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ABSTRACT 

A Mass Balance Model of the Great Salt Lake, UT with Adaptive Management 

Applications 

by 

Diana Dunn, Master of Science 

Utah State University, 2024 

 
Major Professor: Dr. Brian M. Crookston 
Department: Civil and Environmental Engineering 

The Great Salt Lake, Utah, USA is a critical ecologic and economic asset. In 1959, 

it was bisected into north and south sections by an east-west rockfill, railroad causeway. 

Distinct water surface elevation and density gradients have formed because all streamflow 

enters the lake through the south section. The north section has reached halite saturation, 

around 300 g/L, while the south section has fluctuated between 130-180 g/L in recent years. 

Ecologic and economic productivity of the lake relies on maintaining a salinity threshold 

of 180 g/L within the south section. Since construction, various openings in the causeway 

have been built to maintain healthy salinity levels by allowing water and salt mass 

exchange between the sections. Most recently the New Breach was constructed and 

includes a submerged rock berm that can be raised or lowered to control exchange flows 

in response to varied hydroclimatic conditions.  
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Great Salt Lake water level and salinity are interdependent and functions of 

multiple variables which complicates development of adaptive management strategies. To 

inform utility of the berm, this research focused on developing a mass balance model of 

the Great Salt Lake that can predict water elevation and salinity in response to various 

hydroclimatic conditions and New Breach berm heights. In developing the model, relevant 

hydroclimatic data was gathered and evaluated which highlighted current data limitations 

at the lake and informed use of available lake datasets. Results from this study validated 

the model formulation and utility. Through model application, the berm was found to be a 

useful adaptive management tool, but long-term salinity management necessitates 

minimizing upstream water withdrawals to increase streamflow to the lake. The model and 

datasets developed herein are open access and will aid future work at the Great Salt Lake 

as conditions continue to evolve.  

 (160 Pages) 
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PUBLIC ABSTRACT 

A Mass Balance Model of the Great Salt Lake, UT with Adaptive Management 

Applications 

by 

Diana Dunn, Master of Science 

Utah State University, 2024 

Major Professor: Dr. Brian M. Crookston 
Department: Civil and Environmental Engineering 

The Great Salt, Utah, USA is a saline lake that provides critical habitat for 

ecologic communities and generates $1.3 billion annually. It has gone through 

detrimental change since the 20th century. Streamflow reaching the lake has been 

decreased by upstream withdrawal for industrial and municipal use, causing the lake level 

to drop and salinity to increase to unhealthy levels. Further, in 1959, it was segregated 

into north and south sections by a railroad causeway. Due to the causeway and limited 

exchange of water through two bridges, the lake sections have significantly different 

water surface elevation and salinity levels. The most recent bridge in the causeway, 

known as the New Breach, was constructed with a rock berm that is raised or lowered to 

control exchange of water between the sections and can be used to maintain healthy 

salinity levels. Lake managers have utilized the New Breach berm to adaptively manage 

salinity; raising it 1.2 m in 2022 and another 1.5 m in 2023 in response to record low lake 
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level and high salt concentrations in the south section. To inform future adaptive 

management decisions such as these, this research developed a model that can predict 

salinity and water level of both sections in response to various inflow, climate, and berm 

height conditions. Results from application of the model showed that the New Breach 

berm is a helpful tool, but long-term salinity management of the Great Salt Lake will 

require increasing streamflow to the lake. Additional analysis of data gathered for use in 

developing the model highlighted data limitations and how monitoring of the Great Salt 

Lake can be improved in the future to better aid decision making.  
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1 INTRODUCTION 

1.1 Background and Motivation 

The Great Salt Lake (GSL), located in Utah, USA, is the remnant of the historical 

Lake Bonneville (Bedford, 2005). GSL is the largest saline lake in the western 

hemisphere with salinities that can exceed 250g/L, among the highest in the world (Null, 

2020). Its waters, neighboring wetlands, and springs support diverse biota and economic 

industry. Millions of resident and migratory birds rely on the lake’s macroinvertebrate 

populations (Donnely, 2020; Yang et al., 2020) while brine shrimp and minerals 

harvested from the lake’s hypersaline brine generate $1.3 billion annually to the state of 

Utah’s economy (Bioeconomics, 2012; Wurtsbaugh, 2014; Figure 1).   
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Figure 1 

Anthropogenic and Environmental Linkages within the Great Salt Lake Watershed 
 

 

Note. Visual created with help from the UWRL communication team. 

An East-West rockfill, railroad causeway was constructed in 1959, segregating the 

lake into north and south basins (Figure 1). The north basin has salt concentrations near 

saturation, around 300 g/L, rendering it inhabitable (Wurtsbaugh, 2014). All freshwater 

inflow to the lake enters the south section causing it to be more dilute with salinity that 

fluctuates from 50-180 g/L, conducive for brine fly and brine shrimp habitat (Null et al., 

2013). Water within the GSL’s main tributaries is diverted for agriculture and 

metropolitan/industrial consumptive use, affecting the critical balance between inflows and 

outflows that determines its volume (Null & Wurtsbaugh, 2020). The effect of these 
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diversions has been compounded by variable climate patterns (Wang et al., 2010; Baxter 

and Butler, 2020) causing the lake to exhibit a decline in annual, average lake level.  GSL 

reached a record low in November 2022 and has recorded south section salinity values that 

exceed the optimal range for ecosystem health, >160 g/L, since 2021 (GSL Salinity 

Advisory Committee, 2021; Brown et al., 2023). These conditions have caused millions of 

dollars in damage to the economic industry and long-lasting harm to the ecologic 

communities (Potential Cost of Declining Great Salt Lake, 2019).  

 Different management approaches have been taken to slow the decline in lake 

volume including enhancing water conservation, improving watershed management, and 

optimizing agricultural tools (Great Salt Lake Strike Team, 2024). Additionally, various 

modifications have been made to the causeway throughout its history to adaptively 

manage salinity and water surface elevation in the south section (Figure 2). It was 

originally constructed with two culverts allowing for limited exchange of water between 

the sections. Most recently, the New Breach was opened in 2017 to replace the culverts 

that were decommissioned in 2012/2013. This New Breach includes an adjustable rock 

berm that can be raised or lowered to control bi-directional flow exchange, compensating 

for changes in climatic cycle and inflow. For example, in July of 2022 the Utah 

Department of Natural Resources (UDNR) raised the berm 1.2 m to limit the volume of 

north section water entering the south section, counteracting the historic low lake level 

and high salinity. Despite this raise in berm height, unhealthy salinity levels persisted. It 

was raised again in 2023, in preparation for a substantial spring runoff that returned the 

south section to a healthy salt concentration.  
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Figure 2 

Great Salt Lake Railroad Causeway Modification Timeline from 1959 to Present 

 

Note. 1959 culvert photo courtesy of Union Pacific Railroad, 2016 berm photo courtesy 

of Brian Crookston.  
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 With each berm modification and shift in climatic conditions, GSL internal salt 

cycling changes. Knowledge of the key drivers of lake level and salinity fluctuations and 

the lake’s response to different berm heights is necessary to effectively manage salinity in 

the south section. Various studies have been carried out to inform past salinity management 

(Brown, 2023; Merck & Tarboton, 2023; Yang, 2020; Naftz, 2014). Mass balance models 

have also been developed for the GSL to understand how changes to the causeway effect 

the relationship between lake level and salinity and to determine the most productive 

mechanisms for salinity management (Holley and Waddell, 1976; Wold et al., 1997; 

Loving et al., 2000; Mohammed & Tarboton, 2012; GSLIM, 2019; Jewell, 2021). Further, 

multiple flow models have been developed for the New Breach by Larsen (2024) and 

Rasmussen (2022) which have informed the generation of empirical rating curves that can 

predict exchange flows as a function of berm elevation and the density/elevation gradients 

between the two sections.  

While informative, previous GSL mass balance models have yet to incorporate 

the newly developed rating curves nor have they utilized all available salinity data at the 

lake. In addition, no studies have been conducted or models developed to quantify lake 

response to incremental changes to berm elevation located at the New Breach over a 

spectrum of lake conditions. Managing for sustainability requires an understanding of 

management actions and their consequences on dynamic systems (UDNR, 2013). 

Therefore, as lake conditions continue to evolve, there is an immediate need to determine 

the most effective means to adaptively manage salt concentrations in response to a 

variety of circumstances.  
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1.2 Research Objectives and Questions 

This study seeks to fill the above-mentioned gaps in knowledge and inform 

sustainable salinity management of the Great Salt Lake within the context of social, 

economic, and environmental wellbeing. To do so, a comprehensive salinity dataset was 

curated, and a process based, mass balance model was developed that accurately predicts 

lake level and salinity in response to varying hydrologic conditions, exchange scenarios at 

the New Breach, and management actions. Application of the model also highlighted 

effective strategies for maintaining healthy salinity levels at the lake for current and future 

generations. The main objectives of this study were: 

1. Compile a comprehensive salinity dataset for the Great Salt Lake since the New 

Breach opened, 1 January 2017, and derive a representative time series for use in 

model formulation and testing.  

2. Formulate a Great Salt Lake mass balance model that can predict lake level and 

salinity.   

3. Evaluate the performance of the GSL model using historical lake elevation and 

salinity observations.  

4. Use the validated model to simulate management scenarios and explore effective 

adaptive management strategies.   

While completing these objectives, specific research questions were assessed: 

[Q1] What inflow, salinity, climatic and lake elevation data are available for use in 

the GSL mass balance model?  

[Q2] How can historical salinity datasets be combined to create a dataset with 

adequate temporal and spatial resolution for mass balance modeling? 

[Q3] How should a Great Salt Lake mass balance model be formulated to 

accurately predict lake elevation and salinity?  
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[Q4] How can the berm at the New Breach be used to effectively manage salinity in 

the south section of the GSL? 
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2 SEASONAL WATER AND SALT CYCLING AT THE GREAT SALT LAKE, 
UTAH DUE TO THE NEW CAUSEWAY BREACH AND RECENT 

HYDROLOGIC DRIVERS 

2.1 Introduction 

Saline lakes are found on every continent and constitute nearly half the total volume 

of lakes worldwide (Hannam et. al. 1993). These lakes are important ecologic, cultural, 

and economic assets, yet increased water diversions or withdrawals, point and non-point 

source pollution, hydroclimate change, and increasing extraction activities (e.g., mineral 

harvesting) have negatively impacted many saline lakes.  These threats have reduced lake 

biodiversity, altered salinity composition and limnology, and will continue to cause lake 

desiccation (Williams, 2003). Examples of saline lakes include Lake Urmia in Iran, Mono 

Lake in California, USA, the Aral Sea in Kazakhstan, and the Great Salt Lake among others 

(Wurtsbaugh et al., 2017). 

The Great Salt Lake (GSL), a remnant of ancient Lake Bonneville, is located in 

northern Utah, USA. It is the largest inland saline lake in North America, the 8th largest in 

the world and has been significantly influenced by human activity. An east-west rockfill 

railroad was constructed in 1959 that segregated the lake into north and south sections.  It 

was constructed with two culverts to facilitate water and salt mass exchange between the 

sections, however distinct water surface elevation and density gradients have formed 

causing salinity, water residence time, ecologic community structure, and nutrient 

dynamics within the Great Salt Lake to be heterogeneous. 
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Despite alterations to its natural state, the lake supports a productive endemic 

ecosystem with brine shrimp, brine flies, various phytoplankton, and benthic microbial 

communities (Brown, 2023). The GSL is used by large avian populations for breeding and 

migration and is one of a limited number of wetland sites within North America’s Pacific 

Flyway (Donnely, 2020; Yang et al., 2020). Harvested brine shrimp cysts are used as food 

sources for global commercial aquaculture operations. The lake is estimated to contain 90 

billion USD in minerals; minerals extracted from the hypersaline brine are utilized for 

various salt-containing products, metal alloys, fertilizer, and in the production of glass and 

paper (Bioeconomics, 2012).   

During the past 50 years the Great Salt Lake has experienced significant lake level 

fluctuations and, due to upstream water withdrawals for agriculture and periodic droughts, 

record high salt concentrations (Null and Wurtsbaugh, 2020, Williams et al., 2020). These 

conditions have threatened the livelihood of brine shrimp and other organisms (Barnes and 

Wurtsbaugh, 2015; Lindsay et al., 2019) and caused loss of habitat for water and shorebird 

populations (Wurtsbaugh, 2014). Lake fluctuations have also caused millions of dollars in 

economic damage to brine shrimp cyst harvesting and mineral extraction industries (Cost 

of Declining Great Salt Lake, 2019). Dry sections of the lakebed are exposed to wind 

erosion. The transported dust poses a significant human health risk (Perry, 2019) for the 

2.7 million residents of the Salt Lake City metropolitan area, located approximately 20 

kilometers east of the GSL.  

To retain ecologic and economic function of the south section, lake levels and 

salinity must be managed in a way that balances human and ecologic needs. This requires 
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an understanding of lake response to anthropogenic and environmental stressors. The 

GSL is challenging due to unique lake conditions, uncertainties with hydrologic 

processes at the lake, the complex hydraulics of water and salt mass exchange across the 

causeway, and other uncertainties such as unmeasured seepage through the causeway and 

groundwater conditions. Moreover, various lake stakeholders collect water quality 

datasets using different methodologies and instruments which presents additional 

challenges.   

Monitoring salinity and its forcing variables at appropriate spatial and temporal 

scales is crucial for evaluating previous management actions and developing future 

management strategies. Currently, monitoring at the lake is at the center of discussion 

and collaboration between researchers and leads at the State of Utah (Great Salt Lake 

Strike Team, 2024). Although multiple entities monitor water quality parameters to 

describe salinity at the lake, they use different methods (Great Salt Lake Salinity 

Advisory Committee, 2020) and prior to 2020 there was minimal cross entity 

coordination of field or analytical methods (Great Salt Lake Salinity Advisory 

Committee, 2020). Previous salinity quantification and modeling efforts have not 

incorporated all available salinity datasets due to uncertainties, lack of methods to 

accurately estimate salinity, or an inability to combine data from different sources 

(Brown, 2023; Merck and Tarboton, 2023; Yang, 2020; Jewell, 2021; Great Salt Lake 

Strike Team, 2023; GSLIM, 2019).  

Therefore, to support adaptive lake management efforts this study was conducted 

to identify the primary drivers of salinity for the Great Salt Lake, to gain new insights 
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into lake dynamics, and to explore current data limitations. This was accomplished by 1) 

compiling all available water quality data across multiple entities, 2) developing a new 

specific conductance salinity conversion equation applicable to hypersaline 

environments, and 3) quantifying the variance across sampling locations, datasets and 

analytical methods. Once the curated dataset was prepared, principal component analysis 

was performed on salinity observations and key lake mass balance terms to characterize 

the spatial and temporal patterns of salinity and its controls within the southern section of 

the lake. This provided insights into lake dynamics and allowed for filtering of the south 

section salinity data to derive time series that reflected general lake conditions. Finally, 

this study used the south section time series data to consider adaptive lake management 

efforts by quantifying the seasonal influence of salinity forcing variables via correlation 

analysis. A discussion of the implications of lake stressors and data limitations on 

sustainably managing the lake for current and future generations is also provided. 

2.2 Study Area 

The Great Salt Lake experiences a semi-arid climate with inflows primarily 

provided to the south section via three rivers and their corresponding subbasin drainage 

areas (Figure 3). Being a closed basin lake, it is sensitive to climate variability where 

fluctuations in its surface area and volume are determined by the balance between water 

inflows (river discharge, precipitation, surface runoff and groundwater seepages) and 

evaporation (Wang et al., 2010). Water from the Great Salt Lake’s main tributaries is 

diverted for agriculture and metropolitan consumptive use influencing the lakes natural 
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hydrologic balance and compounding the effects of long-term periods of drought. Great 

Salt Lake elevation also varies interannually. Water surface elevations typically fluctuate 

less than 1 m per year, with net increase from November to June due to precipitation (in 

the form of snow) and spring runoff and net decrease from July to October due to increasing 

temperature and a dry climate (Figure 3).  

Figure 3 

Location and Key Features of the Great Salt Lake Including its Bays, Tributaries, and the 
New Breach. 

 
 

 
 

 



13 
 
Figure 4 

Gilbert Bay Water Surface Elevation and Salinity 

 
Note. Water surface elevation data was taken from USGS site 10010000 and salinity data 

from DWiR site 3510. The gray shaded region represents the time period where the 

elevation of the New Breach berm was 1275 m, yellow shaded region represents the time 

when the New Breach berm was at 1276.2 m and the green shaded region represents the 

time when the New Breach berm was at 1277.7 m.  

Prior to anthropogenic influence, GSL salinity ranged from 60-330 grams per liter 

(g/L) but was generally less than 200 g/L (Null et al., 2013). The east-west rockfill,  

separates the lake which is comprised of Gunnison Bay (north section) and 

Gilbert/Carrington Bay (south section)(Marden et al., 2020; Figure 3). The lake is further 

partitioned by a vehicle causeway segregating Farmington Bay in the southeast corner of 

the lake (Figure 3). Currently, Gunnison Bay has salt concentrations near saturation, around 

330 g/L, while concentrations south of the causeway fluctuate from 50-180 g/L 

(Wurtsbaugh, 2014; Figure 3). Elevation and density gradients between the segregated 

sections of the lake are present because river inflows only enter the south section, which 
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has a water surface commonly 0.3-0.6 m higher in elevation than the north section. The 

south section also features two well defined intermittent brine layers, the upper brine layer 

(UBL) and the deep brine layer (DBL) (Madison, 1970). The DBL is formed by the higher 

salinity north waters entering the south section through the causeway and plunging below 

the less saline water in the UBL (Naftz, 2014). This DBL disappears without northern water 

additions or significant mixing events due to high winds. 

Alterations to the rockfill causeway have occurred periodically for various reasons. 

For many years several culverts allowed for limited mass exchange between the two lake 

sections. In 1984, an additional breach was added on the far west side of the causeway, 

known as the Lakeside Breach, to reduce the 1.5 m rise in the south section lake elevation 

from flooding (Gwynn, 1986).  However, due to drought and historically low lake levels 

in the 2000s, the Lakeside Breach became ineffective in exchanging flows (Jewell, 2021). 

The culverts were decommissioned in 2013 and 2014 since they had subsided into the 

lakebed and deteriorated (White and Null, 2015). A 55 m breach, known as the New 

Breach, was opened in 2017 to once again provide exchange flows (Figure 5). It features a 

submerged rock berm that can be raised or lowered to adaptively manage the buoyancy-

driven bi-directional (north to south and south to north) flow exchange (Rasmussen, 2022); 

water flows through the New Breach from south to north driven by the water surface 

elevation gradient while also flowing north to south due to the density gradient (Rasmussen 

et al., 2021).  

 



15 
 
Figure 5 

Aerial Photos of the New Breach 

 

Note. Photos courtesy B. Crookston. 

Since 2017 and completion of the New Breach, the Great Salt Lake has exhibited a 

decline in annual, average lake level reaching a record low of 1276.7 m in November 2022 

due to decreased streamflow reaching the lake and the recent megadrought experienced 

across the southwest United States (Great Salt Lake Strike Team, 2023; Figure 4). Salinity 

values that exceed optimal range for ecosystem health (>160 g/L) have been recorded since 

2021, emphasizing the need for sustainable management of the Great Salt Lake and its 

watershed (Great Salt Lake Salinity Advisory Committee, 2021; Brown et al., 2023; Figure 

4). To reduce south section salinity levels, the New Breach berm was raised from El. 1275 

m to El. 1276.2 m in July 2022, effectively lessening north to south flow and mass loading.  

The berm was raised above lake surface elevations to El. 1277.7 m prior to spring runoff 

in 2023 (Figure 4) to further limit mass flux; however, the berm was overtopped and 

partially breached prior to summer 2023. To increase flows into the northern section in 

N 

New Breach 

Causeway 

Railroad 

(a) (b) 
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2024, the berm was not repaired and lowered but rather the breach was widened with the 

entire berm overtopped Spring 2024 and creating further erosion. 

2.3 Methods 

2.3.1 Data Collection and Compilation 

Data pertaining to the opening of the New Breach began January 2017. Since then, 

multiple entities within Utah gathered and reported hydrologic data for the Great Salt Lake 

(Table 1; Appendix C) that includes the Utah Geological Survey (UGS), the US Geological 

Survey (USGS), Utah Division of Wildlife Resources (DWiR), HDR Engineering, the 

Great Salt Lake Brine Shrimp Cooperative (BSC), and Utah State University (USU) (Great 

Salt Lake Salinity Advisory Committee, 2020). Observations of salt concentration, C (g/L), 

from five entities were compiled into a single Great Salt Lake dataset (Dunn, 2024a) which 

required determining appropriate methods for converting various water quality 

measurements from these entities to C. This also required the development of a conversion 

equation for specific conductance, SC (μS/cm), since existing, published conversion 

methods have not been developed for hypersaline environments. Additional hydrologic 

data including New Breach flow exchange, streamflow and climate variables were gathered 

to quantify New Breach salt mass fluxes, river inflows, and evaporation for use in exploring 

seasonal controls on south section SC.  
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Table 1 

Open Water Salinity Datasets 

Entity 
Parameter 
Reported 

Number of South 
Section Sites 

Measurement 
Type 

Frequency Depth 
Period of 
Record 

(Yr./Mo/Day) 

USGS 

SC 
(μS/cm) 

13 in-field twice a year 0.3 m increments 

2017/1/1 - 
2022/12/31 9 sample 

monthly,       
bi-monthly 

0.2-0.5 m below 
surface, 0.5m above 

bottom 
ρ (g/cm3) 

SG 

UGS ρ (g/cm3) 5 sample 4 months 
 1.5 m below surface, 
0.15 m from bottom 

2017/1/1- 
2022/5/23 

DWiR %C 16 sample 2 weeks at water surface  
2017/1/1-  

2022/12/31 

HDR 

SC 
(μS/cm) 

6 in-field 3 months 

0.15 - 0.3 m 
increments 

2017/1/1 - 
2021/12/1 

ρ (g/mL) 
at surface, 1.5 m 

increments, 0.3 m 
above bottom 

*BSC C (g/L) 2 in-field monthly 1, 3, 5, 6, 7 and 8-m 
2017/1/1 - 
2021/11/4 

 
Note. BSC reports salinity in g/L computed by a YSI 556 conductivity meter using 

conductivity and temperature readings in-situ. 
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New Breach Salinity  

From August 2020 to February 2022, Utah State University’s Utah Water Research 

Lab (UWRL) has nearly continuous 15-minute SC data and monthly water samples taken 

at the New Breach that were collected as part of the field campaign outlined in Rasmussen 

(2022) (Table C3). The 15-minute continuous SC data was collected using two In-Situ 

AquaTroll 600 Multiparameter Sondes placed on the north and south sides of the New 

Breach. Due to dropping lake elevations during the recent drought, these instruments were 

relocated from February 2022 to February 2023 to a vertical slotted casing attached to a 

pier on the north side of the bridge (Figure 6), directly south of the berm, with instruments 

placed at an elevation of 1272.7 m (in the DBL -near the bottom of the water column) and 

at 1277 m (in the UBL - middle of the water column). North and south section water 

samples were also collected monthly and analyzed at the Utah Water Research Lab 

(UWRL) for density, ρ (g/cm3), and total dissolved solids, TDS  (g/L) (J. McLean, personal 

communication, 20 April 2023; Rasmussen, 2022).  
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Figure 6 

Field Data Instrumentation and SC Profile Location at the New Breach 
 

 

South Section Open Water Salinity 

Each entity measured various water quality variables and utilized different field 

methodologies for their data collection. Therefore, it was necessary to gather the water 

quality data then determine and develop appropriate methods to convert observations to S 

so that the data could be compared and easily combined. All available data was converted 

and combined into the comprehensive dataset. This study focused on the open water 

portion of the south section, UBL thus a data subset pertaining to measurements from 

Gilbert Bay and Carrington Bay were analyzed herein. During the period of analysis, USGS 

measured south section water sample ρ, temperature, T (°C), and SC  for 8 sites in the south 

section and at the New Breach, which was compiled from the National Water Information 

System (NWIS) (U.S. Geologic Survey, 2023;Figure 7; Table 1). UGS measured ρ, T, and 

ion composition at 5 sites in the south section (Figure 7; Table 1). This data was compiled 
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from the Brine Chemistry database available through the Utah Department of Water 

Quality (UDWQ) (Utah Geological Survey, 2020). HDR Engineering measured ρ and SC 

at 5 sites in the south section and at the New Breach (Figure 7; Table 1). Reported HDR 

data pertained to the Great Salt Lake Causeway Culvert Closure and Bridge Construction 

Project, accessed through the Utah Division of Water Quality (UDWQ)(Utah DWQ, 2022). 

DWiR collected percent salinity (%C) data at 16 sites, only in the south section (Figure 7; 

Table 1, Great Salt Lake Salinity Advisory Committee, 2020) while BSC reported C at two 

sites in the south section (Brown, 2022; Figure 7).  
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Figure 7 

Map of Data Collection Sites Including South Section Open Water Salinity Sampling, 
Inflow Gage Stations, and Climate Data Sites. 

 

Note. The site key includes the letter ID associated with each sampling location site 

number. Only sample sites within Gilbert Bay and Carrington Bay were included in the 

analysis.  

USGS sampled ρ 0.2-0.5 m below the lake surface and 0.5 m above the lake bottom 

(Table 1). Samples were analyzed at the USGS laboratory following published protocols 

with ρ values adjusted to 20 °C equivalent values (USGS, 2002; C. Rumsey, personal 

correspondence, 8 June 2023). UGS sampled ρ 1.5 m below the water surface and 0.15 m 
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above the lake bottom (Table 1). Samples were also analyzed at a commercial lab for ion 

composition (Great Salt Lake Salinity Advisory Committee, 2020; Figure 7). HDR 

Engineering analyzed samples for ρ at the water surface, in 1.5 m descending intervals, 

and at 0.3 m from the lake bottom (Utah DWQ, 2022; Table 1). USGS, UGS and HDR 

report an accuracy of ±0.001 g/cm3 for all ρ measurements (Great Salt Lake Salinity 

Advisory Committee, 2020a).   

Both USGS and HDR datasets include SC data measured in the field; however, 

USGS SC was determined in the laboratory from collected sample which were measured 

using a multiparameter sonde, ±5%.  HDR measured vertical profiles of SC in the field, 

using an In-Situ Aqua TROLL multiprobe water quality meter (±0.8%); depth intervals 

included: every 10 cm for the first meter, every 0.3 m from 1 m down to the beginning of 

the DBL, and every 15 cm in the DBL (Table 1). BSC also conducted vertical profiling, 

measuring SC at 1, 3, 5, 6, 7, and 8 m depths using a YSI-556 multimeter with an accuracy 

of ± 0.5%. SC profiles were then converted to C and corrected using a regression equation 

(Brown et al., 2022 Table 1). Finally, DWiR collected %C data at the water surface using 

a refractometer with an accuracy of ± 0.2% (Table 1).  

New Breach Discharge 

Flows through the New Breach are a significant challenge to estimate due to 1) 

observed daily fluctuations and lack of high frequency discrete discharge measurements, 

2) the high salinity content and water density difference across the New Breach, 3) the 

buoyancy-driven bi-directional flow pattern common to the New Breach, and 4) the 

geometry of the New Breach opening and periodic adjustment in height to the submerged 
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rock berm. To consider these challenges, several new models were developed by USU to 

predict south to north (SN) and north to south (NS) discharge, Q (m3/s), as formulated by 

Larsen (2024). A deep neural network (DNN) model was developed to predict 15-minute 

Q estimates (Larsen 2024) for the 1275 m berm case and a Generalized Area Based Index 

(GABI) model for the 1276.2 m berm case.   

The input for the DNN model consisted of the USGS Acoustic Doppler Current 

Profiler (ADCP) up-looker data (sampled at 15 min frequency) that recorded velocities in 

10 equidistant cells. An 11th cell was added to complete the velocity profile and mimic a 

no slip boundary, due to a blanking distance (no observed velocity near the berm surface). 

The DNN model output was informed by discharges estimated by an index velocity rating 

curve developed by USGS for exchange flows at the New Breach. 80% of the data was 

used for training the DNN model with 10% reserved for validation and 10% used for 

testing.  For the testing data, the trained DNN had the Nash-Sutcliffe Efficiency, NSE, of 

about 0.95. Further, the accuracy of the DNN was blind tested using the USGS discrete 

monthly measurements. The root means square error (RMSE) was found to be about 0.5 

with an NSE of 0.8, which indicates that the DNN model effectively followed the true 

value curve comprised of USGS data.  

The GABI model is similar in principle to the DNN model as it is also based upon 

the USGS up-looker velocity data; however, it is able to consider the 1276.2 m berm and 

three distinct flow cases: bi-directional flow and either SN or NS  unidirectional flows. The 

GABI model was developed because there were not enough discrete flow measurements 

available for the 1276.2 m berm scenario to train a deep neural network. Thus, GABI uses 
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the measured velocity and the known area of the cross-section to estimate the NS and SN 

flow through the breach. To accomplish this, Larsen (2024) estimated the vertical location 

of any interface between NS and SN flows via a hydrostatic analysis based upon the 

difference between lake elevations and density on either side of the New Breach, 

referencing the top of the berm (note that the USGS ADCP does not identify the exact 

interface location due to the 10-cell approach for the vertical velocity profile). The 

available ADCP measurements are assigned to the vertical midpoint of each cell with linear 

interpolation used between.  This interface location and augmented vertical velocity profile 

is then used to estimate any discharges to the north or south sections of the lake.  NSE for 

the GABI model was 0.7 and RMSE was 0.6. 

A daily time series of New Breach discharge was developed utilizing monthly 

discrete Q measurements from USGS, retrieved from NWIS, and outputs from the USU 

models. From January 2017 to July 2017, the discrete measurements were linearly 

interpolated. From July 2017 to July 2022, a daily average of the 15-minute DNN model 

discharge estimates were used and from August 2022 to  December 2022, the GABI model 

outputs were used. Any gaps in the USU models were filled with linear interpolations of 

the discrete Q data.  

River Inflow 

USGS measured continuous stream flows to the south section of the Great Salt Lake 

at Farmington Bay Bridge (FB), Weber River (WR) at Plain City, UT, Goggin Drain (GD), 

and the Bear River (BR) near Corinne, UT (Figure 7; Table C3). Limited discrete Q 

measurements were taken monthly or bimonthly at the BR Bay Bridge where there 
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currently is no gaging station due to ice flows and bed loads. However, these measurements 

are significantly different from the Corinne gage, which is approximately 110 km from this 

BR-GSL confluence. Flows pass through the Great Salt Lake Bird Refuge between the 

Corinne gage and the confluence, which is also not gaged. Methods used to measure 

continuous and discrete discharge are summarized in Turnipseed and Sauer (2010) and  

Levesque and Oberg (2012). USGS New Breach Q measurements and continuous 

discharge records from the four major tributaries were also gathered from NWIS using the 

dataretrieval package in Python (Horsburgh, 2022; Table C3).  

Climate 

Continuous hourly climatic data was available at three sites at the Great Salt Lake 

from the Utah Climate Center (UCC), managed by Utah State University (USU, 2024). 

Hourly dewpoint temperature, Td (°C), wind velocity, νw (m/s), and site pressure, psite 

(hPa), since 2017 was gathered along with daily maximum and minimum air temperature, 

Ta,max and Ta,min  (°C ) (Figure 7; Table C2). The USGS also measured 15-minute νw at the 

New Breach, which was compiled from the USGS NWIS database.  

2.3.2 Data Curation 

Evaluation of Great Salt Lake Salinity 

As noted, the various available datasets (Table 1) used different field methods to 

collect water quality data for use in estimating C, necessitating appropriate conversion 

methods for hypersaline environments.  In this study, all north section and south section 

water quality data from each entity was converted to C in g/L and compiled into the salinity 

dataset. Data pertaining to the south section was apportioned to either the UBL or the DBL 
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using a depth to DBL dataset developed by the USGS which utilized profile measurements 

from only two sites, Carrington Bay and Gilbert Bay (C. Rumsey, personal communication, 

April 11, 2024). Direct ρ measurements were prioritized in this analysis due to accuracy 

and since ρ was the most common measurement across agencies (Salinity Advisory 

Committee, 2020).  

To convert ρ to C, an equation of state (EOS, see Eq. 1) derived specifically for the 

Great Salt Lake for C ranging from 0 to 180 g/L and for T ranging from 4 to 50 °C was 

applied (Naftz, 2011):  

𝜌 − 𝜌଴ = 184.01062 + 1.04708𝐶 − 1.21061𝑇 + 3.14721 − 4𝐶ଶ + 0.00199𝑇ଶ

−0.00112𝑆𝑇 
 

(1) 

where 𝜌 = measured density of Great Salt Lake water [g/cmଷ],  𝜌଴ = density of pure water 

at the sample temperature [g/cmଷ], T is in [°K], and C = sample salinity [g/L]. Density of 

pure water at the sample temperature was calculated using Eq. 2 (Spieweck and Bettin, 

1992):  

𝜌଴ = [999.83952 + 16.952577(𝑇 − 273.15) − 7.9905127 − 3(𝑇 − 273.15)ଶ

− 4.6241757 − 5(𝑇 − 273.15)ଷ + 1.0584601 − 7(𝑇 − 273.15)ସ

− 2.8103006 − 10(𝑇 − 273.15)ହ ]/[1 + 0.016887236(𝑇 − 273.15)] 

(2) 

These existing curve-fit polynomials are regularly used by Utah DNR; and were extended 

by the USGS for salinity values up to 275 g/L and current lake conditions (C. Rumsey, 

personal communication, May 24, 2023).  
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Note that ρ varies with T yet each entity measures ρ at different temperatures. 

Thus, all ρ measurements needed to be converted to a reference temperature of 20 °C, 

which has been used by the USGS since 2017. The USGS provided a linear regression 

equation for Great Salt Lake waters (C. Rumsey, personal communication, June 8, 2023): 

𝜌ଶ଴ =  𝜌 + 0.0004417(𝑇 − 20) 

(3) 

where 𝜌ଶ଴ i=estimated sample density at 20 °C [g/cmଷ] and T is in [°C]. For this study, all 

ρ samples not measured at 20 °C, including data from HDR and UGS, were converted to 

𝜌ଶ଴ using Eq. 3 before being used in Eq. 1 and Eq. 2.  

The American Water Works Association (AWWA) developed Eq. (4 to convert SC 

to C (Schemel, 2001): 

                        𝐶 = 𝐾ଵ + 𝐾ଶ𝑅଴.ହ + 𝐾ଷ𝑅 + 𝐾ସ𝑅ଵ.ହ + 𝐾ହ𝑅ଶ + 𝐾଺𝑅ଶ.ହ  

(4) 

where C =salinity in practical salinity units (psu), 𝐾ଵ = 0.0120, 𝐾ଶ = -0.2174, 𝐾ଷ = 25.3283, 

𝐾ସ = 13.7714, 𝐾ହ = -6.4788, 𝐾଺ = 2.5842, and R is calculated to be: 

                                   𝑅 =
𝑆𝐶௦௔௠௣௟௘

𝑆𝐶௦௘௔௪௔௧௘௥
  

(5) 

with 𝑆𝐶௦௔௠௣௟௘ = SC of the water sample at 25 °C in [µS/cm] and 𝑆𝐶௦௘௔௪௔௧௘௥ = SC of 

standard seawater at 25 °C (53,087 µS/cm). However, this equation is only valid for C 

ranging from 2 to 50 g/L whereas recorded values of Great Salt Lake brine during the 

period of analysis were as high as 300 g/L. An equation to convert SC of hypersaline brine 

to S was not available. Therefore, a new conversion equation (Eq. (6) was developed in 
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this study at the Environmental Quality Laboratory (EQL) in the UWRL at USU for 20 g/L 

≤ C ≤ 290 g/L:  

𝑆𝐶 = (−3.85 × 10଺)𝜌ଶ଴
ଶ + (9.48 × 10଺)𝜌ଶ଴ − 5.61 × 10଺  

(6) 

where SC is in [μS/cm]. 

 Eq. (6 was developed using a prepared solution of brine with a concentration of 

300 g/L and the same ion composition as Great Salt Lake. Correct ion composition for the 

brine solution was calculated by averaging all percent by weight measurements for each 

major ion in GSL brine based on data from the UGS Brine Chemistry Database from March 

2017 to September 2020 (Utah Geological Survey, 2020; Appendix A. USU UWRL EQL 

Experiment Data. Ion composition for the north section differs from the south thus the 

average of both compositions was used and assumed to be representative of the whole lake.   

 After preparing the solution, density was directly measured by removing a 

subsample with volume, V, and measuring total mass of the subsample, M. Using these 

measurements, sample ρ was calculated via ρ = M/V. As with in-situ field measurements, 

the solution was also measured for SC [μS/cm] and T [°C] with the In-Site Aqua Troll 600 

series water quality sonde. %C of the sample was measured using an Atago MASTER-

S28a refractometer. These measurements were repeated on solutions ranging from 20-290 

g/L that were prepared by diluting and thoroughly mixing the stock solution for 24 hours 

using a stirring plate. Five repeat measurements of ρ, SC and %C  were performed on 10 

samples chosen randomly to ensure consistency in the measurement methods (Figure A1). 
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A simple regression equation (Eq. (6) obtained from the USU UWRL EQL SC vs. 

ρ data produced a conversion relationship applicable for the full range of C observed at the 

Great Salt Lake. The performance of Eq. (1, Eq. (4 and Eq. (6 to calculate C via the USU 

UWRL EQL dataset (Table A; Table A) were plotted as a function of ρ and considered via 

calculated Mean Absolute Percent Error (MAPE) values (see chapter 2.4.1 for results). The 

EQL experiment data was also used to evaluate the conversion between %C to C [g/L] 

using Eq. (7 (Chapra, 1997):  

𝐶 = %𝐶 ×
1

100
× 𝜌 

 (7) 

where 𝜌 is in [kg/m3]. For this conversion when compared to the ρ method, it was found 

to overestimate C. Therefore, a correction factor was developed by plotting the %C method 

against the ρ method for each sample. The computed slope of the linear regression line was 

used as a correction factor, CF, by C/CF. This correction was applied to all the DWiR 

observations within the compiled salinity dataset. While USU UWRL EQL sample T 

recordings were within a small range, 20 to 23 °C, all ρ measurements were standardized 

to 20 °C using Eq. (3 to minimize any potential variability in ρ due to any T differences 

between samples. 

New Breach Salt Flux 

To calculate NS and SN New Breach salt flux (M, metric tons/d) for use in the 

principal component and correlation analysis, C from both USGS and HDR New Breach 

samples (January 2017 to August 2020) and the USU 15-minute continuous C record 

(August 2020 to December 2022) were used. The analysis also included the USU New 
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Breach Q dataset (January 2017 to December 2022). Any gaps in the C record at the New 

Breach were linearly interpolated to pair with the 15-minute continuous Q dataset. New 

Breach M was calculated separately for NS and SN flow through the New Breach using 

(Chapra, 1997): 

𝑀 = 𝑄𝐶  

(8) 

where 𝑀 is in [metric tons/d], 𝑄 is in [m3/d], and C is in [metric tons/m3].  

Evaporation 

A daily, arithmetic average was applied to the hourly climate data at each site 

including: νw, psite, Td, Ta,max and Ta,min (Figure C2). These daily values were spatially 

averaged across sites to produce a single, daily time series for each variable, representative 

of Great Salt Lake conditions. The representative climatic data and a modified version of 

the Penman equation (see Eq. (9) was used to calculate depth of evaporation (Ed) off the 

Great Salt Lake at each salinity sampling location (Mohammed et al., 2012): 

𝐸ௗ =
𝛥ᇱ

𝛾 + 𝛥ᇱ
∙

𝑅௡

𝜆௩𝜌௪
+

𝛾

𝛾 + 𝛥ᇱ
∙ 𝐾ா𝑣௔(𝑒௦(𝑇௔)𝛽(𝑇௔, 𝐶) − 𝑒௔(𝑇ௗ))  

(9) 

where Ed  is in [m/d],  𝛥ᇱ = saturated vapor pressure gradient for a saline surface [kPa/°C], 

𝛾 = psychrometric constant [kPa/°C], 𝑅௡ = net energy available at the water surface 

[MJ/m2∙d], 𝜆௩ =the latent heat of evaporation [MJ/kg], 𝜌௪ =density of water [kg/m3], 𝐾ா = 

bulk latent heat transfer coefficient approximated to be 1.28x10-3 [mm∙s/m∙kPa∙d 

(Mohammed, 2006), 𝑣௔ =wind velocity at the water surface [m/d], 𝑒௦ = saturated vapor 

pressure of a freshwater surface at air temperature, 𝑒௔ = actual air vapor pressure at 
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dewpoint temperature [kPa], 𝛽 =water activity coefficient, Ta  = mean daily air temperature 

[°C], 𝑇ௗ = mean daily dewpoint temperature [°C], and C = salinity of the Great Salt Lake 

water [g/L].  

Evaporative depth is proportional to the difference between the 𝑒௦ at the water 

surface and the 𝑒௦ of the air, functions of air temperature at the water surface and air 

temperature, Ts and Ta  respectively. Salinity controls the water 𝑒௦ which is lower for saline 

water than for freshwater at the same temperature (Mohammed and Tarboton, 2012). The 

reduction is dependent on the 𝛽 which is the ratio of vapor pressure over salt water to the 

vapor pressure over freshwater at the same temperature. 𝑒௦ of a saline water surface in 

terms of the water activity coefficient is given by (Mohammed, 2006): 

𝑒௦௔௧
ᇱ (𝑇௦, 𝐶) = 𝑒௦(𝑇௦)𝛽(𝑇௦, 𝐶) 

(10) 

where 𝑒௦
ᇱ =saturation vapor pressure of the saline water surface [kPa], a function of surface 

temperature, Ts, and surface water salinity, C, and 𝑒௦ = saturation vapor pressure of a 

freshwater surface [kPa].  

Ts is difficult to measure and not available for the salt lake, therefore 𝛥ᇱ was 

calculated using the traditional approach for deriving the Penman equation which is based 

on the assumption that Ts and vapor pressure can be approximated using Ta , humidity, and 

the gradient of the saturation vapor pressure-temperature curve (Mohamad, 2006). This is 

accomplished using a Taylor series approximation where: 
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𝑒௦
ᇱ(𝑇௦, 𝐶) =෥ 𝑒௦

ᇱ(𝑇௔, 𝐶) + 𝛥ᇱ(𝑇௦ − 𝑇௔) 

(11) 

𝛥ᇱ =
𝑒௦

ᇱ

𝑑𝑇
ቤ

்ೌ ,஼

 

(12) 

𝛥ᇱ =
𝜕𝑒௦

𝜕𝑇௦
𝛽 + 𝑒௦

𝜕𝛽

𝑑𝑇௦
ฬ

்ೌ

 

(13) 

with Ta  = mean daily air temperature [°C].  𝑒௦  and  𝑒௔ are described by the general equation 

for vapor pressure (Chapra, 1977): 

𝑒 = 4.596𝑒
ଵ଻.ଶ଻்

ଶଷ଻.ଷା் 

(14) 

where T  is in  [°C]. To calculate 𝑒௔, Eq.  14 was evaluated at the air dewpoint temperature, 

Td. To calculate 𝑒௦, Eq. 14 was evaluated at the daily average air temperature, Ta, calculated 

as (Allen et al., 1998): 

𝑇௔ =
𝑇௔,௠௔௫ + 𝑇௔,௠௜௡

2
 

(15) 

with 𝑇௔,௠௔௫ = maximum daily air temperature [°C] and 𝑇௔,௠௜௡ = minimum daily air 

temperature [°C]. Using Eq. 14 and derivation rules, Eq. 13 simplifies to Eq. 16: 
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𝛥ᇱ = 𝛽 ൤
4098.17

(237.3 + 𝑇௔)ଶ
൨ ቈ4.596𝑒

ଵ଻.ଶ଻ ೌ
ଶଷ଻.ଷା்ೌ ቉ 

(16) 

𝛽 is calculated by summing the weighted reduction in  𝑒௦ due to each of the constituent salt 

ions. Estimation of 𝛽 is accomplished by solving the Pitzer equations, which was done by 

Mohammed (2006) for a range of Ta and C values at the GSL (Pitzer, 1973; Table B1). 

This table was employed to calculate the activity coefficient at each sampling location for 

each day during the period of analysis by linearly interpolating between C and Ta values 

within the table to obtain a 𝛽 value for the given Ta and C . 

The psychrometric constant was calculated using:  

𝛾 =
𝑐௔𝑝௦௜௧௘

0.622𝜆௩
 

(16) 

where 𝑐௔ = heat capacity of air equal to 1x10-3 [MJ kg-1 °C-1], psite = atmospheric pressure 

[kPa], and 𝜆௩ = latent heat of vaporization [MJ kg-1] calculated using (Mohammed, 2006): 

𝜆௩ = 2.5 − 2.36 × 10ିଷ𝑇௔ 

(17) 

Net energy available at the water surface was calculated using (Allen et al., 1998): 

𝑅௡ = 𝑅௡௦−𝑅௡௟ 

(18) 

where Rns = net solar short-wave radiation [MJ m-2 day-1] and Rnl = net outgoing long wave 

radiation [MJ m-2 day-1]. Net solar short-wave radiation was calculated using (Allen et al., 

1998): 
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𝑅௡௦ = (1 − 𝛼)𝑅௦ 

(19) 

where 𝛼 = short wave radiation reflection coefficient suggested to be 0.08 for open water 

(Shuttleworth, 1993) and 𝑅௦ = incoming shortwave solar radiation [MJ m-2 day-1]. Net 

outgoing longwave radiation [MJ m-2 day-1] was calculated using (Allen et al., 1998): 

𝑅௡௟ = 𝜎 ቆ
𝑇௠௔௫,௄

ସ + 𝑇௠௜௡,௄
ସ

2
ቇ ൫0.34 − 0.14ඥ𝑒௔൯ ൬1.35

𝑅௦

𝑅௦௢
൰ 

(20) 

where 𝜎 = the Stefan Boltzman constant taken as 4.903x10-9 [MJ K-4 m-2 day-1], Tmax,K = 

maximum daily air temperature [°K], and Tmin,K = minimum daily air temperature[°K], Rso 

= clear sky solar radiation [MJ m-2 day-1], and ea = actual vapor pressure of the air [kPa], a 

function of dewpoint temperature, Td  [°C], and calculated using Eq. 14. 

Clear sky solar radiation was calculated using (Allen et al., 1998): 

𝑅௦௢ = (𝑎௦ + 𝑏௦)𝑅௔ 

(21) 

where 𝑎௦ = 0.25 and  𝑏௦ = 0.5 as suggested in Shuttleworth (1983),  and 𝑅௔ = extraterrestrial 

radiation [MJ m-2 day-1] calculated as: 

𝑅௔ =
24(60)

𝜋
𝐺௦௖𝑑௥[𝜔௦ sin 𝜑 sin 𝛿 + cos 𝜑 cos 𝛿 sin 𝜔௦] 

(22) 

with 𝐺௦௖ = solar constant, equal to 0.0820 [MJ m-2 day-1], 𝑑௥ = inverse relative distance 

Earth-Sun, 𝜔௦ = sunset hour angle [rad], 𝛿 = solar declination [rad], and 𝜑 = latitude [rad]. 

Inverse relative distance Earth-Sun was calculated using (Allen et al., 1998): 
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𝑑௥ = 1 + 0.033 cos ൬
2𝜋

365
𝐽൰ 

(23) 

where J = number of the day in the year. Solar declination was calculated using (Allen et 

al., 1998): 

𝛿 = 0.409 sin(
2𝜋

365
𝐽) 

(24) 

and the sunset hour angle was calculated by (Allen et al., 1998): 

𝜔௦ = cosିଵ[− tan 𝜑 tan 𝛿] 

(25) 

2.3.3 Great Salt Lake Principal Component Analysis 

The New Breach was constructed to aid management of south section UBL S, yet 

the spatial and temporal influence of New Breach M compared to other influential variables 

is not well understood. Therefore principal component analysis, PCA (Helsel et al., 2020), 

was performed to explore the spatial and temporal patterns of fluctuating UBL S since 

opening of the New Breach so that general lake conditions can be characterized for use in 

salinity modeling efforts. The PCA was preformed using the SciKitLearn package in 

Python (VanderPlas, 2016). Discrete south section open water C observations from the 

UBL were paired with daily averages of: Ed, New Breach M, and Q from lake inflows. Due 

to limited temporal data, only open water sites where there were at least three water samples 

per year over three consecutive years during the period of analysis were included to ensure 

seasonality was retained in the dataset. For sites where a water quality profile was reported, 
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C profiles above the DBL interface (determined by the USGS depth to DBL dataset) were 

averaged to represent the UBL as a daily average at the time of sampling.  MNS, MSN and 

FB, BR, WR, and GD Q were included as separate variables in the PCA. Groundwater q 

(unmeasured) and precipitation P (arid, local annual average of 472 mm) contributions to 

the lake were not included based upon unmeasured q to the lake and the hydrologic analysis 

of the GSL by Mohammed and Tarboton (2012), which found these parameters to be 

negligible. 

In this study, data seasonality and exploratory, PCA results merited a three-season 

PCA application: spring during snowmelt and high runoff (RO) between March and June, 

summer and fall where conditions are typically hot with low river inflows (HLF) between 

July and October, and winter when temperatures are lowest accompanied by low river 

inflow (CLF) between November and February.  Since a PCA is sensitive to outliers and 

the differing variable magnitudes, histograms and descriptive statistics were compiled for 

the datasets used in the PCA. Any variable that demonstrated a skewed distribution was 

log-transformed and all variables were standardized before performing the analysis.  

2.3.4 Representative South Section Salinity  

When examining the Great Salt Lake south section UBL C dataset, a small subset 

of measurement sites exhibited daily deviations likely due to topographic effects and any 

routine mineral extraction activities. Therefore, results from the PCA were used to assist 

with data filtering; seasonal outliers were removed revealing a clear central trend in C 

within the dataset. A daily, south section UBL C time series was then calculated by 1) 

preparing daily time series of C at each sampling location, with supplemental temporal data 
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estimated through linear interpolation, then 2) determining the daily median value across 

sampling locations. Since the filtered dataset revealed a strong central trend, this daily time 

series is presumed to be representative of general south section, UBL conditions. 

Measurement uncertainty compounded by multiple independent data sets, C 

conversion, and a daily, spatial average of C with linear interpolation to fill missing 

temporal data were of great concern when developing the south section C time series. 

Therefore, to gain greater insight into these uncertainties and given the simplification of 

spatial homogeneity, the filtered UBL C data was segregated into measurements derived 

from ρ, SC and %C. The daily standard deviation, σ, for each parameter and set of sites 

was calculated and the average used as a metric regarding spatial uniformity for the Great 

Salt Lake. Two additional subsets were taken from the C data, one including observations 

from sites B and L and another with observations from sites E and K. These additional 

subsets encompass sampling locations from BSC, DWiR and USGS that were closest in 

proximity to each other and were used to quantify uncertainty in combining C data from 

multiple datasets. Measurement uncertainties due to instrumentation accuracy as reported 

by manufacturer documentation were also referenced. Additional quantification of 

measurement uncertainties by various entities and their field programs was not considered 

herein.   

These sources of uncertainty were assumed to be uncorrelated. Total standard 

deviation (𝜎்)  for the representative C time series was calculated using a first order error 

analysis approach (Brown and Hambley, 2002): 
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𝜎் = ඩ෍ 𝜎ଵ
ଶ + 𝜎ଶ

ଶ + 𝜎ଷ
ଶ + ⋯ + 𝜎௡

ଶ

௡

௜ୀଵ

 

(26) 

where 𝜎்  [g/L] = total standard deviation in median C given all error sources, n =  total 

number of error sources, and 𝜎ଵ
ଶ , 𝜎ଶ

ଶ, 𝜎ଷ
ଶ, 𝜎௡

ଶ  = average variance associated with each error 

source during the period of analysis [g2/L2]. A 90% confidence interval for the median 

UBL C  time series was then calculated assuming a normal C distribution: 

𝐶𝐼ଽ଴% = 𝐶 ഥ ± 1.65𝜎்  

(27) 

where 𝐶𝐼ଽ଴% = 90% confidence interval and 𝐶 ഥ  =median UBL section salinity [g/L] on any 

given day during the period of analysis. 

2.3.5 Seasonal Salinity Drivers 

The seasonal influence of each forcing variable on the representative south section 

C time series was investigated by performing a regression analysis using the non-

parametric Theil-Sen method, which is resistant to outliers and represents the median 

regression line. The regression was performed on the log transformed data used in the PCA, 

subset for water year 2020 and further segregated into RO, HLF, and CLF seasons. The 

entire time series was not selected since an initial analysis showed the magnitude of salinity 

values within each season fluctuated across years and formed data clusters within the 

analysis period. To clarify the results, data from a single water year 2020 was selected as 

it exhibited average hydroclimatic conditions compared to the entire period of analysis. 
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The 95% confidence intervals surrounding the calculated Theil-Sen slopes were 

determined and used to evaluate the significance of the linear relationships between log 

transformed C and Ed, MSN, MNS, and river Qs across seasons. 

2.4 Results  

2.4.1 Data Curation and Characterization 

The results from (Eq. (6) showed that the equation is valid for ρ up to 1.25 g/cm3 

(Figure 8a). The water sample prepared at the USU UWRL EQL and the Great Salt Lake 

USGS samples taken at the New Breach were in close agreement and followed the same 

nonlinear trend. The USGS data exhibited significant measurement uncertainties (%ε) for 

ρ ≥ 1.2. This can be attributed to potential field uncertainties because the  USU laboratory 

experiment required significant mechanical mixing to achieve sample uniformity at these 

salt concentrations. Mean absolute percent errors (MAPE) of the AWWA conversion (Eq. 

(4) when compared to Naftz EOS (Eq. (1) was 10.1% while MAPE of (Eq. (6) was 3.3%. 

The performance difference is due to the original range of C used to formulate the AWWA 

method (Schemel, 2001), as good agreement exists for ρ < 1.10 g/cm3. Performance of (Eq. 

(6) favors implementation for converting open water ρ to SC for the Great Salt Lake and 

for saline lakes of similar ion composition.  It further supports the expanded usage of the 

AWWA conversion method above the 50 g/L limit documented in Schemel (2001). 

However, prediction uncertainties via Eq. (4 increased for ρ ≥ 1.1 g/cm3.  
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Figure 8 

USU UWRL EQL Experiment Results 

 
Note. Experiment results included in the figure are (a) ρ versus SC including USGS data 

pairs collected from the New Breach and (b) comparison of the C conversion methods. 

The correction constant CF = 1.24, based upon the relationship between C  

measured in the laboratory and C predicted via Eq. (7, indicated that %C measurements at 

the Great Salt Lake tended to overpredict C when compared to ρ measurements (Figure 9). 

The DWiR dataset, based upon a refractometer, was adjusted accordingly herein. 
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Figure 9 

USU UWRL EQL Experiment Data Pairs 

 
Note. Salinity in g/L derived from ρ is plotted along the x-axis versus C derived from %C 

on the y-axis.  

The histograms and descriptive statistics prepared for exploratory analysis 

preceding the PCA provided insight into the magnitude and frequency of key variables 

observed at the GSL (Figure 10;  

Table 2). During the study period, all datasets, except for inflows from FB, 

exhibited positively skewed distributions that confirmed applying a log transformation to 

the data as part of the PCA data processing (Figure 10). Daily Ed  showed a high frequency 

of lower values due to the semi-arid climate with winters generally lasting from November 

to April. During the period of analysis, total MSN was 2.30 × 10ଵଶ  metric tons while total 

MNS was 1.67 × 10ଵଶ metric tons indicating that more salt left the south section via QSN 

flow through the New Breach than entered via QNS through the New Breach. The BR, being 

the largest source of river inflow to the GSL, exhibited the highest range and median of Q. 
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Deviating from the other inflows, Farmington Bay had a normal distribution, periodically 

recording negative Q values due to the location of the measurement gage at a bridge along 

the Antelope Island causeway that segregates Gilbert Bay from Farmington Bay (Figure 

7). Specifically, when inflow from the Jordan River into FB is low and southerly wind is 

high, south section water from Gilbert Bay flows back into FB causing a short-term flow 

reversal event (Naftz et al., 2014).  

Figure 10 

Histograms of Great Salt Lake Water Quality and Quantity Data Used in the Principal 
Component Analysis from January 2017 to December 2022

 

Table 2 

Descriptive Statistics for the Data Prepared for the Principal Component Analysis 

*Variable Range Median Units 

C [90, 204] 124 g/L 

Ed  [0.025, 0.66] 0.2 cm/d 

MSN [0, 1.8 × 10଺] 3.3 × 10ହ metric tons/d 

MNS [0, 1.6 × 10଺] 2.1 × 10ହ metric tons/d 
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QBR [0.67, 266] 26.2 

m3/d  
QWR [0.3, 122] 2.74 

QGD [0.03 , 46] 0.62 

QFB [-27, 42.4] 8.79 

Note. Statistics reflect values from January 2017 to December 2022. 

2.4.2 Spatial and Temporal Filters for GSL Salinity Data  

Results from the PCA (Figure 11) revealed spatial patterns of the south section, 

UBL C across seasons in response to its primary drivers. This insight aided in filtering 

observations from sampling sites included in the comprehensive GSL C dataset (Figure 

11). Regarding seasonality, Principal Component 1 (PC1), Principal Component 2 (PC2), 

and Principal Component 3 (PC3) explained 72.7% of dataset variation during runoff (RO), 

73.3% of variation during hot low-flow (HLF) months, and 62.7% of variation during cold 

low-flow (CLF) months (Table 3). During RO, HLF, and CLF, the majority of UBL C 

observations responded similarly to PC1, PC2 and PC3. Data points from DWiR/USGS 

sites A, C, M, and N consistently deviate from the main cluster (Figure 11). The magnitude 

of C  from these sites is consistently lower than the other observations and occurred when 

river Qs were higher as indicated by the 2D projections of C and Q in PC space. Additional 

outliers were observed during HLF and CLF that had higher C compared to the main cluster 

(Figure 11d, Figure 11f), but these observations did not occur consistently at the same sites 

nor across seasons. While they may not be representative of south section conditions, the 

lack of consistency in sampling location and season did not support exclusion from the 

representative dataset.  
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Figure 11 

Principal Component Analysis Results 

 
Note. Principal components for discrete measurements of south section UBL C are paired 

with daily values of Ed, MSN, MNS, QBR, QWR, QFB, and QGD during (a,b) spring runoff 
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between March and June, (c, d) hot low flow between July and October and (e, f) cold 

low flow between November and February. Gray circular symbols represent data from 

sites that were found to be representative of south section conditions, and red star 

symbols represent data from sites that were left out of the representative south section C 

dataset. Normalized, 2D projections of each variable in PC space are included in (b, d, f) 

and are offset from the origin for clarity.  

Table 3 

Principal Component Values for Runoff, Hot Low-Flow and Cold Low-Flow Seasons 

Months Season 
Principal 

Component 
Explained 
Variance 

Total 
(%) 

3 - 6 Runoff (RO) 

PC1 0.405 

72.7 PC2 0.199 

PC3 0.123 

7 - 10 
Hot Low-Flow 
(HLF) 

PC1 0.38 

73.3 PC2 0.249 

PC3 0.104 

11 - 2 
Cold Low-Flow 
(CLF) 

PC1 0.245 

62.7 PC2 0.222 

PC3 0.16 

The compiled C time series (Figure 12), including all available observations of UBL 

C, verified the patterns revealed in the PCA and showcased the general trend in UBL C that 

included the New Breach for the period of analysis. DWiR/USGS sites A, C, M, and N 

reported significantly lower C values during the RO and CLF months. In addition, 

occasional outliers were observed from seven other sites O, P, Q, R, V, X). These 

observations were sporadic and did not occur consistently; however, the outlier 
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observations from sites R and Y could be attributed to a rare flow event in the DBL 

[characterized by Naftz (2014)] caused by unidirectional QNS through the causeway that 

happened infrequently at the New Breach.  Specifically, this lake current is located at the 

bottom of the lake where Carrington Bay connects to Gilbert Bay (Figure 3). While this 

could explain the outliers at these two sites, there is not enough sample data to verify this 

hypothesis and attribute them to the DBL spillway. Based on results from the PCA and the 

compiled C time series which identified representative south section sampling locations, 

data from sites A, C, M, and N were removed from the comprehensive GSL dataset during 

RO and CLF months. Observations from all other sites were supplemented using linear 

interpolation to develop daily time series at each sampling location. Daily UBL C was then 

calculated by finding the spatial median across all sites in the filtered dataset and is 

assumed to be representative of lake conditions when considering the south section in its 

entirety (Figure 12).  

Figure 12 

Compiled Open Water C Time Series for the South Section UBL of the Great Salt Lake 

 



47 
 

The outliers observed from the PCA and compiled time series are assumed to be 

due to strong freshwater currents from the BR through BR Bay and the Jordan River 

through FB which have been observed during field sampling events (C. Rumsey, personal 

communication, 28 September 2022). Across all three seasons, C at site M ranged from 7-

169 g/L, site A ranged from 1-173 g/L, while representative C ranged from 102 - 198 g/L 

(Figure 13a). When comparing the distribution of the south section UBL representative C  

to the outlier sites near BR inflow, the spread of the outlier distributions is much larger 

with the tails extending down to values close to the inflows themselves during RO and CLF 

seasons. During HLF months, the median and spread of the BR outlier site distributions 

are almost identical to the representative C distribution. Farmington Bay exhibits a similar 

trend. The spread of the outlier site distributions is wider compared to the representative C 

distribution during RO and CLF, but identical to the representative C distribution during 

HLF (Figure 13b).  
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Figure 13 

Box Plots of C Observations from Outlier Sites Found During the Principal Component 
Analysis 

 

Note. Data utilized in the plots are from January 2017 to December 2022 for (a) the Bear 

River gage, sites A and M, representative south section UBL salinity (labeled median) 

and (b) the Farmington Bay Bridge gage, sites C and N, and representative south section 

UBL salinity. 

Another key insight into lake dynamics is recent C values for sites A and M 

juxtaposed with sites C and N. Farmington Bay inflows have higher C compared to the BR 

inflows across all three seasons due to mass loading within Farmington Bay. Currents 

through FB Bay are also lower than BR Bay Bridge during RO and CLF moths as indicated 

by the wider range of C recorded at the BR outlier sites.  Based on these observations, it 

can be presumed that FB inflows mix quicker into the south section and that the spatial 

extent of BR Bay inflows is wider than FB inflows. During HLF months, however, the 

results indicate that these lake currents do not reach the outlier sites as median salinity 

recorded at these sites are identical to the median south section salinity. Insights garnered 
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from the analysis of outlier sites within the comprehensive C dataset highlight seasonal and 

spatial filters that should be applied to ensure observations are representative of average 

south section conditions. Further, these results aid future work by providing and 

documenting the highest spatial and temporal resolution C dataset available at the GSL.  

2.4.3 Representative South Section Salinity 

After developing the representative UBL C series (Figure 12), the error analysis 

quantified a range of uncertainty associated with combining the individual datasets and 

assuming spatial homogeneity across the filtered sampling locations (Figure 14; Figure 15; 

Table 4). Averaging through space and combining independent datasets contributed the 

most uncertainty (σ  = 3.97 g/L, 6.64 g/L,Figure 15). Generally, σ  values were consistent 

but spikes in σ occurred mainly during CLF months where observations of undefined lake 

dynamics were left in the dataset, as noted above (Figure 14a; Figure 15c). Combining the 

average σ  values, the median UBL C  time series is presumed to be representative of UBL 

conditions ±12 g/L (Table 4). This metric informs use of the representative C time series 

for lake management decisions. This series is also useful for analyzing entire south section 

salinity response to management actions but may present a challenge in determining site 

specific C given the range of uncertainty. This series further shows the importance of 

adopting standard operating procedures for future C monitoring.   
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Figure 14 

Daily σ of UBL C for the %C, SC, and ρ Datasets 

 
Note. Data utilized in the plots is from (a) January 2017 to December 2022 and (b) 

January 2019 to May 2019 and for data compiled from site 2565 and site 3510 from (c) 

January 2017 to December 2022 and (d) January 2019 to May 2019. The 2019 data 

window is included to show the general magnitude of σ across the subsets. 

Table 4 

Average Standard Deviation (σ), Total Standard Deviation (σT), and Associated 90% 
Confidence Interval for UBL Salinity (C) 

Entity Dataset 
σ 

(g/L) 
  

σT 

(g/L) 
90% CI 

BSC YSI 556 Conductivity Meter 

1.02 
7.81 12.88 

HDR, UGS, USGS 
Anton Paar DMA 35 Density 

Meter 

DwiR 
Atago Master S28α 

Refractometer 
BSC Specific Conductance 3.97 
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HDR, UGS, USGS Density 
DWiR Percent Salinity  

BSC, UGS, USGS 
GSL site 3510 

6.64 
GSL site 2565 

Note. σ is the average standard deviation from each type of error in the representative 

UBL C dataset while 𝜎்  is the propagated error within the UBL C dataset, calculated from 

each σ. 

Figure 15 

Representative UBL C Time Series and Calculated 90% Confidence Interval 

Note. Date utilized in the plots is from January 2017 to September 2023. The pie chart 

represents the standard deviation (σ) introduced into the C dataset from the three sources 

of error which was used to calculate the total standard deviation (σT) and confidence 

interval. 

2.4.4 Seasonal Salinity Drivers 

Seasonal correlation between Cubl and 𝐸ீௌ௅, New Breach M, and river Qs revealed 

the major drivers of changes in C  within the GSL (Table 5;Figure 16). If the Theil-Sen 
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slope 95% confidence intervals (p value of 0.05) did not include zero, the correlation was 

determined to be significant. There was a significant, negative correlation with QBR, QWR, 

and QGD during RO and CLF showcasing the role river inflows play in dilution of the south 

section. MNS contributes mass to the south section DBL which is then transferred to the 

UBL via turbulent diffusion across the layer interface, yet it only exhibited a positive 

correlation during CLF. The negative correlation during HLF is explained because MNS is 

driven by the ρ differential between the two sections of the lake. As south section C 

increases during HLF, MNS decreases. In contrast, the main source of south section mass 

export comes from MSN yet it showed significant, positive correlations during HLF and 

CLF and no correlation during RO. These potentially counterintuitive results indicate that 

the short-term effects of mass exchange through the New Breach are outweighed by other 

salinity drivers. However, influencing mass exchange through the New Breach is still 

relevant to management efforts.  

Table 5 

Theil-Sen Slopes and Corresponding 95% Confidence Intervals Between C and Each 
Variable Included Within the PCA 

Variable 
RO HLF CLF 

Slope 95% CI Slope 95% CI Slope 95% CI 

𝐸ௗ 3.02 [-3.28, 10.68] -4.17 [-5.83, -2.80] -14.12 [-20.51, -8.98] 

𝑀ேௌ  5.13 [-3.59, 13.03] -2.23 [-3.64, -0.86] 12.48 [9.84, 14.8] 

𝑀ௌே -7.68 [-18.54, 1.69] 4.22 [2.88, 5.50] 5.12 [3.50, 6.77] 

𝑄஻ோ -13.44 [-20.40, -5.68] 1.11 [-4.35, 4.71] -6.67 [-8.57, -4.55] 

𝑄ௐோ -27.99 [-44.71, -6.71] 6.69 [4.25, 8.95] -20.94 [-24.47, -17.71] 

𝑄ீ஽ -2.72 [-13.96, 10.42] -3.21 [-5.21, -1.13] -22.22 [-51.64, -6.75] 

𝑄ி஻ 2.41 [-6.71, 11.38] 4.93 [1.31, 8.23] -9.94 [-13.33, -6.60] 
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Note. Slopes that are bolded indicate a significant (p value < 0.05) linear relationship 

between log-transformed data. 

Figure 16 

Correlation Analysis Results 

  

Note. Representative south section C is plotted against evaporation, New Breach salt 

fluxes, and river inflows from October 2019 through September 2020 separated and 

colored by season. Solid black lines indicate Theil Sen regression lines. RO refers to 

spring runoff months between March and June, HLF refers to hot, low river inflow 

months between July and October, and CLF refers to cold, low river inflow months 

between November and February. 

This study presumed that Ed would be positively correlated with UBL C across all 

seasons since it is the only freshwater outflow. However, Ed exhibited significant, negative 

correlation during HLF and CLF. During HLF, water surface elevation decreased while C 
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within the south section increased because Ed outweighed river inflow exhibited by the 

highest Ed values occurring when inflow was lowest (Figure 17a; Figure 17b). However, 

the highest values of Ed occurred at the beginning of the period when temperatures were 

hottest therefore the largest values of Ed were paired with the lowest values of C explaining 

the negative correlation. During CLF, Ed values were clustered between 0 – 0.3 cm/d and 

outweighed by inflow volumes that rarely dropped below 30 m3/d which caused lake level 

to rise (Figure 17a).  Inflow volume outweighed Ed  at the beginning of RO, but the balance 

was shifted toward  Ed as soon as temperatures started to rise in May represented by the 

declining lake level between May and September. These results showed that Great Salt 

Lake level is primarily driven by river Q during CLF and the first half of RO and driven by  

Ed once temperatures rise during the second half of RO and the HLF season. They further 

indicated that shifts in C due to New Breach exchange are outweighed by fluctuations in 

lake level, which highlights the importance of constant and accurate gaging stations of the 

three GSL tributaries and the value of the USU head-discharge relationships for the New 

Breach.  
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Figure 17 

Total, Average Daily River Q to the GSL Plotted Against Ed (a) and South Section Water 
Surface Elevation Time Series (b) from October 2019 to October 2020.  
 

 

2.5 Discussion 

Results from this study inform lake dynamics in response to hydrologic and 

anthropogenic influences and corresponding uncertainties associated with historically 

available salinity data. They also generally describe lake dynamics and seasonal salinity 

forcing; however, this study also highlights challenges associated with limited temporal 

and spatial datasets.  

Lake Monitoring Implications 

 
Data limitations pose challenges for lake management. Models are a commonly 

used tool to inform management decisions via predicting lake response to management 

strategies. However, hydrologic data with proper temporal and spatial resolution is not 

currently available at the Great Salt Lake. Further, to adaptively manage the Great Salt 

Lake, detailed knowledge of current conditions within the system is necessary to trigger 

management actions, which should be based upon reliable data.  
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During the period of analysis, open water C data was drawn from 31 locations with 

27 found to be representative of south section conditions ±12.3 g/L. Included in that 

uncertainty, C  was found to vary with space by ±3.97 g/L, across collection and analytical 

methods by ±6.64 g/L, and due to instrumentation accuracy by ±1.02 g/L. Sampling 

frequency is an additional source of error but was not evaluated due to the lack of data. The 

sites that were consistently found to be outliers in the analysis came from the DWiR dataset 

where sites A, C, M and N are measured in collaboration with USGS. These sites had the 

highest sampling frequency, approximately every two weeks. Additional insight into C 

mixing patterns may be found if sampling frequency at the other sites were to increase, 

especially at the sites where outlier observations weren’t captured consistently. However, 

increasing sampling frequency would require significant, additional resources and may not 

be feasible due to accessibility issues at the lake. Coordinating sampling locations and 

standard operating procedure would decrease the total uncertainty from instrumentation 

and collection/analytical methods and is the most efficient way to improve open water C 

monitoring at the lake without incurring significant cost.  

The need to coordinate measurement and analytical methods is not a new 

realization. At the date of this publication, UGS, USGS and BSC have adopted a standard 

operating procedure for ρ sampling and analysis based on results from the Round Robin 

Study performed in 2020 (Great Salt Lake Salinity Advisory Committee 2020a; Great Salt 

Lake Salinity Advisory Committee, 2020b). However, specific challenges exist with 

measuring ρ of hypersaline water. ρ measurements necessitate field collection of samples 

then transportation to a laboratory for analysis. Samples of highly saturated water contain 
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salt crystals in suspension (Anati, 1999). The time in transit increases the chance of changes 

to the number of crystals. Without the natural wave action of the lake, salt precipitation 

may also occur. Adopting refractometer measurements as the standard is appealing because 

they can be performed quickly and in-situ, but, like ρ, their accuracy is highly dependent 

on T. Human error is also introduced when reading the device because it requires 

estimating percent salinity from the scale within the eyepiece.  

Path Forward 

The challenges presented with ρ and %C measurements may be avoided when 

measuring C  in the field via SC following a standardized methodology. SC measurement 

devices provide a digital reading and automatically adjust for temperature using a standard 

method. Multimeters and water quality sondes can be expensive, but they should not 

require laboratory analysis of water samples and now have the capability of measuring 

brine within the range experienced at the GSL. One significant challenge to overcome with 

SC measurements is that electrical conductivity does not increase monotonically with salt 

concentration, exemplified by results from the EQL experiment (Figure 8a). At a certain 

point, it begins to decrease. However, the range of open water C  historically observed in 

the south section of Great Salt Lake is below this turning point and the regression equation 

developed in this study improved upon current conversion methods. Additionally, SC of 

the inflows to Great Salt Lake is monitored continuously. Error in mass balance 

calculations may be diminished if C within Great Salt Lake and salt loading from its 

tributaries were measured using the same parameter and at a higher temporal resolution. 
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SC measurements are recommended for future lake monitoring at current and any 

additional sites.  

Monitoring of Additional Mass Balance Terms 

In addition to C within the lake, monitoring of Great Salt Lake mass balance 

components can also be improved. This study found that BR Q was most significantly 

correlated with C  across all three seasons. Previous studies have also determined that Great 

Salt Lake volume is most sensitive to changes in total river Q (Mohammed et al., 2012). 

Therefore, accurately tracking river inflow to the lake should be prioritized.  

Current estimates for the BR and WR are insufficient due to significant 

geographical challenges. The Weber River gage, located at Plain City East of the lake, is 

upstream from the Ogden Bay Waterfowl Management Area, which is a protected, 20,000-

acre wetland. Similarly, the BR gage at Corinne is 42 km northwest of the BR Bay Bridge. 

It is upstream of the BR Bay Migratory Bird Refuge and the BR Bay that’s flanked by 

mineral evaporation ponds. Accurately tracking sinks, sources, and storage of water and 

salt in these areas is not currently performed but would be highly beneficial. Continuous 

monitoring of Q and SC at the BR Bay Bridge, like Farmington Bay Bridge, would allow 

for better estimation of water inflows and salt loading into the south section and evaluation 

of the effect BR mixing patterns have on MSN through the New Breach. The current 

uncertainties in BR Q pose significant challenges for C and lake elevation modeling at GSL 

since the BR is the largest source of river inflow to the lake, thus until these challenges are 

resolved, it is recommended to replace the USGS Corrine Gage data with discrete water 
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quality and discharge measurements at the BR Bay Bridge when available or develop a 

correction to the Corrine gage data utilizing BR Bay Bridge observations 

Other key gaps in the lake mass balance data currently exist. Water is pumped out 

of the Great Salt Lake for mineral extraction. The volume removed from the lake is 

reported, but C of the brine leaving the lake is not. Measuring C of the water pumped back 

to the GSL by the mineral companies would improve lake wide salt mass balance estimates. 

Contribution of salt mass and water volume from q is also not measured consistently. A 

constant, yearly value for q was determined by Waddell and Fields (1977) and has been 

used in modeling studies since. Increasing measurements of groundwater inflow to Great 

Salt Lake, though small when compared to streamflow, evaporation, and precipitation, 

would lessen the gap in current mass balance estimates and could facilitate accurate 

approximation of the ungauged inflow to Great Salt Lake. 

2.6 Conclusion 

This study compiled and converted, for the first time, all available water quality 

data that can be utilized to estimate C at the GSL since completion of the New Breach 

through the causeway in January 2017.  Analysis of available GSL C datasets and 

components of the lake mass balance revealed the spatial and temporal patterns of C  within 

the south section, informed use of historical salinity data by quantifying the variance 

introduced by combining independent datasets, and highlighted the seasonal influence of 

key GSL C drivers all of which showcased ways monitoring can be improved.  
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Available water quality datasets were able to be combined using previously 

published ρ and %C conversion equations along with the SC conversion developed within 

this study. C across open water sampling locations was found to respond similarly to the 

controls explored except for four sites nearest the river inflow locations. This revealed the 

spatial extent of inflow currents from the Bear River and Farmington Bay during spring 

runoff and cold low flow months and informed removal of observations from four sampling 

locations during these seasons within the compiled C dataset. Analysis of the variance 

introduced within the filtered south section C datasets showed that the daily median value 

across sampling locations was representative of south section conditions within ±12 g/L. 

Since the C dataset characterizes general lake conditions, it has the potential to aid future 

management decisions and modeling efforts. Seasonal influence of key GSL mass balance 

components was also determined through correlation analysis. Exchange at the New 

Breach influenced south section C, however fluctuations in the balance between river 

inflows and evaporation were the main drivers of change. Based on these conclusions, 

strategies to improve monitoring at the lake include: more coordination of sampling 

methods and locations and a recommended shift in standard operating procedure from ρ to 

SC measurements. GSL mass balance calculations and models could also be improved by 

accurately tracking flow through the Bear River Bay Bridge, groundwater contribution, 

and salt export from mineral extraction activities. 

As conditions at the lake continue to evolve in response to anthropogenic and 

environmental stressors, there is an immediate need to determine the most effective means 

to adaptively manage salt concentrations. Because the lake is a complicated, dynamic 
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system, the most commonly used tool to inform management actions is modeling which 

requires data at appropriate spatial and temporal scales. Implementing the strategies 

discussed in this study would improve upon current practices by increasing salinity 

sampling frequency, diminishing uncertainty in combining multiple datasets, accurately 

tracking key components of the lake mass balance, and optimizing the use of private, state 

and federal resources; all of which aids future modeling efforts and sustainable salinity 

management at the Great Salt Lake.  
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3 MODELING GREAT SALT LAKE WATER LEVELS AND SALINITY IN 
RESPONSE TO ADAPTIVE MANAGEMENT ACTIONS 

 

3.1 Introduction 

Since the onset of the Anthropocene, many ecosystems have experienced 

significant loss of habitat and biodiversity resulting from land conversion and 

fragmentation, industrialization, infrastructure development, resource extraction, and 

waste production (Otto, 2018). These stressors also affect terminal saline lakes that sustain 

unique, diverse biota and are particularly vulnerable to human activity (Hassani et al., 

2020). They exist on every continent, excluding Antarctica, and have experienced 

desiccation due to agricultural and urban water development within their watersheds 

(Williams, 1996; Wurtsbaugh, 2017). For example, the Aral Sea in Kazakhstan has lost 

74% of its volume (Micklin, 1988), Lake Urmia in Iran has been reduced by 90% 

(AghaKouchak et al., 2024) while Owens Lake in CA, USA was completely lost in 1913 

before making a recent reappearance due to management actions (Borlina et al., 2017).  

The Great Salt Lake (GSL) in UT, U.S.A. is one of the world’s largest and most 

ecologically and economically productive saline lakes. Its biodiverse food web and 

wetlands (Belovsky et al., 2011) support breeding and migration for millions of water and 

shorebirds and it is a critical link in the Pacific Flyway between North and South America 

(Donnelly et al., 2020). Brine shrimp cyst harvests are used as a food source by global 

commercial aquaculture operations (Wurtsbaugh 2014). Minerals are also extracted from 

the hypersaline brine, supplying 14% of the world’s magnesium, various salt containing 

products, and potassium for fertilizer among others (Bioeconomics, 2012). These activities 
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generate approximately 6,500 jobs and contribute $1.9 billion (adjusted for inflation) 

annually to Utah’s economy (Bioeconomics, 2012).  

In recent history, the GSL has been highly modified and managed. An East-West 

rockfill railroad causeway was constructed in 1959 that segregates the lake into north and 

south sections (Marden et al., 2020;Figure 18); altering the spatial and temporal patterns 

of water and salt cycling within the lake (Brown et al., 2023). Its natural hydrologic balance 

has also been altered by significant upstream water withdrawal for agricultural and 

municipal use (Null and Wurtsbaugh, 2020). Since 2000, these diversions, compounded by 

a period of prolonged drought (Williams et al., 2020), have triggered significant decline in 

annual, average lake level and record high salt concentrations (GSL Strike Team, 2023). 

As a results, economic activities have suffered millions of dollars in damage (Potential 

Cost of Declining Great Salt Lake, 2019) with projected long-lasting harm to the ecological 

communities (Barnes and Wurtsbaugh, 2015; Lindsay et al., 2019; Perry, 2019). 
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Figure 18 

The Great Salt Lake and its Bays, Tributaries, and Key Features 

 

Efforts to minimize GSL desiccation have focused on adaptively managing south 

section lake levels and salinity. Such efforts are best informed by a detailed understanding 

of the hydrology and hydraulics of the lake such as the interactions between lake elevation, 

evaporation, and salinity driven by snowmelt, streamflow, climate shifts, and water/salt 
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cycling between the sections; made more complex by human activities. Prior work has 

sought to disentangle these complex relationships by quantifying, chronicling and 

characterizing changes in south section dissolved salt mass (Brown, 2023; Merck and 

Tarboton, 2023; Yang, 2020). Previous mass balance models have facilitated the 

simultaneous exploration of rates of change in lake elevation and water and salt mass in 

the GSL, but have not been updated for recent hydroclimatic conditions, major 

modifications to the causeway completed in 2017, or critical bi-directional flow between 

the north and south sections at the causeway (Waddell and Fields, 1977; Wold et al., 1996; 

Loving et al., 2000; Mohammed and Tarboton, 2012; White et al. 2015; Jewell, 2021; 

GSLIM, 2019). Further, the most comprehensive model used by the state of Utah has not 

been updated with newly developed methods to predict the bi-directional flow exchange 

(Dutta et al., 2024) and is inaccessible to other technical stakeholders because of the use of 

proprietary software. 

There is a clear need to inform adaptive management of the GSL via development 

of an open source, process based, mass balance model that encompasses key water and salt 

mass fluxes, accurately quantifies flow through the causeway, and can predict lake level 

and salinity in response to historical conditions and recent management actions. This led 

to the development of a simplified  mass balance model, the Utah State University Mass 

Balance Model (USU-MBM) that captures the complex bi-directional exchanges at the 

causeway and vertical mixing dynamics within the chemically stratified south section to 

evaluate adaptive management strategies. 
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3.2 Study Area 

The GSL experiences an arid climate with high evaporation rates. Precipitation 

falls primarily in the form of snow during the winter months which is followed by 

substantial spring runoff (Baxter and Butler, 2020). Lake volume is understood to be 

most sensitive to the balance between river inflows and evaporation (Mohammed and 

Tarboton, 2012). Typically, lake levels decrease from July to October when temperatures 

are high, the climate is dry and evaporative volumes exceed river inflows. The inverse is 

true from November to June where inflow volume outweighs evaporative volume due to 

snowfall and spring snowmelt (White et al., 2015). GSL water surface elevation also 

varies at an interdecadal scale triggered by periods of  drought or flood (Wang et al., 

2010).  

The lake’s primary tributaries contribute about 66% of total inflows to the lake and 

include the Bear River (BR) (58% of known, total stream flows to the lake,(Null and 

Wurtsbaugh, 2020), the Weber River (WR) (15% of total stream flows), and the Jordan 

River (JR) (22% of total stream flows). The JR enters the lake through Farmington Bay 

(FB) and the Goggin Drain (GD), the BR flows through the Bear River Bay while WR 

flows through wetlands and then into the south section (Figure 18). Wurtsbaugh et al. 

(2017) estimated that these inflows have been depleted by approximately 39% since 1847 

which has lowered the lake by 3.4 m (a 64% reduction in volume). 63% of diversions are 

for agriculture, 11% by cities, 13% by solar ponds and 13% attributed to other uses (Null 

and Wurtsbaugh, 2020). Groundwater contribution to the lake is not directly measured but 

has been estimated to be 0.093 km3 per year (Waddell and Fields, 1977). Additionally, 
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mineral extraction companies routinely pump water from the north and south sections to 

evaporation ponds on either side of BR Bay and on the southwest corner of Gilbert Bay 

(Merck and Tarboton, 2023). 

Salinity and nutrient dynamics within the lake are heterogenous due to the rockfill 

railroad causeway. All GSL tributaries flow to the south section causing distinct density 

and elevation gradients between the two sides. North of the causeway (Gunnison Bay) 

generally has a water surface elevation that is 0.3-0.6 m lower than the south section. 

These waters are typically reddish in hue and near saturation with respect to salt (330 

g/L) while the south (Carrington Bay, Gilbert Bay) is a blueish hue with salt 

concentrations fluctuating between 100 and 180 g/L in response to seasons and water 

year conditions (Wurtsbaugh, 2014;Figure 18). The BR Bay and FB waters are more 

dilute, between 0 and 90 g/L (Figure 18). The south section experiences periods of 

distinct density stratification where a less dense, upper brine layer (UBL) sits above a 

more dense, deep brine layer (DBL) that has a concentration around 200 g/L (Merck and 

Tarboton, 2023). Jewell (2021) attributed DBL formation to hypersaline north section 

brine penetrating the south section through openings in the causeway and seepage across 

the entire length. Naftz (2014) further documented movement of north section water 

between Carrington Bay and Gilbert Bay as a high-density current during infrequent high 

southerly wind events that trigger uni-directional north to south (NS) flow through 

openings in the causeway. Fluctuations in DBL elevation are influenced by extreme wind 

events that are believed to induce mechanical mixing through the water column, however 

full DBL dissipation has only been observed when the causeway openings were closed 
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(Yang et al., 2020; Wurtsbaugh and Jones, 2012). South section mass loading also occurs 

from the tributaries; however causeway exchange flows have been understood to be the 

main driver of salt mass change since 2010 (C. Rumsey, personal communication, May 

24, 2023). 

The sections of the lake have experienced various levels of connectivity throughout 

the history of the causeway. Initially, two culverts allowed for limited water and salt mass 

exchange between the sections (Gwynn and Sturm, 1987). The Lakeside Breach was added 

in 1984 to counteract high south section elevation because of flooding; however, it became 

ineffective in the early 2000s when lake levels dropped significantly due to drought 

conditions. The culverts deteriorated and sank into the lakebed in 2013 and 2014, fully 

segregating the lake (White et al., 2015). In 2017, a 55 m bridge known as the New Breach 

was opened to reconnect the lake sections. It features an adjustable rock berm that is raised 

or lowered to control bidirectional flow exchange that is driven by the density and water 

surface elevation differences between the north and south sections (Rasmussen, 2022). In 

2022, the berm was raised to an elevation of 1276.2 m to limit increasing salinity in the 

south section, lessening salt mass loading from the north. Despite this rise, the lake reached 

a record low water surface elevation (WSE) and high concentration. In response, the berm 

was raised above south section WSE to 1277.7 m, maximizing dilution during spring runoff 

2023 and allowing UBL salinity to decrease to 125 g/L prior to summer 2023.  

Multiple studies analyzing historical lake salinity and elevation data have been 

performed since the opening of the New Breach to inform these adaptive management 

decisions. Merck and Tarboton (2023) documented long-term movement of salt and 
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changes to salinity in time and space within the lake, primarily focusing on the occurrence 

and extent of density stratification in the south section. However, they did not quantify 

DBL/UBL volumes or salt mass transfer between the layers. Brown et al. (2023) calculated 

dissolved salt mass and major salt fluxes, chronicled salt movement and characterized 

salinity response within the south section to causeway adaptations since 2010. These 

studies focused on mass fluxes in the system but did not quantify rates of change in 

elevation or salt mass nor address the influences of fluctuating water levels on salinity.  

Prior GSL modeling studies have been completed to meet varied objectives. White 

et al. (2015) used mass balance models to simulate proposed New Breach geometries and 

south section salinity response using the GSL Fortran Model capable of calculating bi-

directional flow exchange through the old culverts as documented in Holley and Waddell 

(1976), Wold et al. (1997) and Loving et al. (2000). These simulations quantified south 

section salinity response to various bridge designs but did not segregate the south section 

into UBL/DBL layers. Following construction of the New Breach, new exchange flow 

models were developed by USU. The first was a computational fluid dynamics model of 

New Breach flows developed by Rasmussen (2022) using historical WSE and density data 

and the second was a machine learning model (Larsen, 2024) based upon hydrologic and 

hydraulic data. A lake wide model, the GSL Integrated Model (GSLIM), was also 

developed by Jacobs Engineering (GSLIM, 2019). It is a mass balance model integrating 

river, wetland, and lake modules that can track WSE and salinity in response to changes 

within the watershed; however, it quantified exchange flows using the Holley and Wadell 
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(1976) model. Further, GSLIM is proprietary and thus far is not able to predict salt mass 

to the accuracy desired.  

While mass balance modeling approaches have previously been applied at the GSL, 

to the authors knowledge no model has been formulated with the ability to predict lake 

levels and salt concentrations from 2017 to present, incorporated new methods to predict 

New Breach exchange flows, or leveraged all available hydrologic datasets from various 

stakeholders. Therefore, the USU-MBM is presented herein; it has a simple formulation 

that incorporates a new method to predict New Breach exchange flows for various 

submerged berm elevations. It also quantifies UBL/DBL mass partitioning and predicts 

lake level and UBL salinity in response to recent berm management approaches which is 

critical to guide future management strategies. 

3.3 Methods 

3.3.1 Model Formulation 

A mass balance approach was taken to simulate GSL lake level and salinity in both 

the north and south sections. Salt concentration (C), equivalent to salinity, is dependent on 

water volume (V ) and total dissolved salt mass (M), both of which are time variable in the 

GSL. Therefore, model formulation incorporated both V and M balances to track C at a 

daily time step. Since current adaptive management of the GSL utilizes the New Breach 

and its submerged berm, the period of analysis for the USU-MBM is  July 2017 until 

October 2023, which corresponds to the start of stable DBL conditions after opening of the 

New Breach through raising of the submerged berm to completely restrict exchange flows. 
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The simulation period was broken into a calibration period (July 2017 to December 2021) 

and a validation period (January 2022 to October 2023) as discussed in Chapter 3.3.3.  

Selection of the model time step was informed by GSL hydrologic data and a sensitivity to 

averaging data on daily, weekly, and monthly scales; a daily time step was chosen because 

it balances the uncertainty associated with averaging forcing data that vary over short 

timescales with computational efficiency (computation time for the USU-MBM over the 

entire simulation period was four minutes on average).  

Mass Balance Equations 

The GSL was divided into two control volumes to represent the north and south 

sections (Figure 19). Maintaining healthy salinity and lake levels in the open water 

portions of the south section are the focus for GSL managers, thus the south section 

control volumes include Carrington Bay and Gilbert Bay but do not account for Bear 

River Bay or Farmington Bay. The south control volume is further segregated into two 

volumes, the UBL and DBL to represent periodic density stratification. The north section 

was not partitioned as Merck and Tarboton (2023) detected a lack of stratification north 

of the causeway. They also found the north section, UBL and DBL to be vertically and 

horizontally homogenous. Thus, the north control volume and both south control volumes 

were treated as three continuously stirred tank reactors (CSTR) where influx of water V 

and M are instantaneously mixed causing vertical and horizontal homogeneity.  
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Figure 19 

Conceptual Model Diagram Including Water and Salt Mass Fluxes 

 

Note. River Q includes surface water inflows from the Bear River, Weber River, Goggin 

Drain, and Farmington Bay, River C is concentrations of the River Qs, E is evaporation, P 

is precipitation, G is groundwater contribution, Qm,out is withdrawal for mineral extraction 

activities, Qm,in is return flow from mineral extraction activities, QSN is south to north 

New Breach flow, QNS is north to south New Breach flow, QL is flow through Lakeside 

Breach, CN is north section concentration, Cubl is concentration of UBL and E’ is mass 

transfer due to diffusion across the DBL/UBL interface. 

Water is supplied to the lake via precipitation (P), surface water discharge from the 

Bear River (QBR), the Weber River (QWR), Goggin Drain (QGD), and Farmington Bay (QFB), 

groundwater (G ), and return flows from mineral extraction activities, (Qm,in ). Lake V is lost 

to evaporation (E ) and water pumped out for mineral extraction, (Qm,out) (Figure 19). Water 

is exchanged between the control volumes via north to south (NS) flow through Lakeside 
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Breach (QL), and bidirectional flow through the New Breach (QNS, QSN) (Figure 19). 

Mineral extraction companies pump water out of both lake sections, thus QM,out  was 

tracked for the north section and the south section. UBL V fluxes included QBR, QWR, QFB, 

QGD, P, E, QM,out, QM,in, QSN, and QL, assuming Qs were fully mixed into the UBL and that 

the mineral companies pumped brine from the surface of the lake. Jewell (2021), Yang et 

al. 2020, and Wurtsbaugh and Jones (2012) analyzed drivers of DBL formation and 

determined that the DBL forms due to QNS thus DBL V fluxes included QNS and G (Figure 

19). Given these assumptions and 𝑉 fluxes, the water budget equations for the south section 

UBL (VS,ubl), south section DBL (VS,dbl) and the north section (VN) are:  

డ௏

డ௧ ௌ,௨௕௟
= 𝑄ேௌ − 𝑄ௌே + 𝑄௅ + 𝑄஻ோ + 𝑄ௐோ + 𝑄ி஻ + 𝑄ீ஽ − 𝑄ெ,௢௨௧ + 𝑄ெ,௜௡ + 𝑃௦ − 𝐸௦  

(28) 

డ௏

డ௧ ௌ,ௗ௕௟
= 𝑄௡௦ + 𝐺  

(29) 

డ௏

డ௧ ே
= 𝑄ௌே − 𝑄ேௌ − 𝑄௅ − 𝑄ெ,௢௨௧ + 𝑃ே − 𝐸ே + 𝐺  

(30) 

where QBR, QWR, QGD, QFB = discharge from GSL tributaries [m3/day],  QL = 

discharge from Lakeside Breach [m3/day], QNS = north to south discharge through the New 

Breach [m3/day], QSN = south to north discharge through the New Breach [m3/day],  𝑄ெ,௢௨௧ 

= withdrawal from mineral exraction activities [m3/day], 𝑄ெ,௜௡= return flow from mineral 

extraction activities [m3/day], P = precipitation [m3/day], E =  evaporation [m3/day], and 𝐺 

= groundwater contribution [m3/day]. The explicit Euler method with upwind differencing 
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was used to solve the governing water balance equations, determining 𝑉௜ାଵ (Chapra, 1997; 

Hoffman, 2001) 

Both M and 𝑉 is exchanged between the UBL and DBLin the south section due to 

wind induced turbulent mixing. To represent this process in the USU-MBM formulation, 

a wind mixing algorithm was applied to supplement mass transfer calculated using methods 

determined by Munk and Anderson (1948) (see Eq. 40 to 46 below), as high GSL brine 

density precludes conventional methods. This mixing algorithm incorporates a 𝑉 threshold 

to quantify M exchange between the DBL and UBL. Based upon limited historical DBL 

depth observations (C. Rumsey, personal communication, May 24, 2023), Vdbl is, on 

average, 9% of total south section volume (VS) where 𝑉S = 𝑉௨௕௟ + Vdbl If 𝑉ௗ௕௟,௜ାଵ >

0.09 × 𝑉ௌ,௜ାଵ, a portion of 𝑉ௗ௕௟,௜ାଵwith concentration equal to the concentration at the 

beginning of the time step, 𝐶ௗ௕௟,௜, is mixed into the UBL to maintain this threshold. Ci is 

then updated prior to quantifying M fluxes. This is calculated 

using:

𝑉∗
 =  𝑉ௗ௕௟,௜ାଵ − 0.09 × 𝑉ௌ,௜ାଵ  

(31) 
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 𝐶௨௕௟,௜
∗ =  

𝑉௨௕௟,௜𝐶௨௕௟,௜ + 𝑉∗
𝐶ௗ௕௟,௜

𝑉௨௕௟,௜ + 𝑉∗  

(32) 

𝐶ௗ௕௟,௜
∗  =  

𝑉ௗ௕௟,௜𝐶ௗ௕௟,௜ − 𝑉∗
𝐶ௗ௕௟,௜

𝑉ௗ௕௟,௜ − 𝑉∗  

(33) 

where C is in [kg/m3] and 𝑉∗ = the difference between interim DBL volume and the DBL 

volume threshold [m3]. 

M is contributed to the lake via river Q and exchanged via flow through the New 

Breach and Lakeside Breach. Mass is also exchange across the UBL/DBL interface due to 

diffusions. As noted, G is not monitored regularly at the lake. No data for Q or C was 

available, thus G was assumed to have no salt concentration. Following similar 

assumptions as the water budget equations and completely mixed systems, salt mass 

balance for the south section UBL (VC)S,ubl, south section DBL, (VC)S,dbl, and the north 

section, (VC)N, are: 
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డ(௏஼)

డ௧ ௌ,௨௕௟
=

𝑄௅𝐶ே,௜ + 𝑄஻ோ𝐶஻ோ + 𝑄ௐோ𝐶ௐோ + 𝑄ி஻𝐶ி஻ + 𝑄ீ஽𝐶ீ஽ − 𝑄ௌே𝐶௨௕௟,௜
∗

−𝑄ெ,௢௨௧𝐶௨௕௟,௜
∗ + 𝑄ெ,௜௡𝐶௦௔௧ + 𝐸ᇱ൫𝐶ௗ௕௟,௜

∗ − 𝐶௨௕௟,௜
∗ ൯

 

(34) 

𝜕(௏𝐶)

𝜕𝑡 𝑆,𝑑𝑏𝑙
= 𝑄𝑁𝑆𝐶𝑁,𝑖 + 𝐸′൫𝐶𝑢𝑏𝑙,𝑖

∗ − 𝐶𝑑𝑏𝑙,𝑖
∗ ൯  

(35) 

𝜕(௏𝐶)

𝜕𝑡 𝑁
=  𝑄𝑆𝑁𝐶𝑢𝑏𝑙,𝑖

∗  −  𝑄
𝑁𝑆

𝐶𝑁,𝑖 − 𝑄𝐿𝐶𝑁,𝑖 − 𝑄𝑀,𝑜𝑢𝑡𝐶𝑁,𝑖  

(36) 

where 𝐶஻ோ, 𝐶ௐோ, 𝐶ி஻, 𝐶ீ஽ = salt concentration of GSL tributaries [kg/m3], 𝐶ே,௜ = salt 

concentration of the north section at time step i, 𝐶௨௕௟,௜ = salt concentration of the UBL at 

time step i, 𝐶ௗ௕௟,௜ = salt concentration of the DBL at time step i [kg/m3], 𝐶௦௔௧ =  salt 

concentration of water at saturation kg/m3, and 𝐸ᇱ= turbulent diffusion coefficient [m3/d]. 

Merck and Tarboton (2023) found that 25% of total 𝑉 pumped from the lake for mineral 

extraction returns to the south section at halite concentration, thus Csat was assumed to be 

constant with a value of 275 g/L. Following the CSTR assumption, C of the brine 

removed from the north section along with QL and QNS were assumed to be equal to CN 

while C of the brine removed from the UBL and QSN were assumed to equal Cubl. The 

explicit Euler method was also used to calculate Ci+1. If UBL/DBL C equalized at the end 

of the time step or due to wind mixing, the DBL was mixed completely into the UBL, 

and DBL growth was allowed until the 𝑉 threshold was met again. For periods where 

VS,dbl is small during DBL formation (less than 10,000 m3), the model sets  ങ಴

ങ೟ௌ,ௗ௕௟
 equal 

to 0 to avoid unstable outputs in DBL C  prior to full formation of the DBL.   
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Two lake processes have been observed but are not accounted in the USU-MBM; 

1) seepage through the causeway and 2) salt crystal deposition/re-entrainment (Jewell, 

2021; Oillon et al., 2019). Jewell (2021) found that seepage along the causeway contributed 

to DBL formation using data from 2008 to 2015. The causeway is routinely modified by 

the Union Pacific Railroad who add rock and fill material which locally alters seepage rates 

and introduces high uncertainty in any seepage estimate and corresponding salt transfer. 

Thus this aspect of the system is not included in the model formulation Jagniecki et al. 

(2021) observed salt precipitation from the water column in the north section during winter 

months when the water temperature (T ) decreases and re-dissolution of salt from the north 

lakebed due to wave action when water T rises. Although this may be a significant source 

of M, specific methods to describe these dynamics at the GSL have not been developed.  

Mass Balance Terms 

Daily volume of precipitation P for each side of the lake was estimated by: 

𝑃 = 𝑃ௗ × 𝐴  

(37) 

where 𝑃 = precipitation volume, unique for each lake section [m3/d], 𝑃ௗ = precipitation 

depth [m/d] and A =surface area [m2] that is a function of time and WSE. A is dependent 

on lake V, which is calculated for each section at each timestep based on the U.S. 

Geologic Survey’s relationship between A and V for each bay as a function of WSE 

(Root, 2023). For this study, south section A and V were calculated using these tables by 

summing values for Carrington Bay and Gilbert Bay, excluding Farmington Bay and 

Bear River Bay which are not accounted for in the USU-MBM. 
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The same method was employed to calculate volume of E off the lake’s surface: 

𝐸 = 𝐸ௗ × 𝐴  

(38) 

where 𝐸 =evaporative volume unique for each section [m3/d] and 𝐸ௗ= evaporative depth 

[m/d] which was calculated using Eq. 9-26 outlined in Chapter 2.3.2. 

Groundwater contributions are not monitored at the GSL; a yearly total of 0.093 

km3/yr. was included herein based upon Loving et al. (2000). Due to lack of monitoring, G 

was assumed to be freshwater and was divided evenly between the north and south sections 

to estimate constant, daily groundwater contribution to the lake. Eq. 35 and 36 also includes 

the bulk turbulent diffusion coefficient at each time step i (𝐸ᇱ) which was estimated per 

Chapra and Martin (2004): 

𝐸ᇱ =
𝐴௜𝐸௜

𝐻௜

2

 

(39) 

where Ai =surface area of the DBL/UBL interface[m2], Hi =depth of the south section 

[m], and Ei = turbulent diffusion coefficient across the UBL/DBL interface [m2/d] (Munk 

and Anderson, 1948): 

𝐸௜ =
𝐸଴

(1 + 𝑎𝑅௜)
଴.ହ

 

(40) 

where 𝐸଴ = the maximum diffusion coefficient [m2/d], a = a tuning coefficient, and 𝑅௜ =  

Richardson number. The maximum diffusion coefficient was calculated using (Sundaram 

and Rehm, 1973): 
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𝐸଴ = 𝑐𝑈∗  

(41) 

where c = a tuning coefficient and 𝑈∗ = shear velocity [m/s]. The tuning coefficient c was 

calculated at each time step using (Chapra and Martin, 2004): 

𝑐 =
𝑊𝑆𝐸௦ − 𝐻଴

34
 

(42) 

where 𝑊𝑆𝐸௦ = daily WSE of the south section [m], and 𝐻଴ = the lowest point along the 

lakebed within the south section [m], equal to 1267 m. Both a and c became the primary 

tuning coefficients used to calibrate mass transfer between the south section layers during 

model calibration. Shear velocity at the surface, 𝑈∗, was taken as (Chapra and Martin, 

2004): 

𝑈∗ = ඨ
𝜌௔௜௥𝐶ௗ𝑣௪

ଶ

𝜌
 

(43) 

where 𝜌௔௜௥ =  density of the air (assumed equal to 1.2 kg/m3), 𝐶ௗ = dimensionless drag 

coefficient (assumed equal to 1.3 × 10ିଷ), 𝑣௪ is at model time step I [m/s], and 𝜌 = density 

of the water [kg/m3]. The Richardson number, a dimensionless number that relates the 

buoyancy to shear forces generated through the water column, was calculated using (Ford 

and Johnson, 1986): 
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𝑅௜ = −
ቀ

𝑔
𝜌

ቁ ൬
𝜕𝜌
𝜕𝑧

൰

𝑈∗/(𝑧௦ − 𝑧)ଶ
 

(44) 

where g = acceleration due to gravity (equal to 9.81 m/s2), 𝜕𝜌/𝜕𝑧 = the gradient of density 

with depth, 𝑧௦ = WSE of the south section [m] and 𝑧 = elevation at which the Richardson 

number is computed [m], in this case the DBL/UBL interface. The ρ gradient at DBL/UBL 

interface was computed with a finite divided difference (Chapra, 1997): 

𝜕𝜌

𝜕𝑧
=

𝜌௜ − 𝜌௜ାଵ

𝑧௜ − 𝑧௜ାଵ
 

(45) 

where 𝜌௜  = density of the UBL [kg/m3], 𝜌௜ାଵ= density of the DBL [kg/m3]  , 𝑧௜= 

elevation of the midpoint of the UBL [m],  and 𝑧௜ାଵ = elevation at the DBL midpoint [m]. 

To calculate QNS  and QSN as a function of lake conditions and New Breach berm 

geometry, an analytical formulation was developed based upon a USGS New Breach 

velocity profile dataset (from an ADCP up-looker) that allowed for consideration of four 

flow scenarios:  1) a no-flow case (berm height exceeds water surface elevation), 2) the 

most common  bi-directional flow scenario (QNS and QSN), 3) unidirectional flow QNS, and 

3) unidirectional flow QSN. The analytical formulation used energy conservation via 

Bernoulli’s equation in a one-dimensional formulation of specific energy, referencing berm 

height, water surface elevations, density of the lake sections, and the location of the flow 

interface between the exchange flows, to estimate QNS  and QSN via empirical rating curves 

fit to New Breach Q (Dutta et al., 2024): 
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𝑄ேௌ = 2.4𝐻ூ
ଵ.଻;    berm elev. = 1275 m  

(46) 

𝑄ேௌ = 1.08 × 10ି଼(𝐻ூ − 2.97)ଵସ.ଽ଻;   berm elev. = 1276.2 m 

(47) 

𝑄ௌே = 4.51(𝐻் − 𝐻ூ)ଵ.଺ସ;    berm elev. = 1275 m  

(48)

𝑄ௌே = 1.85(𝐻் − 𝐻ூ)଴.ଽ଻;     𝑏𝑒𝑟𝑚 𝑒𝑙𝑒𝑣. = 1276.2 𝑚  

(49) 

where  Q is in [m3/s] and 𝛼 and b are dimensionless curve fit parameters, unique to each 

berm case, 𝐻ூ = flow interface between NS and SN flow, and 𝐻்= the height of the water 

flowing over the berm [m]. 

The flow interface was calculated using (Dutta et al., 2024): 

𝐻ூ =
𝜌ே𝐻ே − 𝜌ௌ𝐻ௌ

𝜌ே  − 𝜌ௌ
−

𝐶ேௌ ∙ 𝑉ேௌ
ଶ

2𝑔
∙

𝜌ே

𝜌ே  − 𝜌ௌ
+

𝐶ௌே ∙ 𝑉ௌே
ଶ

2𝑔
∙

𝜌ௌ

𝜌ே  − 𝜌ௌ

 

(50) 

where 𝜌ே = density of the north section [g/cm3], 𝜌ௌ= density of the south section (assumed 

to be density of the UBL) [g/cm3], 𝐻ே = height of the north section water surface [m] above 

the bottom of the New Breach (elev. 1272.9 m), and 𝐻ௌ = height of the south section water 

surface [m] above the bottom of the New Breach, 𝑉ேௌ = average NS flow velocity [m/s], 

𝑉ௌே =average SN flow velocity [m/s], g = gravitational constant, equal to 9.81 [m/s2], and 

𝐶ேௌ, 𝐶ௌே = dimensionless coefficients to correct for friction loss and non-uniformity. For 

the 1275 m berm: 𝐶ேௌ = 1.71 and 𝐶ௌே = −1.84. For the 1276.2 m berm: 𝐶ேௌ = 19.34 and 
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𝐶ௌே = −0.43. These coefficients are dependent on berm elevation and were developed by 

comparing flow interface calculations to the ADCP velocity data (Dutta et al., 2024). The 

height of the water above the berm was calculated using (Dutta et al., 2024): 

𝐻் = 𝐻ௌ −
𝐶ௌே ∙ 𝑉ௌே

ଶ

2𝑔
 

(51) 

Since 𝐻் and 𝐻ூ are dependent on V, which is unknown at each model time step, HS was 

used as an initial value for HT and an initial value of HI was calculated using (Dutta et al., 

2024): 

𝐻ூ,௜௡௜௧௜௔௟ =
𝜌ே𝐻ே − 𝜌ௌ𝐻ௌ

𝜌ே  − 𝜌ௌ
 

(52) 

The rating curves were then solved to get initial QNS and QSN.  

For the 1277.7 m berm case, flow scenario 4 occurs and the berm was treated as a 

broad-crested rock weir (Dutta et al., 2024):  

𝑄ௌே  =  𝐶௪ ∙ 𝐿 ∙ 𝐻ௌ
ଵ.ହ 

(53) 

where 𝐶௪ = weir discharge coefficient, equal to 1.6 and calibrated based on USGS discrete 

Q measurements at the New Breach, L i= length of berm, equal to 30.5 m, and 𝐻ௌ is in [m]. 

These equations are a significant simplification of the hydraulics at the New Breach, but 

do cover a viable range of geometric conditions of the submerged berm specific to the New 

Breach geometry.  
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An adjustment was performed on the empirical rating curves before incorporating 

them into the model.  Eq. 47-50 and Eq. 54 were applied over their corresponding time 

periods (2017/7/1 - 2022/7/21 for low elev. 1275 m, 2022/7/22 – 2023/2/13 for medium 

elev. 1276.2 m and 2023/2/14 – 2023/9/30 for high elev. 1277.7 m). Historical observations 

of ρ and WSE for the UBL and north section from the calibration/validation dataset were 

used as inputs to the rating curves. The outputs were then compared against discrete 

measurements of QNS and QSN at the New Breach, which were compiled from NWIS 

(USGS, 2023) and linearly interpolated to prepare a daily series. The average daily 

difference between the predicted and observed QNS and QSN was calculated for each berm 

elevation and reported as a percent of the predicted. The resulting percent error was 

incorporated into the model using: 

𝑄௖ = 𝑄 + 𝑄 × %ௗ  

(54) 

where 𝑄௖ =  corrected Q [m3/d] and %ௗ = percent difference, unique to each berm 

elevation and flow direction. The root mean squared percent error (RMSPE) for the raw 

and corrected rating curve outputs compared to the interpolated, observed Q values were 

calculated over the entire time series to evaluate the performance of this adjustment and 

validate its use within the USU-MBM.  

3.3.2 Data Preparation 

Forcing Data Preparation 

From January 2017 to June 2022, the berm was at its lowest elevation of 1275 m. 

July 2022, it was raised to a medium elevation of 1276.2 m and in February 2023 it was 
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raised to its highest elevation of 1277 m fully segregating the sections. Forcing data 

including Q and C of river inflows, Pd over the lake, and climatic variables included in 

estimating Ed off GSL was compiled for the USU-MBM to capture the hydroclimatic 

conditions surrounding these management actions and for use in calculating terms within 

the mass balance.  

During the simulation period, Q and C data for BR, WR, FB, GD, and Lakeside 

were compiled from the U.S. Geologic Survey’s (USGS) National Water Information 

System (NWIS) database (USGS, 2023) using the dataretrieval package in python 

(Horsburgh et al., 2022). 15-minute continuous Q observations were available for BR, WR, 

FB, and GD while discrete measurements of Q at Lakeside Breach were taken 

approximately every two months (Table C3; Figure C1). The continuous Q data was 

averaged over each day while the discrete measurements at Lakeside were linearly 

interpolated to provide a daily time series for each site.  

Previous GSL models have used QBR data from the USGS gage along the BR at 

Corinne, UT (10126000) approximately 42 km north and west of the BR-GSL confluence 

at BR Bay bridge. However increases/decrease in Q and salt mass loading occur between 

this gaging station and the BR Bay bridge (10010060) due to lateral stream inflows, the 

BR Migratory Bird Refuge and conveyance associated with the evaporation ponds on 

either side of BR Bay. Therefore  a correction was performed in this study using a 

seasonal, linear regression between day of the water year and the difference between 

discrete Q measurements made at the BR Bay bridge and daily BR gage Q. This 

correction was applied via: 
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𝑄஻ோ,௣௥௘ௗ = 𝑄஻ோ,௚௔௚௘ + 𝑄௖(𝑊𝑌)
 

(55) 

where 𝑄஻ோ,௣௥௘ௗ is predicted BR flow through the BR Bay bridge [m3/d], 𝑄஻ோ,௚௔௚௘ is Q 

measured at the BR gage [m3/d], and 𝑄௖(𝑊𝑌) is the 𝑄஻ோ,௚௔௚௘ correction as a function of 

the day of the water year [m3/d]. RMSPE was calculated for the corrected and 

uncorrected BR gage Q compared to the BR Bay bridge discrete Q measurements to 

determine the effectiveness of this correction.  

C of the flows from the BR, WR, GD, and FB was not directly measured, therefore, 

water quality data including specific conductance (SC) and ρ was compiled from NWIS 

(USGS, 2023) and converted to C in g/L following the methods employed in Chapter 2.3.2 

(Table C3). 15-minute continuous SC data was available for water years 2019, 2022, and 

2023. The gaps in the SC data for these sites were filled with ρ observations taken from 

samples collected monthly. A daily average of the continuous C data was performed; 

additional gaps in C time series were linearly interpolated between measurements. While 

ρ at the BR Bay bridge is generally higher than at the BR gage, there was clear trend to 

formulate an appropriate ρ correction. Instead, ρ at the BR Bay Bridge was prioritized and 

any missing data was provided by the BR gage.  

Yearly withdrawals for each mineral company were compiled from a public USU 

dataset (Tarboton, 2024). Since 2017, four companies have harvested minerals including 

Cargill Salt Inc., Morton Salt Inc., and U.S. Magnesium LLC from the south section and 

Compass Minerals from the north section. Detailed information on the extraction 

operations are privately held, thus for this study published yearly withdrawal 𝑉 from each 
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company corresponding to each side of the GSL was divided evenly across days within the 

year to calculate constant, daily Qm,out. Daily P data was obtained from Oregon State 

University’s PRISM Climate Group (Daly et al., 2008) using Climate Engine (Huntington 

et al., 2017). The data was reported at a 4 km grid resolution. Cells falling over the GSL 

were identified using a GSL lake shapefile provided by Tarboton (2024); the data within 

each cell was averaged to produce a daily time series of Pd  for use in Eq. 38.  

Hourly climate data including νw, Td, and site pressure (psite), Ta,max and Ta,min was 

obtained from Utah State University’s Utah Climate Center (USU, 2024) from three sites 

on the GSL (Figure C1; Table C2). 15-minute νw was also measured by the USGS at the 

New Breach and compiled from NWIS (USGS, 2023; Table C2). A daily average was 

applied to the continuous data at individual collection sites. After evaluating the spatial 

variance of the datasets across the collection sites, a single, spatial average value for each 

variable was generated and understood to be representative of GSL conditions (Figure C2).  

Testing Data Preparation 

Historical observations of C, V, and M for each control volume were gathered over 

the entire simulation period for use establishing initial conditions and calibrating and 

validating the USU-MBM (Dunn, 2024b). UBL, DBL and north section C were derived 

from sample ρ, SC and T data while the UBL C dataset also included percent salinity (%C) 

measurements. ρ and T data was compiled from the NWIS (USGS, 2023), the Utah 

Geologic Survey’s (UGS) Brine Chemistry Database (UGS, 2020), and water quality 

monitoring reports from HDR Engineering published by the Utah Department of Water 

Quality (UDWQ, 2022). Five sites were available for the north arm, eleven sites reported 
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UBL and DBL samples and eighteen sites reported just UBL samples (Table C1; Figure 

C1). DBL and UBL SC data was collected at two sites in the south section by the Brine 

Shrimp Cooperative (BSC) and published in Brown et al. (2023) while the Department of 

Wildlife Resources (DWiR) collected %C measurements of the UBL at 15 sites. Additional 

details on the collection and analytical methods each entity used to develop these datasets 

are documented in Chapter 2.3.1.  

To test the ability of the modeling approach to reproduce DBL and UBL C and V, 

a depth to DBL dataset, developed by the USGS using SC profiles taken at one site in 

Carrington Bay and one in Gilbert Bay (C. Rumsey, personal communication, May 24, 

2023),  was used to curate C, V and interface elevation time series for the UBL and DBL. 

Daily DBL/UBL interface elevation was calculated individually for Carrington Bay and 

Gilbert Bay by linearly interpolating between observations of DBL depth and subtracting 

from daily, historical south section WSE observations.  

To curate the C time series, C measurements above the calculated DBL interface 

within each bay were apportioned to the UBL, and below to the DBL. Whenever profile 

measurements were taken, values within the north section, UBL and DBL were averaged 

section, constituting a single representative value at the time of sampling. C measurements 

were then supplemented using linear interpolation to develop daily time series at each 

sampling location. Daily median UBL, DBL and north section C were calculated by 

averaging across sites, assuming spatial homogeneity, and are presumed to be 

representative of conditions within each control volume.  
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Measurement uncertainty, combining multiple independent data sets, applying 

various C conversion equations, and the spatial homogeneity assumption introduce 

uncertainty into the calibration/validation dataset. It is necessary to keep these uncertainties 

in mind when evaluating USU-MBM performance; therefore 90% confidence intervals 

(CI) were developed for the representative C time series. Development of the 90% CI for 

the UBL dataset is discussed in Chapter 2.3.4 while DBL and north section intervals were 

calculated in this chapter following the same method. The daily, north section dataset only 

included ρ observations thus the average standard deviation (σ) across all north section 

sites during the entire modeling period and the C resulting from the reported ρ measurement 

accuracy was calculated. The DBL dataset included ρ and SC data, thus it was broken into 

two subsets, one for each variable. Average σ through space and due to measurement 

uncertainty for both subsets were calculated. Variance from combining datasets was also 

explored by calculating average σ between the daily time series at BSC site L/USGS site 

B and BSC site K/USGS site E. A first order error analysis was performed on σ to 

determine total σ for the DBL and north section C time series due to these sources of 

uncertainty (Berthouex and Brown, 2002): 

𝜎் = ඩ෍ 𝜎ଵ
ଶ + 𝜎ଶ

ଶ + 𝜎ଷ
ଶ + ⋯ + 𝜎௡

ଶ

௡

௜ୀଵ

 

(56) 

where 𝜎்  [g/L] =  total standard deviation in C given all error sources, n =  total number of 

error sources, and 𝜎ଵ
ଶ , 𝜎ଶ

ଶ, 𝜎ଷ
ଶ, 𝜎௡

ଶ  [g2/L2] = average variance associated with each error 
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source.  Using 𝜎் , 90% CI for the representative C time series were calculated using 

(Berthouex and Brown, 2002): 

𝐶𝐼ଽ଴% = 𝐶 ഥ ± 1.65𝜎  

(57) 

where 𝐶𝐼ଽ଴% = 90% confidence interval, 𝐶 ഥ  = daily median C [g/L] of the UBL, DBL or 

north section on any given day. These intervals were applied to the representative C time 

series and used to evaluate USU-MBM performance during the model formulation and 

calibration processes.  

Continuous, 15-minute observations of north and south section WSE were available 

from NWIS (USGS, 2023; Table C2). The continuous data was averaged to determine daily 

WSE for both sections The USGS reported a ± 3 cm accuracy in their WSE data which was 

used in Eq. 58 to develop a 90% CI surrounding the historical WSE time series. This 

confidence interval was applied to the daily, historical WSE time series for the UBL and 

north section when comparing USU-MBM outputs to the historical observations. The 

USU-MBM incorporates both Gilbert and Carrington Bay into the UBL/DBL control 

volumes but the DBL depth dataset records individual depths within each bay. Therefore, 

a representative DBL elevation was determined by summing DBL volumes for Carrington 

Bay and Gilbert Bay using the DBL elevation data and the USGS WSE/A/V tables. This 

total DBL volume was then related to south section WSE using the curated WSE/A/V table 

described in Chapter 3.3.1 to produce a representative DBL elevation for the DBL control 

volume.   



90 
 

The curated historical WSE time series were converted to V using the USGS 

WSE/A/ 𝑉 tables (Root, 2023). UBL V was calculated by subtracting total DBL V from 

total south section V. Combining the C and 𝑉 time series, daily M was then calculated for 

the UBL, DBL, and north section using (Chapra, 1997): 

𝑀௜ = 𝑉௜ × 𝐶௜  

(58) 

where 𝑀௜ is in [kg], 𝑉௜ is in [m3], and 𝐶௜ is in [kg/m3] for any given layer. The published 

uncertainty in USGS WSE data (±3 cm) was also converted to 𝑉 using the USGS tables. 

Combining uncertainties from the 𝑉 and C time series, relative uncertainty in daily M was 

determined using (Berthouex and Brown, 2002): 

𝜎ெ೔

𝑀ഥ௜

= ඨቆ
𝜎஼೔

𝐶ప
ഥ

ቇ

ଶ

+ ൬
𝜎௏೔

𝑉ത௜

൰
ଶ

 

(59) 

where 𝜎ெ೔
 = standard deviation of the M within a given layer, 𝑀ഥ௜ = average M  within a 

given layer,  ቀ
ఙ಴೔

஼ഢഥ
ቁ

ଶ

 =  total, relative variance in C for a given layer, and ቀ
ఙ𝑉೔

𝑉ഥ೔
ቁ

ଶ

 =  total, 

relative variance in 𝑉 for a given layer. A daily confidence interval for M (Eq. 58) was 

also calculated for use in evaluating USU-MBM performance.  

3.3.3 Model Calibration and Validation  

The beginning of the calibration period was July 2017, aligning with the start of 

stable DBL conditions. Based on historical observations, the DBL experienced abrupt 

increases and decreases in volume immediately following opening of the New Breach 
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(January – July 2017) due to complex mixing patterns triggered by abnormally large 

exchange flows. It was necessary to start the calibration period under stable DBL 

conditions because the physics of DBL initiation after breaching the causeway cannot be 

characterized with the simple 1D model formulation. December 2021 was selected as the 

end of the calibration period because it provided enough time within the validation period 

to validate the USU-MBM’s performance under all three historical berm elevations. 

Model calibration focused first on addressing underprediction in north and south 

section WSE. Ed was selected as the WSE calibration parameter because Eq. 9 was 

document to overpredict Ed by Mohammed and Tarboton (2012). A percent reduction in 

Ed for the north section (%EN) and south section (%ES)  was determined by performing 

model runs over the calibration period to test various combinations of values ranging 

from 0.5 to 0.95. Separate values were explored for the north and south sections due to 

the extreme C differences between the two. A 10% reduction in ES (%ES = 0.9) and a 25% 

reduction in EN (%EN = 0.75) applied during the summer months (May to August) 

resulted in the lowest RMSE values between observed and predicted WSE and was 

incorporated into the USU-MBM (Table 6). 

Table 6 

Calibrated Parameters and Constants Used in the USU-MBM.  

Variable Value Units 

a 20 - 

Cc 0.05 - 

%ES 0.90 - 

%EN 0.75 - 

g 9.81 m/s2 
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Cd  1.3 × 10ିଷ - 

𝜌௔ 1.2 kg/m3 

 𝐶௦௔௧ 275 g/L 

 

The coefficients a and c used in the turbulent diffusion coefficient calculations were 

then calibrated to address error in south section M partitioning, effecting C outputs. The 

USU-MBM was run over the calibration period with a incremented within the suggested 

range of [10, 30] (Chapra and Martin, 2004). The equation for c was not developed for 

hypersaline environments. Due to the extreme ρ of GSL waters, a reduction factor (Cc ) 

was explored by incrementing Cc  values between 0.05 and 0.95 to determine an 

appropriate percent reduction in c. Based on RMSE results, optimized a and Cc  were 20 

and 0.05, respectively (Table 6).  

Terminal Lakes have long residence times; thus model validation was performed 

as an extension of the calibration period to avoid initial condition biases that may mask 

model performance. RMSE values during the validation period were calculated for USU-

MBM predictions of: elevation of the north section, UBL, and DBL (derived from VN, VS, 

and Vdbl) and Cdbl, Cubl, CN. Due to this methodology, when evaluating RMSE results it is 

important to note that any propagated errors passing through the calibration period are 

maintained and captured within the validation period.  

3.3.4 Impacts of Forcing Data Error 

USU-MBM performance is affected by the accuracy of the forcing data and the 

methods used to calculate QNS, QSN, and QBR. An error analysis was performed to understand 

how these errors propagate through the system by running a series of model simulations. 
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The entire simulation period was considered to ensure USU-MBM sensitivity was 

evaluated under all Q, climatic and New Breach berm conditions. Each mass balance term 

was either increased or decreased individually within a given simulation based on the upper 

and lower bounds of their associated error. P  had a reported ±10% error based on analysis 

performed by Daly et al. (2008). Error in surface water Q and C, excluding corrected QBR, 

was based on values documented by the USGS; ± 5% for Q (Oberg et al., 2005), ± 0.001 

g/cm3 for ρ (USGS, 2019a) and ± 5% for SC (USGS, 2019b). Climate data error due to 

instrumentation accuracy reported within manufacturer documentation was determined to 

be ± 0.5 °C for T, ± 0.3 m/s for νw, and ± 0.3 hPa for psite (University of Utah, n.d.). For 

the QNS, QSN and QBR correction, the RMSPE of the corrected time series was designated. 

The RMSE for Cubl between results from each simulation and the simulation of historical 

conditions was calculated to determine the most effective ways to improve the USU-MBM 

and how this could impact future decisions informed by the model.  

3.3.5 Management Scenarios 

With the calibrated USU-MBM, simple management scenarios were simulated to 

exemplify the model’s ability to simulate berm management strategies and to explore how 

adaptations to the New Breach berm affect UBL C within the UBL. Three management 

scenario simulations were performed; one where the berm was at a low elevation of 1275 

m throughout the entire simulation period, one with the berm at a medium elevation of 

1276.2 m, and one with the berm at a high elevation where the south section is fully 

isolated, 1279 m. These berm conditions were chosen within the simulations to isolate the 

effect each berm elevation has on C and WSE over the range of conditions experienced at 
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the lake since the New Breach was constructed.  UBL C outputs from each of the three 

simulations were compared against the simulation of historical conditions that incorporated 

a low berm elevation July 2017 – June 2022, medium berm July 2022 – February 2023, 

and berm elev. 1277.7 m February 2023 – September 2023. This comparison was made to 

evaluate the influence of each berm elevation, efficacy of previous adaptive management 

decisions, and the success of the berms as a management tool. 

3.4 Results 

3.4.1 Rating Curve Adjustment 

After analyzing the performance of the rating curves during model formulation, 

the 1275 m and 1276.2 m berm case equations were found to underpredict QSN while the 

1277.7 m equation performed well (Figure 20a); necessitating a positive correction factor 

for the 1275 m and 1276.2 m QSN  predictions (1.68 and 1.5, respectively). For QNS, the 

1275 m equation predictions were in good agreement with peak Q observations, but failed 

to predict the low QNS values, requiring a negative correction factor (-0.45). The 1276.2 m 

QNS equation slightly underpredicted Q (Figure 20b); however, measured and predicted 

QNS  was small thus the 1276.2 m QNS equation was not corrected. Historically, when the 

berm is at 1277.7 m, QNS is zero therefore no correction factor was calculated for this 

case.  These corrections were applied throughout the entire simulation period. The raw 

QSN rating curve outputs across all berm conditions had an RMSPE of 157% while the 

corrected QSN RMSPE was 67%. For QNS, the uncorrected RMSPE was 184% and the 
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corrected RMSPE was 85%; showing that these corrections improved rating curve 

performance for both flow directions.  

Figure 20 

New Breach Rating Curve Correction Results for (a) QSN and (b) QNS 

 

 

3.4.2 Data Preparation 

Forcing data was prepared for the USU-MBM including P, surface water Q and C, 

and climate variables (Figure 21; Figure S3). Results from the forcing data preparation 

show that the smallest contributor of inflow volume to the GSL was QGD , followed by 

QL, QWR, then QFB while the largest contributor was QBR (Figure 21c). V  gained via P can 

exceed surface water inflow volumes during storm events but does not cumulatively 
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contribute more V than the GSL tributaries (Figure 21a). More north section brine is 

pumped out of the GSL than south section brine while return flows are like inflow 

volumes from GD (Figure 21b). Finally, of the surface water inflows, FB had the highest 

C due to mass loading within FB before entering the south section while all other inflows 

exhibited relatively low C (Figure 21d). 

 
Figure 21 

Daily Time Series of the Prepared Forcing Data from Water Year 2020 

 
Note. In plot (a) precipitation data is converted to a volumetric flow rate for comparison 

to the other volume fluxes, plot (b) includes withdrawal and return Q from the mineral 

extraction activities, (c) includes river Qs and (d) includes C of the river Qs (C ). Data in 

plot (b) is shown for the entire simulation period to showcase yearly shifts in flow 

volumes from the mineral extraction activities.  
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Given the large contribution of flow from the BR compared to other river inflows, 

it was necessary to apply a correction to the BR gage data to better account for the 

significant deviation in QBR between the BR gage and the BR Bay Bridge as discussed in 

chapter 3.3.2 (Figure 22). During winter and spring runoff, Q through the BR Bay Bridge 

is higher than values observed at the BR gage due to P falling over BR Bay between the 

two locations paired with low E rates (Figure 22a). During summer and fall, the flows are 

generally the same (Figure 22b) with the potential to be lower during late summer when 

E rates are highest; exemplified by the negative Q differences around day 200 (Figure 

22a). RMSPE between the raw QBR,gage and BR Bay Bridge measurements during the 

period of analysis was 88%, while the RMSPE for the corrected BR gage data was 68%; 

demonstrating improved estimation of QBR for use in the model. 

Figure 22 

Bear River Discharge Correction Results 

 

Note. Plot (a) shows the difference between Bear River discharge, Q, at the BR gage and 

the BR Bay Bridge versus day of the water year, WY. Plot (b) shows the corrected QBR 

series used in the model for water year 2019. 
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A first order error analysis was performed on CUBL, CDBL, and CN from the 

calibration/validation dataset and produced a range of uncertainty associated with the 

prepared data. 90% CI for the UBL was ±16 g/L, ±52 g/L for the DBL, and ±24 g/L for 

the north section (Table 7). The largest source of uncertainty for the UBL came from 

combining datasets (UBL σ = 6.64 g/L) but came from averaging through space for the 

DBL and north section  (DBL σ = 18.8 g/L, north section σ = 14.9 g/L) (Table 7). Spatial 

variability within the DBL was the highest, which may be partially explained because the 

depth to DBL dataset used to calculate DBL elevation within Carrington and Gilbert Bay 

was derived using data from only one site in each. Because this dataset may not describe 

DBL elevation accurately at every point, an artificial decrease in the vertically averaged 

DBL C at sites where the DBL was shallower than recorded is probable. This exemplifies 

the need for increased monitoring of the DBL to deepen understanding of its dynamics and 

further evaluate modeling assumptions. 

Table 7 

Average Standard Deviation (σ), Total Standard Deviation (σT) and Associated 90% 
Confidence Interval for UBL, DBL, and North Section C.  

Layer Entity Dataset 
 σ 

(g/L) 
 σT 

(g/L) 
90% 
CI 

*UBL 

BSC YSI 556 Conductivity Meter 

1.02 

7.81 
±12.88 

USGS, UGS, HDR 
Anton Paar DMA 35 Density 
Meter 

DWiR 
Atago Master S28α 

Refractometer 
BSC SC 

3.97 USGS, UGS, HDR ρ 

DWiR %S 

BSC, USGS, UGS GSL site 3510, 2565 6.64  

DBL BSC YSI 556 Conductivity Meter 1.44 25.66 ±42.34 
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USGS, UGS, HDR 
Anton Paar DMA 35 Density 
Meter 

BSC SC 
18.80 

USGS, UGS, HDR ρ 

BSC, USGS, UGS GSL site 3510, 2565 17.41 

North 
Section 

USGS, UGS, HDR 
Anton Paar DMA 35 Density 
Meter 

1.36 
14.95 ±24.67 

ρ 14.89 

Note. *σ is the average standard deviation from each source of error in the datasets while 

𝜎்  is the propagated error within the datasets, calculated from each σ using Eq.(57). 

3.4.3 Model Calibration and Validation 

Water Surface Elevation 

One of the core objectives in calibrating the USU-MBM was to evaluate and refine 

its ability to predict GSL WSE since the New Breach was opened (Figure 23). WSE outputs 

during the calibration period for the north section and UBL of the south section generally 

show good agreement with historical observations (south section RMSE = 0.13 m, north 

section RMSE = 0.16 m) suggesting that the calibrated model accounts for most V  fluxes 

in the system. Calibration period RMSE for the DBL was 0.22 m (Figure 23c). In general, 

modeled and observed DBL elevation (and corresponding V ) followed the same trend; 

however, the USU-MBM did not capture the abrupt shifts in observed DBL elevation 

during the calibration period. There is significant uncertainty in the historical DBL WSE 

time series because the depth to DBL dataset used to calculate historical DBL 𝑉 had limited 

spatial and temporal resolution which necessitated interpolation. Given these uncertainties, 

the accuracy of the predicted trend in DBL 𝑉 suggests that the 𝑉 threshold method is valid 
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for use in partitioning 𝑉 between the UBL and DBL and no further calibration was 

necessary 

Figure 23 

WSE Results for the North Section, UBL and DBL from the Calibration and Validation 
Simulations 

 

Note. USU-MBM predictions are indicated by the solid lines while calibration/validation 

data is indicated by the dashed lines surrounded by the calculated 90% confidence 

intervals (shaded regions). The black vertical line separates the calibration period (left) 

from the validation period (right) while the dashed gray lines indicate timing of New 

Breach berm raises.  
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Another desired aspect of the model is to capture WSE across varied New Breach 

berm conditions which was evaluated during model validation. During the validation 

period, the USU-MBM underpredicted both north and south section WSE but 

overpredicted DBL elevation, primarily during 2023 (Figure 23a, b, c). However, it 

captured the seasonal trend. This showcases the calibrated model’s ability to quantify New 

Breach exchange flows under a variety of berm geometries and indicates that the model 

relies on precise WSE predictions to accurately quantify NS flow through the New Breach 

as demonstrated by the overprediction in DBL elevation. While WSE RMSE values during 

the validation period were higher than the calibration period, they were influenced by errors 

propagated from the calibration period and can be attributed to uncertainties in the 

historical forcing data rather than the model formulation since both north and south section 

WSE was underpredicted.  

Salt Concentration 

The second key objective for the USU-MBM was accurate prediction of GSL C, 

with a priority to the south section as discussed previously. C outputs from the calibration 

period (Figure 24) showed that UBL and DBL C matched the trend in the calibration data 

and fell well within the 90% CIs (UBL RMSE = 7 g/L, DBL RMSE = 9 g/L). During the 

calibration period, predicted CN followed a seasonal trend aligning with oscillations in VN 

while observed CN remained constant (north section RMSE = 19 g/L). This disparity 

suggests the USU-MBM does not fully capture seasonal dynamics of north section M, 

indicated by interannual fluctuations in MN (Figure 25a, d). While there may be 

unaccounted mass fluxes within the north section, given the simplifications of the system, 



102 
 
the closeness of fit suggests that the dominant M and 𝑉 fluxes are represented in the USU-

MBM and that it is able to replicated C observations within the north section, UBL and 

DBL across a variety of hydroclimatic conditions. 

During validation, the USU-MBM underpredicted Mubl but overpredicted Cubl due 

to underpredicting WSE (Figure 23b, Figure 24b, Figure 25b). These results indicate that 

for the USU-MBM, the trend in UBL C is dominated by WSE fluctuations, but the 

magnitude is determined by M. Conversely, during the validation period Cdbl was 

overpredicted despite overprediction in WSE due to overprediction of Mdbl (Figure 23c, 

Figure 24c, Figure 25c). This suggest that Cdbl is mainly driven by mass fluxes. Except for 

the north section, predicted C values fell within the 90% confidence surrounding the 

validation data. This exemplifies the model’s ability to accurately predict south section C 

under varied New Breach berm geometries and hydroclimatic conditions and further 

validates the methods used to partition M and V  between the UBL and DBL. 
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Figure 24 

Salinity (C ) Results for the North Section, UBL and DBL from the Calibration and 
Validation Simulations 

 

Note. USU-MBM predictions are indicated by the solid lines while calibration/validation 

data is indicated by the dashed lines surrounded by calculated 90% confidence intervals 

(shaded regions). The black vertical line separates the calibration period (left) from the 

validation period (right) while the dashed gray lines indicate timing of New Breach berm 

raises. 
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Figure 25 

Total Dissolved Salt Mass (M ) Results for the North Section, UBL and DBL from the 
Calibration and Validation Simulations 

 

Note. USU-MBM predictions are indicated by the solid lines while calibration/validation 

data is indicated by the dashed lines surrounded by calculated 90% confidence intervals 

(shaded regions). The black vertical line separates the calibration period (left) from the 

validation period (right) while the dashed gray lines indicate timing of New Breach berm 

raises. 

3.4.4 Impacts of Forcing Data Error 

The calibrated USU-MBM demonstrated strong performance in predicting 

historical WSE and C despite uncertainties in the forcing data and estimation methods used 
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to quantify mass balance terms. The error impact analysis was conducted to explore any 

additional means to improve model performance and identify management goals for 

consideration at the GSL. Based on RMSE results, the model was most sensitive to 

uncertainty in QNS, QSN and QBR,pred  (Table 8;Figure 26). It was hypothesized that 

maximizing salt influx (+QNS, -QSN) to the south section would increase UBL C and 

minimizing salt influx (-QNS, +QSN) would decrease UBL C. However, both scenarios 

caused a decrease (Figure 26a). Mass loading to the UBL results from mass transfer across 

the UBL/DBL interface due to the C gradient while UBL mass export occurs via QSN. When 

QSN is minimized, more M is retained causing C of the UBL to be higher and mass transfer 

across the layers to be lower. The decrease in M transfer across the layers into the UBL 

may have offset the mass retention from decreasing QSN (Figure 26a). This may also explain 

the observed trend in the isolated QSN simulation (Figure 26); where increasing QSN caused 

a slight increase in UBL C while decreasing QSN decreased UBL C. When QNS was isolated 

(Figure 26c), maximizing QNS resulted in higher UBL C and minimizing QNS caused lower 

UBL C. Increasing M in the DBL triggers more mass transfer to the UBL because it 

increases the C gradient and vice versa which aligns with the results shown. 

Table 8 

Error Impact Analysis Results  

Variable Uncertainty 
RMSE (g/L) 

High Low 

𝑄஻ோ ±68% 27.6 50.5 

𝑄ௐோ, ி஻,  ீ஽,  ௅ ±5% 1.1 1.1 

𝐶ௐோ, ி஻,  ீ஽ ±0.001 g/cm3 0.8 1.2 

𝑃ௌ ,  𝑃ே ±10% 2.9 3.0 
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𝐸ௌ ,  𝐸ே ±0.5 °C, ±0.3 m/s, ±0.3 hPa 4.4 4.0 

𝑄ேௌ ±85% 8.4 15.2 

𝑄ௌே ±67% 2.7 7.4 

+𝑄ேௌ,  −𝑄ௌே +85%, -67% 2.8 

−𝑄ேௌ,  +𝑄ௌே -85%, +67% 14.8 

Note. Ranges of error in GSL mass balance terms used in the error impact analysis are 

designated as uncertainty. RMSE values are between UBL C from each error simulation 

and the simulation ran under historical conditions from July 2017 to October 2023.  

Figure 26 

UBL C Outputs from the Forcing Data Error Analysis 

 

Note. Plot (a) includes results for both New Breach flow directions, plot (b) includes 

results for QBR, plot (c) includes results for isolated QNS (c) and plot (d) for isolated QSN.  
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Uncertainty in the rating curves is significant, however UBL C was most sensitive 

to the BR gage data regression (Figure 26b). Maximizing QBR caused lower UBL C while 

minimizing caused higher UBL C. It is also important to note that when QBR was 

minimized, south section WSE equalized with the north section. This caused the 1276.2 m 

QNS rating curve to produce a value that exceeds what the system can experience which 

threw an error in the USU-MBM, explaining the lack of (-QBR) C data after July 21st, 2022. 

3.4.5 Management Scenarios 

Adaptive management at the GSL has focused primarily on altering the New 

Breach berm to control UBL C. Results from the management scenarios informs this work 

by showcasing how berm adaptations can be utilized to effectively manage UBL C and 

demonstrating the USU-MBM’s ability to perform simulations of berm management 

strategies (Figure 27). C outputs from all four berm conditions (historical, low berm, 

medium berm, high berm) did not deviate from each other until 2019 when WSE began to 

decrease  due to drought conditions and increased surface water diversions (Figure 23b); 

indicating that C may be more sensitive to New Breach exchange flows when river Q is 

lower. After 2020, C did not increase as drastically for the medium berm case compared to 

the historical and low berm cases because it maximized south section mass export while 

minimizing mass loading from the north section. Despite cutting off all mass loading from 

the north section, the high berm case behaved similarly to the medium berm case. These 

results indicate that blocking QNS is the most effective use of berm adaptations and that the 

gain in 𝑉 from isolating the south section is offset by the retention in M. Further,  UBL C  

from the medium berm case simulation was lower compared to the high berm case 
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simulation beginning in spring 2023 which shows that keeping the berm at the medium 

elevation is a productive mechanism for maximizing salt export and minimizing salt import 

to the south section.  

Figure 27 

UBL C Outputs from the Historical and Management Scenario Simulations 

 

3.5 Discussion 

Results from this study demonstrate the validity of the USU-MBM while the error 

impact analysis highlights future adaptations as understanding of lake processes and 

hydrologic monitoring evolves. They also exemplify how it can be applied to evaluate 

future adaptive management decisions.  

3.5.1 Model Performance  

Water Surface Elevation 

Hydrologic observations at the GSL, particularly during the recent drought/flood 

cycle, have highlighted the connection between C and WSE. Thus, it is important to have 
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accurate predictions of WSE to make informed, proactive management decisions for the 

lake to avoid additional negative impacts on GSL ecologic communities and economic 

production. The USU-MBM adequately predicted WSE of the north section and UBL 

indicating that it accounted for most water V fluxes in the system. However, it consistently 

underpredicted WSE starting in 2021 which results from uncertainty in the forcing data 

including potential, ungauged inflows, uncertainty in groundwater contributions to the 

lake, and quantity of return flows from mineral extraction activities (Lukens et al., 2024). 

The error in WSE predictions could also result from uncertainty in the evaporation method 

or BR gage data correction given the influence error in these estimation methods had on 

UBL C during the error impact analysis. For the DBL, the RMSE values during the 

calibration and validation were significant, but it is important to keep in mind that the 

historical observations of DBL depth used to prepare the calibration data were limited 

spatially and temporally. For this reason, and the other sources of uncertainty, increased 

hydrologic monitoring at the GSL and improvement in evaporation estimation methods 

will be critical for future modeling and management efforts.  

Salt Concentration 

Brine flies and brine shrimp are dependent on south section C remaining within a 

healthy range (100<Cubl< 160 g/L). If Cubl falls outside this range, it effects individuals and 

population growth  which in turn affects the water and shore birds who feed on them 

(Marden, 2020), emphasizing the necessity of accurate predictions of UBL and DBL C. 

Modeled UBL C was within an appropriate range of uncertainty, but underpredicted C. This 

is driven by underpredictions in north section M resulting from the USU-MBM’s inability 
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to capture the observed seasonality in MN. The only M flux into the DBL is QNS, thus 

underpredictions in DBL M and C are compounded by uncertainty in the rating curves. 

Since M transfer between the layers is dependent on the C gradient, underprediction of DBL 

C and uncertainty in M export from the UBL via QSN, further contributes to the 

underprediction of M and C within the south section. Causeway seepage also contributes 

M to the DBL (Jewell, 2021) but has not been thoroughly investigated and was not 

accounted for in the USU-MBM which is another reason for underprediction of DBL C and 

M transfer between the two layers. Currents along the south section lakebed have been 

observed (Naftz et al., 2014) which can lead to redissolution of precipitated salt and may 

be another relevant M flux that is not well understand or incorporated into the USU-MBM, 

further explaining the model’s performance. 

3.5.2 Management Scenarios 

From the management scenario simulations, the berm was found to have the most 

influence on UBL C by altering mass flux. New Breach Qs were small compared to river 

Qs, showing that the berm has little effect on total lake V; however, New Breach Qs were 

the largest mass flux in the system. This indicates that if south section 𝑉 gets too low and 

C gets too high, the berm should be used to minimize M import to the south section via QNS 

and maximize M export via QSN  by maintaining a medium elevation rather than fully 

isolating the south section. In contrast, the berm may not be useful in increasing south 

section C. If the berm is lowered, QNS will be higher, but QSN will also increase thus the net 

M in the south section would most likely remain unchanged. The berm can be used as an 

emergency measure, such as the raise in February 2023, but long-term management of 



111 
 
south section C will require reducing diversion from upstream tributaries to maintain the 

hydrologic balance of the GSL. Further, sequestering salt in the north section is an 

appropriate adaptive management strategy, but if too much is exported from the south 

section, a series of wet years may cause the south section to be too dilute which effects the 

ecologic productivity of the brine shrimp communities.  

3.5.3 Model Utility and Future Work  

The USU-MBM was successfully formulated to predict GSL C and WSE, quantify 

New Breach exchange flows under varied berm elevations, and predict south section 

chemical stratification. However, it is important to keep model assumptions and 

performance in mind when using it to inform lake management. The USU-MBM is 

particularly useful in predicting long term C and WSE of the UBL and WSE of the north 

section. In the future, increased monitoring of GSL inflows including continuous 

monitoring of flow through the BR Bay Bridge may improve these estimates given the 

model’s sensitivity to uncertainty in QBR and that changes in south section C are mainly 

driven by WSE fluctuations. The USU-MBM did not incorporate a process-based method 

to partition M and V between the UBL and DBL. Thus, these outputs could be improved 

by development of specific wind mixing equations for hypersaline environments.  

Adaptive management strategies can also be developed using the USU-MBM , 

given its ability to predict New Breach exchange flows. Like the model application 

performed within this study, the USU-MBM can be used to explore the influence of varying 

the berm elevation and to determine the optimal timing for berm alterations. Since the 

USU-MBM failed to capture north section M dynamics, it should not be used to predict 
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north section C until this process is better understood. If this were achieved, it would further 

improve estimates of UBL and DBL C which are of primary interest to lake managers. With 

the current USU-MBM formulation, future lake conditions cannot be evaluated because it 

utilizes historical time series for the forcing data. However, since the USU-MBM is open 

access, it can easily be paired with climate and streamflow predictive models to evaluate 

the future health of the lake.  

3.6 Conclusion 

The primary purpose of this study was to inform adaptive management of the GSL 

by developing an open access, process-based mass balance model of the Great Salt Lake. 

Historical observations of salinity informed a simple model framework that includes 

control volumes for the two segregated lake sections, with the south section further 

segregated into upper and lower brine layers. Key V and M fluxes are tracked within the 

model in addition to bi-directional flow exchange between the control volumes and salt 

mass and water volume partitioning between the south section layers. With this simple 

formulation, the USU-MBM  captured C and WSE in response to historic inputs of 

streamflow, climate, and adaptive management actions.  

Based on results from this study, it was concluded that a two-layer model for the 

south section is necessary to accurately predict UBL C, the magnitude of which has 

implications for the health of the ecologic communities. USU-MBM performance 

regarding WSE indicated the need for increased hydrologic monitoring at the Great Salt 

Lake, mainly continuous monitoring of Bear River Bay Bridge Qs, increased monitoring 
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of groundwater contribution, and evaluation of E estimates off hypersaline water bodies. 

Temperature effects on north section M and contribution of salt mass to the south section 

via causeway seepage should be evaluated in the future to expand usage of the USU-MBM, 

given that the model underpredicted M for both sections. A key feature of the USU-MBM 

is its ability to predict New Breach exchange flows given various berm elevations, the 

primary focus of adaptive management actions at the GSL. Based on USU-MBM 

application, it was concluded that using the berm to minimize mass import to the south 

section and maximizing mass export to the north section is the most productive mechanism 

for decreasing C within the upper brine layer. Further, coupling the USU-MBM with 

predictive climate and streamflow models will enable forecasting GSL conditions under 

varying climate regimes.  

It has been shown that the USU-MBM developed herein is a tool that can 

quantitatively evaluate adaptive management strategies. Application of this tool will 

facilitate informed lake management decisions that aim to balance human, ecologic, and 

economic needs as conditions within and around the lake continue to change.  
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4 CONCLUSION 

Since 1847, the Great Salt Lake has lost more than 48% of its volume (Wurtsbaugh, 

2016) which has caused irreversible damage to its diverse ecologic communities (Barnes 

and Wurtsbaugh, 2015), hindered economic productivity (Potential Cost of Declining 

Great Salt Lake, 2019), and decreased air quality affecting human health (Perry, 2019). 

Recent lake management efforts have focused on optimizing water use within the GSL 

watershed and adaptively managing salinity levels by utilizing the submerged berm at the 

New Breach. To inform these decisions, it is crucial to have data at appropriate spatial and 

temporal scales to increase understanding of the system and evaluate the lake’s response 

to management actions. In addition, modeling tools are key to determining the effect of 

proposed solutions under a variety of future conditions. Given the historic low lake level 

recorded in November 2022 and the implications of lake desiccation, the objective of this 

study was to aid management efforts at the lake by compiling and evaluating available 

hydroclimatic data and developing a model that accurately predicts lake level and salinity 

in response to varying berm elevations and hydroclimatic conditions.  

Outcomes of Chapter 1 included: documentation of available inflow, climate and 

water quality data at the lake, a method to combine open water salinity data from various 

entities and proxy measurements, provision of representative salinity time series for the 

north and south section of the GSL, and determination of key drivers of salinity within the 

south section. The main contribution from Chapter 2 was creation, documentation and 

application of an open source, process-based mass balance model of the lake that is capable 



115 
 
of accurately quantifying lake level and salinity response to historical conditions and 

management actions.  

Results from both chapters highlight the need for increased hydrologic monitoring 

at the GSL. The correlation analysis performed in Chapter 1 between salinity and mass 

balance terms revealed that variation in UBL salinity is most heavily influenced by the 

balance between river inflows, primarily from the Bear River, and evaporation. This was 

confirmed by the modeling effort in Chapter 2. South section total dissolved salt mass 

remained fairly constant at the time scale evaluated, thus fluctuations in UBL salinity 

outputs were attributed to seasonality in lake elevation. The GSL mass balance model 

utilized all available inflow data and the best available evaporation methods, yet 

underpredicted north and south section WSE indicating a gap in inflow data and a limited 

understanding of evaporation. To better predict salinity/WSE and manage the lake in the 

short-term, there is a clear need for improved methods to estimate evaporation off the GSL 

and more precise monitoring of the Bear River inflows and groundwater contribution to 

the lake.  

Based on mass fluxes calculated in the model, salt mass loading to the GSL and 

exchange between the sections is small relative to the total dissolved salt mass already 

accumulated in the lake, thus monitoring open water salinity and accurately predicting New 

Breach exchange flows becomes crucial for accurate, long-term predictions of salinity. 

Analysis of available salinity data in Chapter 1 revealed the need to adopt standard 

operating procedures and sampling locations to monitor open water salinity. This would 

aid combination of data from different entities that monitor the lake and allow for 
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development of more accurate and representative salinity time series. In addition, model 

outputs of north section salinity indicate missing salt mass fluxes which were attributed to 

seasonal mass increases and decreases in the north section likely resulting from 

temperature shifts and wave action. Improved understanding of this process  and open 

water salinity monitoring would aid evaluation of GSL models and short-term and long-

term changes in total salt mass in response to management actions.  

Results from Chapter 2 demonstrate that the GSL mass balance model is a valid 

tool for informing management decisions. Model outputs were within the range of 

uncertainty associated with the calibration data and confirm that the model can predict 

WSE and salinity of the south section in response to berm alterations. Based on model 

simulations performed with varying berm heights and historical forcing data, the New 

Breach berm was determined to be a productive, short-term tool. Raising the berm  

minimizes south section salinity by decreasing mass loading via north to south exchange 

and maximizes south section dilution by decreasing south to north exchange. However, 

long term management of the lake will require increasing inflows to the lake. Finally, the 

current model formulation has the capacity to be paired with forecasts of streamflow and 

climate. This would allow for more detailed evaluation of berm management alternatives 

and development of a comprehensive adaptive management plan for the GSL.  

Development of adaptive management strategies at the GSL has previously been 

limited due to uncertainty in hydrologic monitoring and an inability to accurately predict 

WSE and salinity in response to management actions. The research conducted herein 

improves upon current knowledge by highlighting key gaps in hydrologic monitoring and 
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understanding of lake processes and provides a novel model of the lake for use in 

evaluating management alternatives.  As conditions at the lake continue to evolve, this tool 

can help lake managers make informed decisions on how to best preserve the GSL while 

balancing human, ecologic and economic needs.  
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5 ENGINEERING SIGNIFICANCE 

Mass balance models are significant in the field of engineering, primarily water 

resource management.  Population growth, urbanization and a changing climate have 

decreased water quantity and quality of water resources within the Western United States 

that are already under duress. Sustainable and effective management of these critical 

resources requires an understanding of the implications of water and land use changes and 

an evaluation of different management strategies to identify policies that help balance 

human and ecological needs.  Mass balance models facilitate this evaluation as they 

provide a quantitative framework for understanding how changes in policy affect water 

systems such as river networks, lakes, reservoirs, aquifers, and groundwater. They can be 

utilized to simulate policy scenarios impacting water allocation and conservation, project 

future water demand, or evaluate environmental impacts among other uses.  

The model developed herein for the GSL is a prime example of the efficacy of mass 

balance models. It allows GSL managers to evaluate the water surface elevation and 

salinity of the GSL in response to streamflow, climate, and changes to internal water and 

cycling resulting from alterations to the New Breach berm. If the USU-MBM were paired 

with streamflow and climate predictive models, it would facilitate quantification of future 

lake conditions in response to hypothetical water and land use changes. The USU-MBM 

can pinpoint total inflow volume required to maintain the health of the lake which helps 

establish a maximum threshold for consumptive water use. It further allows for 

identification of effective New Breach berm adaptive management strategies that can help 

maximize resiliency of the GSL in the face of altered flow regimes and climatic conditions.  
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While the USU-MBM was developed specifically for the GSL, the model 

framework can be applied to terminal lakes worldwide. Its methodology allows for 

quantification of water levels and the concentration and potential chemical stratification of 

conservative constituents and can easily be adapted to the specific limnological 

characteristics of other closed basin lakes.  
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Appendix A. USU UWRL EQL Experiment Data 

Figure A1 

Density, ρ, and Specific Conductance, SC, Data from the Repeat Measurements 
Performed in the USU UWRL EQL Experiment 

 
Note. Samples were prepared to cover a range of SC and ρ. Repeat measurements were 

performed on samples 1, 2, 6, 10, 14-19. 

 
Table A1 

Average North and South Section Ion Composition in Percent Weight  

Site 
Sectio

n 
Period 

Na Mg K Ca Cl SO4 
% 

WT 
% 

WT 
% 

WT 
% 

WT 
% 

WT 
% WT 

AIS S 
Mar 2017 – Aug 

2020 
30.29 3.52 2.19 0.17 56.28 7.54 

AS2 S May 2017 - Sep 2020 31.35 3.62 2.23 0.17 55.35 7.28 
AC3 S May 2017 - Sep 2020 31.75 3.62 2.27 0.17 54.89 7.30 
FB2 S Aug 2017 - Sep 2020 31.93 3.57 2.21 0.18 54.83 7.28 

RT4 S May 2017 - Sep2020 31.75 3.55 2.21 0.18 54.93 7.39 

max std = 2,377 μS/cm 

max std = 0.005 g/cmଷ 

(a) (b) 
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  south section average 31.42 3.58 2.22 0.17 55.26 7.36 

SJ-1 N Mar 2017 - Sep 2020 29.02 4.17 2.62 0.10 56.80 7.28 
LVG

4 
N Aug 2017 - Sep 2020 30.47 3.92 2.37 0.10 55.61 7.54 

RD2 N Aug 2017 - Sep 2020 30.94 4.08 2.41 0.10 55.16 7.31 

    north section average 30.14 4.06 2.46 0.10 55.86 7.38 

    Average 30.78 3.82 2.34 0.14 55.56 7.37 
 

Table A2 

Mass of Each Salt Used to Create the USU UWRL EQL Stock Solution 

Salt Desired M (g) Actual M (g) Actual M of Salt (g) 

NaCl 46.95 46.95 46.94 
MgCl26H2O 13.88 13.88 6.50 

MgSO4 3.13 3.13 3.12 
K2SO4 3.13 3.14 3.14 
CaSO4 0.28 0.28 0.28 

    Total M (g) 59.98 

    
Sample TDS 

(g/L) 299.89 
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Table A3 

Mass of Salts Used to Create USU UWRL EQL Solutions of Varying Salt Concentration   

Sample  1 2 3 4 

Salt M (g) 
Actua

l M 
(g) 

Actual 
salt M 

(g) 
M (g) 

Actual 
M (g) 

Actual 
salt M 

(g) 
M (g) 

Actual 
M (g) 

Actual 
salt M 

(g) 
M (g) 

Actual 
M (g) 

Actual 
salt M

(g) 
NaCl 46.95 46.95 46.95 21.91 21.91 21.91 18.78 18.80 18.80 15.65 15.65 15.65 

MgCl2 
6H2O 

13.88 13.87 6.49 6.48 6.48 3.03 5.55 5.54 2.60 4.63 4.47 2.09 

MgSO4 3.13 3.13 3.13 1.46 1.46 1.46 1.25 1.25 1.25 1.04 1.05 1.05 

K2SO4 3.14 3.13 3.13 1.46 1.45 1.45 1.25 1.25 1.25 1.05 1.05 1.05 

CaSO4 0.28 0.28 0.28 0.13 0.13 0.13 0.11 0.11 0.11 0.09 0.09 0.09 

  Total M (g) 59.98 Total M (g) 27.98 Total M (g) 24.01 Total M (g) 19.92 

  
Sample TDS 

(g/L) 299.90 
Sample TDS 

(g/L) 139.92 
Sample TDS 

(g/L) 120.07 
Sample TDS 

(g/L) 99.61 

Sample  5 6 7 

Salt 
M 
(g) 

Actual 
M (g) 

Actual 
salt M 

(g) 
M (g) 

Actual 
M (g) 

Actual 
salt M 

(g) 
M (g) 

Actual 
M (g) 

Actual 
salt M 

(g) 

NaCl 
12.5

2 
12.51 12.51 9.39 9.40 9.40 6.26 2.26 6.26 

MgCl2 
6H2O 

3.70 3.70 3.70 2.78 2.78 1.30 1.85 1.85 0.87 

MgSO4 0.83 0.84 0.84 0.63 0.63 0.63 0.42 0.42 0.42 

K2SO4 0.84 0.83 0.83 0.63 0.62 0.62 0.42 0.42 0.42 

CaSO4 0.07 0.08 0.08 0.06 0.06 0.06 0.04 0.04 0.04 

  Total M (g) 17.96 Total M (g) 12.00 Total M (g) 8.00 

  
Sample TDS 

(g/L) 
89.79 

Sample TDS 
(g/L) 

60.02 
Sample TDS 

(g/L) 
40.00 
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Table A4 

Data Sheet for the USU UWRL EQL Experiment Using the Stock Solution 

*Sample 
 TDS 

(g/L) 
SC 

(uS/cm) 
Sample 
M (g) 

Sample 
V (mL) 

Sample ρ 
(g/cm3) 

T (C)  
Corrected ρ 

(g/cm3) 
Repeat 

1  300 217579 11.95 9.9 1.21 24.72 1.21   

2  290 221306 11.82 9.9 1.19 23.17 1.19  

2  290 220181 11.81 9.9 1.19 23.17 1.19 y 
2  290 218258 11.80 9.9 1.19 23.17 1.19 y 
2  290 216961 11.82 9.9 1.19 23.17 1.19 y 
2  290 219612 11.80 9.9 1.19 23.17 1.19 y 
2  290 220435 11.81 9.9 1.19 23.17 1.19 y 

3  280 215626 11.72 9.9 1.18 23.12 1.19  

4  270 214979 11.62 9.9 1.17 22.2 1.17  

5  260 212705 11.60 9.9 1.17 22.06 1.17  

6  250 205187 11.52 9.9 1.16 21.85 1.16  

6  250 207500 11.50 9.9 1.16 21.85 1.16 y 
6  250 206283 11.49 9.9 1.16 21.85 1.16 y 
6  250 204718 11.48 9.9 1.16 21.85 1.16 y 
6  250 207658 11.49 9.9 1.16 21.85 1.16 y 
6  250 204015 11.48 9.9 1.16 21.85 1.16 y 

7  240 199218 11.47 9.9 1.16 21.74 1.16  

8  230 195173 11.35 9.9 1.15 21.65 1.15  

9  220 188888 11.28 9.9 1.14 21.6 1.14  

10  210 184395 11.25 9.9 1.14 21.62 1.14  

10  210 185179 11.25 9.9 1.14 21.62 1.14 y 
10  210 185607 11.20 9.9 1.13 21.62 1.13 y 
10  210 183023 11.22 9.9 1.13 21.62 1.13 y 
10  210 184882 11.20 9.9 1.13 21.62 1.13 y 
10  210 184209 11.21 9.9 1.13 21.62 1.13 y 
11  200 183269 11.16 9.9 1.13 21.5 1.13  

12  180 173360 11.11 9.9 1.12 21.5 1.12  

13  160 164160 10.94 9.9 1.10 21.37 1.11  

14  140 150648 10.84 9.9 1.10 21.38 1.10  

14  140 154581 10.80 9.9 1.09 21.38 1.09 y 
14  140 148208 10.80 9.9 1.09 21.38 1.09 y 
14  140 152917 10.81 9.9 1.09 21.38 1.09 y 
14  140 153231 10.82 9.9 1.09 21.38 1.09 y 
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14  140 153837 10.84 9.9 1.10 21.38 1.10 y 
15  120 138883 10.66 9.9 1.08 21.32 1.08  

16  100 120732 10.51 9.9 1.06 21.3 1.06  

17  80 101550 10.41 9.9 1.05 21.29 1.05  

17  80 102545 10.40 9.9 1.05 21.29 1.05 y 
17  80 103452 10.41 9.9 1.05 21.29 1.05 y 
17  80 103678 10.40 9.9 1.05 21.29 1.05 y 
17  80 102961 10.44 9.9 1.05 21.29 1.05 y 
17  80 99373 10.39 9.9 1.05 21.29 1.05 y 

18  60 81394 10.30 9.9 1.04 21.46 1.04  

19  40 55092 10.14 9.9 1.02 21.77 1.03  

20  20 37787 10.01 9.9 1.01 21.28 1.01  

*Note. This experiment was run on samples created by diluting the prepared stock 

solution, five repeat measurements were performed on sample 2, 6, 10, 14, and 17 
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Table A5 

Data Sheet for the USU UWRL EQL Experiment on Separate Prepared Solutions  

*Sample 
TDS 
(g/L) 

SC 
(uS/cm) 

Sample 
M (g) 

Sample 
V (mL) 

Sample ρ 
(g/cm3) 

T (C)  
Corrected ρ 

(g/cm3) 

1 300 221736 11.94 9.9 1.21 22.44 1.21 
1 300 225803 11.90 9.9 1.20 22.44 1.20 
1 300 226540 11.90 9.9 1.20 22.44 1.20 
1 300 225784 11.95 9.9 1.21 22.44 1.21 
1 300 222581 11.91 9.9 1.20 22.44 1.20 
1 300 224835 11.89 9.9 1.20 22.44 1.20 

2 140 156078 10.88 9.9 1.10 22.46 1.10 
2 140 155035 10.86 9.9 1.10 22.46 1.10 
2 140 160758 10.86 9.9 1.10 22.46 1.10 
2 140 155845 10.87 9.9 1.10 22.39 1.10 
2 140 156873 10.86 9.9 1.10 22.39 1.10 
2 140 155578 10.87 9.9 1.10 22.39 1.10 

3 120 146337 10.69 9.9 1.08 22.52 1.08 
3 120 142045 10.71 9.9 1.08 22.52 1.08 
3 120 141015 10.71 9.9 1.08 22.52 1.08 
3 120 141466 10.81 9.9 1.09 22.56 1.09 
3 120 145458 10.81 9.9 1.09 22.56 1.09 
3 120 144065 10.72 9.9 1.08 22.56 1.08 

4 100 128343 10.57 9.9 1.07 22.5 1.07 
4 100 124312 10.59 9.9 1.07 22.5 1.07 
4 100 127065 10.59 9.9 1.07 22.5 1.07 
4 100 126646 10.58 9.9 1.07 22.42 1.07 
4 100 127703 10.56 9.9 1.07 22.42 1.07 
4 100 127218 10.56 9.9 1.07 22.42 1.07 

5 80 107886 10.42 9.9 1.05 22.33 1.05 
5 80 107412 10.43 9.9 1.05 22.33 1.05 
5 80 106481 10.44 9.9 1.05 22.42 1.06 
5 80 106484 10.44 9.9 1.05 22.42 1.06 
5 80 103398 10.44 9.9 1.05 22.38 1.06 
5 80 105790 10.42 9.9 1.05 22.38 1.05 

6 60 84805 10.30 9.9 1.04 22.23 1.04 
6 60 85683 10.28 9.9 1.04 22.23 1.04 
6 60 83557 10.28 9.9 1.04 22.23 1.04 
6 60 84413 10.29 9.9 1.04 22.23 1.04 
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6 60 81448 10.30 9.9 1.04 22.22 1.04 
6 60 83700 10.29 9.9 1.04 22.22 1.04 

7 40 59193 10.14 9.9 1.02 22.23 1.02 
7 40 59061 10.16 9.9 1.03 22.23 1.03 
7 40 58856 10.14 9.9 1.02 22.23 1.03 
7 40 59377 10.15 9.9 1.03 22.26 1.03 
7 40 58979 10.15 9.9 1.02 22.26 1.03 
7 40 59020 10.14 9.9 1.02 22.26 1.02 

*Note. This experiment was performed on samples of varying concentration created 

individually, five repeat measurements were performed on each. 
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Appendix B. Water Activity Coefficient Table 

Table B1 

Water Activity Coefficient Values for a Range of Total Dissolved Solids and 
Temperatures 

  T (°C) 
TDS 
(g/L) 

-20 -10 0 10 20 30 40 

0 1 1 1 1 1 1 1 
50 0.974 0.973 0.973 0.973 0.973 0.973 0.973 

100 0.944 0.943 0.942 0.941 0.941 0.94 0.94 
150 0.907 0.905 0.903 0.902 0.901 0.9 0.9 
175 0.885 0.882 0.88 0.878 0.877 0.877 0.876 
200 0.859 0.856 0.854 0.852 0.851 0.85 0.85 
225 0.829 0.826 0.824 0.822 0.821 0.821 0.821 
250 0.795 0.792 0.79 0.788 0.788 0.788 0.789 
275 0.755 0.752 0.751 0.75 0.751 0.752 0.753 
300 0.709 0.707 0.707 0.708 0.709 0.712 0.714 
325 0.656 0.656 0.658 0.661 0.664 0.668 0.672 
350 0.595 0.599 0.603 0.608 0.614 0.62 0.626 
375 0.528 0.535 0.542 0.55 0.559 0.568 0.577 
400 0.454 0.465 0.476 0.488 0.5 0.513 0.526 
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Appendix C. GSL Hydroclimatic Data Collection Information 

Figure C1 

Forcing and Calibration Data Collection Site Map Including Locations of the Open 
Water Sampling Sites, Lake Elevation Gages, Inflow Gages, and Climate Stations 
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Figure C2 

Time series of the Prepared Climate Data Used in Calculating Evaporation off the Great 
Salt Lake from Water Year 2020 

 

Table C1 

Great Salt Lake Open Water Salinity Sampling Datasets 

Layer 
Number of 

Sites 
Entities 

ρ 
(g/cm3) 

SC 
(μS/cm)  

%C 

UBL 29 
USGS, UGS, HDR, BSC, 

DWiR       

DBL 11 USGS, UGS, HDR, BSC  
  

 

North 
section 

7 USGS, UGS, HDR       
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Table C2 

Great Salt Lake Elevation and Climate Datasets 

 

Table C3 

Great Salt Lake Tributary and Causeway Exchange Datasets 

Entity Site ID Lat Lon 
𝑄஽ 

(cfs) 
𝑄஼ 

(cfs) 
𝑆𝐶஽ 

(uS/cm) 
𝑆𝐶஼ 

(uS/cm) 
𝜌஽ 

(g/cm3) 

USGS 

Bear River near 
Corinne, UT 

10126000 41.58 -112.85 
 

    

Bear River Bay 
Bridge 

10010060 41.23 -112.34 
 

 
 

 
 

Weber River at 
Plain City, UT 

10141000 41.28 -112.09 
     

Goggin Drain 10172630 40.82 -112.10 
     

Farmington Bay 41040112134801 41.07 -112.23 
     

Lakeside 10010020 41.22 -112.85 
 

 
 

 
 

WCB SN Flow 10010025 
41.22 -112.77  

 
 

 
 

WCB NS Flow 10010026 
 

 
 

 
 

USU 
WCB South -- 

41.22 -112.77 
   

  
WCB North --    

  

Note. "C" subscript represents 15-minute continuous measurements while "D" subscript 

represents discrete measurements 

 

Entity Site Lat Lon 
Elevation 

(ft) 
𝑣௪ 

(m/s) 
psite          

(kPa) 
𝑇௠௔௫ ,  𝑇,௠௜௡ 

(°C) 
WSE 
(m) 

Freq. 

UCC 

Hat Island 41.33 -112.85 4242.13       
 

 

Gunnison 
Island 

41.07 -112.59 4242.13 
    

Hourly 

MARSH 41.22 -112.67 4212.93 
    

 

USGS 

10010025 41.22 -112.77 4216.93          

10010100 41.26 -112.50 4189.8    
 

15-
minute 

10010000 40.73 -112.21 4186.8       
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