Valuation of Calibration for Satellite Constellations

Afreen Siddiqi
Sheila Baber
Olivier L. de Weck

Chris Durell
Brandon Russell
Jeff Holt

Massachusetts Institute of Technology

Labsphere
Frequent calibration is increasingly important for satellite constellations

- Use of EO data from small satellites is rapidly increasing, but there are important challenges in its accuracy and reliable use.

- Calibration is important for new systems with several sensors or multi-platform systems that combine space-based and air-based observation platforms.

- Intercalibrations with larger spacecraft has limitations as it requires consistency of spectral bands, spatial collocation, and consistency of viewing geometry.
Modeling Value of Calibration in Remote Sensing

Return on Investment for use of calibration services for Data Providers
The value delivered by a specific system architecture is directly related to the useful scientific data provided by the system for the regions of interest over its lifecycle.

Total scientific data returned serves as a proxy for architecture value.
Data acquired is quantified for each target region and adjusted for data quality

EDA of Target Region \(k \):

\[
EDA_k = \sum_{j=1}^{S} \sum_{i=1}^{I_j} Q_{ij} k \frac{\mu_{ij}^k}{\sigma_{ij}^k}
\]

\[
V = \sum_{k=0}^{n} \frac{EDA_k \times \omega}{(1+r+r_\varepsilon)^k} - \sum_{k=0}^{n} \frac{Cost_k}{(1+r)^k}
\]

- \(r_\varepsilon \) is an additional discount factor associated with quality based on calibration
- \(r_\varepsilon = a(t - t_i) \)
- \(r_\varepsilon \) is modeled to be small after each calibration event at time \(t_i \)

Cost\(_k\) is monetary cost incurred in period \(k \)

\(\omega \) is a monetizing parameter in dollars per bits

\(r \) is a discount ratio, and \(n \) is the total number of time periods
Quantifying impact of calibration with difference in constellation EDA

- Cubesat constellation of 4 spacecraft with passive imaging sensors (same specs as shown in previous case)
- -90 day simulation
- Terrestrial calibration sites to be located below 66.5 deg

- Four sites, below 66.5° latitude were identified to have the highest access frequency (marked in red, blue, green and yellow)
- The site in black diamond was assumed to be the calibration site. This site (located at 65.7303, -150.411 near Fairbanks, Alaska)
- Comparison between calibration and no calibration cases shows, for \(a=0.25\%), adjusted EDA of \(~1000\) TB without calibration and \(~1600\) TB with calibration, i.e. a 60% increase in EDA if calibration is performed.

Modeling Value of Calibration in Remote Sensing

Return on Investment for use of calibration services for Data Providers
Example Case: NDVI analysis

NDVI

Cold Springs, Colorado
NAIP imagery data, 2015
1m ground pixel resolution
Leica Geosystem’s
ADS100/SH100 digital sensors

Classified NDVI

class 1: NDVI < 0
No Vegetation
Bare Area

class 2: 0 ≤ NDIV < 0.1
Low Vegetation

class 3: 0.1 ≤ NDVI < 0.25
Moderate Vegetation

class 4: 0.25 ≤ NDVI < 0.4

class 5: NDVI ≥ 0.4
High Vegetation

\[NDVI = \frac{\rho_{NIR} - \rho_R}{\rho_{NIR} + \rho_R} = \frac{SR - 1}{SR + 1} \]

\[SR = \frac{\rho_{NIR}}{\rho_R} \]

NDVI classification: Discrete thresholds can create large non-linear impacts

Assume the spectral ratio, \hat{SR}, is simply:

$$\hat{SR} = SR(1 + \alpha)$$

*Parameter α aggregates all the error parameters

- $\alpha = 0.03$
- $-0.05 \leq \alpha \leq 0.05$

A 3% error in SR leads to a -60% change in class 5 pixel count in this case

Modeling Value of Calibration in Remote Sensing

Acquisition

Conversion

Effective Data Acquired (EDA) (Data quantity adjusted by quality)

Modeling & Classification

Error propagation, non-linear impacts due to thresholds

Evaluation & Decisions

Value of information (difference in economic outcomes)

Return on Investment for use of calibration services for Data Providers
Remote Sensing of Harmful Algal Blooms

- Remote sensing methods primarily focus on the pigments of HABs groups
- Pigments do not indicate toxicity of algal blooms (requires laboratory testing)

- Advantages:
 - Temporal resolution
 - Early detection
 - Spatial precision
 - Prediction

\[
\log_{10}(chlor_a) = a_0 + \sum_{i=1}^{4} a_i \left(\log_{10} \left(\frac{R_{rs}(\lambda_{blue})}{R_{rs}(\lambda_{green})} \right) \right)^i
\]

Neurotoxic Shellfish Poisoning

Cell counts > 5000 / L leads to shellfish harvesting closure

The fall 2018 bloom is reported to have cost businesses $150 million

Can take weeks after a bloom for shellfish to become safe for consumption.

Discrete thresholds for water quality are used

There is no federally binding threshold for cyanobacteria in recreational freshwater lakes or river in the United States.

World Health Organization (WHO) maximal acceptable concentration of microcystin-LR in drinking water: 1 µg / L

States generally develop their own thresholds for levels of action.

Table 2. Numeric Thresholds for Cyantoxins in Recreational Water.

<table>
<thead>
<tr>
<th>Threshold (µg/L)</th>
<th>Microcysts*</th>
<th>Anatoxin-a</th>
<th>Cylindropermopsin</th>
<th>Saxitoxins*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informational Sign</td>
<td><6</td>
<td><80</td>
<td><5</td>
<td><0.8</td>
</tr>
<tr>
<td>Recreational Public Health Advisory</td>
<td>6</td>
<td>80</td>
<td>5</td>
<td>0.8</td>
</tr>
<tr>
<td>Elevated Recreational Public Health Advisory</td>
<td>20</td>
<td>300</td>
<td>20</td>
<td>3</td>
</tr>
</tbody>
</table>

*Microcystins and saxitoxin thresholds are intended to be applied to total concentrations of all reported congeners of those cyanotoxins.

State of Ohio cyanotoxin thresholds

Decision analysis can be used for comparing economic outcomes and remote sensing value with different data quality.

Public Recreation Example

Decision Trees:
- Decision Node
- Event Node (uncertain events)
- Branch (possible choices/possible outcomes)
- Expected value of event node i:
 \[E_i(V) = \sum_{k=1}^{n} p_k O_k \]

- \(O_1 \): remote sensing and analytics cost
- \(O_2 \): health care costs due to exposure + remote sensing and analytics cost
- \(O_3 \): health care costs due to exposure + loss of park fees + remote sensing and analytics cost
- \(O_4 \): loss of park fees + remote sensing and analytics cost
Data quality will impact likelihood of false positive and false negatives and will impact decision value

- Three variables used to evaluate difference of decisions:
 - \(P_D \): probability of dangerous condition (HAB)
 - \(P(N|D) \) or \(P_{ND} \): probability of a negative analytical result for a dangerous condition (i.e. analysis shows no HAB, but there is a HAB)
 - \(P(Q|S) \) or \(P_{QS} \): probability of a positive analytical result for a safe condition (i.e. analysis shows HAB, but there is no HAB)

The decision model can be represented with these three variables, for example:

\[
\begin{align*}
P_1 &= P(Q) = (1 - P(N|D))P_D + P(Q|S)P(1 - P_D) \\
P_2 &= P(N) = 1 - P(Q) \\
P_3 &= P(S|Q) = \frac{P(Q|S)P(S)}{P(Q)} = \frac{P(Q|S)(1 - P_D)}{P(Q)}
\end{align*}
\]

For \(PD >= 0.2 \), decisions* can vary with level of \(P_{ND} \) and \(P_{QS} \)

Calibration will affect \(P_{ND} \) and \(P_{QS} \)

Plot of \(C2 - C1 \) [\$1000]

(Difference in value of decision with remote sensing and no remote sensing)

*Data for costs, and visitor traffic was based on case-study of Utah Lake provided in Stroming et al. (2020)
Value of radiometric calibration for imagery providers will depend on change in price due to data quality and market expansion

- Value of calibration for imagery providers will depend on impacts on price (due to higher data quality) and market penetration.
- Calibration may increase price per area (image) by a fraction, α.
- The improved data quality may lead to increased sales by a factor β.

$$C_{calibk} = n_L C_L + C_{sub}$$

$$R_k = n_L \alpha p + \beta n_L p (1 + \alpha)$$

$$n_L \alpha p + \beta n_L p (1 + \alpha) \geq C_{calibk}$$

Variation in ROI with changing imagery price levels and area of imagery sold

Results here shown for:
Base imagery price: $23/km^2
Calibration services for 25 looks
FLARE - On-Demand, High Frequency Cal/Val Capability to enable better data and better outcomes

Calibration available on demand

Reduction of Image Processing Time & Human Intervention

Traceable & Demonstratable Performance of any Satellite Data Product (ARD)

A consistent & robust calibration method that is sensor agnostic

Fully Automated Calibration via Subscription Cloud Service

<table>
<thead>
<tr>
<th></th>
<th>Improve Quality</th>
<th>Validation Frequency</th>
<th>Saved Money</th>
<th>Enable Technology</th>
<th>Saved Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLARE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary remarks

- Value of calibration can be quantified with a conceptual 'data value chain' that models the system from data acquisition to applications and decisions.

- Three different methods were shown for quantifying impact and value of calibration:
 - Effective data acquired (EDA), that quantifies data quality and quantity over regions of interest over a mission lifetime, can be used for mission design and trades studies and/or for optimizing calibration station locations.
 - Error analysis with analytical modeling can be used for quantifying impacts on data processing, computation of indices etc.
 - Decision analysis methods, with comparing difference in value of decisions with information (and quality of information as represented by false positive and negative error rates) can be used to quantify impact of calibration on human decisions that affect socioeconomic outcomes.
References

