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Abstract 

Scanning electron microscopes, and transrruss10n 
instruments equipped for EELS, generate a host of 
signals and hence of images from each pixel of the 
specimen. Numerous ingenious ways of coping with this 
multiplicity of information, which may be very different 
in character, have been devised, but no detailed study 
has yet been made of the appropriate mathematical 
structure, with the aid of which all this information 
could be manipulated reasonably easily. 

One such structure falls within the subject that has 
come to be known as Image Algebra, the principal 
attraction of which is that we deal directly with entire 
images and not with individual pixels; the operations 
involved do of course ultimately take effect at pixel 
level. Despite its forbidding name, image algebra is 
intrinsically very simple and has the merit that the notion 
of "image" is very general. Images can in particular be 
multi-valued, that is, a set of values can be associated 
with every pixel. Indeed, a whole image is associated 
with each pixel, in the case of the very important class 
of images known as templates. Image algebra has proved 
to be an extremely fertile subject, generating many new 
ideas and especially, revealing several unsuspected 
relationships between different branches of image and 
signal processing. 

The value of this approach will be examined, after 
a very simple introduction to the basic ideas. The 
application to image-spectra will be considered as a 
tangible example. We conclude with some speculations 
concerning the future of this rich new way of "pictur­
ing" images. 

Key Words: Multi-valued images, image algebra, 
imaging-spectrum, spectrum image, morphology. 
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Introduction 

With the arrival and widespread adoption of the 
various microanal ytical modes of microscopy, the 
meaning of the word "image" became a little less 
obvious or rather, it ceased to have a single meaning but 
instead, became attached to several intensity distributions 
associated with the specimen under study. It could even 
be associated with a single pixel of the latter, though in 
this case a different term would be used (energy-loss 
spectrum) and the image would have only one row of 
values. 

These are not the only extensions of the meaning of 
the word image that are of interest in electron micro­
analysis and microscopy. In bright-field image formation 
in the STEM, it can be useful to record the distribution 
of intensity in the detector plane for each pixel instead 
of the total intensity in a certain zone (occupied by the 
detector) as in the more usual image-forming modes. 
Here then we have a situation in which a (two-dimen­
sional) image is associated with every pixel of the 
specimen. Again, in routine scanning electron microsco­
py, we may acquire several signals from each pixel and 
we are thus confronted with a multi-valued image: 
several intensity values, provided by different detectors, 
are associated with each pixel of the latter. 

A further degree of freedom arises when we consid­
er the use that is to be made of all this information. If 
the aim is to establish a map of the elements in the 
specimen, showing the concentration of the chemical 
element(s) present at each pixel, the final result will be 
a multi-valued image, the "intensity-values" of which are 
now heterogeneous. To each pixel, we shall attach code­
words indicating the chemical elements present and the 
corresponding concentration. The code-words might be 
the symbols for the elements or their atomic numbers 
and we shall have to be careful that the arithmetic 
operations that we may apply to intensities or concentra­
tions do not get applied to these symbolic images. 
Likewise, at the display stage, the kind of colour coding 
suitable for representing concentrations (typically coding 
of saturation or colorimetric purity) will probably be 
different from that best adapted for representing the 
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various chemical elements (often hue). 
The situation is thus complicated and can be confus­

ing to anyone not permanently immersed in the subject. 
Several helpful tools have been introduced, notably the 
spectrum-image of Jeanguillaume and Colliex (1989) 
exploited in depth by Hunt and Williams (1991) and the 
closely related imaging-spectrum of Lavergne et al. 
(1992). Nevertheless, what is lacking is some general 
conceptual structure from which these and similar tools, 
adapted to particular cases, emerge in an obvious way. 
We can anticipate that the existence of such structure 
will suggest new tools or at least, shed an original light 
on those we already know. The purpose of this paper is 
to show that the mathematical structure known as image 
algebra is ideal for these purposes. Some preliminary 
thoughts in this direction were presented at the 10th 
Pfefferkorn Conference, held in Cambridge, 1991 
(Hawkes, 1992). 

Representation 

The algebraic structure that we shall now describe, 
in largely qualitative language, has several obvious 
attractions, notably the ability to express image process­
ing methods coming from very different fields - forensic 
science, agriculture, textile technology, electron micros­
copy - in a single language, accessible to all. One merit 
that is not quite so obvious is surely the principal reason 
for its success: the main steps of any argument are 
expressed in terms of whole images, while the inevitable 
operations at pixel level are relegated to a "second 
division", to the small print as it were. A necessary 
consequence is that we must be prepared to find the 
word "image" used in unfamiliar ways, which are 
nevertheless no more than natural extensions of its 
everyday meaning. Thus the diffraction pattern seen in 
the microscope or obtained with an optical bench or a 
computer is also an image. These are still single-valued 
images, one intensity being associated with each pixel. 
The next degree of complexity is the multi-valued 
image, in which two or more intensity values are 
associated with each pixel, the signals from different 
detectors in a SEM or a STEM for example. We could 
also include the energy-loss spectrum 'here, the set of 
values that represent the spectrum being regarded as the 
intensity values of the multi-valued image. This corre­
sponds to the idea of a "spectrum-imaging image", 
employed by Lavergne et al. (1992). It may, however, 
be preferable to think of this as a single-valued image, 
the values of which are vectors; the elements of the 
vector are of course the measured values of the spectrum 
at that pixel. Another example is the complex-valued 
image, in which phase and amplitude are both of inter-
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est, but it is more natural to allow the intensity values to 
be complex numbers since this situation arises naturally 
as soon as we form a Fourier transform in the computer. 

The final degree of complexity that we need here is 
not quite so easy to comprehend. Now, the intensity 
value associated with each pixel of the image is not a 
single number (real or complex) or even a set of several 
numbers but is itself an image. Moreover, this image 
can itself, in principle at least, be single- or multi-valued 
and its intensity values can be real or complex. Such a 
situation occurs naturally in the STEM as we have 
already mentioned and also, in a more subtle fashion, in 
the image-forming process of the TEM; it also occurs in 
many image filtering operations, designed to improve the 
image in some way or to enhance some feature of it. In 
the case of TEM imaging, this "image-valued image" is 
the point-spread function. We need not insist on this 
here but we mention it to show that such images are in 
practice very common, though we may not often think 
of them in the these terms. 

Another generaliz.ation of potential importance, to 
which very little attention has been paid in electron 
microscopy and which we shall not discuss further here, 
concerns colour. At the simplest extreme, we could 
simply treat a coloured image as the superposition of 
images in the three primary colours, each regarded as 
"black-and-white" image and consider the problem 
solved. This is to ignore the fact that colour is most 
likely to be used to help the microscopist to appreciate 
a large amount of probably heterogenous information by 
displaying it in colours, hue and saturation being exploit­
ed to convey results of various kinds. It thus becomes 
important to understand how the observer perceives 
colour and the role of the colour-matching functions, 
still a subject of active research (e.g., North and 
Fairchild, 1993). We cannot go into this here but it will 
need to be considered whenever digital image informa­
tion is being fed to the colour inputs of a monitor. The 
appropriate mapping is easily incorporated into the 
image algebra that is our subject here. 

The mathematical structure that we are seeking must 
be capable of accepting all these different kinds of image 
with no special precautions or extensions: its purpose is 
precisely to express a complex situation in a simple way 
so we do not want to have to memorize lists of exclusion 
clauses, dealing with special cases. We then need to add 
as small a number as possible of operations, preferably 
of a familiar kind, and we expect to be able to express 
all our image-handling and image-processing tasks in 
terms of these few basic operators and the images on 
which they operate. We can anticipate that a certain 
amount of housekeeping will also be necessary, notably 
to remind us of the nature of the images being manipu-
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lated: we must not try to add two images if one consists 
of intensity values and the other of chemical symbols, 
for example! We might be allowed to form the union of 
them, however, to insert labels into a half-tone image 
before the final output stage. Thus operations can be 
expected to have a meaning only for certain kinds of 
image, a situation familiar in elementary arithmetic. We 
may also need to be careful to ensure that the images 
involved in a calculation are conformable, just as we do 
when multiplying matrices. 

We are now ready to define what we mean by an 
image and to list the operations that we shall be using. 
More precisely, we shall explain how these operations 
work so that if it becomes desirable to add some new 
operation in the future, it can be fitted in naturally 
without perturbing those already incorporated. A more 
formal account of what follows is to be found in the 
work of Ritter et al. (1990) and Ritter (1991). 

An image is a set of quantities at a set of points. 
Formally, we write 

a= {(x, a(x))lxEX}, a(x)€ F (1) 

which states that the image denoted by a is the set of 
quantities a(x) at the points characterized by x, which 
belong to a set of points X. The quantities a(x) can be 
numbers, or sets of numbers or even other images and 
F tells us which is the case. The special situation, to 
which we have drawn attention earlier, in which a(x) is 
itself an image, is so important in image processing that 
such an image is given a particular name, a template. 
Note that in this case, it is necessary to specify not only 
X, which tell us where the pixels of image a are situat­
ed, but another set, Y say, which tells us where the 
pixels of the image a(x) are situated for each value of x. 

The operations that enable us to manipulate such 
images are few in number and very familiar: addition, 
multiplication and maximum; whenever possible, we 
extend this list to include subtraction, division and 
minimum. Together with a certain amount of convenient 
notation, this is all we need to manipulate images, 
however complicated, and to represent all the methods 
of image processing. The newer ideas involving neural 
networks prove to have been anticipated, in the sense 
that all the corresponding mathematics was already 
included in image algebra, just waiting to be recognized. 

Let us now consider the imaging-spectrum and 
spectrum-image in closer detail. In the imaging-spec­
trum, a set of N energy-filtered images is recorded, 
which we denote a,, i= 1,2, ... N. Each of these is a 
single-valued intensity image and corresponds ~o a 
particular energy loss. Such a set of images can be 
obtained with a TEM equipped with a filter: the entire 
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area of the specimen to be imaged is illuminated simulta­
neously with a beam travelling parallel to the axis. 

The spectrum-image is obtained by scanning a small 
probe over the specimen, typically in a STEM equipped 
for parallel EELS (PEELS). The entire energy-loss 
spectrum is recorded for each probe-position and hence 
for each pixel of the specimen. When the probe has 
scanned the whole specimen-area, we thus have a multi­
valued image b, each pixel-value of which represents an 
energy-loss spectrum. 

The imaging-spectrum and the spectrum-image of 
course contain the same information. The relation 
between them is trivial: b= (a1, a2, ••• , aN). The various 
types of information coded in bare immediately accessi­
ble as projections in various directions. These and other 
variants are known collectively as "flavours" (Hunt and 
Williams, 1991) and all can be included in b with only 
minor modification. Hunt and Williams identify six such 
flavours, most of which are already present in b, notably 
E (spectral data from a single point), which is b(x) for 
the point x; xE (spectral data from a line scan), which 
is b(x) for y= constant, say, with x= (x, y); xyE 
(spectral data from each point in a 2D image), which is 
b itself. xyzE (spectral data from each point in a 3D 
image) can be accommodated simply by regarding x as 
(x, y, z) instead of (x, y). The line scans available now 
require two coordinates to be held fixed, if the line is 
parallel to one of the coordinates; in addition, a new 
possibility arises, namely, spectral data from each point 
in a 2D section through the image cube (or parallel­
epiped!). 

Hunt and Williams also include two time-resolved 
flavours, tE (time-resolved spectral data from a point) 
and xtE (time-resolved spectra data from line scans). In 
this case, it may be preferable to regard b as a multi­
valued image, the individual values at each pixel being 
not scalar but vector quantities. We then write 

(2) 

in which each bi, j =I, ... , T, is an entire spectrum, for 
the j-th member of the time series. The flavour tE is 
then just b(x), as before, for a particular value of x and 
xtE is again b(x) for y = constant, for example, or more 
generally for ax+ by = constant for an oblique line­
scan. 

So far, we have done little more than define a 
notation. How do we use it? For this, we need to see 
what can be done with the three basic operations ( +, x 
and v) and their complements(-, /, and /\) beyond the 
most obvious uses. Let us consider the combination of 
addition and multiplication, the latter between an image 
and a template and the former over the resulting prod-
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ucts. A special symbol _ is used for this combination, 
which reduces in the simplest case of a space-invariant 
template to a convolution. We write 

affit= {(y, b(y); b(y)= Ea(x).1>,(x)} (3) 

in which the summation is over x. This enables us, with 
suitable definition of the template t, to describe in a 
homogenous way all the convolutional filters that are 
employed in image enhancement. 

Similar calculations are needed in the study of 
spectra. Thus by forming difference spectra or second­
difference spectra, small edges can be detected just as 
small contrast changes in images are accentuated by 
differentiation or by forming the digital Laplacian. The 
effect of studying the whole image b in this way may be 
expressed as follows: 

c= b ♦ t= {(x, c(x); c(x)= b(x)ffit} (4) 

and any of the numerous ways of recognizing peaks can 
be applied to the processed spectra that are stored as 
c(x). This offers immense flexibility for not only can the 
template be space-variant but it can also be parametrized 
so that, for example, different linear operations are 
performed on different ranges of the spectrum and these 
need not be the same for all pixels. 

Another technique that is proving invaluable in 
EELS elemental mapping is based on multivariate 
statistical analysis (introduced a decade earlier by Frank 
and van Heel in connection with data-handling for three­
dimensional reconstruction), as Trebbia, Bonnet and 
colleagues have shown (Bonnet et al., 1992; Trebbia and 
Bonnet, 1990; Trebbia et al., 1990). The essential step 
here is the reorganization of a set of images into a single 
larger composite image. This is scaled and multiplied by 
its transpose and information is extracted from a study 
of the eigenfunctions and eigenvalues of the resulting 
matrix. We discussed this analysis at some length in 
Hawkes (1993) and the only point worth insisting on 
here is the possibility of regarding the image set as a 
template of particularly simple structure, since it has 
only a single column of pixels, each of which is an 
image with a single row of pixels, those of one of the 
original images redistributed in line. When that paper 
was composed, the importance of the template-to-matrix 
mapping was not clear and its utility in this context was 
merely speculated on. Recent developments have made 
it clear how useful it is likely to prove, and we return to 
it briefly below. 

The manipulation of signals, from scanning instru­
ments in particular, frequently involves the family of 
operations that are known collectively as mathematical 
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morphology, a name that was more appropriate when the 
subject came into being than today, when it is recog­
nized as just one of the branches of image processing, 
admittedly a very large one. These are essentially 
nonlinear operations between an image and a second, 
usually much smaller image, known as a structuring 
element. Just as all the linear filtering operations em­
ployed in image enhancement can be represented as a 
convolution product of the image and a second small 
image so these nonlinear morphological operations can 
be thought of as a different kind of "product" between 
a similar pair of images. It is fair to say that image 
algebra has completely transformed our perception of 
these morphological procedures, for not only has it 
revealed the close relation between the structuring 
elements of morphology and the templates of image 
algebra but it has also shown that the basic operations of 
morphology - dilation and erosion - are exactly equiva­
lent to recognized image algebra calculations. Moreover, 
the latter can be represented as matrix-vector product, a 
particularly useful finding. The fact that the latter is a 
linear operation may seem to conflict with our earlier 
observation that morphology is intrinsically nonlinear; in 
fact, however, the steps that convert the structuring­
element, for example, into a matrix are non-linear, 
though very simple and easy to implement and the 
product itself is defined more generally. 

For a more formal but still extremely readable 
account of these ideas, the work of Davidson is strongly 
recommended, notably Davidson (1992, 1993). 

Conclusion 

The image algebra is thus a very powerful unifying 
force, bringing together the whole of image enhancement 
and image restoration, convolutional and morphological 
filtering as well as the numerous linear and non-linear 
fields of image restoration (Wiener-like filtering, phase 
determination, three-dimensional reconstruction, ... ). A 
preliminary attempt has been made to express image 
analysis and image description in the language of image 
algebra, but much still remains to be done there. 

This vast edifice is built on the modest foundations 
presented in the beginning of this prose} ytizing introduc­
tion to the subject, namely, the definition of the image 
and the three operations of addition, multiplication and 
maximum. 
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Discussion with Reviewers 

R.D. Leapman: One practical difficulty that arises in 
the analysis of spectrum-images concerns the formula­
tion of the right algorithm to apply to the data. For 
example, in EELS spectrum-images, we may need to 
take account of plural scattering effects, to compensate 
for energy and specimen drift, to correct for beam 
current fluctuations and detector gain variations and to 
take account of overlapping edges, etc. Image algebra 
clearly provides us with a unified formal structure for all 
the necessary mathematical operations. However, it also 
seems that some sort of expert system or artificial 
intelligence may be needed to optimize the analysis 
strategy for handling the vast quantity of data that is 
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typically acquired. To what extent can image algebra 
help us with this? 
Author: I agree entirely that the algebra should be 
forced to supply as much guidance as possible as well as 
providing a framework. Probably the most useful reply 
today is to say that work on neural networks and on 
fuzzy set theory in this field has already begun and that 
these are likely to be vital elements when constructing 
some kind of expert system. 

R.D. Leapman: Is there any simple-to-use image 
algebra software that is available for the small computer. 
Author: There is IA C and IA Fortran but I do not 
know whether there are pocket versions of these yet. 

M. Bond: A number of us are familiar with the term 
"voxel". How is this term related to multi-valued 
images? Would the spectrum-image described for EELS 
be an example of a voxel? Please comment on the 
usefulness of the term and its relevance in the field of 
image algebra. 
Author: The term pixel has come to be associated with 
a small area of a two-dimensional single-valued image, 
while voxel is used when small volumes are in question, 
notably in three-dimensional reconstruction. The term 
voxel has been used exclusively with three spatial 
dimensions in mind but there is no reason why two 
spatial dimensions and a third dimension representing 
energy, say, or time should not be envisaged - or one 
spatial dimension and one energy and one time. In such 
contexts, I think that it is very convenient to have a 
separate word. In algebra, however, it is not quite so 
obvious that a new term is helpful. Personally, I prefer 
to think of pixel-values that may be scalars or vectors or 
arrays associated with a coordinate that may have any 
number of components: 2 for a simple pixel, 3 for a 
voxel, or even more, energy associated with a volume 
element 
as a function of time needs five! 

M. Bond: Please clarify and expand on the idea of 
measuring the intensity distribution in the plane of the 
detector [of the STEM] for each pixel. Does this imply 
that intensity variations are within the image plane as 
opposed to perpendicular to the image plane? Does this 
imply that such an approach would be most useful in a 
"coarsely pixelated" image? 
Author: In a STEM, we may imagine that the probe 
illuminates a pixel and the electrons are then distributed 
over the detector plane. Each detector collects all the 
electrons that fall on it and the signal is sent to the 
monitor. In effect, the detector adds all the local cur­
rents that fall on its own pixels. If, however, such a 
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simple detector is replaced by one that records the 
distribution of electrons in the detector plane from a 
single specimen pixel, we have a much more fine­
grained idea of the specimen. The intensity variations 
are indeed in the detector plane, for each specimen pixel 
illuminated by the probe. The coarseness or fineness of 
the sampling is not in question though it is of course of 
practical importance. 

M. Bond: Please give an example of image morphology 
inAEM. 
Author: Morphology has mostly been used in SEM, for 
measuring geometrical properties. But it is just as 
promising in EELS, for "cleaning" noisy spectra, for 
example. 

N. Bonnet: I have appreciated the overview of the 
different kinds of images as a very general mathematical 
structure and the possible gathering of the numerous 
image processing methods within the general class of 
image algebra. Knowing that different groups of meth­
ods can be understood within a common formalism is 
not only reassuring but also probably contains potential 
for the invention of more powerful image processing 
algorithms. But besides this elegant generalization, I 
have the impression that image algebra has not yet 
produced really new approaches for image processing 
and has not helped to solve problems that could not be 
solved by "classical" image processing algorithms. Is it 
possible to guess to which kinds of problems image 
algebra could bring a significant contribution in the 
future? 
Author: It was probably inevitable that, during the first 
few years of its existence, image algebra should have 
been dominated by the applied mathematicians who 
invented it, with the result correctly described by the 
reviewer. The situation is now changing, and papers are 
beginning to appear in the image-processing literature in 
which "real" problems are studied by a mixture of 
traditional and image-algebraic methods. Image algebra 
has already shed light on the murky waters of grey-level 
morphology, though much remains to be done there. I 
think that there is much to be hoped for in the newer 
and more obscure aspects of image processing, morphol­
ogy as I have already mentioned, but also the use of 
neural networks, for classifying very large data sets with 
object-oriented learning rules, for example. However, 
the mathematics is now all ready; what we need is for 
the practicing members of the image-processing commu­
nity to try it out. 

N. Bonnet: Traditionally, there are two main groups of 
methods for extracting chemical information (character-
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istic energy-loss peaks) from data sets in the form of 
image series: either a local modelling of the different 
spectra, following methods developed in spectroscopy, 
or a global analysis of the whole data set, by multi­
variate statistical analysis, for instance. Each of these 
groups of methods has its own drawbacks: the need to 
choose a model and statistical problems for the former; 
the need to choose a metric distance and sensitivity to 
outliers and artefacts for the latter. For these reasons, 
new methods are beginning to be investigated, which try 
to place the analysis on a quasi-local (or regional) scale. 

Do you think that image algebra could cope with 
this kind of problem in the near future? Could you also 
give some more indications concerning the nature of the 
templates that could be used for processing spectrum­
images? 
Author: Image algebra is general enough to represent 
clearly and compactly the kind of procedures described 
but I am not sufficiently aware of the details of these 
new methods to be able to speculate on the contribution 
that the algebra might make. On past experience, 
however, one can be optimistic. So far as the nature of 
the templates to be used for processing spectrum-images 
is concerned, several replies are possible: for smoothing, 
the templates would represent the corresponding struc­
turing elements of mathematical morphology, but 
structuring elements of other families, notably "grey­
level" (not flat) elements, would be needed for recogniz­
ing and perhaps labelling peaks. 
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