ARCSTONE: Calibration of Lunar Spectral Reflectance from Space

Cindy Young¹

C. Lukashin¹ (PI), T. Jackson¹, T. Stone², G. Kopp³, R. Swanson⁴, N. Abraham⁵, E. Minda⁶
C. Buleri⁶, J. Carvo⁷, M. Cooney¹, H. Courrier⁴, W. Davis¹, A. Halterman⁶, M. Kehoe⁴, T. Nguyen¹
N. Ryan¹, P. Smith³, M. Stebbins⁴

1 – NASA Langley Research Center, Hampton, VA
2 – USGS, Flagstaff, AZ
3 – LASP University of Colorado, Boulder, CO
4 – Resonon Inc., Bozeman, MT
5 – Goddard Space Flight Center, Greenbelt, MD
6 – Quartus Engineering, San Diego, CA
7 – Blue Canyon Technologies, Inc., Boulder, CO

Funded by ESTO: IIP-QRS-16-0018
SBIR programs: Phase-I & Phase-II
ARCSTONE: Team and Contributions

NASA LaRC
Mission concept & science
Project management *
Engineering coordination
Instrument electronics
Flight and ground software
Mechanical, Thermal & Structural
Environmental testing
* SSAI: sub-contract management

NASA GSFC
Optical black coating

Instrument concept
Component characterization
Radiometric calibration
Error budget

ARCSTONE TEAM:
- NATIONWIDE COLLABORATION of EXPERTS!
- Collaboration with NIST & UMBC:
 Ground and Airborne lunar measurements

Lunar calibration approach (ROLO)

6U CubeSat Bus

Instrument Analysis (STOP, RV, TE)
Input to instrument design
Flexures design
Moon: Potentially Accurate Source for Calibration On-orbit

- Measurement accuracy is directly related to the information content of the dataset. Measurement accuracy is critical to EOS!
 Current EOS cannot handle data gaps. Need overlapping observations: CERES, MODIS/VIIRS, Landsats, PACE/SeaWIFS, etc.

Calibration reference: Lunar Spectral Irradiance (entire disk)

- SeaWiFS gain stability: 0.13% (k=1) over 12 years
- Accuracy of current Lunar Model (ROLO): 5 – 10%

On-Orbit Calibration Need:
Absolute accurate spectral irradiance for all lunar phase angles and libration states.

Expected Impacts:
- Quality of data products
- Long-term consistency
- Handling data gaps
- Reduces instrument size, mass, power
- Reduce complexity
- Accurate CubeSat sensors

Reflectance of Lunar surface stable to < 10^-8 / year
Applications of the Lunar Calibration Approach
(satellite operators worldwide !)

<table>
<thead>
<tr>
<th>Team</th>
<th>Satellite</th>
<th>Sensor</th>
<th>G/L</th>
<th>Dates</th>
<th>Number of obs</th>
<th>Phase angle range (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMA</td>
<td>FY-3C</td>
<td>MERSI</td>
<td>LEO</td>
<td>2013-2014</td>
<td>9</td>
<td>[43, 57]</td>
</tr>
<tr>
<td>CMA</td>
<td>FY-2D</td>
<td>VISSR</td>
<td>GEO</td>
<td>2007-2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMA</td>
<td>FY-2E</td>
<td>VISSR</td>
<td>GEO</td>
<td>2010-2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMA</td>
<td>FY-2F</td>
<td>VISSR</td>
<td>GEO</td>
<td>2012-2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JMA</td>
<td>MTSAT-2</td>
<td>IMAGER</td>
<td>GEO</td>
<td>2010-2013</td>
<td>62</td>
<td>[-138,147]</td>
</tr>
<tr>
<td>JMA</td>
<td>GMS5</td>
<td>VISSR</td>
<td>GEO</td>
<td>1995-2003</td>
<td>50</td>
<td>[-94,96]</td>
</tr>
<tr>
<td>JMA</td>
<td>Himawari-8</td>
<td>AHI</td>
<td>GEO</td>
<td>2014-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EUMETSAT</td>
<td>MSG1</td>
<td>SEVIRI</td>
<td>GEO</td>
<td>2003-2014</td>
<td>380/43</td>
<td>[-150,152]</td>
</tr>
<tr>
<td>EUMETSAT</td>
<td>MSG2</td>
<td>SEVIRI</td>
<td>GEO</td>
<td>2006-2014</td>
<td>312/54</td>
<td>[-147,150]</td>
</tr>
<tr>
<td>EUMETSAT</td>
<td>MSG3</td>
<td>SEVIRI</td>
<td>GEO</td>
<td>2013-2014</td>
<td>45/7</td>
<td>[-144,143]</td>
</tr>
<tr>
<td>EUMETSAT</td>
<td>MET7</td>
<td>MVIRI</td>
<td>GEO</td>
<td>1998-2014</td>
<td>128</td>
<td>[-147,144]</td>
</tr>
<tr>
<td>CNES</td>
<td>Pleiades-1A</td>
<td>PHR</td>
<td>LEO</td>
<td>2012</td>
<td>10</td>
<td>[+/-40]</td>
</tr>
<tr>
<td>CNES</td>
<td>Pleiades-1B</td>
<td>PHR</td>
<td>LEO</td>
<td>2013-2014</td>
<td>10</td>
<td>[+/-40]</td>
</tr>
<tr>
<td>NASA-MODIS</td>
<td>Terra</td>
<td>MODIS</td>
<td>LEO</td>
<td>2000-2014</td>
<td>136</td>
<td>[54,56]</td>
</tr>
<tr>
<td>NASA-MODIS</td>
<td>Aqua</td>
<td>MODIS</td>
<td>LEO</td>
<td>2002-2014</td>
<td>117</td>
<td>[-54,56]</td>
</tr>
<tr>
<td>NASA-VIIRS</td>
<td>NPP</td>
<td>VIIRS</td>
<td>LEO</td>
<td>2012-2014</td>
<td>20</td>
<td>[50,52]</td>
</tr>
<tr>
<td>NASA-OBPG</td>
<td>SeaStar</td>
<td>SeaWiFS</td>
<td>GEO</td>
<td>1997-2010</td>
<td>204</td>
<td>(<10, [27-66])</td>
</tr>
<tr>
<td>NASA/USGS</td>
<td>Landsat-8</td>
<td>OLI</td>
<td>LEO</td>
<td>2013-2014</td>
<td>3</td>
<td>[-7]</td>
</tr>
<tr>
<td>NASA</td>
<td>OCO-2</td>
<td>OCO</td>
<td>LEO</td>
<td>2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOAA-Star</td>
<td>NPP</td>
<td>VIIRS</td>
<td>LEO</td>
<td>2011-2014</td>
<td>19</td>
<td>[-52, 60]</td>
</tr>
<tr>
<td>NOAA</td>
<td>GOES-10</td>
<td>IMAGER</td>
<td>GEO</td>
<td>1998-2006</td>
<td>33</td>
<td>[-66, 81]</td>
</tr>
<tr>
<td>NOAA</td>
<td>GOES-11</td>
<td>IMAGER</td>
<td>GEO</td>
<td>2006-2007</td>
<td>10</td>
<td>[-62, 57]</td>
</tr>
<tr>
<td>NOAA</td>
<td>GOES-12</td>
<td>IMAGER</td>
<td>GEO</td>
<td>2003-2010</td>
<td>49</td>
<td>[-83, 66]</td>
</tr>
<tr>
<td>NOAA</td>
<td>GOES-13</td>
<td>IMAGER</td>
<td>GEO</td>
<td>2006</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>NOAA</td>
<td>GOES-15</td>
<td>IMAGER</td>
<td>GEO</td>
<td>2012-2013</td>
<td>28</td>
<td>[-52, 69]</td>
</tr>
<tr>
<td>VITO</td>
<td>Proba-V</td>
<td>VGT-P</td>
<td>LEO</td>
<td>2013-2014</td>
<td>25</td>
<td>[-7]</td>
</tr>
<tr>
<td>KMA</td>
<td>COMS</td>
<td>M6</td>
<td>GEO</td>
<td>2010-2014</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>AIST</td>
<td>Terra</td>
<td>ASTER</td>
<td>LEO</td>
<td>1999-2014</td>
<td>1</td>
<td>[-27.7]</td>
</tr>
<tr>
<td>ISRO</td>
<td>OceanSat2</td>
<td>OCM-2</td>
<td>LEO</td>
<td>2009-2014</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ISRO</td>
<td>INSAT-3D</td>
<td>IMAGER</td>
<td>GEO</td>
<td>2013-2014</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

From GSICS (Global Space-based Inter-Calibration System) Lunar Calibration Workshop, December 2014, EUMETSAT.

- Instruments with lunar calibration capabilities participating in the GSICS GIRO (GSICS implementation of the ROLO model) program
- List includes sensors with lunar observations submitted to the database at EUMATSAT as of December 2014.
- Next GSICS Lunar Calibration Workshop: November 2020, virtual (?)
ARCSTONE Objectives:

- To enable on-orbit high-accuracy absolute calibration for the past, current, and future reflected solar sensors in LEO and GEO* by providing lunar spectral irradiance as a function of satellite viewing geometry and specified wavelength.

- To design, build, calibrate and validate a prototype instrument, demonstrate form-fit-function for a 6U observatory with compliance in size, mass, power, and thermal performance.

* Planetary instruments: OSIRIS Rex Camera suite [Golish et al., 2020]
ARCSTONE Mission Concept

Concept of Operations and Data Products:

- Data to collect: Lunar spectral irradiance every 12 hours, 10 minutes
- Data to collect: Solar spectral irradiance for calibration (daily)
- Combined uncertainty < 0.5% (k=1)
- Spectrometer with single-pixel field-of-view about 0.7° (no scanning!)
- Sun synchronous orbit at 500 – 600 km altitude
- Spectral range from 350 nm to 2300 nm, spectral sampling at 4 nm

1 year: Improvement of current Lunar Calibration Model (factor of 2 – 4);
3+ years: New Lunar Irradiance Model, improved accuracy level (factor of 10).

Key Technologies to Enable the Concept:

- Approach to orbital calibration via referencing Sun (TSIS measurements):
 Demonstration of lunar and solar measurements with *the same optical path using integration time to reduce solar signal* -- Major Innovation!
- Pointing ability of spacecraft now permits obtaining required measurements *with instrument integrated into spacecraft.*

6U CubeSat Spacecraft Bus:
courtesy of Blue Canyon Technologies (BCT)

BCT 6U XB6 Spacecraft pointing:
Accuracy 0.002° (1-sigma) in 3 axis
Stability 1 arc-sec over 1 sec
ARCSTONE Mission: Key Performance Parameters

<table>
<thead>
<tr>
<th>Key Parameters</th>
<th>Threshold Value</th>
<th>Goal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy (reflectance)</td>
<td>1.0% (k=1)</td>
<td>0.5% (k=1)</td>
</tr>
<tr>
<td>Stability</td>
<td>< 0.15% (k=1) per decade</td>
<td>< 0.1% (k=1) per decade</td>
</tr>
<tr>
<td>Orbit</td>
<td>Sun-synch orbit</td>
<td>Sun-synch orbit</td>
</tr>
<tr>
<td>Time on-Orbit</td>
<td>1 year</td>
<td>3 years</td>
</tr>
<tr>
<td>Frequency of sampling</td>
<td>24 hours</td>
<td>12 hours</td>
</tr>
<tr>
<td>Instrument pointing</td>
<td>< 0.2° combined</td>
<td>< 0.1° combined</td>
</tr>
<tr>
<td>Spectral Range</td>
<td>380 nm – 900 nm</td>
<td>350 nm – 2300 nm</td>
</tr>
<tr>
<td>Spectral Sampling</td>
<td>8 nm</td>
<td>4 nm</td>
</tr>
</tbody>
</table>

Threshold Values considered as success criteria

Reference for radiometric requirements (ROLO, T. Stone):
- Lunar Phase Angle = 75°;
- Irradiance = 0.6 (micro W / m² nm)
- Wavelength = 500 nm

ARCSTONE MISSION CONOPS:

1. Lunar spectral irradiance observations:
 - Every 12 hours
 - Close to polar locations
 - Multiple measurements within 5–10 minutes to improve SNR
2. Solar Spectral Irradiance observations (solar calibration):
 - Multiple measurements to get required SNR
 - This is radiometric calibration to the TSIS reference
3. Dark images:
 - Multiple measurements with closed shutter
 - Before every lunar and solar observations
4. Dark field (to calibrate out shutter temp):
 - Multiple measurements of dark space
5. Field-of-view sensitivity characterization:
 - Calibration of instruments alignment
6. Spectral calibration:
 - On-board spectral calibration
7. Spacecraft pointing calibration and other checks:
 - Defined by the BCT for calibration of spacecraft functions
8. Stand by mode:
 - Mode between observations
9. Data Downlink Mode
10. Safe Mode (if required)

* 6U CubeSat accommodation Study is completed
ARCSTONE Instrument in Fabrication

Volume:
Fits within up-to-date spacecraft bus CAD from BCT with at least 0.5mm clearance from all payload walls/features

Mass:
4.13 kg (6 kg payload allowable)

Power (all worst cases):
- Science Mode: 23.83 W (118 W peak allowable)
- Data Downlink Mode: 34.07 W
- Stand By Mode: 15.5 W

* Cabling is not shown
ARCSTONE Instrument Analysis

Optic bench random vibration analysis.

Performing Analysis: STOP, Thermoelastic, Random Vibe

Optic bench displacements [microns] at −30°C. Cutaway shows interior of camera dewar/cold finger.
ARCSTONE: SWIR IDCA (1 – 2.3 µm) Characterization

- Sensor is uniform
 - 745 hot/dead pixels
 - Only 2 pixels with no normal surrounding pixels
- Vertical banding apparent in both dark and light images
 - Eliminated through dark subtraction

Integration time from 10^{-4} to 3.3 seconds!

SWIR IDCA Characterization Conclusions:

1. SWIR IDCA usable at 0.3% - 0.4% uncertainty level:
 - Primary contributor to uncertainty is variation in the offset value between its measurements (repeatability over a few days).
 - Offset value variation is a systematic uncertainty that cannot be mitigated through increased averaging, but may be lower during real data collecting operations, e.g. measuring offset before every lunar observation.

2. Camera linearity: better than expected at 0.1%

3. Initial Vacuum tests: positive results!

Full Spectral Range IDCA is essentially the same as SWIR IDCA (except for detector, OB filter, and integration time extended to 16 seconds)

Major Credits:
- IDCA selection/acceptance: Mike Cooney (NASA LaRC)
- Mechanical design: Trevor Jackson (NASA LaRC)
- IDCA characterization: Paul Smith (LASP, CU)
ARCSTONE IIP: Status and Next Steps

Status:
- Design and STOP analysis completed for EDU instrument
- 6U CubeSat accommodation study completed
- Fabrication of instrument is in progress

Next Steps:
- Complete 6U CubeSat/Payload thermal study (September 2020)
- Complete fabrication of instrument (October 2020)
- Characterize Full Spectral Range IDCA (January 2021)
- Assemble instrument (February 2021)
- Calibrate instrument (May 2021)
- Field-test instrument with Sun and Moon measurements (TRL5, June 2021)

Testing ARCSTONE field equipment at NASA LaRC
ARCSTONE: Calibration of Lunar Spectral Reflectance from Space

Recent Publications:

Available online: https://ieeexplore.ieee.org/abstract/document/9172629

Available online at https://www.mdpi.com/2072-4292/12/11/1837
ARCSTONE: Calibration of Lunar Spectral Reflectance from Space

http://arcstone.larc.nasa.gov

THANK YOU!