504

] [
0.9504
0.9504

]

RCT

[
3.9910 0.1426
0.1426 0.0954

] [
0.0902
3.9962

]

Each simulation was run for 6 hrs with a 0.5 s update step.

In Figures 5.9 and 5.10, the position errors for the in-plane and cross-track subsystems

are shown, respectively. For the in-plane errors, the trajectory is generally smooth and

all simulations end with approximately the same magnitude of error. However, over the

course of the simulations, there are a wide range of position errors seen. Some simulations

never exceed the initial the initial error magnitude while others experience errors as high as

1.5× 104m. In contrast, some cross-track errors show a small increase in the error, but this

never exceeds 800m. Additionally, the cross-track errors converge faster, likely a result of

the smaller number of dimensions in this subsystem.



95

Fig. 5.9: In-plane position error for the un-
perturbed CW dynamics.

Fig. 5.10: Cross-track position error for the
unperturbed CW dynamics.

In Figures 5.11 and 5.12, the control plots for the in-plane and cross-track subsystems,

respectively, are shown. In both figures, the dashed line indicates the theoretical maximum

bound on the control for that subsystem, based on the K feedback gain and Q matrix used

in the controller. In all cases, the controls are less than this bound. The bound on the

cross-track controls appears to be more conservative than its in-plane counterpart with the

difference between the maximum control and the bound being about an order of magnitude.

The in-plane control shows a gap of about 0.03m/s2.

Fig. 5.11: In-plane control usage for the
unperturbed CW dynamics. The red line
indicates the theoretical maximum control
bound.

Fig. 5.12: Cross-track position error for the
unperturbed CW dynamics. The red line
indicates the theoretical maximum control
bound.
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Table 5.3: Physical parameters used for the nonlinear spacecraft simulation.

Parameter Value
Initial Wet Mass 24 kg
ISP 160 s
Projected Surface Area 0.048m2

CD 2.2

Reference Orbit

a = 6878 000m
e = 1× 10−4

i = 170◦

Ω = 126◦

ω = 0◦

ν = 0◦

Both subsystems show a high degree of chatter at the end of the simulations. Since

the direction, but not the magnitude, is changing, the chatter appears as a straight line

on these plots. Additionally, the magnitude of the chatter is equal to, or greater than, the

maximum control seen over the nominal, non-chattering portions of the simulations. This

is undesirable behavior since at this point the subsystems are using the most control to try

and correct the smallest errors.

5.2.3 Two-Body Dynamics

A series of simulations were also run using the two-body dynamics with J2 and drag

perturbations. A single controller was developed for each subsystem and each subsystem

had a single input channel, resulting in unmatched disturbances along the X-axis. The same

controller used with the CW dynamics (Table 5.2) was used with the two-body dynamics.

The simulations were run using the parameters in Table 5.3. A total of 50 simulations were

run with initial conditions that satisfied

|x0| =
[
390m 390m 390m 1.5m/s 1.5m/s 1.5m/s

]T
(5.20)

for the relative state of the spacecraft. Each simulation was run for 6 hrs with a 0.5 s update

step.
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Fig. 5.13: Position error for the in-plane, two-
body dynamics.

Fig. 5.14: Position error for the cross-track,
two-body dynamics.

The position errors of the in-plane and cross-track subsystems of all 50 simulations are

shown in Figures 5.13 and 5.14, respectively. Each simulation converges to a final, steady-

state error within the 6 hr simulation duration. Calculating the theoretical upper bound of

the convergence time for the in-plane subsystem gives a value of (34.9 ± 4.6) hrs while the

cross-track subsystem has a theoretical bound of (5.1± 0.3) hrs. Similar to the CW results,

the upper bound of the in-plane subsystem is very conservative and not a good estimate of the

actual convergence time. However, the cross-track convergence time is less conservative and

produces a bound which can be used to estimate the actual convergence time. Interestingly,

the in-plane controller is able to stabilize the system about the origin despite the unmatched

distrubance along the X-axis.

In Figures 5.15 and 5.16, the control magnitudes for the in-plane and cross-track sub-

systems are shown, respectively. The red dashed lines in each plot indicates the maximum

theoretical control from the common Lyapunov approach for each subsystem. Due to the

additional control from the Brunovsky transformation, the bound for the common Lyapunov

approach is not guaranteed to be maintained for the full system. However, in all simulations

the total control stayed below the theoretical bound.

The bounds for both subsystems appear to be reasonable approximations of the actual

maximum control. For the in-plane control, the bound is found to be 0.0416m/s2 with a
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Fig. 5.15: Control usage for the in-plane, two-
body dynamics. The dashed red line indi-
cates the maximum theoretical control.

Fig. 5.16: Control usage for the cross-track,
two-body dynamics. The dashed red line in-
dicates the maximum theoretical control.

maximum actual control of 0.0122m/s2. Similarly, the cross-track control is bounded by

0.0054m/s2 with an actual maximum control of 0.0042m/s2.

One item of note is that both subsystems exhibit chatter in the controls. For the in-plane

subsystem, the chatter is apparent as the control magnitudes rapidly oscillate. However, for

the cross-track subsystem, the control direction is rapidly changing but maintaining constant

magnitude and appears in the figure as a constant, non-zero control magnitude. However,

in all cases, the theoretical bound is maintained on the subsystem controls.

5.3 Conclusion

This chapter implemented a common Lyapunov control which guarantees finite time

convergence. The effect of the three matrices used in the control are examined and the theo-

retical bounds on the convergence time and maximum control were computed. A semidefinite

program was used to find control laws which minimize the convergence time and control us-

age. When tested using both the CW and two-body dynamics, the control laws were found

to suitably bound the maximum control but were overly conservative with regards to the

convergence time.
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CHAPTER 6

PREDEFINED-TIME CONTROL VIA BACKSTEPPING

While the convergence time of finite-time or fixed-time control laws can be quantified to

some extent, the connection between the control law and the convergence time is generally

non-obvious. This poses a challenge when attempting to design a control law with specific

convergence time guarantees. As a result, another class of controllers, known as predefined-

time controllers, have been developed which use the desired convergence time as a parameter.

This chapter uses the Brunovsky transformation of the relative orbital dynamics with

a predefined-time backstepping controller to guarantee predefined-time convergence to a

desired relative trajectory. The system is tested in both perturbed and unperturbed situ-

ations with modifications made to the single-input Brunovsky transformation to guarantee

convergence even when affected by perturbations.

6.1 Predefined-Time Control

A predefined-time control is one where the convergence time bound is explicitly used as

a parameter in the control law. Consider the time-varying system

ẋ = f(t, x, Tc), ∀t ≥ 0 (6.1)

with state x ∈ Rn, convergence time bound Tc ∈ R>0, and f : R × Rn × R → Rn which is

piecewise continuous in t and locally Lipschitz in x. Furthermore, let x(t, x0, Tc) represent

the solution of Eq. 6.1 at time t with initial condition x0 [3].

We can now define predefined-time stability.

Definition 6.1.1 ([3, Definition 1]). The origin is predefined-time stable if ∀t ≥ Tc,

x(t, x0, Tc) = 0.
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Note the difference in the definition of predefined-time stability compared to finite-time

or fixed-time stability. While finite-time or fixed-time stability guarantee that the system will

go to zero within some finite amount of time, the actual convergence bound is either unknown,

in the case of finite-time stability, or non-trivially related to the tuning parameters in the

control law, in the case of fixed-time stability. In contrast, predefined-time stability provides

a control parameter with a known relationship to the upper-bound on the convergence time.

As with other control laws, there are Lyapunov conditions which, if met, guarantee

predefined-time convergence. These conditions are presented in the following theorem.

Theorem 11 ([39, Corollary 12]). If there exists a continuous radially unbounded function

V : Rn → R such that
V (x) ≥ 0

V (x) = 0 ⇔ x = 0

(6.2)

and any solution x(t) to ẋ = f(x) satisfies

V̇ (x) ≤ − 1

pTc
exp(V (x)p)V (x)1−p, for x ∈ Rn \ {0} (6.3)

with Tc ∈ R>0 and 0 < p ≤ 1, then the origin is predefined-time stable with predefined time

Tc.

As with other convergence guarantees, finding a suitable Lyapunov function and control

law for a system can be difficult if starting from scratch. However, various approaches have

been developed which provide control laws for specific dynamics. In [73–76], the controller

design is approached through direct application of the Lyapunov conditions. This is done

for systems where each state has a control input [73, 75], a double integrator with matched

disturbances [74], and single-input, single-output systems [76]. Another approach was de-

veloped in [77] for use with nonlinear, control-affine systems which uses optimal control

techniques.

Neural-network techniques were used in [78, 79] for strict-feedback systems. In [78],

they are used to approximate uncertain nonlinear dynamics in the system while in [79]
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they are used to approximate parameters in the control laws. Similarly, in [4], an adaptive

predefined-time backstepping control was introduced which was able to stabilize a nonlinear

system which included some unknown set of parameters.

This chapter utilizes an approach presented in [3] referred to as predefined-time back-

stepping. This approach assumes a strict-feedback, single-input system with matched distur-

bances. While the relative orbital dynamics are not an immediate match for these assump-

tions, a few changes can be made which allow for the transformation into an appropriate form.

First, the relative orbital dynamics can be divided into in-plane and out-of-plane dynamics

that act independently of each other. Then, since the in-plane dynamics are completely

controllable using only the Y-axis control, a single-input form of chained integrators can be

constructed using the Brunovsky form and satisfy the required form while the out-of-plane

dynamics naturally match the form needed by predefined-time backstepping.

As will be shown, this approach works well for the unperturbed system. However, since

perturbations can affect all axes, the controller fails to properly converge when perturbations

are present. This is addressed by the use of a multi-input Brunovsky form which allows for

perturbation rejection along all axes.

6.2 Predefined-Time Backstepping Control

The work in [3] presents a predefined-time control for an nth order system of the form

ẋi = fi(x̄i) + xi+1, i = 1, . . . , n− 1 (6.4)

ẋn = fn(x̄n) + gn(x̄n)u+ d(t) (6.5)

where x̄i is the vector of all states up to and including i ([x1, . . . , xi]), fi and fn are known

smooth nonlinear functions, gn is a known continuous input function, u ∈ R is the system

input, and d(t) is an unknown, but bounded, disturbance such that for all t, |d(t)| < D with

D ∈ R≥0.

While the CW dynamics do not match the form needed for the predefined-time backstep-

ping control, the Brunovsky forms (Section 3.3) do match. This allows for the out-of-plane



102

dynamics to be controlled independently from the in-plane dynamics. Additionally, the

controller for the in-plane dynamics can be designed assuming controls along the X- and

Y-axes or only along the Y-axis. If control is assumed along the X- and Y-axes, then two

separate predefined-time backstepping controllers are developed for each independent, in-

plane Brunovsky subsystem while only one controller is needed in the case of the single-input

control.

As mentioned in Section 3.3, the C matrix resulting from the Brunovsky transforma-

tion generally exists outside any control law using that form. Restating the Brunovsky

transformation,

AB = T−1
D (A+BC)TD (6.6)

BB = T−1
D B (6.7)

z = T−1
D x (6.8)

v = u− Cz (6.9)

ż = ABz +BBv (6.10)

which shows that when a controller calculates v using the Brunovsky dynamics, the matrix

C is only introduced when the actual system control u is calculated. However, a slight

rearranging of terms in the Brunovsky from allows for full integration of the system into the

predefined-time backstepping control for the single input in-plane dynamics. If we combined

Equations 6.8, 6.9, 6.10 then we get

ż = ABz +BBu−BBCTDz. (6.11)

Now we examine the dynamics for the nth and final state in z. From the definition of

the Brunovsky form, the last row of AB is comprised of zeros so (ABz)n = 0 where (ABz)n

represents the nth element of ABz. Similarly, the last element of BB is defined to be 1 so
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(BBu)n = u and (BBCTDz)n = CTDz. Therefore,

żn = u− CTDz (6.12)

and defining fn(z) = −CTDz results in the Brunovsky form matching the desired predefined-

time backstepping control form.

Note that the Brunovsky dynamics are still in terms of z, the transformed coordinates,

but the control is now expressed in terms of u, the control applied to the nominal system. This

means that the actual states must be converted to the Brunovsky states before calculating

the control but that once the control is determined, the feedback gain does not need to be

applied before it is inputted to the system.

This approach, which uses the feedback term within the control law, only works with the

out-of-plane and single-input in-plane dynamics. With the dual-input in-plane dynamics,

the appearance of the ẏ and ẋ terms in the x and y dynamics, respectively, fail to satisfy the

requirements placed on the nonlinear dynamics fi(xi).

6.2.1 Tuning Function

The controller requires a smooth time-varying tuning function ρ(t) which satisfies three

conditions. First, ρ(t) and its derivatives ρ(i)(t), (i = 1, . . . , n), where n is the number of

states in the system, are bounded and continuous for t ≥ 0. Second, ρ(t) = 0 for all t ≥ Tc.

And third, ρ(0) and ρ(j)(0), (j = 1, . . . , n− 1) satisfy

ρ(0) = x1(0)− yd(0) (6.13)

ρ(j)(0) = xj+1(0) +

j∑
k=1

f
(j−k)
k (x̄j(0))− y

(j)
d (0) (6.14)

These requirements result in a total of 2n+ 1 constraints that must be satisfied. There

are n constraints resulting from the initial conditions of ρ(t) and its n − 1 derivatives, and

there are n + 1 constraints at t = Tc since ρ(t) and all of its derivatives must be equal to

zero.
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The function ρ can be created by selecting a set of basis functions, which are not neces-

sarily orthogonal, ℓ(k, x) with ρ defined as

ρ(t) =


∑2n

k=0 akℓ(k, t), t < Tc

0, t ≥ Tc

. (6.15)

The coefficients ak can then be found as

a = L−1M (6.16)

Here L is a matrix of all the basis functions and their derivatives, evaluated at both t = 0

and t = Tc, and expressed as

L =



ℓ(0, 0) ℓ(1, 0) . . . ℓ(2n, 0)

ℓ̇(0, 0) ℓ̇(1, 0) . . . ℓ̇(2n, 0)

...
... . . . ...

ℓ(n)(0, 0) ℓ(n)(1, 0) . . . ℓ(n)(2n, 0)

ℓ(0, Tc) ℓ(1, Tc) . . . ℓ(2n, Tc)

ℓ̇(0, Tc) ℓ̇(1, Tc) . . . ℓ̇(2n, Tc)

...
... . . . ...

ℓ(n+1)(0, Tc) ℓ(n+1)(1, Tc) . . . ℓ(n+1)(2n, Tc)



(6.17)

The M vector consists of the constraints on the initial and terminal conditions of ρ and its

derivatives, expressed as

M =

[
ρ(0) ρ̇(0) . . . ρ(n)(0) 01×2n+1

]T
(6.18)
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6.2.2 Controller Formulation

The control law is defined as

u = g−1
n (xn) [−fn(x̄n) + α̇n −D sign(en)− en−1] (6.19)

where α̇n is the time derivative of the nth virtual control law α, en are error states, and D is

a constant chosen such that |d(t)| < D for t ≥ 0. The virtual control laws and error states

are defined as follows. The error states e are defined to be

e1 = x1 − yd(t)− ρ(t) (6.20)

ej = xj − αj , j = 2, . . . , n (6.21)

where yd(t) is the desired trajectory and ρ(t) is a tuning function which will be defined later.

The desired trajectory yd(t) and its n time derivatives should be piecewise continuous and

bounded on t ≥ 0. The virtual control laws α are defined as

α2 = −f1(x1) + ẏd(t) + ρ̇(t) (6.22)

αj+1 = −fj(xj) + α̇j − ej−1. (6.23)

The derivatives of the error states and virtual control laws are

ė1 = e2 (6.24)

ėj = ej+1 − ej−1, j = 2, . . . , n− 1 (6.25)

ėn = d(t)−Dsign(en)− en−1 (6.26)

α̇2 = −f (1)1 (x2) + ÿ(t) + ρ̈(t) (6.27)

α̇j+1 = −
j∑

i=1

f j+1−i
i (x̄j+1) + y

(j+1)
d (t)

+ ρj+1(t)−
j−1∑
k+1

e
(j−k)
k , j = 2, . . . , n− 1

. (6.28)
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Although ėn is defined as a function of the disturbance d(t), it is only used in the stability

proof and not in the control law itself.

Once the control law is developed, the control can be calculated at each time t given

the current time and state and then applied to the system.

6.2.3 Tuning Function Optimization

The tuning function, as formulated above, has 2n+ 1 constraints and 2n+ 1 variables

which only allows for a single solution. However, by adding additional basis functions to ρ,

additional flexibility can be gained to influence the transient response.

Examining the control law shows that the control response is related to ρ(n+1) and so

the characteristics of ρ can be used to influence the control. Since ρ(n+1) only comprises a

portion of the total control, it is not possible to use it to constrain the control profile to satisfy

specific criteria such as staying within specified bounds. However, general control trends can

be influenced such as minimizing the L∞ norm of ρ to limit instantaneous maximum control.

6.2.4 Stability Analysis

The stability analysis presented is drawn directly from [3]. Assuming that a proper ρ

has been determined we can now consider the initial conditions. From the definition of ρ we

know that

ρ(0) = x1(0)− yd(0)

ρ(j)(0) = xj+1(0) +

j∑
k=1

f
(j−k)
k (x̄j(0))− y

(j)
d (0) j = 1, . . . , n− 1

(6.29)

The initial conditions for the virtual control laws are

α2(0) = −f1(x1(0)) + ẏd(0) + ρ̇(0)

α3(0) = −f2(x̄2(0))− f
(1)
1 (x̄2(0)) + ÿd(0) + ρ̈(0)− e1(0)

αj+1(0) = −
j∑

i=1

f j−i
i (x̄j(0)) + y

(j)
d (0) + ρ(j)(0)−

j−2∑
k=1

e
(j−1−k)
k (0)− ej−1(0), j = 3, . . . , n− 1

(6.30)
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Combining the initial conditions for ρ and the virtual control laws gives

α2(0) = x2(0)

α3(0) = x3(0)− e1(0)

αj+1(0) = xj+1(0)−
j−2∑
k=1

e
(j−1−k)
k (0)− ej−1(0), j = 3, . . . , n− 1

(6.31)

For the initial e1 error,

e1(0) = x1(0)− yd(0)− ρ(0)

= x1(0)− yd(0)− x1(0)− yd(0)

= 0

(6.32)

where the initial condition for ρ(0) has been applied. For the initial e2 value

e2(0) = x2(0)− α2(0)

= x2(0)− x2(0)

= 0

(6.33)

where we have used the initial α2 value determined from Eq. 6.31. Similarly,

e3(0) = x3(0)− α3(0)

= x3(0)− x3(0)− e1(0)

= e1(0)

= 0

(6.34)

We now turn our attention to the error derivatives that appear in αj+1(0) (Eq. 6.31).

Note that expanding e(b)a includes the error terms e1 through ea+b but does not include any

higher terms (ea+b+1, . . . , en). Thus, the
∑j−2

k=1 e
(j−1−k)
k term, for j = 3, . . . , n − 1, contains

the e1, ..., ej−1 terms but not the ej , ..., en terms. In the specific case of j = 3, we have

already determined that e1(0) = e2(0) = 0 and so
∑j−2

k=1 e
(j−1−k)
k (0) = 0 since it is only
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comprised of e1(0) and e2(0). This gives,

e4(0) = x4(0)− α4(0)

= x4(0)− x4(0)−
1∑

k=1

e
(2−k)
k (0)− e2(0)

= −e2

= 0

(6.35)

This process can be continued for all error values to show that ei(0) = 0 for i = 1, . . . , n.

We now define a Lyapunov function to be

V =
1

2

n∑
i=1

e2i (6.36)

with derivative

V̇ = end(t)− enDsign(en) ≤ 0 (6.37)

which follows from Equations 6.24, 6.25, and 6.26. With e1(0) = e2(0) = . . . = en(0) = 0,

then V (0) = 0 and since V̇ (t) ≤ 0 for t ≥ 0, V (t) = 0. Furthermore, since V (Tc) = 0 implies

e1(Tc) = 0, and by definition ρ(Tc) = 0, then x1(Tc) = yd(Tc), satisfying the predefined-time

requirement that the system converges to the desired trajectory by time Tc.

However, this analysis shows a nuance in the predefined-time definition used in [3], and

a similar one in [75]. To restate, the definition says that given a system ẋ = f(x, t, Tc)

for all t ≥ 0 with x ∈ Rn, Tc ∈ R>0, t ∈ R≥0, and f : Rn × R≥0 × R>0 is piecewise

continuous in t and locally Lipschitz in x, it is predefined-time stable if for all x0 ∈ Rn

and all t ≥ Tc, x(t, x0, Tc) = 0. From the stability analysis, this was shown to be true

for this control approach. However, this presumes a nominal, unperturbed system since,

given random perturbations, one cannot guarantee that the system will be strictly 0 for all

t ≥ Tc. The same ambiguity exists with finite-time and fixed-time stability definitions since

the definitions assume a constant state of 0 after some specific time.
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The Lyapunov condition given in Theorem 11 allows for the inclusion of disturbances

into the finite-time analysis. However, as noted in [75], this can result in control profiles

that may be impossible to implement due to the control’s high frequency or high magnitude

response. This has led to bounded predefined-time controllers which guaranteed predefined-

time convergence to the vicinity the origin [75]. Ultimately, the controller used here takes a

middle ground approach where the nominal system is predefined-time stable but no bounding

conditions are given, only that the control rejects perturbations in asymptotic time.

6.3 Controller Selection

The predefined-backstepping method was tested in a variety of simulations. First, it

was applied to the system described in [3] to verify that the implementation is correct and

matches the expected results. Second, the control was applied to a spacecraft differential

drag rendezvous problem with no perturbations. Third, the control was applied to a full

spacecraft formation flying problem with J2 and drag perturbations.

6.3.1 Example Application

The first test was to replicate the example from [3] to highlight the features of the

controller. The system dynamics were defined as

ẋ1 = sin(x1) + x2 (6.38)

ẋ2 = 2 cos(x1x2) + x22 + x3 (6.39)

ẋ3 = x1 − x3 − 2 sin(x2x3) + (2 + sin(x3))u+ d(t) (6.40)

where d(t) = sin(2t) and the reference signal is yd(t) = sin(t) + sin(0.5t).
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The initial conditions were set as x0 =

[
−1 −1 1

]T
with the disturbance bounded

by D = 1. A polynomial tuning function was used of the form

ρ(t) =


∑2n

k=0 akt
k, t < Tc

0, t ≥ Tc

(6.41)

with the number of states n = 3.

The simulation was run from t = [0, 3] with the predefined time Tc = 2 and in Figure 6.1,

the initial results can be seen with the trajectory, trajectory error, and control usage seen

in the three plots. As desired, the system converges to the desired trajectory shortly before

the t = 2 mark and follows it afterwards. Of particular note is the fact that the controller

is able to continue to follow the trajectory and reject perturbations even after the T = 2

convergence time. This shows that the controller only needs to be designed and implemented

a single time which converges by the designated time but continues to maintain the desired

properties for all t ≥ Tc.
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Fig. 6.1: Results matching showing the x1 state, its error, and the control matching the
paper results.
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6.3.2 Differential Drag Rendezvous

The controller was tested on the in-plane differential drag model using the Brunovsky

transformation (Section 3.3). The initial condition of the true dynamics was chosen to

be x0 =

[
1 0 0 0

]T
and the dynamics were propagated according to the nominal in-

plane CW dynamic model. Within the controller, the system state was transformed into

the Brunovsky form and that was used to design the tuning function and calculate the

transformed control v. Then the Brunovsky feedback control was added and the combined

control was applied to the simulation.

A predefined-time of Tc = 1 was chosen for the initial sim and the results can be seen

in Figure 6.2. As expected, all the states converge to 0 just before the predefined time

is reached. Examining the control shows both the control v found using the backstepping

method as well as the Brunovsky feedback term and the combination of the two. For this

simulation, the backstepping control portion is seen to dominate the inherent Brunovsky

feedback gain.

A second simulation was run with Tc = 10 (Figure 6.3) with significantly different

results. While the states still smoothly converge before the predefined time, there is much

more error in the states prior to that convergence. More importantly, the maximum control

usage magnitude has increased by about 4 times, almost entirely due to the backstepping

control.

This is a somewhat surprising result since, generally, for space dynamics an increase in

the convergence time allows for a decrease in the control usage. Additionally, the previous

simulation for Tc = 1 shows a result that would generally be more preferable in terms of a

convergence time, control usage, and state deviation metric. This highlights the potentially

double-edge sword of this approach since the controller consistently converges relatively close

to the predefined time but does so at the cost of other potentially desirable considerations.
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Fig. 6.2: Brunovsky results with Tc = 1.

6.3.3 ρ Optimization

The ability to optimize the tuning function ρ was tested by attempting to minimize the

L∞ norm of ρ(n+1). Since the control usage is proportional to ρ(n+1), this should, in theory,

minimize the maximum control used to drive the system to the desired trajectory.

For this, a harmonic oscillator was used, defined as

ẋ1 = x2

ẋ2 = −x1 + u

(6.42)

with initial condition x =

[
−1 −2

]T
and a cutoff time of Tc = 1. The Legendre poly-

nomials [80] are used as the basis functions. Note that although the Legendre polynomials
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Fig. 6.3: Brunovsky results with Tc = 10.

are orthonormal on the interval [0, 1], this is not a requirement for either the standard nor

optimized approach to designing ρ.

The optimization is defined by solving for the coefficients ak as

min
ak,i=0,...,2n+m

max(|ρ(n+1)(t)|)

s.t. La =M

ρ(t) =


∑2n+m

k=0 akℓ(k, t), t < Tc

0, t ≥ Tc

(6.43)

where m is the number of extra basis functions and L and M are similar to their definitions

in Equations 6.17 and 6.18, respectively, but with 2n+m+ 1 basis functions instead.
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As implemented, optimization of ρ is done by sampling ρ(n+1)(t) at 1000 points between

0 and Tc and finding the maximum sampled magnitude. Although this naive method has

weaknesses in its approach, notably the fact that the true maximum is likely to exist be-

tween the sampled points, it was deemed sufficient for the purposes of demonstrating the

optimization of ρ.

In Figure 6.4, the default case without optimization is shown with a maximum value for

ρ̈(t) of 24. Adding three additional basis functions (Figure 6.5) allows the maximum magni-

tude to drop to 9.88. The actual control profile for the nominal and optimized controllers is

shown in Figure 6.6. Note that while the control profiles mimic their respective ρ̈ functions,

the actual values differ due to the inclusion of the other elements in the control law which,

for this system, is due to the f2(x̄2) = −x1 term. However, the control profile and ρ̈ could

also differ due to the inclusion of a non-zero desired trajectory or error corrections resulting

from non-zero perturbations.
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Fig. 6.4: ρ(t) without any additional basis functions.

While this demonstrates the ability to influence the control via the tuning functions,

there are limits. As noted, the primary limit is that the tuning function does not exactly

correlate to the control profile. Additionally, while ρ(n) does not have an initial condition, it

still needs to satisfy the conditions placed on ρ(i), i = 0, . . . , n−1 which restricts the possible

solutions.
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Fig. 6.5: ρ(t) with three additional basis functions.
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Fig. 6.6: Control profile for the nominal and optimized harmonic oscillator systems.

One variable that was not adjusted was the choice of basis functions. It is likely that a

wise selection of basis functions could allow a more direct shaping of ρ(n) but this is left as

future work.

6.4 Results

The finite-time backstepping method is finally applied to the spacecraft rendezvous

scenario. A series of simulated environments were tested to determine the full limitations

of the control law. First, the control law was tested using the CW dynamics for both the

model and simulation with no added perturbations. Second, the control law was applied to

the CW dynamics with a constant perturbation applied along the Y-axis to represent a drag
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disturbance. Third, the controller was tested in a full 2-body simulation with actual J2 and

drag effects. A total of 50 simulations are run for each scenario with the initial relative states

selected such that

|x0| =
[
390 390 390 1.5 1.5 1.5

]T
(6.44)

The control inputs were updated every 10 s for each simulation.

6.4.1 Unperturbed CW Dynamics

For the unperturbed simulation, a spacecraft was initialized on one of the vertices of

the allowable initial conditions for the guidance error and tasked with driving that error to

zero using the single-input in-plane control. The terminal time for the controller is set to be

2.2 hrs and a perturbation bound of 7× 10−6m/s2 was used. No optimization of the tuning

function was performed so the unperturbed dynamics could serve as a baseline reference.

In Figures 6.7 and 6.8, the LVLH error states can be seen for the in-plane and cross-

track subsystems, respectively. In general, both errors smoothly approach zero by the desired

cutoff time of 2.22 hrs. However, over the course of the simulations, the position errors extend

far beyond the initial errors. In particular, the in-plane subsystem has position errors as large

as 9000m. Additionally, the final position errors show residual errors of roughly 1.7m for

the in-plane subsystem, while the cross-track subsystem has tighter convergence with 0.3m

of final error. Since the dynamics are unperturbed, this final error appears to result from

the discrete control update step.
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Fig. 6.7: LVLH in-plane state errors when
the controller is applied to the unperturbed
LVLH dynamics

0 0.5 1 1.5 2 2.5

Time (hr)

10-2

100

102

104

E
rr

or
 (

m
)

Cross-Track Position Error

Fig. 6.8: LVLH cross-track state errors when
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LVLH dynamics

The control magnitudes are shown in Figures 6.9 and 6.10 for the in-plane and cross-

track controls, respectively. For the in-plane control, the control magnitudes oscillate over

the course of the simulations but not to the extent that it can be considered chatter. As

for the cross-track control, there is a single major change in the control magnitude and the

inputs are generally smooth over the full simulation.
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Fig. 6.9: LVLH in-plane controls when the
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6.4.2 Perturbed CW Dynamics

The second scenario was performed with matched perturbations added along the Y-

axis. These perturbations represent the effects of drag due to two spacecraft with different

ballistic coefficients. In practice, the drag perturbations affect each LVLH axis but the

impact is primarily felt along the Y-axis.

The ballistic coefficient Cb, defined for this work as CDA
m although it can also be defined

as the inverse of this ratio, of a spacecraft defines the effect of drag on a spacecraft with a

larger Cb meaning that the spacecraft experiences more drag effects. For this scenario, an

exaggerated difference was used to estimate the drag effects with the ballistic coefficient of

the reference spacecraft Cb,A being 25 times the ballistic coefficient of the spacecraft being

controlled Cb,B.

Given the positions rA and rB with ballistic coefficients Cb,A = 25Cb,B, the accelerations

due to the dynamics and drag are found as

ṙ = f̄(r, Cb) (6.45)

with the difference in acceleration in the ECI frame being

δṙ = ṙA − ṙB (6.46)

With the transformation matrix TLV LH(r) which converts the ECI to LVLH frame based on

the state r, the acceleration difference in the LVLH frame can be found as

δṙLV LH = TLV LH(rA)δṙ (6.47)

Examining the effect of the difference in LVLH acceleration along a spacecraft’s orbit in

LEO, the Y-axis difference is approximately 5× 10−6m/s2 with the difference along the X-

and Z-axes being two orders of magnitude smaller. Based on this, the CW dynamics are

perturbed by 5×10−6m/s2 along the Y-axis with no perturbations in the X- and Z-axes with
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a disturbance rejection term D = 7× 10−6m/s2 used with both the Y- and Z-axes controls.

This satisfies the requirement that the perturbations for the predefined-time controller are

matched. A total of 50 simulations are run and the tuning functions are optimized using

three additional basis functions.

In Figures 6.11 and 6.12, the state errors for the in-plane and cross-track subsystems,

respectively, are shown. Overall, trends for both look similar to the unperturbed results,

although the maximum error in both is higher than was seen with the unperturbed dynamics.

The cross-track subsystem was not perturbed for these simulations, so the change in error is

a result of the tuning function optimization. The in-plane subsystem is perturbed and the

control law was optimized so both likely contributed to the higher error.

Examining the errors at the end of the simulations, the in-plane position errors range

from 4.2m to 9.0m, which is notably higher than the final errors of the unperturbed simula-

tions. This indicates that the controller is unable to fully reject the perturbations, likely due

to the sampling of the controller. The final errors for the cross-track error are not notably

different from the unperturbed dynamics, with the exception of a single outlier that ends

with an error on the order of 10−4m.
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Fig. 6.11: LVLH in-plane states error with a
constant, matched disturbance acting along
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Figures 6.13 and 6.14 show the related control plots for the in-plane and cross-track

subsystems, respectively. The first item of note is that the in-plane control has signifi-

cantly more variation than was seen with the unperturbed dynamics as a result of the tuning

function’s optimization. Additionally, the process shows the desired benefits of the opti-

mization. The initial control magnitude for the unperturbed dynamics is found to be as

high as 6.8×10−3m/s2 while the optimized approach has a lower maximum initial control of

3.7× 10−3m/s2. However, the optimization has the effect of “flattening” the control profile,

as the control magnitudes are generally higher over the remainder of the simulations. For

the unperturbed dynamics, the controls max out between 4× 10−4m/s2 and 5× 10−4m/s2,

ignoring the initial controls. With the perturbed dynamics, however, there are many simula-

tions with control magnitudes higher than this. Thus, the optimization is able to reduce the

maximum instantaneous control by raising the control at other points along the trajectory.

The cross-track control plot (Figure 6.14) shows a similar effect with the initial control

magnitudes being reduced via the optimization. However, the resultant rise in the remainder

of the control trajectory eliminates any gains. As discussed before, this is likely a result of

the Brunovsky transformation where the optimization of the tuning function is unable to

account for the additional control.
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Fig. 6.13: LVLH in-plane control with a con-
stant, matched disturbance acting along the
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6.4.3 Two-Body Dynamics

A final set of simulations was run using the full 2-body dynamics with J2 and drag

perturbations and the two input finite-time backstepping control for the in-plane dynamics.

A perturbation bound of D = 1 × 10−4m/s2 was used with a convergence time of 2.2 hrs.

Since the control law was seen to struggle with fully converging to the origin with the single-

input in-plane control, the dual-input in-plane control was used with the two-body dynamics.

This has the additional effect of fully satisfying the matched disturbance requirement of the

control law. A total of 50 simulations were run and the tuning functions were optimized

with three additional basis functions.

The error plots for the in-plane and cross-track states are shown in Figures 6.15 and 6.16,

respectively. The in-plane plots look similar to the cross-track results, now that each axis

is being controlled as if it were an independent subsystem comprised of a double integrator.

Additionally, both the maximum and final errors are lower with the dual-input in-plane

control. The maximum errors never exceed 4000m while the final errors are all between 1m

and 4m. While lower than the perturbed CW results, this is still significantly larger than the

ideal exact convergence to the origin that the controller can theoretically achieve. Now that

the cross-track dynamics are perturbed as well, the position errors show a greater variance.

This is most prominent in the final errors, which lie between 1.6m and 0.3m.
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Fig. 6.15: In-plane position errors with per-
turbed two-body dynamics and dual-input
control.
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Fig. 6.16: Cross-track positon errors with
perturbed two-body dynamics.

The control plots for the in-plane and cross-track subsystems are shown in Figures 6.17

and 6.18, respectively. Again, the in-plane controls show a different control profile now that

the subsystem is being controlled as two independent double integrators. Careful inspection

shows that there are now oscillations in the control profiles for both the in-plane and cross-

track subsystems which appear as wider bands around the control trajectories. However,

these are relatively small changes in magnitude and generally oscillate slower than the control

update period. This addresses the main concerns with chatter where the controller calls for

the actuators to make large, rapid changes.
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Fig. 6.17: In-plane control for the perturbed
two-body dynamics and dual-input control.
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Fig. 6.18: Cross-track control for the per-
turbed two-body dynamics.

6.5 Conclusion

Predefined-time backstepping [3] is a method which allows for the formulaic construction

of a predefined-time controller. The controller assumes dynamics in a specific form similar to

an integrator chain but allowing nonlinearities in each state that do not involve any higher

states. Additionally, it assumes a single-input control which is applied to the highest state

and that perturbations only affect the system through this state as well.

The use of the Brunovsky form allowed for the CW dynamics to be used with the

controller, despite the seeming incompatibility, by dividing the dynamics into separate groups

which could be controlled individually. A method to minimize the maximum instantaneous

control method was introduced and shown have an effect but to not work reliably with the

system converted into the Brunovsky form due to the inclusion of the transformation terms.

The system and controller were tested using CW dynamics perturbed along the Y-axis

and the full two-body dynamics with J2 and drag perturbations. Overall, the predefined-

time controller was able to successfully control a spacecraft to a desired trajectory when the

matched disturbance assumption is met. However, the lack of bounds on either the states

or control are a limiting factor.
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CHAPTER 7

FINITE-TIME CONTROL VIA CONTROL SWITCHING FUNCTIONS

This chapter examines three control laws whose behavior is determined by a set of

switching conditions. The first control law is inspired by minimum-time control of a double

integrator system. The second and third control laws are variants of sliding mode control. A

general background of minimum-time and sliding mode control are presented in Section 7.1

followed by the description and analysis of each of the three control laws in Sections 7.2, 7.3,

and 7.4.

7.1 Background

A switching surface naturally arises in the minimum time control of the double inte-

grator. The optimal control consists of the maximum control magnitude with alternating

directions [10]. Furthermore, the states where the control directions switch can be plotted

to determine areas divided by a switching surface. The control inputs are then determined

by the current area the system is in and change as the system passes through the surface.

Since the control law results in the system alternating between the extremes of the allowable

control inputs, it falls into a category of controllers known as “bang-bang” controls [81,82].

For the double integrator system

ẋ1 = x2

ẋ2 = u

(7.1)

with allowable controls −1 ≤ u ≤ 1, the switching surface is found to be x1 = −1
2x2|x2| [32].

If the system is above this surface then a control of u = −1 is applied while a control of

u = +1 is applied if the system is below the surface. When the system reaches the surface,

the sign of the control changes which drives the system to the origin.
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Another control methodology is sliding mode control [38] which defines a surface that

naturally drives the system toward the origin. The control law is then developed to drive

the system to the surface in finite-time and then along the surface to the origin. In general,

sliding mode control guarantees asymptotic convergence along the surface to the origin but

some approaches, including the ones used in Sections 7.3 and 7.4, guarantee finite-time

convergence. The controller is robust to disturbances but can suffer from chatter that occurs

in the presence of perturbations since the system cannot exactly stay on the designated

surface. This is shown in the following example.

Example 7.1.1 ([83]). Consider the system

ẋ = x3 + z

ż = u+ δ(t)

(7.2)

where δ(t) ∈ R is some unknown perturbation with a known bound |δ(t)| ≤ ∆.

If the behavior of the x state was such that

ẋ = −x (7.3)

then the origin of X-subsystem would have exponential stability. Substituting the system

dynamics into the desired dynamics gives

0 = x3 − x+ z (7.4)

Now, if we define σ such that

σ = x3 − x+ z (7.5)

then when σ = 0, the origin of the X-subsystem is exponentially stable.

Introducing a Lyapunov candidate function

V =
1

2
σ2 (7.6)
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with
V̇ = σσ̇

= σ(3x5 + 3x2z + u+ δ(t) + x3 + z)

(7.7)

Selecting

u = v − 3x5 − 3x2z − x3 − z (7.8)

gives

V̇ = σ(v + δ(t)) (7.9)

While δ(t) is unknown, we can use the bound |δ(t)| ≤ ∆ to ensure that V̇ is negative definite

by selecting v = −k sign(σ) with k > ∆. Then

V̇ = σ(−k sign(σ) + δ(t))

= −k|σ|+ δ(t)σ

≤ −k|σ|+ δ(t)|σ|

= (δ(t)− k)|σ|

≤ −α|σ|

= −α(σ2)
1
2

= −
√
2αV

1
2

(7.10)

where α = −∆+ k > 0, due to the previous choice of k. Since
√
2α > 0 and 0 < 1

2 < 1, V

reaches 0 in finite time.

Thus, the system reaches the σ surface in finite time and the origin is exponential

stability as the system moves along the surface.

△

The inclusion of the k sign(σ) term in the control law results in a discontinuous control as

the perturbations force the system off the σ surface. In particular, this can result in chattering

behavior where the k sign(σ) rapidly jumps between positive and negative k. This can result

in large amounts of control usage since the control applied by the k sign(σ) term applies
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the same control magnitude regardless of the magnitude of the σ error. Additionally, this

control law assumes an actuator that can respond instantaneously, which is not reasonable

for physical systems.

One approach to minimize these limitations is to use a continuous function to approxi-

mate the sign function. Some common selections are the sigmoid function [83]

sigγ(σ) =
1− e−σγ

1 + e−σ/γ
(7.11)

the continuous saturation function

satγ(σ) =


1 σ/γ > 1

σ/γ −1 ≤ σ/γ ≤ 1

−1 σ/γ < −1

(7.12)

and the hyperbolic tangent

tanhγ(σ) = tanh γσ (7.13)

Each of these can be scaled such that as γ → ∞, the function better approximates the sign

function. While these approximations are not guaranteed to satisfy the conditions for finite-

time stability, they generally are able to maintain the system within a neighborhood of the

origin, with the neighborhood decreasing as the approximation approaches sign(σ) [83].

Techniques such as uniform ultimate boundedness [38, 84, 85], which guarantees finite-

time convergence to a neighborhood of the origin, can be used to compare performance of

the nominal control law with the switching function approximation. Alternatively, it may

be possible to redesign the control law to naturally attenuate chatter without losing the

finite-time guarantee, as seen in [86].
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7.2 Switching Surface Based Control

For minimum-time control of the double integrator, it is known that a surface can be

generated such that the system will converge to the origin along that surface when acted upon

by a certain constant control. This section modifies that approach by allowing the switch-

ing surfaces and associated control magnitudes to be optimized to minimize the maximum

instantaneous control used. This is applied to the rendezvous problem using the Brunovsky

transformed CW dynamics.

Assuming control inputs are allowed along each axis of the system, the CW dynamics

can be separated into three subsystems along the X-, Y-, and Z-axes. In the Brunovsky

form, the general form of the dynamics of each subsystem are expressed as

ż1 = z2

ż2 = v

(7.14)

Assuming a constant control v, this allows for the simple analytic solution

z1(t) = z1(t1) + z2(t1)t+
1

2
vt2

z2(t) = z2(t1) + vt

(7.15)

where z1(t1) and z2(t1) are the initial states.

We now define the surface such that at time t1 = 0, all states z1(t1) and z2(t1) which

lie on the surface will be driven to the origin by a constant control v. This can be found by

assuming z1(t) = z2(t) = 0 and eliminating t to get a surface in terms of z1(t1), z2(t1), and

v which gives

z22(t1) = 2z1(t1)v (7.16)

Examining the form of this solution, we see that sign (z1(t1)) = sign(v) must be true for a

meaningful surface. Furthermore, from the analytic solution of z2(t), we know that if we
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assume the desired final condition z2(t) = 0, then

z2(t1) = −vt (7.17)

Assuming that we are only interested in positive time solutions, then we also have the

condition sign (z2(t1)) = − sign(v). This provides a sufficient number of constraints on

sign(v) that we can express the surface in terms of the magnitude of v without needed to

explicitly consider the direction. This gives the final surface as

S(v) =
{
(z1, z2) ∈ R× R|z2 = − sign(z1)

√
2|z1v|

}
(7.18)

Note that this surface divides the z1-z2 plane into two distinct portions such that any point

which is not on the surface itself is either above or below the surface relative to the z2 axis.

The control applied to the system can then be determined by the system’s state relative to

the surface, as shown in the following section.

7.2.1 Open-Loop Control

Assume that the system has an initial condition (z1, z2) and a control law which first

applies a control of magnitude ν1 ∈ R>0 and then switches to apply a control of magnitude

ν2 ∈ R>0. The control directions and switching condition are defined as follows.

If the point (z1, z2) is on the surface S(ν2), then an applied control of magnitude ν2, in

the proper direction, will drive the system along the surface towards the origin. Accounting

for the direction, the necessary control v2 is then found as

v2 = − sign(z2)ν2 (7.19)

which is applied until the system reaches the origin. If we define the initial time for this

condition to be ts, then the time that the system converges to the origin is found to be

tf = ts +
−z2
v2

(7.20)
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If the initial condition is not on S(ν2), then a control of v1 with magnitude ν1 is first

applied to the system until the surface is reached. The switching surface function s : R ×

R>0 → R which determines the x2 state of the surface given the x1 point and control

magnitude ν is calculated as

s(x1, ν) = − sign(x1)
√

2|x1ν|. (7.21)

Then v1 is then found as

v1 =


ν1 z2 < s(z1, ν2)

−ν1 z2 > s(z1, ν2)

0 z2 = s(z1, ν2)

(7.22)

where the first condition is applied when the system is below the surface, the second condition

is applied when the system is above the surface, and the third condition represents when the

system is already on the surface.

With v1 determined, the time until the switching surface is reached can be calculated,

assuming a switching control magnitude ν2 has been chosen. Given the initial conditions of

(z1, z2) at time t0, Equations 7.15 and 7.16 can be combined and solved for the switching

time ts as a function of v2 which gives

ts = t0 +
−2z2(v1 − v2)±

√
(4v2z22 − 8v1v2z1)(v2 − v1)

2(v21 − v1v2)
(7.23)

While the direction of v2 is not known, the magnitude is known to be equal to ν2. With two

possible directions for v2, this results in four possible solutions for ts, two for the positive

direction and two for the negative direction. The values of v2 = ±ν2 and corresponding times

ts are inserted into Equations 7.15 and 7.16 with the solution being the pair that satisfies all

the conditions. Applying the control v2 to the system from t0 to ts will then drive it to the

surface.

The full open-loop control can now be summarized as follows. Given an initial condition

(z1, z2) at time t0, select control magnitudes ν1 and ν2 and determine the surface S(ν2). If
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the system lies off the surface, then the control v1 can be calculated and applied from time t0

to ts to drive the system to the surface with the analytic solution (Equation 7.15) allowing

for the state at any t0 ≤ t ≤ ts to be found. At that point, the control v2 can be determined

and applied from time ts to tf to drive the system to the origin. The analytic solution can

be used to determine any state for ts ≤ t ≤ tf with the initial conditions of the analytic

solution corresponding to the system state when it reaches the origin.

7.2.2 Closed-Loop Control

While the open-loop control uses the switching time ts and final time tf to determine

when to change controls, the closed-loop control continually compares the system’s states

to the switching surface. As with the open-loop control, an initial state (z1, z2) is given and

control magnitudes ν1 and ν2 are selected. The initial control v1 is determined by comparing

the state to the surface (Equation 7.22) and the system is propagated forward. At each step

of the simulation, the current state of each system is checked against the switching surface

S(ν2). Once a system meets the surface, it switches to the v2 control with magnitude ν2

and direction determined by Equation 7.19. Due to perturbations, the system is unlikely

to exactly reach the origin but instead will cross the switching surface again. Each time

a subsystem state crosses the switching surface, the direction of the v2 control switches

resulting in the closed-loop control law.

7.2.3 Optimization

For this control approach, the variables able to be selected are the two control mag-

nitudes for each independent Brunovsky subsystem. These can then be chosen in order

to minimize some desired objective function. For this work, the objective function to be

minimized is defined as

J = max(∥ux(t)∥∞, ∥uy(t)∥∞, ∥uz(t)∥∞) (7.24)
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where ux(t), uy(t), and uz(t) are the actual controls applied to each axis at time t. This has

the effect of minimizing the single highest instantaneous control magnitude seen on any of

the three axes.

The optimization is given the initial condition of the system x0 ∈ R6 which is then

converted to the Brunovsky state z0 ∈ R6. The control magnitudes for each subsystem are

selected within the bounds 0 < νmin ≤ ν1, ν2 ≤ νmax and the open-loop solution for each

subsystem is found. From the open-loop solution, the subsystem states and the open-loop

controls can be used with the Brunovsky transformation to find the actual controls applied

to each axis of the system. The objective value can then be found as the maximum of the

∞-norm of the controls along each axis.

One limitation of this formulation is that there are no tuneable parameters so there is

only a single solution, or multiple solutions with identical objective values and no way to

select between them. However, if desired, the formulation could be modified to include other

desirable outcomes, such as convergence time, with tuning parameters introduced to define

the importance of each.

7.2.4 Results

The switching surface control was tested with both the unperturbed CW dynamics as

well as the full two-body dynamics with J2 and drag perturbations with dual-input in-plane

controls. For each set of dynamics, a total of 50 simulations were selected such that the

initial conditions satisfied

|x0| =
[
390m 390m 390m 1.5m/s 1.5m/s 1.5m/s

]T
(7.25)

The control law was updated at a rate of 20Hz using a sample and hold approach. The

theoretical convergence time was determined from the open-loop control law, and then the

closed-loop control was simulated for a period 5% longer than that.
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Unperturbed CW Dynamics

In Figures 7.1 and 7.2, the states and controls for a single simulation are shown, respec-

tively. In Figure 7.1, each state is shown with inserts highlighting the chatter that occurs

as each state nears the origin. In general, the positions converge smoothly to the origin

while the velocity states show sharper changes associated with crossing the switching sur-

face. The abrupt change due to reaching the switching surface is also seen in the control

plots in Figure 7.2. Note that the control magnitude for the cross-track dynamics are an

order of magnitude smaller than the two in-plane controls. However, the general pattern is

the same with control for each state being roughly constant until the switching surface is

reached. However, the Brunovsky transformation results in a slight change of the control

over time as the states evolve. As the system nears the origin, the control chatters because

the discretized time step does not allow the control to switch precisely on the surface.
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Fig. 7.1: State plots for a single simulation. The inserts show the chattering behavior for
each state as the subsystems approach the origin.
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Fig. 7.2: Control plots for a single simulation.

The phase plots for the CW dynamics are shown in Figure 7.3 for each of the subsys-

tems with the initial conditions marked with triangles and the optimized switching surfaces

indicated by the dotted lines. Interestingly, while the X- and Y-subsystems are indepen-

dent in the model dynamics, their responses look nearly identical. This is likely due to the

fact that they are coupled through the Brunovsky transformation. The Z-subsystem, which

is independent in both the model and full dynamics, shows a much more varied response.

However, this indicates the presence of multiple local minima in the objective function.

Fig. 7.3: Phase plots for each of the unperturbed CW simulations ran. The initial conditions
are indicated by the triangles, while the switching surfaces are shown by the dotted lines.
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The position errors for the in-plane and cross-track dynamics are shown in Figures 7.4

and 7.5 respectively. The in-plane dynamics are able to maintain an upper bound on the

steady state error of approximately 4 × 10−4m. However, the the chattering does result in

wide ranges of errors. Particularly noticeable in the cross-track errors (Figure 7.5) is the wide

range of convergence times. From the plots, it is clear that the convergence time is being

driven by the cross-track dynamics. Since the cross-track subsystem has simpler dynamics,

the controller can find lower control usage solutions at the cost of longer convergence times.

Fig. 7.4: In-plane position error for the un-
perturbed CW dynamics.

Fig. 7.5: Cross-track position error for the
unperturbed CW dynamics.

The corresponding control plots are shown in Figures 7.6 and 7.7 for the in-plane and

cross track dynamics, respectively. These plots only show the magnitude of the control in each

subsystem, so the changes in direction due to the switching surfaces are not obvious. As a

result, the in-plane control shows slight variations initially, but once it begins chattering, the

control magnitude is nearly constant. The cross-track control shows larger relative changes in

the control magnitude over time as the control from the Brunovsky transformation changes.

Additionally, the overall control usage is much smaller in all cases than the corresponding

in-plane control magnitude. Note that objective function used with this control law only

generates a useful solution due to the use of the Brunovsky transformation. Since the

conversion for the Brunovsky control to the actual control is time-varying, the naive approach

to simply minimize the Brunovsky control does not necessarily minimize the actual control.
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Table 7.1: Reference orbit used for the simulation.

Orbital Element Value
Semi-major Axis 6 878 000m
Eccentricity 1× 10−4

Inclination 170◦

Argument of Perigee 126◦

RAAN 0◦

True Anomaly 0◦

Fig. 7.6: In-plane control for the unper-
turbed CW dynamics.

Fig. 7.7: Cross-track control for the unper-
turbed CW dynamics.

Two-Body Dynamics

The control was also applied to the full two-body simulation with J2 and drag pertur-

bations with orbital parameters as designated in Table 7.1. As with the CW simulations,

each simulation ran for a period of time equal to 5% longer than the expected convergence

time based on the open-loop solution.

In general, the phase plots (Figure 7.8) look similar to the unperturbed CW results with

the X- and Y-axes having similar trajectories, while the Z-axis has multiple solutions from

the same initial conditions.



137

Fig. 7.8: Phase plots for each of the simulations ran using the two-body dynamics. The
initial conditions are indicated by the triangles while the switching surfaces are shown by
the dotted lines.

The state errors for the in-plane and cross-track subsystems in Figure 7.9 and 7.10

also look broadly similar to the CW results. As before, the in-plane subsystem converges

relatively quickly and then chatter about the origin, while the cross-track subsystem takes

longer to converge. Additionally, the terminal in-plane error seems to match the CW results,

despite the added perturbations. While the terminal cross-track error, generally, has a similar

pattern to the CW results, there are a couple simulations which failed to converge to the

origin. In total, three simulations had final cross-track errors between 5m and 8.4m as the

result of the added perturbations. Since the expected perturbations are not accounted for in

the control law, the fact that some simulations did not converge is not entirely unexpected.

However, in general, the control law is still able to perform satisfactorily in the presence of

perturbations.
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Fig. 7.9: In-plane position error for the two-
body dynamics.

Fig. 7.10: Cross-track position error for the
two-body dynamics.

The control plots for the in-plane and cross-track subsystems, Figures 7.11 and 7.12, are

also similar to their CW counterparts. Again, the cross-track control magnitudes are signif-

icantly smaller than the in-plane control magnitudes, and the relatively rapid convergence

of the in-plane dynamics results in the controls chattering with nearly constant magnitude

for the majority of the simulation duration.

Fig. 7.11: In-plane control for the two-body
dynamics.

Fig. 7.12: Cross-track control for the two-
body dynamics.
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7.3 Fractional Power Sliding Mode Control

A finite-time controller, based on sliding mode principles, is presented in [34]. For

convenience, we will refer to this controller as a Fractional Power Sliding Mode Control due

to the use of the ⌊·⌉h operator, defined as ⌊x⌉h = |x|h sign(x).

Assuming the perturbed, double integrator system

ẋ1 = x1

ẋ2 = u+ δ(t, x)

(7.26)

where δ(t, x) is some bounded, perturbing acceleration, we can introduce the control law as

follows.

Theorem 12 ([34, Theorem 2]). Given Tmax > 0 with u ∈ R and x ∈ R2, define a control

law as

u = − sign(s)
α1 + 3β1x

2
1 + 2k

2
−
⌊
α2s+ β2 ⌊s⌉3

⌉1/2
(7.27)

with

s = x2 +
⌊
⌊x2⌉2 + α1x1 + β1 ⌊x1⌉

⌉1/2
(7.28)

and α1/2 = α2 = β1/2 = β2 = 64/T 2
max with |δ(t, x)| ≤ k for all t > 0 and all x ∈ R2. Then,

the system 7.26 is globally fixed-time stable with T (x0) ≤ Tmax for all x0 ∈ R2.

7.3.1 Switching Function

This control law was tested over a range of convergence times Tmax using both the sign

and tanh functions for the switching function. The resulting behavior of the states, control,

and actual convergence time were then measured and compared. The simulations were all

run using the two-body dynamics with J2 and drag perturbations with the dual-input in-

plane controls. As with the previous controller, the controls were applied as a sample and

hold with a controller frequency of 20Hz. As with the switching surface control, the initial
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conditions were randomly selected to satisfy

|x0| =
[
390m 390m 390m 1.5m/s 1.5m/s 1.5m/s

]
(7.29)

For the full dynamic simulations, the orbital parameters given in Table 7.1 were used for the

reference orbit.

Sign Switching Function

The first set of results use the control law as given in Equation 7.27 over a range of values

30 s ≤ Tmax ≤ 1000 s. In Figure 7.13 the convergence time is shown as a function of Tmax.

For the purpose of this analysis, the convergence time is defined to be the time at which the

position enters and stays within 0.01m of the origin. With increasing Tmax, the convergence

time also increases although the effect seems to taper off with the high Tmax values not

having proportionally longer convergence times. This can particularly be seen in Figure 7.14

which shows the same convergence times but as a ratio relative to Tmax. This control law

seems to be rather conservative in its selection of Tmax as the longest ratio is approximately

0.40 of Tmax. Furthermore, the ratio drops to nearly 0.20 as the Tmax increases.
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Fig. 7.13: Actual convergence time as a func-
tion of Tmax for the control law given in
Equation 7.27.
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Fig. 7.14: Ratio of actual convergence time
to Tmax.
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In Figures 7.15 and 7.16, the log of the state and control magnitude are plotted against

the time normalized by Tmax. For the states, the final position is general between 1 ×

10−3m and 1 × 10−10m on each axis with the maximum velocity error generally between

1×10−2m/s and 1×10−5m/s. Additionally, there is a clear transition from when the system

is approaching the origin and when it is chattering about the origin.

Fig. 7.15: States for all the simulations with
the control law from Equation 7.27 on a log
scale with the X-axis showing the time nor-
malized by Tmax.

Fig. 7.16: Controls for all the simulations
with the control law from Equation 7.27 on
a log scale with the X-axis showing the time
normalized by Tmax.

Hyperbolic Tangent Switching Function

For the next portion of the analysis, the hyperbolic tangent function were used in place

of the sign function to attempt to minimize the chatter of the control law. This was applied

in the form tanh(γx) with γ ∈ R>0 being a scaling parameter. As γ increased, the slope

around the origin steepened and became a better approximation of the sign function.

The impact of γ on the performance of the controller was explored by examining the

response of the control law over a range of γ and comparing the final position error and control

chatter. A total of 240 simulations were run to describe the behavior of the hyperbolic tangent

switching function over a range of 80 values for γ. For each γ value, three simulations were

run with Tmax values of 600 s, 4300 s, and 8000 s and all simulations had an initial condition
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of

x0 =

[
390m 390m 390m 1.5m/s 1.5m/s 1.5m/s

]T
(7.30)

Each simulation was propagated using the unperturbed CW dynamics.

In Figure 7.17, the position error of each simulation at time t = Tmax is shown. Ideally,

this should be 0 for each simulation but due to the hyperbolic tangent approximation and

the zero-order hold, some residual error remains. In line with what could be expected, as γ

increases, and the hyperbolic tangent better approximates the sign function, the error de-

creases. The error drops off exponentially with γ meaning that there is a point of diminishing

returns where large increases in γ only result in small changes in the final error.

In Figure 7.18, the 2-norm of the control magnitude at time t = Tmax is shown. Although

some variation, due to the difference in the Tmax parameter, is seen in the plots, some general

trends can be observed. For small values of γ, the system never converges to the origin and

so there is always some non-zero control being applied to the system by the control law. At

the other end, for large values of γ, the behavior of the hyperbolic tangent function exhibits

the same chattering behavior that is seen in the sign function. This is reflected in the plot

by the jump in control magnitude. Between those two extremes is a range of γ values which

result in a control law that is smooth enough to avoid chattering controls but similar enough

to the sign function that the control law is still able to control the system.
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Fig. 7.17: Position error at time t = Tmax

for the control law with a switching function
of tanh(γx).
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Fig. 7.18: Control magnitude at time t =
Tmax for the control law with a switching
function of tanh(γx).

By comparing the two plots, we can select a range of γ that converges by the designated

time but does not result in chattering behavior. This appears to approximately be the range

1 ≤ γ ≤ 375 with the corresponding terminal position errors being below 0.2m. For this

work, a value of γ = 100 is chosen to balance lower terminal error with non-chattering

controls.

In Figures 7.19 and 7.20, the time required for the system to converge to within 0.01m

is shown. Figure 7.19 shows the convergence time in seconds while Figure 7.20 shows the

convergence time as the ratio of the convergence time to Tmax. Similar to the use of the sign

function, the convergence time generally increases as Tmax increases but the rate slows as

Tmax increases. However, the convergence times are notably higher when using the hyperbolic

tangent than with the the sign function (Figure 7.13). In Figure 7.20, the ratio of the

convergence time to Tmax shows that the use of the hyperbolic tangent pushes the convergence

time closer to, and even over, the Tmax time. This shows that the inclusion of the hyperbolic

tangent nullifies the convergence guarantee of the control law. However, for longer Tmax

times, the control law generally seems to be conservative enough to satisfy the constraint

despite the change in switching function.
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Fig. 7.19: Actual convergence time as a func-
tion of Tmax for the control law using the hy-
perbolic tangent as the switching function.

0 200 400 600 800 1000

Tmax

0.4

0.6

0.8

1

T
co

nv
er

ge
/T

m
ax

Convergence Time Ratio - tanh(100x)

Fig. 7.20: Ratio of actual convergence time
to Tmax.

In Figure 7.21, the states for all the simulations are shown. The maximum final position

error for each axis has a rough upper bound of 0.01m with the best case results being

approximately 0.0003m. This is notably different from the nominal control law where all

simulations resulted in less than 0.0001m of error. For the control profile (Figure 7.22),

the control magnitudes at the start of each simulation are roughly identical to the original

control law. This results from the fact that the hyperbolic tangent best approximates the

sign function in the limit as the magnitude of the argument approaches infinity. For this

system, the maximum error, and thus closest approximation, occurs at the beginning of

the simulation. As the error decreases, the control law with the hyperbolic tangent is less

aggressive since the control law is able to scale with the error. As a result, the final control

along all axes has an upper bound of approximately 1 × 10−5m/s2 with many simulations

seeing control as small as 1 × 10−7m/s2. This is a significant contrast from the nominal

control which never had controls less than 1× 10−2 due to the chattering behavior.
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Fig. 7.21: States for all the simulations with
the control law from Equation 7.27 on a log
scale with the X-axis showing the time nor-
malized by Tmax.

Fig. 7.22: Controls for all the simulations
with the control law from Equation 7.27 on
a log scale with the X-axis showing the time
normalized by Tmax.

For a final point of comparison, Figure 7.23 shows the control profiles for two simulations,

one using the sign function and one using the hyperbolic tangent function. The plots are

truncated to focus on the terminal behavior of the control profiles with the plotting beginning

at t = 50 s. Both plots show similar control profiles around the 50 s mark with the start of

a sinusoidal or square wave. For the sign function, the control begins chattering with an

amplitude of around 0.1m/s2 for each axis. However, the oscillations in the control using

the hyperbolic tangent dampen out and approach zero.
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Fig. 7.23: Comparison of the control for two simulations, one using the sign function and one
using the hyperbolic tangent function. Note the absence of the chatter in the contol using
the hyperbolic tangent.

7.3.2 Results

From the analysis on the switching function, a control law with a convergence time of

400 s and switching function of tanh(100x) is used to control the system with both the CW

and perturbed two-body dynamics. A total of 50 simulations are run, with each randomly

initialized to satisfy the initial condition

x0 =

[
390m 390m 390m 1.5m/s 1.5m/s 1.5m/s

]T
(7.31)

and the orbital parameters are identical to the ones used previously (Table 7.1).
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Unperturbed CW Dynamics

The in-plane and cross-track position errors are shown in Figures 7.24 and 7.25, respec-

tively. Interestingly, although the simulations have differing initial conditions, the responses

are nearly identical. In both subsystems, the error does not decrease evenly but rather shows

a pattern of decreasing oscillations. Once the errors reach about 10−2m, the oscillations die

out and the systems reach a roughly steady final error. The convergence time is also shown

to be very conservative, with the system converging to the final error well before the 400 s

bound.

Fig. 7.24: In-plane position error for
the unperturbed CW dynamics with the
tanh(100x) switching function and Tc = 400.

Fig. 7.25: Cross-track position error for
the unperturbed CW dynamics with the
tanh(100x) switching function and Tc = 400.

The control plots are shown in Figures 7.26 and 7.27 for the in-plane and cross-track

controls, respectively. Similar to the error plots, oscillations can be seen in the control before

sharply dropping as the system converges to the origin.
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Fig. 7.26: In-plane control for the unper-
turbed CW dynamics with the tanh(100x)
switching function and Tc = 400.

Fig. 7.27: Cross-track control for the unper-
turbed CW dynamics with the tanh(100x)
switching function and Tc = 400.

Two-Body Dynamics

The position errors for the two-body dynamics are shown in Figures 7.28 and 7.29 for the

in-plane and cross-track subsystems, respectively. Again, the errors initially oscillate as they

decrease, until the oscillations decay away and the system converges to a relatively constant

final error. The convergence of the in-plane error is slower with the two-body system than the

unperturbed CW dynamics with larger terminal error, which is to be expected. Interestingly,

the cross-track error actually appears to converge in about the same time but with a much

sharper transition to the terminal error.

Fig. 7.28: In-plane position error for the two-
body dynamics.

Fig. 7.29: Cross-track position error for the
two-body dynamics.
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The control plots for the two-body dynamics are shown in Figures 7.30 and 7.31 for the

in-plane and cross-track controls, respectively. The basic pattern continues to be the same

with decaying oscillations and then a sharper drop-off. However, as a result of the perturba-

tions, the terminal control amounts are larger than what was seen in the unperturbed CW

dynamics.

Fig. 7.30: In-plane control for the two-body
dynamics.

Fig. 7.31: Cross-track control for the two-
body dynamics.

7.4 Backstepping Sliding Mode Control

Another approach for a predefined-time controller is developed in [2]. This is based

on a backstepping approach but is only applicable for second-order systems which can be

transformed into the form
ẋ1 = x2

ẋ2 = u+ δ(t)

(7.32)

with |δ(t)| ≤ k for all t ≥ 0 and some k ∈ R>0.
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7.4.1 Control Law

The control law requires the introduction of class K1 and class W functions, defined as

follows.

Definition 7.4.1 ([2, Definition 1]). A scalar, continuous function κ : R≥0 → [0, 1) is said

to be a class K1 function if

1. it is strictly increasing

2. κ(0) = 0

3. κ(r) → 1 as r → ∞

Definition 7.4.2 ([2, Definition 2]). A scalar, continuous function ω : R≥0 → [0, 1) is a

class W function if

1. ω ∈ K1 is twice differentiable in R>0

2. ω′(r) > 0 for r > 0 and ω′(0) ∈ R>0

3. ω′′(r) < 0 for all r > 0

Some examples of class W given are

1. ω(r) = 1− exp(−rq)

2. ω(r) = 2
πarctan(rq)

3. ω(r) = rq

rq+α

with 0 < q < 1 and α > 0.

With a class W function ω selected, we can now introduce a function v : R → R as

v(x) = − sign(x)

ρTω′(|x|)
(7.33)
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with ρT > 0. Additionally, we define two surfaces

s = x2 − v(x1)

sd = x2 +
⌊
⌊x2⌉2 − 2 ⌊v(x1)⌉2

⌉1/2 (7.34)

With these preliminaries determined, the control can be defined as [2]

u = v(sd)− k sign(sd)− s+ 2|v(x1)|v′1(x1)sign(sd) (7.35)

with predefined settling time Tmax = 2ρT

7.4.2 Switching Function

When designing this controller, the control parameters ρT and k have direct connections

to the predefined time and perturbation magnitude, respectively. However, the selection of

the class W function ω(r) is free but lacks a clear relationship to the system performance.

This section explores the selection of ω(r) and the resultant impact on the CW system.

Furthermore, the use of the smooth hyperbolic tangent function in place of the discontinuous

sign function is examined.

The CW system was divided into three independent subsystems for each axis using

the Brunovsky transformation with an identical controller used for each. The system was

propagated using the two-body dynamics with J2 and drag perturbations. The control

update rate was set as 20Hz with the same sample and hold approach used with the other

controllers in this chapter. A predefined time of Tmax = 300 s was chosen, resulting in

ρT = 150, and k was selected as k = 1× 10−5. The class W function

ω(r) =
rq

rq + α
(7.36)

where 0 < q < 1 and α > 0 was selected.
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A total of 225 simulations were run with the values of q and α equally spaced such that

q ∈ [1×10−3, .999] and α ∈ [1×10−3, 1000]. Each simulation had initial conditions satisfying

|x0| =
[
390m 390m 390m 1.5m/s 1.5m/s 1.5m/s

]
(7.37)

for the relative state in the LVLH frame with the desired final state being the origin. The

reference orbit was set as shown in Table 7.1. Similar to the fractional power sliding mode

control, each simulation was determined to be converged if the final position error was less

than 0.01m at the end of a 315 s period, otherwise the simulation was termed unconverged.

The results can be seen in Figure 7.32 where the converged simulations are shown with

the larger circles as functions of q and α. As a result of the control discretization, the

majority of the simulations fail to converge to the origin by the predefined time even though,

theoretically, each simulation is guaranteed to converge.

0 200 400 600 800 1000
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0.2

0.4

0.6

0.8

1

q

System Convergence (sign(x))

Converged
Unconverged

Fig. 7.32: Plot showing the simulations which were stable based on the selection of q and α.

A second set of simulations were run with identical parameters but with the sign(x)

functions replaced with the tanh(γx) approximation. An analysis was performed to find a

suitable value of γ by running the control law for various values of γ and measuring the
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control magnitude and position error at the convergence time Tmax. Values of Tmax = 300 s,

q = .5, and α = 200 were chosen to mirror the parameters presented in Figure 7.32.

In Figure 7.33, the control magnitude is shown. Three distinct sections can be identified.

For small values of γ, roughly γ < 1, the magnitude decreases as γ increases. Then, there is

a flat period (approximately 1 ≤ γ ≤ 100) where the control magnitude is constant. Finally,

for values of γ > 100, chattering behavior occurs and is shown by a marked increase in the

amount of control used.
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Fig. 7.33: Control magnitude at time t =
Tmax over varying values of γ. Note the large
jump around γ = 100 which indicates the
presence of chattering behavior.
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Fig. 7.34: Position error at time t = Tmax

as a function of γ. The terminal error gener-
ally decreases until chatter begins which cor-
responds with an increase in error.

A similar trend can be seen in Figure 7.34 which shows the position error at t = Tmax.

There is a steep decline in the error as γ increases to around 2 when the rate of decrease

slows. Then around γ = 100, there is a sharp jump where the position error increases which

corresponds with the point where the chattering behavior occurs. This contrasts with the

previous control where the the position error continues to decrease as the hyperbolic tangent

better approximates the sign function.

Based on these plots, a value of γ = 1 was chosen for the hyperbolic tangent function.

This should result in a non-chattering control with terminal position error on the order of

1 × 10−5m. Note that this is a significantly different value than the γ = 100 which was
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chosen for the other approximation. This suggests that there is no general rule in selecting a

switching surface approximation but that it must be determined individually for each control

law.
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Fig. 7.35: Plot showing the simulations which were stable based on the selection of q and α
with tanh(x) used in place of sign(x).

The convergence of the system over a range of q and α values and using the hyperbolic

tangent are shown in Figure 7.35. Somewhat surprisingly, this change greatly expands the

range of parameters for which the system is stable about the origin. In general, the tanh(x)

approximation is applied to switching controls to minimize the presence of chatter in controls

with the implicit understanding that there will be an impact in the system stability. This

shows that the impact is not, necessarily, a source of instability.
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Fig. 7.36: The maximum control as a func-
tion of the q and α parameters. For plotting
clarity, any maximum control above 100m/s2
is indicated by a red dot. The dashed box in-
dicates the area examined in further detail.
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Fig. 7.37: The convergence time as a function
of the q and α parameters. The dashed box
indicates the area examined in further detail.

7.4.3 Tuning Parameters

In Figures 7.36 and 7.37, the maximum control and convergence time are shown for the

varying parameters of q and α. For the maximum control plot, the displayed magnitude is

capped at 100m/s with any values higher than that displayed in red. However, the maximum

control was as high as 5.0454 × 105m/s for some simulations. In general, as the value of q

increases, the maximum control usage decreases. Similarly, in Figure 7.37, the convergence

time is shown. This is defined as the last time the system is more than 0.1m away from the

origin. In general, the convergence time is very rapid compared to the predefined time of

300 s. Additionally, it appears that the time increases as q increases and as α decreases.

The dashed box in both plots indicates the area that seems to shown the most desirable

behavior in terms of minimum control and a convergence time similar to the predefined time.

Running another set of 225 simulations over the range indicated by the box gives the results

shown in Figures 7.38 and 7.39. Interestingly, there are two unstable simulations within this

range of parameters emphasizing the fact that the discretization of the simulation and the

use of the tanh(x) function lacks theoretical stability even though it generally exhibits stable

behavior.
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Fig. 7.38: The maximum control as a function
of the q and α parameters over a smaller range
of values.
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Fig. 7.39: The convergence time as a function
of the q and α parameters over a smaller range
of values.

In Figure 7.38, the maximum control is shown and an area of lower control can be seen

around q ≈ 1 and 250 ≤ α ≤ 325. With the convergence time, the previous pattern holds

with the convergence time increasing with decreasing values of α.

We can now examine the terminal error and control of the system compared to the

expected values based on the chosen γ. Recall that a value of γ = 1 was chosen based on the

data in Figures 7.33 and 7.34 with expected terminal control of approximately 1×10−8m/s2

and terminal error of 1× 10−5m. In Figures 7.40 and 7.41, the control magnitude and posi-

tion error at time t = Tmax are shown over the range of q and α values examined. Note that

for both plots, the log10 of the magnitude is displayed. For the control (Figure 7.40), most

simulations have values between 1× 10−8m/s2 and 1× 10−6m/s2. However, as q decreases,

the simulations near the unconverged simulations show significantly higher amounts of con-

trol. Similarly, the terminal position error (Figure 7.41) shows that for higher values of q

the terminal error decreases. While the choice of γ = 1 produces desirable behavior over a

range of q and α values, there is notable interaction between γ, q, and α and it is necessary

to consider all three if attempting to satisfy a specific convergence time or control magnitude

constraints.
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Fig. 7.40: The control magnitude at time t =
Tmax as a function of the q and α parameters.
Note that the magnitudes are presented as
log10(x).
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Fig. 7.41: The position error at time t = Tmax

as a function of the q and α parameters.
Note that the magnitudes are presented as
log10(x).

7.4.4 Results

From these results, a selection is made of q = .996 and α = 300 for the control law with

the convergence bound set as Tc = 300 s. The switching function was chosen to be tanh(x).

Using these parameters, a set of 50 simulations are run with initial conditions that satisfy

|x0| =
[
390m 390m 390m 1.5m/s 1.5m/s 1.5m/s

]T
(7.38)

with simulations run using both the CW and two-body dynamics with the dual-input in-plane

controls. The controls and dynamics were both updated at a rate of 20Hz.

Unperturbed CW Dynamics

The position errors using the CW dynamics are shown in Figures 7.42 and 7.43 for the

in-plane and cross-track subsystems, respectively. Both show two distinct phases. From

the start of the simulation to about t = 80 s, the error generally decreases smoothly for

both subsystems, at which point the convergence rate sharply increases and the error drops

rapidly. At the transition point, there is some brief transitory behavior in the errors, but

overall the errors decrease smoothly.
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The magnitudes of the errors, which drop below 10−80m, are also worthy of note.

Although the sample-and-hold approach to implementing the control laws has been seen to

introduce disturbances, this control law is able to converge much closer than any of the other

control laws.

Fig. 7.42: In-plane position error for the un-
perturbed CW dynamics.

Fig. 7.43: Cross-track position error for the
unperturbed CW dynamics.

Similar results are also seen in the control magnitude plots, with Figure 7.44 showing the

in-plane control magnitudes and Figure 7.45 showing the cross-track control magnitudes. As

with the error plots, there are two distinct phases: the initial control is relatively constant

until t = 80 s, after which the control rapidly drops off. There are also brief periods of

transitory periods that divide these two phases. At the beginning of the simulation, both

subsystems experience some variance in the control magnitude. Then, when the control

magnitude starts to sharply drop around the t = 80 s mark, there is a sudden, but momentary

increase in the error before it begins descending again. Further analysis, not presented here,

shows that these spikes result from using the hyperbolic tangent as a smoothing function

and the height of the peaks changes with the γ scaling factor.
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Fig. 7.44: In-plane control for the unper-
turbed CW dynamics.

Fig. 7.45: Cross-track control for the unper-
turbed CW dynamics.

Two-Body Dynamics

The results for the two-body dynamics are now presented. In Figures 7.46 and 7.47,

the position errors are shown for the in-plane and cross-track subsystems. The main dif-

ference seen from the CW results is that the perturbations in the system prevent the error

from decreasing to same degree that they did in the CW dynamics, and some chattering is

observable. Overall, the errors are on the order of 10−9m for the in-plane subsystem and

10−10m for the cross-track subsystem, which is tighter convergence than has been seen in

the other control laws. The same sharp dip and rebound in the errors around t = 80 s is also

evident. Due to the scaling of the Y-axis, the dip appears to be more prominent but is of

similar magnitude to the CW results.
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Fig. 7.46: In-plane position error for the two-
body dynamics.

Fig. 7.47: Cross-track position error for the
two-body dynamics.

The control plots are shown in Figures 7.48 and 7.49 for the in-plane and cross-track

subsystems, respectively. Again, the perturbations result in the control magnitudes not

decreasing to the extent seen in the CW results, but the control law still is only applying

negligible levels of control. The control profiles still show some sudden changes in magnitude,

but the overall impact is small. The peak in the control magnitude, around t = 80 s is visible

in these plots although, like the error plots, the magnitude is roughly the same as the CW

results but more visible at this scale.

Fig. 7.48: In-plane control for the two-body
dynamics.

Fig. 7.49: Cross-track control for the two-
body dynamics.
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Overall, this control law is able to successfully stabilize the two-body system with J2

and drag perturbations. The use of the hyperbolic tangent function in place of the sign

function for the switching condition actually seems to increase the range of conditions for

which the system can be stabilized. However, there is no clear connection between the ω

function used in the control law and the control behavior so tuning must be done through

experimentation.

7.5 Conclusion

This chapter investigated three control laws which use various surfaces to define the

behavior of the system. The switching surface control is based on the minimum-time solu-

tion where the control direction is defined by its state relative to the surface. The surfaces

are optimized in order to minimize the maximum instantaneous control applied to the sys-

tem. The control was successful in driving the system to a neighborhood of the origin but

experienced chattering behavior.

The fractional power sliding mode control and backstepping sliding mode control at-

tempt to hold the system on some surface with satisfactory, finite-time convergence proper-

ties. In both cases, the control laws were able to stabilize the system but experienced chatter.

The use of the hyperbolic tangent to approximate the sign function was investigated and

found to be successful at minimizing chatter when used with an appropriate scaling factor.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

The contribution of this dissertation was to provide strategies and guidance for im-

plementing finite-time control laws for the spacecraft rendezvous problem. This was ac-

complished for multiple control laws with convergence times, state and control bounds,

and overall performance being investigated using both simulations and analytic approaches.

The controllers were applied to the spacecraft rendezvous scenario and tested using both the

unperturbed, relative orbital dynamics and the two-body dynamics with J2 and drag pertur-

bations. While the tuning parameters used in each controller are specific to the spacecraft

rendezvous problem, the approaches, insights, and guidelines are applicable to any system

using one of these controllers.

In Chapter 4, a guidance trajectory was generated and followed by a robust, tube-based

MPC. A set of initial conditions were found for the guidance trajectory that guarantee it re-

mained within the allowable state, control, and time constraints. The tube-based MPC used

to follow this trajectory was developed using a feedback control and the expected pertur-

bations to shrink the nominal state and control bounds. These reduced bounds guaranteed

that perturbations cannot drive the system outside the nominal bounds.

Since the open-loop guidance trajectory was shown to be feasible over a fixed time

horizon for all states in the initial set, it guaranteed fixed-time convergence for the open-

loop, unperturbed system. The addition of the tube-based MPC did allow the system to

reject perturbations, but it was only able to do so asymptotically. This highlights one point of

potential nuance where a controller may guarantee finite-time stability for the unperturbed

system but fail to achieve exact convergence to the desired state when perturbations are

added. As with all trade-offs, this may be acceptable behavior or not, depending on the

system requirements and desired level of performance.
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A common Lyapunov control was implemented in Chapter 5. This control was obtained

by finding a Lyapunov function that satisfied both the spacecraft rendezvous problem and

a predetermined, reference system. At each point in time, the control for the system was

then found as a function of the common Lyapunov function and guaranteed finite-time

convergence.

Examining the three matrices used in the common Lyapunov function, the upper bounds

on the convergence time and the maximum control were found to be functions of the eigenval-

ues of the matrices. This was utilized to influence the controller to have desirable properties

by developing a semidefinite program that minimized the convergence time and maximum

control, while still maintaining finite-time stability. The semidefinite program was success-

ful in driving the bounds toward the desired values, but the bound on the convergence time

was found to be very conservative and a poor estimate of the actual convergence time of the

system. The maximum control bound did prove to be a reasonable estimate, especially for

smaller bounds. However, the use of the Brunovsky transformation with the system dynam-

ics meant that while the common Lyapunov control respected these bounds, the Brunovsky

transformation could cause the control to exceed the bounds.

Since the in-plane and cross-track dynamics were independent, they each had separate

controllers. Interestingly, the R2, cross-track dynamics consistently had less conservative

bounds compared to the R4, in-plane dynamics. This suggests that the this method of tuning

the common Lyapunov control is best suited to smaller dimensional systems. Additionally,

both systems experienced chatter as the subsystems neared the origin.

A backstepping control was used in Chapter 6 for the rendezvous problem. This con-

trol relied on the use of a tuning function which had initial and final conditions for it and

its derivatives. From these conditions, the tuning function was constructed using a linear

combination of basis functions. The convergence time bound of the system was the time cor-

responding to the final condition on the tuning function so the system was predefined-time

stable.
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Additionally, the control is proportional to the highest derivative of the tuning function,

so by optimizing that, the control applied to the system can be influenced. This was done by

adding extra basis functions to the tuning function, beyond what was needed to satisfy the

initial and final constraints. The tuning function was then optimized to minimize the maxi-

mum instantaneous control magnitude. This was shown to be successful for the Brunovsky

system of chained integrators, but any improvements to the system were negated due to the

conversion of the Brunovsky control back to the actual control.

In Chapter 7, three different controllers which used switching surfaces were examined.

The first controller was developed based on the minimum time solution for the double in-

tegrator problem. By choosing a control magnitude, a surface along which the system will

be driven to the origin was defined. A second control magnitude was then used to drive the

system to the surface. While these control magnitudes were constant in the Brunovsky dy-

namics, the actual control applied to the system varied as the states changed. The Brunovsky

magnitudes were then optimized to minimize the actual control being applied to the system.

This approach was successful in developing a finite-time control law that reduced the

maximum control being applied to the system. However, the structure of the problem was

very rigid with little to no ability to tune the controller.

The second two control laws were designed to hold the system on a switching surface

which guaranteed predefined-time convergence. However, in the presence of perturbations,

these controllers developed chatter as they failed to keep the system exactly on the surface.

Additionally, while some tuning parameters were directly tied to the convergence bound

and perturbation magnitude, additional parameters lacked clear connections to controller

behavior.

The discontinuous sign function was replaced in both controllers with a continuous

hyperbolic tangent approximation. This reduced the theoretical convergence to predefined-

time convergence to a neighborhood of the origin. However, in practice, a properly scaled

hyperbolic tangent function actually improved the performance of the controllers and allowed

them to converge for a larger range of tuning parameters. These parameters were then tuned
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using a grid search to find a controller which minimized the convergence time and maximum

control usage.

From these results, the conclusions of this dissertation are as follows.

• Finite-time controllers prioritize convergence time, which complicate the processes of

including or balancing other performance metrics.

• The Brunovsky transformation is useful in expanding the range of systems for which a

control law can be applied. However, since the transformation includes a state feedback

term, control bounds on the control law are no longer guaranteed.

• Bounds on the system performance for Common Lyapunov controllers tend to become

less predictive and more conservative as the dimensionality of the system increases.

• The use of the hyperbolic tangent function as a smooth approximation to the sign

switching function is shown to decrease the impact of perturbations arising from the

discretization of the control law.

• The predefined-time backstepping approach is the most useful of the approaches exam-

ined in guaranteeing finite-time convergence since the convergence time appears as a

tunable parameter, the bound is not overly conservative, the approach naturally min-

imizes chatter, and the tuning function can be shaped to minimize control for simple

systems.

To address weaknesses identified, future work can focus on implementing these ap-

proaches on actual systems, expanding the range of dynamics the control laws can be applied

to, and continuing to mitigate chatter. Since each controller was tested in simulation, future

work which applies the approaches to physical systems could validate the results shown here.

Additionally, in the region near the equilibrium point, where forces and controls are near

zero, minute perturbations could change the behavior of the system.

While the Brunovsky transformation was successfully used to simplify the spacecraft

rendezvous problem model dynamics, it did present some complications that could be ad-

dressed. For example, the use of the feedback term in the Brunovsky transformation means
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that the controller is unable to enforce control bounds. However, as the feedback term is

known, the overall control bounds could be integrated into the model dynamics by bounding

the allowable states and shrinking the model control bounds. Alternatively, the range of

dynamics applicable to a given control law could be expanded so that the Brunovsky trans-

formation is no longer required. While the switching based control laws are designed around

second-order systems and the common Lyapunov control assumes a system of chained inte-

grators, they could be expanded to more general system dynamics which preclude the need

to use the Brunovsky transformation.

Additionally, the rendezvous problem only considered a single target and chaser space-

craft. This could be expanded in the future to multi-spacecraft formations with distributed

or cooperative control being used to achieve objectives at both the formation and individual

spacecraft level.

While the chatter was mitigated for some controllers by applying a smoothing function,

additional approaches and their effects can be studied. Techniques such as applying a low-

pass filter to the control input, enforcing a minimum bound on the control magnitude, and

changing the control update rate are potential approaches which were not explored in this

work.
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