The Challenges of Developing an Operational Nanosatellite

David Homan
Lockheed Martin
Space Systems Company

Quinn Young
Space Dynamics Laboratory

22nd Annual AIAA/USU Conference on Small Satellites
Logan, UT
11 August 2008
Introduction

- We looked at nanosatellite development with a slight twist . . . Experiments are fun but . . .

- Could an OPERATIONAL nanosatellite be developed using components that are readily available today?
 - Unique design challenges?
 - Current state of unique nanosatellite hardware?
 - How to address these challenges in coming years?
 - Become a viable and healthy part of the industry
 - Become viable secondary payload
Why do it? Timing seemed right

- Great potential for real, high value operational missions
 - Space Situational Awareness
 - Operationally Responsive Space

- Operational microsatellites are a reality
 - Operational nanosatellites are logical next step
 - Apply microsatellite space flight heritage hardware

- CubeSats and academic programs have advanced hardware miniaturization and performance
 - Apply this state-of-the-art hardware

- MANY companies and universities build nanosatellites
 - How hard can this be?
Definitions and Assumptions

- **Nanosatellite:**
 - The 1 – 10 kg definition is an oversimplification
 - We chose a 5-50 kg functional definition for our study
 - < 5kg highly integrated design for very specific purpose
 - < 50kg requires innovation to adapt larger satellite hardware

- **Operational:**
 - Critical government or commercial mission
 - Substantial operational life – typically three years or greater
 - Does NOT demonstrate new technologies or concepts
 - Does NOT focus on technology demonstration or education

- **High mission utility:**
 - Directly supports mission needs
 - High level of autonomy and capability
 - High level of performance, reliability, and mission success
Design Challenges

- **Greatest Challenge:**
 - Availability of highly reliable, high performance, space qualified components with nanosatellite SWAP
 - Missing either proven reliability or low SWAP

<table>
<thead>
<tr>
<th></th>
<th>Reliability</th>
<th>Performance</th>
<th>SWAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unproven</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Needed Capability</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Capability 1</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Capability 2</td>
<td>√</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Design Challenges – C&DH

• **Greatest Challenge:**
 - Availability of highly reliable, space qualified components with nanosatellite SWAP
 - Flight heritage outside LEO
 - Redundancy, flight safety

• **Currently Available:**
 - High-reliability, high performance, high SWAP
 - Unproven reliability, high performance, low SWAP

• **Conclusion:**
 - Several innovative, capable, low SWAP processors in development that need space flight heritage
Design Challenges – GN&C

• **Greatest Challenge:**
 – Availability of highly reliable, space qualified components with nanosatellite SWAP

• **Upside:**
 – 9 new reaction wheel designs in development
 • 6 have system mass impact of < 1 kg

• **Conclusion:**
 – A good selection of reaction wheels available in the foreseeable future
 – The reaction wheels in development will need flight heritage
 – SWAP for GN&C not primary driver - except visible sensor
Design Challenges - Comm

• Greatest Challenges:
 – Availability of highly reliable, space qualified components with nanosatellite SWAP
 – Performance is coupled to size and/or power
 – SWAP issues accentuated if COMSEC required

• Upside:
 – Some existing hardware can squeeze into a nanosatellite
 – Several innovative, capable, low SWAP communication systems are in development that need space flight heritage

• Conclusion:
 – Communication systems in development need flight heritage
 – Perform system level trades to balance SWAP between communications and C&DH subsystems
Design Challenges - Harness

• **Greatest Challenges:**
 – Connectors scale with power and I/O NOT spacecraft size
 – Physical separation becomes more challenging

• **Upside:**
 – Lightweight, CUSTOM harnesses using flight heritage hardware are available

• **Conclusion:**
 – Developing components with lower power and I/O requirements decreases harness size and mass.
 – Custom harnesses needed for operational nanosatellites
Design Challenges – Overall Bus

• **Greatest Challenges:**
 – *Radiation survivability with extended mission duration and orbits beyond LEO*
 – *Fewer EEE parts in the 50-300 Krad range*

• **Upside:**
 – *Several innovative radiation mitigation approaches in development that need space flight heritage*
 – *Many operational nanosatellite missions in LEO*
 – *Most experimental missions operate in LEO (Good and Bad)*
 – *Many miniature components available for LEO environments*

• **Conclusion:**
 – *Radiation mitigation in development needs flight heritage*
 – *Additional shielding with spacecraft bus difficult within 50 kg*
Proposed Roadmap

- Three “players” need to all focus on the next level of operational satellite development
Proposed Roadmap

- **Four Existing Areas**
 - ALL could feed nanosatellite-scaled, space-flight heritage hardware into future operational nanosatellite programs

 - Operational Microsatellite
 - Frequent launches
 - Less expensive
 - Standard busses

 - Operational Large Satellite
 - Access to MEO and GEO
 - Long duration

 - University Satellite
 - Very low cost to orbit
 - History of nanosatellites
 - Creative workforce

 - Demonstration Nanosatellite
 - Mission demonstrations
 - System demonstrations
Proposed Roadmap

• **Start Solving the Big Picture One Subsystem at a Time**

- Maturity of mini GN&C components
- Low-power, low-mass comm.
- Increased radiation tolerance
- Miniaturized propulsion components

Nanosatellite Technical Maturity

- Low-power, low-mass, Hi-perf, Hi-rel Computing
- Miniaturized, low power payloads and sensors
- Selection of miniaturized mechanisms
- Maturity of advanced structures / mech / TCS

Operational Nanosatellite
Conclusion – Is now the time?

• **The time is right for operational nanosatellite missions**
 – *Space Situational Awareness*
 – *Operationally Responsive Space*

• **Hardware development needs a cohesive effort**
 – *Government, Industry, and Academia*
 – *Limited high TRL, space flight heritage nano-scale hardware*

• **Operational nanosatellites are a significant challenge**
 – *Performance and reliability with nanosatellite SWAP is lagging*

• **This is an exciting time for nanosatellite development**
 – *Operational nanosatellites are achievable in the near future*
 – *Nanosatellite hardware development is good for all sizes of satellites*
Acknowledgments

- The AIAA/Small Satellite Conference and organizing committee
- Andrew Grimes from Lockheed Martin Space Systems Company
- YOU – The Conference Attendees

QUESTIONS?