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NRC Decadal Survey 2017: Relevance
Inputs to the NRC DS 2017:

1. Lukashin et al., “Accurate Inter-Calibration of Spaceborne Reflected Solar Sensors,”
input to NRC Decadal Survey, 2017.

2. Stone et al., “Redeveloping the Lunar Reflectance as a High-accuracy Absolute Reference
for On-orbit Radiometric Calibration,” input to NRC Decadal Survey, 2017.
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Moon: Solar Diffuser For Instrument Calibration In-orbit

Just One Short Message: Current EOS designed on overlapping observations !
Cannot handle data gaps ! (CERES, MODIS/VIIRS, Landsat, PACE/SeaWIFS, etc.)

Reflectance of Lunar surface
stable to <108/ year

Calibration reference:
Lunar irradiance (entire disk)

Lunar image by SeaWIFS

© 2019, C. Lukashin

SeaWiFS gain stability 0.13% (k=1) over 12

Need: Absolute accurate spectral years -- achieved with Lunar calibration

'.rrad'.ance for all lunar phase and Current ROLO Accuracy: estimated 5 - 10%
libration states !
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Applications of the Lunar Calibration Approach

Team Satellite Sensor G/L Dates LRG| X2
obs range (°)
CMA FY-3C MERSI LEO 2013-2014 9 [43 57]
CMA FY-2D VISSR GEO 2007-2014
CMA FY-2E VISSR GEO 2010-2014
CMA FY-2F VISSR GEO 2012-2014
JMA MTSAT-2 IMAGER GEO 2010-2013 62 [-138,147]
JMA GMS5 VISSR GEO 1995-2003 50 [-94,96]
JMA Himawari-8 AHI GEO 2014- -
EUMETSAT MSG1 SEVIRI GEO 2003-2014 380/43 [-150,152]
EUMETSAT MSG2 SEVIRI GEO 2006-2014 312/54 [-147,150]
EUMETSAT MSG3 SEVIRI GEO 2013-2014 45/7 [-144,143]
EUMETSAT MET7 MVIRI GEO 1998-2014 128 [-147,144]
CNES Pleiades-1A PHR LEO 2012 10 [+/-40]
CNES Pleiades-1B PHR LEO 2013-2014 10 [+/-40]
NASA-MODIS Terra MODIS LEO 2000-2014 136 [54,56]
NASA-MODIS Aqua MODIS LEO 2002-2014 117 [-54,-56]
NASA-VIIRS NPP VIIRS LEO 2012-2014 20 [50,52]
NASA-OBPG SeaStar SeaWiFS LEO 1997-2010 204 (<10, [27-66])
NASA/USGS Landsat-8 OLI LEO 2013-2014 3 [-7]
NASA 0CO-2 OCO LEO 2014
NOAA-STAR NPP VIIRS LEO 2011-2014 19 [-52,-50]
NOAA GOES-10 IMAGER GEO 1998-2006 33 [-66, 81]
NOAA GOES-11 IMAGER GEO 2006-2007 10 [-62, 57]
NOAA GOES-12 IMAGER GEO 2003-2010 49 [-83, 66]
NOAA GOES-13 IMAGER GEO 2006 1
NOAA GOES-15 IMAGER GEO 2012-2013 28 [-52, 69]
VITO Proba-V VGT-P LEO 2013-2014 25 [-7]
KMA COMS MI GEO 2010-2014 60
AIST Terra ASTER LEO 1999-2014 1 -27.7
ISRO OceanSat2 OCM-2 LEO 2009-2014
ISRO INSAT-3D IMAGER GEO 20132014 2

ARCSTNE

Instruments with lunar
observation capabilities
Participating in the GSICS
GIRO program: All satellite
operators !

Not included by GSICS:
commercial land imager
constellations (e.g. Planet)

Next GSICS Workshop,
Fall 2019, London, UK:
ARCSTONE is invited to
present.
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ARCSTONE Mission Concept

Concept of Operations and Data Products:

- Data to collect: Lunar spectral irradiance every 12 hours, 10 minutes

- Data to collect: Solar spectral irradiance TBD (at least weekly)

- Combined uncertainty < 0.5% (k=1)

- Spectrometer with single-pixel field-of-view about 0.52° (no scanning!)

- Sun synchronous orbit at 500 - 600 km altitude

- Spectral range from 350 nm trade to 2300 nm, spectral sampling at 4 nm

After 1 year: Improvement of current Lunar Calibration Model (factor > 2);
After 3+ years: New Lunar Irradiance Model, improved accuracy level (factor > 10).

Key Technologies to Enable the Concept:

- Approach to orbital calibration via referencing Sun (TSIS measurements):
Demonstration of lunar and solar measurements with the same optical path
using integration time to reduce solar signal -- Major Innovation !

- Pointing ability of small spacecraft now permits obtaining required measurements
with instrument integrated into spacecraft

Project Approach:
- Achieve TRL5 by March 2021
- As close to flight as allowed by schedule and budget !
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ARCSTONE: Key Mission Performance Parameters

Key Performance Threshold Value
Parameters (KPP)

Accuracy (reflectance) 1.0% (k=1)

Stability < 0.15% (k=1) per decade
Orbit Sun-synch orbit

Time on-Orbit 1 year

Frequency of sampling 24 hours

Instrument pointing < 0.2° combined

Spectral Range 380 nm -900 nm
Spectral Sampling 8 nm

Goal Value

0.5% (k=1)

<0.1% (k=1) per decade
Sun-synch orbit

3 years

12 hours
<0.1°combined

350 nm - 2300 nm

4 nm

* Requirements are captures in a Mission Requirements Doc

** Threshold Values considered as success criteria

Reference for radiometric requirements (ROLO, T. Stone):
Lunar Phase Angle = 75°;

Irradiance = 0.6 (micro W/ m? nm)

Wavelength = 500 nm

ARCSTNE
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ARCSTONE: Project Timeline and Status

Concept brainstorming: down-select on January 9, 2016
Breadboard design & build by March 2016
Breadboard tested at NIST in April 2016

NASA LaRC et al., IIP proposal funded in March, 2017
Resonon Inc., SBIR Phase-2 funded July, 2017

- Formulation and procurement by August 2017

- Preliminary design, Summer 2017

- Design and STOP analysis completed by March 2018
- Prep. work for fabrication completed by May 2018

- Detectors tested (TVAC included) by Fall 2018

- UVVNIR FPA characterized by January 2019
- Fabrication completed by February 2019

- UVVNIR assembled/aligned by March 2019
- New FSR instrument concept, March 2019
- SWIR IDCA characterization: on going

- SWIR assembly/alignment: on hold

-  UVVNIR Characterization: Summer 2019

Solar Signal (electrons)
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Breadboard at NIST
April 2016

ARCSTNE e
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ARCSTONE: Mission Concept and Week in Life

-

. Lunar spectral irradiance observations:
Every 12 hours
Close to polar locations
Multiple measurements within 5- 10 minutes to get required SNR
. Solar Spectral Irradiance observations (solar calibration):
Every TBD days (e.g. daily)
Multiple measurements to get required SNR
This is radiometric calibration to the TSIS reference
. Dark images:
Multiple measurements with closed shutter
Before every lunar and solar observations
. Dark field (to calibrate out shutter temp):

N

w

H

Multiple measurements of dark space
TBD (e.g. daily)
. Field-of-view sensitivity characterization:

(4]

Calibration of instruments alignment
TBD (e.g. weekly)

6. Spectral calibration:
Fraunhofer lines (TBD) ARCSTONE Concept

On-board spectral calibration (TBD) at lIP/SBIR start in 2017
. Spacecraft pointing calibration (and other checks): o
Defined by the BCT for calibration of spacecraft functions
8. Stand by mode:
- Mode between lunar and solar observations
9. Safe mode (TBD)
10. On-board data processing mode

- d
o b
—

~

11. Down-link data mode Blue Canyon Technologies (BCT) ARCSTONE Payload:
6U Spacecraft Bus 2 spectrometers
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ARCSTONE: Observatory and Instrument Design

Cubesat 6U bus:
Courtesy of Blue Canyon Technologies

Focusing Optics
B1923 CCD Camera
Prism/Grating/Prism (Imperx)
Preliminary System Design As?embly
Beam expander :
front optics
a
— ‘ JE i
Aperture and filter ' ] I

Prototype of ARCSTONE UVVNIR Instrument
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ARCSTONE: STOP Analysis by Quartus & Resonon, Inc.

Orbital States from LaRC team Current design assumes large thermal changes in orbit !
Th e rmal M Od el i n g Output Set: Cold C.ase Temperatures (C) time = 10 minutes 15,
Te m pe ratu re M a p pi n g Elemental Contour: Temp Load Set 101 155

'
A
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Thermoelastic Modeling 165
Nonlinear Analysis Considerations s
Zernike Calculation iy
Zemax Modeling os
Thermoelastic Changes of Lenses

Optical Effects of Thermal Stress

Mount Modifications of Lenses
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Flexure Mounting

Thermoelastic Results
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ARCSTONE: IIP designed Instruments (EDU)
- Designed for Development Vibe/TVAC but not flight hardware, complete in March 2018

- This is what went into fabrication in April/May 2018, completed in February 2019

UVVNIR Spectrometer — Ultraviolet Visible Near SWIR Spectrometer — Short Wave Infrared
Infrared 350-900 nm 880-2300 nm
Transmission Grating Spectrometer Transmission Grating Spectrometer
Uncooled FPA and Optic Train Cooled FPA and Optic Train
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ARCSTONE: Fabricated & Assembled UVVNIR

UVVNIR Instrument:
- CCD characterized
- Assembly /Alignment completed

UVVNIR Instrument:
- Ready for characterization at LASP

Path Forward: Future Field campaigns and vibe/TVAC tests
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ARCSTONE UVVNIR: Camera Characterization

+ Sensor is remarkably uniform Imperx Camera Conclusions
+ No hot pixels
+  No dead pixels <+~ Camera is consistent enough to be
»  Only 10’s of pixels with > 50 average noise usable in high-accuracy measurements,
+ Narrow band (20-30 pixels) of pixels with with ~0.1% - 0.3% (k=1) uncertainty
lower fixed-pattern noise offset at top of + Final uncertainty values will depend on
sensor number of pixels used for averaging
+ Appears to have ~1 DN electronic + There are a number of features that can
checkerboard pattern noise be overcome through dark-image

(correctable via dark-image subtraction) subtraction and flat-field correction

Average Dark Image + Non-uniform fixed-pattern noise
] + Standard deviation on pixel gains is
{6 0.47 e/DN

+ Dark current is much lower than
expected from spec sheets
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Imperx camera characterized at LASP
Imperx camera TVAC tested at LaRC
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ARCSTONE SWIR: IDCA Characterization
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Sensor Uniformity SWIR IDCA Conclusions
<+~ Camera has exhibited offset behavior that
+ Sensor is uniform limits its usability to 7-2% accuracy:
+ 745 hot/dead pixels + Root cause of behavior is unknown
+ O_nly 2 pixels with no normal surrounding +  With additional study time, it may be
pixels . possible to correlate behavior with
+ Vertical banding apparent in both dark another factor (cryo power, temperature,
and light images etc.) and create a correction

+  Eliminated through dark subtraction + However. the camera has moved to the

integration phase due to schedule
Average Dark Image pressure

<+ Other random noise sources together are small
enough to make the camera usable in the 0.3%
uncertainty range If the offset uncertainty is
discovered

§ 8000 + Final uncertainty values will depend on
number of pixels used for averaging

<+ Future camera studies will benefit from the
investigation of the camera settings and the
equipment and experiment setup used to

2000 measure this sensor. Work in progress...

+ Integration time from 10+ to 3.3 seconds !
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ARCSTONE: Engineering Summary

+ Ultraviolet Visible Near Infrared (UVVNIR) Channel
+ 350-900 nm transmission grating spectrograph, uncooled FPA and optical train
+ Volume: 211.9 mm x 97.0 mm x 91.9 mm, Mass: 1.288 kg (instrument channel alone)
¢ Detector Performance: Average Dark Current at 40° C: ~1 e-/s/pixel, Average
Read Noise: 2.9 DN, Full Sensor Linearity: less than a 0.2% correction from 0 - 12000 DN
(73% of the dynamic range), Average Transfer Gain: 2.3 e-/DN

¢+ Optical Performance*: Spectral line-width determination, Wavelength calibrations, Sensitivity to
polarization, Field-of-view sensitivity, Stray light characterization, Moon shape sensitivity (via analysis)

¢ Environmental Testing*: Vacuum bakeout, vibration, instrument performance at varying temperatures,
go/no go functional test pre and post each environmental test

+ Data readout format: Intensity values

+ Short Wave Infrared (SWIR) Channel

+ 880-2300 nm transmission grating spectrograph, cooled FPA and optical train
+ Volume: 249.9 mm x 149.5 mm x 96.2 mm, Mass: 2.35 kg (estimated, instrument alone)

* Detector Performance: Average Dark Current at 140 K: 3800 e-/s/pixel, Average Read Noise: 10.9 DN,
Full Sensor Linearity: Less than a 0.2% correction from 0 - 50,000 DN (76% of the dynamic range),
Average Transfer Gain: 25.8 e-/DN

¢+ Optical Performance*: Spectral line-width determination, Wavelength calibrations, Sensitivity to
polarization, Field-of-view sensitivity, Stray light characterization, Moon shape sensitivity (via analysis)

¢ Environmental Testing*: Vacuum bakeout, vibration, instrument performance at varying temperatures,
go/no go functional test pre and post each environmental test

+ Data readout format: Intensity values

*to be completed




NASA Langley Research Center CALCON, June 2019

ARCSTONE: Full Spectral Range (FSR) Instrument

2017 - 2019
IIP work
Ultraviolet Visible Near Infrared (UVVNIR) Short Wave Infrared (SWIR)
Slit Total Internal Reflection
7 Expander (TIR)
Shutter Tuming
Mirror (TM)
2019 - 2021 i Vetering
IIP work Rod

Mirror 2

(M2) Filter

*Single channel system,
thinned MCT detector covers

350 - 2300 nm wavelength range

Grating
Single Point
Diamond Turned

PDT) B |
(SPDT) Baseplate Detector Cover

Window and FPA




NASA Langley Research Center CALCON, June 2019

ARCSTONE 2019: FSR Instrument

New Design based on concept from Mission Development Lab: Oct. 2018 at LaRC

[FMe T e 1T & 1T 6 0T e T & 1T & 1T & Y
Metering Rod [ o!@@©©@@©
eterin ® )
2 Mounting o Blue Canyon Technologies (BCT)
® ® -
ol 52 ool / | —]T Plate . XB6 Spacecraft Bus (6U)
O
l ® © . 4
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Optical oY « Elgctro(r;lcs o . I
Train | : S oards
O ® O ® o ;
| : L]
s~ Detector o, 2 °
° ® ® 5 @ o
© °
Detector __ [of@ Detector © o
Cryocooler [l — . Electronics | | © o ;
(©]
j o I— . 3 .
© ® )
I [Jeeo oo of@ ®
[ T ® [0 ® [T & [ ® [ & [I & [ & 1/]
\ J \ J
T T
Bus payload section (4U) Bus avionics section (2U)

Volumetric margin: 52%

- LaRC et al., IIP extended to Q2 / FY21
- Resonon et al., SBIR Phase-2, FY19 - FY21

ARCSTONE FSR Status:
Optomechanical Design and STOP Analysis by end of FY19.
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ARCSTONE Web, http:/arcstone.larc.nasa.gov

= arcstone larc.nasa.gov
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Achieving Instrument High Accuracy In-Orbit

One of the most challenging tasks in remote sensing from space is achieving required
instrument calibration accuracy on-orbit. The Moon is considered to be an excellent
exoatmospheric calibration source. However, the current accuracy of the Moon as an
absolute reference is limited to 5 - 10%, and this level of accuracy is inadequate to meet
the challenging objective of Earth Science observations. ARCSTONE is a mission concept
that provides a solution to this challenge. An orbiting spectrometer flying on a small
satellite in low Earth orbit will provide lunar spectral reflectance with accuracy sufficient to
establish an Sl-traceable absolute lunar calibration standard for past, current, and future

Earth weather and climate sensors.

. * f 1 (PP .

The ARCSTONE observatory is shown in low Earth orbit with the
spectrometer viewing the Sun and Moon. The spacecraft rotates
in order o view the Moon or the Sun.

“The Moon is available to all Earth-orbiting spacecraft at least
once per month, and can be used to tie together the sensor
radiance scales of all instruments participating in lunar
calibration without requiring near-simultaneous observations.”

- HUGH KIEFFER & TOM STONE

THANK YOU !




