DETECTING ORGANIC MOLECULES ON THE SURFACE OF INORGANIC DUST PARTICLES USING AEROSOL MASS SPECTROMETRY

by

Sileola B. Akinsiku

A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Chemistry

Approved:

______________________________ ________________________________
Dr. Stephen E. Bialkowski Dr. Philip J. Silva
Major Professor Committee Member

______________________________ ________________________________
Dr. Robert Brown Dr. Tom Chang
Committee Member Committee Member

______________________________ ________________________________
Dr. Randy Martin Byron Burnham
Committee Member Dean of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah
2009
ABSTRACT

Detecting Organic Molecules on the Surface of Inorganic Dust Particles Using Aerosol Mass Spectrometry

by

Sileola B. Akinsiku, Master of Science
Utah State University, 2009

Major Professor: Dr. Stephen Bialkowski
Department: Chemistry and Biochemistry

Detection of organic molecules present on the surface of dust particles is important in homeland security, agriculture, and several other applications. The research presented reports the ability of the aerosol mass spectrometer (AMS) to detect molecules on the surface of dust particles without detecting the particle core.

Experiments were carried out to detect semi-volatile organic compounds adsorbed onto the surface of particulates without interference from the dust particle core. Methyl salicylate, oleic acid, and organophosphorus pesticides such as Malathion were detected on the surface of particles representative of dust-type materials. Zeolite powders were used as aerosol support, representative of a typical silica mineral aerosol present in the atmosphere. Mass spectral fingerprint information was gained by first directly detecting atomized species to record their clean electron impact mass spectrum. This facilitated detection during later experiments of organic molecules coated on an inorganic support.
Spectra obtained give mass spectrometric signatures of molecules coated on inorganic particles without detection of the particle core.

An important feature of the AMS is the ability to equate an ion rate detected in the mass spectrometer to a mass concentration of a given chemical species in a sample using its ionization efficiency. Based on an average inlet flow rate of 1.2 cm3 sec$^{-1}$, the ionization efficiencies obtained were 5.89×10^{-5}, 1.15×10^{-6}, and 1.62×10^{-5} for Malathion, methyl salicylate, and oleic acid, respectively. These experiments and the results obtained show that detection and characterization of organic species adsorbed onto inorganic dust particles are possible at µg m$^{-3}$ concentrations using the AMS.

(93 pages)
DEDICATION

My Lord and Savior Jesus Christ, the author of life itself, without whom life would have been an unending search for meaning and the beloved memory of my dad.
ACKNOWLEDGMENTS

I would like to thank Dr. Philip Silva for his help in conducting this research for this thesis, and for his depth of support and understanding throughout my graduate study.

I must also thank my major professor, Dr. Stephen Bialkowski, being your student for one semester gave me new insights into the work been presented, and also my advisory committee members, Dr. Robert Brown, Dr. Tom Chang, and Dr. Randy S. Martin, for their direction, advice during meetings, and impact on my work. And also Dugway Proving Grounds in Utah for funding this project.

My sincere appreciation goes to my mother, Pastor (Mrs.) V. A. Akinsiku, for her care and support in every way possible. You are very special to me, Mom; thank you for all the sleepless nights you have had because of me especially when you came to take care of us during and after Daniel’s arrival; and Mrs. A.O. Ogunlaja for being the best mother any daughter-in-law can pray for.

I am indebted to all my siblings, Mr. & Mrs. S.K. Oni, Mr. & Mrs. Oludayo Fakunle, Oluwabanke Akinsiku, Oludare Mathew-Akinsiku, and Babatomide Omotehinse Akinsiku, for all your support thus far; only God can reward you.

My sincere gratitude goes to all my mentors, Pastor Taiwo Odukoya, Pastor Bimbo Odukoya of blessed memory, Pastor Femi Odumabo, Engr. Frank Eneh, Mr. Bolaji Olawoye for their immeasurable support and for never giving up on me.

During my stay in the United States, a couple of folks have been a part of my family: Tina & Wale Adeleye, Yemisi & Kunle Aladeselu, Brenda & Alvin Suh, Christabel & Eric Tanifum, Tremaine Sterling, Mr. & Mrs. John Obielodan, Mr. & Mrs.
Coe, Lekan, and Stella. Thanks for being more than a friend to me. To all my colleagues in Dr. Silva’s laboratory, I say thank you.

Finally, this piece will not be complete without the two most wonderful people in my life. I will be eternally grateful to the love of my life, Olumuyiwa Omotola Ogunlaja; you are all encompassing, you are indeed my crown, and writing about who you are to me would be a thesis on its own. Thanks for always been there for me. And to my brave angel, Daniel Ireoluwa Ogunlaja, you make my equation complete.

Sileola Bukola Akinsiku
CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT ... iii</td>
</tr>
<tr>
<td>DEDICATION ... iv</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS ... vi</td>
</tr>
<tr>
<td>LIST OF TABLES ... x</td>
</tr>
<tr>
<td>LIST OF FIGURES ... xi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION ... 1

1.1 ATMOSPHERIC PARTICULATE MATTER 1
1.2 ORGANIC CHEMICALS IN THE ATMOSPHERE 3
1.3 PESTICIDES .. 4

- Uses of Pesticides ... 6
- Characteristics of Pesticides ... 6
- Organophosphorus Pesticides .. 10
- Environmental Fate of Pesticides 12

- Transport in Spray Drift .. 12
- Transport in Air .. 15
- Transport in Particles, Including Dust 16
- Partitioning, Transport and Deposition Processes 16

- Health Effect ... 17

1.4 THESIS OVERVIEW ... 20

2 MEASUREMENT APPROACH USED IN THE AERODYNE AEROSOL MASS SPECTROMETER (AMS) ... 22

2.1 REAL-TIME ATMOSPHERIC PM INSTRUMENTATION 22

- Existing Instrumentation for Measuring Organics 23
- Aerosol Time-of-Flight Mass Spectrometry 23
- Ion Mobility Spectrometry .. 25
- Gas Chromatography .. 28
- Fourier Transform InfraRed Spectroscopy 29
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Volatility Class of Pesticides</td>
<td>10</td>
</tr>
<tr>
<td>2. Organophosphates Mammalian Toxicities (mg/kg of body weight)</td>
<td>12</td>
</tr>
<tr>
<td>3. Selected Physicochemical Properties of Malathion</td>
<td>53</td>
</tr>
<tr>
<td>4. Selected Physicochemical Properties of Methyl Salicylate</td>
<td>54</td>
</tr>
<tr>
<td>5. Selected Physicochemical Properties of Oleic Acid</td>
<td>54</td>
</tr>
<tr>
<td>A-1. Tabulated Results for Methyl Salicylate Ionization Efficiency</td>
<td>85</td>
</tr>
<tr>
<td>A-2. Tabulated Results for Oleic Acid Ionization Efficiency</td>
<td>86</td>
</tr>
<tr>
<td>A-3. Tabulated Results for Malathion Ionization Efficiency</td>
<td>87</td>
</tr>
<tr>
<td>B-1. Tabulated Results for Mass Concentration and Detection Limits</td>
<td>90</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Schematic showing the particle beam interface and particle sizing region joined to the mass spectrometer region of the field portable instrument. (Eric et al., 1997)</td>
<td>25</td>
</tr>
<tr>
<td>2.</td>
<td>The principle and the schematic diagram of an ion mobility spectrometer (Jorg et al., 1999)</td>
<td>28</td>
</tr>
<tr>
<td>3.</td>
<td>Chemical structure of nerve agents a) Sarin, b) Soman, c) Tubun, and d) VX</td>
<td>31</td>
</tr>
<tr>
<td>4.</td>
<td>Chemical structures of two common insecticides: a) Diclorvos, and b) Phosdrin</td>
<td>31</td>
</tr>
<tr>
<td>5.</td>
<td>A picture of the Aerodyne aerosol mass spectrometer (AMS)</td>
<td>34</td>
</tr>
<tr>
<td>6.</td>
<td>Basic Schematic of the Aerodyne aerosol mass spectrometer (Jayne and Leard, 2000)</td>
<td>35</td>
</tr>
<tr>
<td>7.</td>
<td>Schematic of the AMS vaporization and ionization region (Jimenez et al., 2003)</td>
<td>36</td>
</tr>
<tr>
<td>8.</td>
<td>Electron impact ionization cross section as a function of the number of electrons in a molecule for various inorganic and organic compounds (Jimenez et al., 2003)</td>
<td>40</td>
</tr>
<tr>
<td>9.</td>
<td>A picture of the Wright dust feeder</td>
<td>47</td>
</tr>
<tr>
<td>10.</td>
<td>Schematic diagram of the historical Wright dust feeder from original publication (Wright, 1950)</td>
<td>48</td>
</tr>
<tr>
<td>11.</td>
<td>Schematic of a ‘Vienna design’ differential mobility analyzer (Winklmayr et al., 1991)</td>
<td>49</td>
</tr>
<tr>
<td>12.</td>
<td>Experimental set-up</td>
<td>51</td>
</tr>
<tr>
<td>13.</td>
<td>Schematic diagram of experimentation set-up</td>
<td>52</td>
</tr>
<tr>
<td>14.</td>
<td>Mass spectrum of atomized methyl salicylate (y-axis in arbitrary units)</td>
<td>56</td>
</tr>
<tr>
<td>15.</td>
<td>AMS mass spectrum of the Malathion</td>
<td>57</td>
</tr>
</tbody>
</table>
16. Mass distribution of atomized methyl salicylate particles (y-axis in arbitrary units)..59

17. Mass and number distribution of atomized Malathion sample using AMS TOF mode

18. Methyl Salicylate comparison with NIST methyl salicylate

19. Malathion comparison with NIST Malathion

20. Oleic acid comparison with NIST oleic acid

21. Mass spectrum of zeolite dust

22. Mass spectrum of zeolite dust coated with Malathion

23. Difference mass spectrum between 21 and 22

24. Mass Spectrum of dust coated with oleic acid

25. Mass distribution of coated MES on zeolite dust using the same two m/z ratios

26. Mass distribution of coated Malathion on zeolite dust

27. Mass distribution of coated oleic acid on zeolite dust

A-1. Ionization efficiency for methyl salicylate

A-2. Ionization efficiency for oleic acid

A-3. Ionization efficiency for Malathion

A-4. Ionization efficiency for ammonium nitrate

C-1. Mass distribution for Polystyrene Latex (PSL) and PSL coated with Malathion