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FRACTAL DESCRIPTION OF ELECTRON SCATTERING IN SOLIDS: SEVERAL NEW 

RESULTS AND A SIMPLE MODELIZATION OF THE FRACTAL DIMENSION 

Raynald Gauvin• and Dominique Drouin 

Departement de Genie Mecanique, Universite de Sherbrooke, Sherbrooke, Quebec, Canada, JlK 2Rl 

Abstract 

The fractal behaviour of electron scattering in 
solids is studied with electron trajectories simulated 
by Monte Carlo simulations. More precisely, the 
Hausdorff-Besicovitch dimension is determined for 
several electrons trajectories simulated in solids of 
different compositions. Then, a simple model to 
compute the fractal dimension of electron 
trajectories in solids is presented, a model which 
raises a question concerning the maximum value of 
the backscattering coefficient. Results of Monte 
Carlo simulations of electron trajectories in several 
elements with total randomness for the polar and 
azimuthal angles of scattering are presented as a 
tentative answer to this question. Finally, the 
multi fractal behaviour of the energy distribution of 
backscattered electrons is presented. 
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Introduction 

The determination of the fractal behaviour of 
the trajectories of incident electrons in a solid is 
important in a fundamental point of view as in a 
technological point of view concerning scanning 
electron microscopy and electron beam 
lithography. 

Since the work of Mandelbrot ( 1982), it is 
well known that continuous curves or surfaces 
having no derivatives are fully characterized by 
their Hausdorff-Besicovitch dimension, or box 
counting dimension, and such curves (or surfaces) 
are called fractal curves ( or fractal surfaces). 
Numerous examples of curves and surfaces having 
a fractal behaviour have been found. These include 
the coast of countries (Mandelbrot, 1967), fracture 
surfaces (Mandelbrot et al., 1984), earth's relief 
(Mandelbrot, 1975) and dendrites in solidified 
alloys (Uwaha and Saito, 1990). Also, the fractal 
behaviour of ions which cascade in solids has been 
characterized theoretically and measured from 
Monte Carlo simulations (Rossi et al., 1989). 
Gauvin and Drouin ( 1992) have undertaken studies 
concerning the fractal behaviour of the trajectories 
of incident electrons in solids when they scatter in a 
specimen analyzed in the scanning electron 
microscope. In this paper, other results concerning 
the fractal behaviour of electron scattering in solids 
are presented. 

The first part of th is paper briefly presents the 
Monte Carlo model used to simulate electron 
scattering in solids. The second part presents the 
determination of the Hausdorff-Besicovitch 
dimension using the box counting method for one 
electron trajectory simulated in C, Cu, Ag and Au 
with initial energy, E0 , equals to 10 keY. Then, 

this dimension is determined for 30 trajectories 
simulated in the same systems with E0 equals to 10 

and 30 keY. Finally, the Hausdorff-Besicovitch 
dimension is determined for 1000 electron 
trajectories simulated in gold with E0 equal to 

30 keY. The third part of this paper presents a 



R. Gauvin and D. Drouin 

simple model to compute the fractal dimension of 
electron trajectories in solids. A correlation 
between the fractal dimension computed with this 
model and backscattering coefficients of several 
elements raise a question concerning the maximum 
value of the backscattering coefficient, and results 
of Monte Carlo simulations of electron trajectories 
in several elements with total randomness for the 
polar and azimuthal angles are presented as a 
tentative answer to this question. Finally, the last 
part of this paper presents the multifractal 
behaviour of the energy distribution of 
backscattered electrons for several elements. 

Monte Carlo Simulations of Electron 
Trajectories 

Figure I shows the sequence of events which 
are assumed when an electron diffuses into a solid 
in Monte Carlo simulations. At the point Pi, the 
electron with an energy equal to Ei suffers an 
elastic collision since the scattering of primary 
electrons in solids is mostly caused by elastic 
collisions, except for light elements when inelastic 
scattering dominates (Newbury et al., 1986). Its 
trajectory is changed by a polar angle 8i, and an 
azimuthal angle ~i, and this electron travels a 
distance Li to the next point Pi+ I when it suffers 
another collision. 

y 

X 

X' 

Figure l. Geometry used to compute the trajectory 
of an electron when it travels from point Pi to point 
Pi+ I separated by a distance Li. 8i <1nd ~i are the 
polar and azimuthal angles of collision at point Pi. 
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The polar angle of collision, 8i, is obtained by 

generating a random number uniformly distributed 
between O and I, RI, and by solving this equation : 

f; ( ddci1) E/n 8 d0 
R1 =--------f ( ddci1) E/n 8 d0 

(I) 

where ( ddc;t) , is the partial elastic cross-section 
L, 

at energy Ei as a function of the solid angle dO. 

The azimuthal angle of collision is uniformly 
distributed between O and 2rc, and it is obtained by 
solving this equation : 

where R2 is another random number uniformly 

generated between O and I. 

(2) 

The distance between collisions is computed 
by generating another random number uniformly 
distributed between O and I, R3, and by solving 

this relation : 

(3) 

where p is the atomic density of the solid. This 
equation is valid when specimen composition is 
homogeneous. In this work, the partial elastic 
cross-section of Rutherford is used with the 
screening parameter of Nigam et al. (1959) giving 
analytical expressions for equations (I) and (3) 
(Murata et al., 1973). When an electron travels 
from the point Pi from the point Pi+ I, it is assumed 

in conventional Monte Carlo simulations that the 
electron travels in a straight line, which is certainly 
not the case in reality because the strong coulombic 
field between the incident electron and the atoms of 
the specimen certainly gives a curvature to its 
trajectory. Also, it is assumed that the electron 
looses energy continuously when it travels from Pi 

to Pi+ I because of the inelastic collisions. The 

energy at the point Pi+ I, Ei+ I, is obtained by 

solving this relation : 

E =E+(dE) L ;+ I ; dS E. ; 
I 

(4) 
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where ( ~~) E is the rate of energy loss at energy 
I 

Ei, and the relativistic expression of Livingston and 

Bethe ( 193 7) is used in th is work , 

dE _ 4n e4 N Z 
dS -- 2 r:t2 o PA 

mo c 1-'i 

(5) 

where p is the mass density of the solid 

ev = e: I (4m:
0

), ev is the electronic charge, i::0 is 

the permittivity of free space, Z, A and J are the 
atomic number, atomic weight and mean ionization 
of the solid, respectively, c is the speed of light, m0 

is the rest mass of the electron and ~i is the ratio of 

the speed of the electron, of energy Ei, to that of 

the speed of light. In this work, values of J 
recommended by Murata et al. ( 1973) are used. 

The trajectory of an incident electron, 
specified by its initial direction and energy in a 
solid, is thus simulated by the successive 
summation of the events described above until it 
escapes the specimen, which gives a backscattered 
electron, or when its energy becomes equal to the 
mean energy of the conduction electrons of the 
solid (because of the failure of equation (5) at low 
energy, the computation of the trajectory of the 
electron is stopped when E :::; SJ in our 
simulations). This gives the single scattering 
approach to simulate electron trajectories. In otir 
simulations, random numbers are generated using 
the algorithm of Press et al. ( 1986). 

The Hausdorff-Besicovitch Dimension of 
Electron Trajectories in Solids 

The Hausdorff-Besicovitch dimension D of a 
curve is related to the number of square (or cube) 
boxes N(8) of length 8 which cut the curve by : 

(6) 

where k will be defined later. As tentatively 
defined by Mandelbrot ( 1982), a fractal is by 
definition a set for which the Hausdorff­
Besicovitch dimension strictly exceeds the 
topological dimension. Since this definition 
involves formal mathematics, Mandelbrot has 
proposed another definition (Feder, 1988) : a 
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fractal is a shape made of parts similar to the whole 
in some way. 

The length of a curve could be approximated 
by multiplying the number of boxes needed to 
cover the line by their size giving: 

(7) 

When a curve is not fractal, D = I as it is for a 
straight line or a circle and the length of this curve 
remains finite and k is the length of the curve. 
When a curve is fractal, D exceeds I and the length 
of the curve increases when 8 decreases. Thus, the 
length of a fractal curve is a function of 8 and 
diverges as 8 tends to zero. To generalize, the 
measure Md is defined in this way : 

where y(d) is a constant which is related to the 
shape of the element which cover the whole set. 
y(d) is a function of d which may be a non-integer 
value. When a set is covered by lines, square or 
cubes, y( d) = 1. Substituting equation (6) into 
equation (8) gives : 

(9) 

where E = y(d) k. When d < D, Md tends to oo and 
when d > D, Md tends to 0 as 8 tends to zero in 
both cases. Thus, the Hausdorff-Besicovitch 
dimension D of a set is the critical dimension for 
which the measure Md changes from zero to 
infinity as 8 tends to zero. When d = D, Md = E 
and Mandelbrot ( 1982) called it tentatively an 
approximate measure in dimension d. 

A plot of log (N(8)) versus log (8) gives a 
slope of -0. Such a plot is shown in Figure 2 for 
an electron trajectory simulated in silver with an 
initial energy equal to IO keV. When 8 is greater 
than the whole electron trajectory, N(8) equals 1 
and D equals zero. When 8 is on the order of the 
whole electron trajectory, a value of D ~ 1.7 is 
observed. Since D is greater than the topological 
dimension of the curve, a fractal behaviour is 
observed. When 8 decreases, a value of D equals 
one is measured because in this range of 8, just one 
part of the electron trajectory is intercepted by th_e 
boxes and the trajectories of electrons are assumed, 
in Monte Carlo simulations, to be straight lines 
between elastic collisions. This is also consistent to 
the fact that the length of electron trajectories in 
solids are finite because their range is a function of 
their initial energy and of the rate of energy loss 
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Silver 10 keV Copper 10 keV 

"JOO 

, -..slope = -1.092 
Slope -1.049 

N(6) ----------'-',~--------- N(6) 

N(6) 

10 10 

D 1.712 

_____________ ___,, ______ , 

HlOOO 

Figure 2. Log(N(o)) versus log(o) for an electron 
trajectory simulated in Ag with an initial energy 

equal to 10 keV. 

Carbon l 0 ke V 

Ss1ope -1.045 

D 1.283 

5(A) 

Figure 3. Log(N(o)) versus log(o) for an electron 
trajectory simulated in C with an initial energy 

equal to 10 keV. 

when they diffuse into a solid, and since they have 
a finite amount of initial energy, their range is 
finite. From this argument, the Hausdorff­
Besicovitch dimension of an electron trajectory 
should be equal to one as o tends to zero. 
Therefore, the shape of electron trajectories 
simulated in solids has a fractal behaviour in a 
specific range of o when o is on the order of the 
whole electron trajectory. Such behaviour is 
confirmed in Figures 3 to 5 which show plots of 
log (N(o)) versus log (o) for electron trajectories 
simulated in carbon, copper and gold with initial 
~lectron energy equal to IO ke V. The fractal 
behaviour of the electron trajectories simulated in 
these elements with E0 equal to IO keV is similar 
to the results of Gauvin and Drouin ( 1992) 
obtained for the same elements at 30 keV. 

6(A) 

Figure 4. Log(N(o)) versus log(o) for an electron 
trajectory simulated in Cu with an initial energy 
equal to l O keV. 

Gold 10 keV 

N(O) 10 D 1.436 

4 

ofA) 

Figure 5. Log(N(o)) versus log(o) for an electron 
trajectory simulated in Au with an initial energy 
equal to 10 keV. 

Also, Gauvin and Drouin ( I 992) were able to 
show that the shape of an electron trajectory 
simulated in a solid from a plot of an electron 
trajectory looks the same with different 
magnifications. This observation of self-similarity 
was qualitative, and it can be made quantitative 
following Normant and Tricot ( 1991 ). A curve is 
self-similar if, for all t and, : 

q (t - ,, t + ,) - P(t - ,, t + ,) ( I 0) 

where t is the parameter of a curve K and , :<::; t. 
q(t, ,) and P(t, ,) are the size and the deviation, 
respectively, of the smallest convex body enclosing 
a subarc of K. Thus, equation ( I 0) will certainly 
help in the near future to assess quantitatively_ the 
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self-similarity of the shape of electron trajectories 
in solids. 

Table I presents the results of D and E as 
a function of the atomic number of the target, of 
the initial energy of incident electrons and of the 
number of electron trajectories. Figures 6 and 7 
show plots of log(N(cS)) versus log(cS ) for 30 and 
1000 electron trajectories, respectively, simulated 
in gold with E0 equal to 30 keY. From these 

results, it is difficult to make a relation between D 
and E0 and Z. This is even worse for E, for which 

the physical meaning is not obvious to define. 
When the number of electrons used to compute D 
and E increases, both D and E increase, as 
confirmed for gold at 30 keV for 1, 30 and 1000 
electrons. This is also confirmed by the results 
shown in Table 2. This table presents values of D 
and E measured independently for 5 electron 
trajectories simulated in gold at IO keV. Each 
value of D and E is for one specific electron 
trajectory. D is not the same for different electron 
trajectories. This is certainly related to the 
statistical nature of the shape of electron 
trajectories in solids and to the imprecision in the 
linear regression used to find D since few points 
are available. All these values obtained for five 
single electron trajectories are smaller than the 
values obtained for 30 and 1000 electron 
trajectories for Au at 10 keV. This could be related 
to the fact that when measuring N(cS) for several 
electron trajectories, the effect of the cumulative 
trajectories on N(cS) mask the net value of a single 
trajectory. Since Gauvin and Drouin ( 1992) have 
stated that D is between I and 2 for electron 
trajectories in a solid from a physical argument, 
when the number of trajectory increases in the 
measure of N(cS), the "random walk" part of 
electron trajectories dominates and D becomes 
closer to 2, which is the value of a random walk 
process. Also, for the measurements using I 000 
electron trajectories in gold, and 30 electron 
trajectories in Cu, values of D greater than 2 have 
no physical sense, and they are related to an early 
saturation behaviour of the number of counts in 
boxes of size 8 when several electron trajectories 
are used in the box counting method. Thus, the 
fractal dimension of electron trajectory in solids 
must be measured independently for several 
electron trajectories alone, and the mean should be 
taken rather than measure N(cS) for all the 
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Table I. Values of D and E as a function of the 
atomic number of the target, the initial energy of 
incident electrons and of the number of electron 
trajectories. 

Element Eo # of Electron D E 
(keV) trajectories (i° 

C 10 1.28 
Cu 10 1.53 177828. 
Ag 10 1.71 417000. 
Au 10 1.43 26900. 
C 10 30 1.35 2.63 X 106 

Cu 10 30 2.23 9.33 X 109 

Au 10 30 1.82 2.45 X 106 
C 30 30 1.8 2.18x 109 

Ag 30 30 1.93 1.2 X 107 

Au 30 30 1.80 5.75 X 107 

Au 30 1000 2.25 6.3 X 109 

Table 2. Values of D and E for five different single 
electron trajectories simulated in gold with E0 = 10 

keY. 

Trajectory D E 

(A)D 
number 

I 1.23 26900 
2 1.50 42660 
3 1.37 16980 
4 1.19 3310 
5 1.41 89125 

Mean 1.38 35795 

trajectories included together when the box 
counting method is used. Also, more accurate 
methods, to measure D have been proposed. 
Normant and Tricot ( 1991) review these methods, 
and they present a new one which is known to be 
more accurate than the box counting method. 
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Gold 30 keV 30 electron 

-------~D = 1.so3-----

N(6) 100 

N(O) 

6(A) 

Figure 6. Log(N(8)) versus log(8) for 30 electron 
trajectories simulated in Au with an initial energy 
equal to 30 keV. 

Gold 30 keY 1000 electron 

'-

°'-s-D -2.256 
-s: 

s:s;::: 

o(A) 

Figure 7. Log(N(8)) versus log(8) for I 000 
electron trajectories simulated in Au with an initial 
energy equal to 30 keV. 

Modelization of the Fractal Dimension of 
Electron Trajectories in Solids 

The Hausdorff-Besicovitch dimensioi1, D, 
describes the shape of a curve in ~n3 ( or in ~H2). 
We have characterized such curves in the section 
[II. These curves here are called K curves. If we 
plot the position of the electron, R, as a function of 
time, there is another curve describing the 
scattering of an electron in a solid. We use the 
term J curves for these curves. The position of the 
electron is computed using this relation : 

where (X 0 , Y 0 , Z0 ) is the initial position of the 
incident electron in the solids. As a result, J curves 
are in ~H2 . The time at each collision can be 

6 

computed knowing Ei and Li between each 
collision. Thus, it is easy to obtain a J curve from a 
K curve from the data of Monte Carlo simulations. 

Voss (1985) has shown that the Hausdorff­
Besicovitch dimension D 8 of a J curve in 9?2 is 
related to the Holder exponent H by this relation: 

( 12) 

where H can take any value between O and I. 
When H equals I /2, the position of the electron as a 
function of time is described by a random walk 
process. When H is between l /2 and I, the J curve 
is described by a persistent process which means 
that the direction of the electron from point Pi to 

Pi+ J is the same as it was from Pi- I to Pi. When H 

is between O and 1/2, the J curve is described by an 
antipersistent process, that the direction of the 
electron from Pi to Pi+ J is contrary to that of Pi- I 

to Pi. 

The Hausdorff-Besicovitch dimension D of 
the K curve is related to the Holder exponent of the 
J curve by this relation : 

D=_L 
H 

(13) 

Therefore, for a random walk process, D is equal to 

2. 
Gauvin and Drouin ( I 992) have shown from 

the J curve of an electron trajectory simulated in 
Au when E0 equals I 00 keV that the first part of an 
electron trajectory scattering into a solid is 
described by a persistent process and the last part is 
described by a random walk process. Since an 
electron trajectory which is described by a perfect 
persistent process will give a straight line with 
D = I and that an electron trajectory which is 
entirely described by a random walk process will 
have D = 2, the Hausdorff-Besicovitch dimension 
of the K curve of an electron trajectory is expected 
to lie between I and 2. The same result can be 
obtained quantitatively as follows : since the 
azimuthal angle is equally distributed between 0 
and 2n, the persistence of an electron trajectory is 
the result of the initial low value of the mean polar 
angle. H can be given by the probability of going 

from Pi to Pi+ J in the same direction as from Pi- I 
to Pi . By considering the effect of the polar angle 
only, H is obtained by solving this equation : 
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fh (:~) sin 8 d8 

H=-------

f (:~) sin 8 d8 

which gives, using screened Rutherford cross­
sections : 

H=i±s!:._ 
2a + I 

( 14) 

(15) 

where a is the screening parameter given by 
(Nigam et al., 1959) : 

5.34 x 10- 3i 13 
a= 

E 

( I 6) 

Eis the energy of the electron, in keV, and Z is the 
atomic number of the solid where the electrons 
scatter. When a tends to zero, which is the case for 
high value of E and low value of Z, H tends to I 
and a persistent process is predicted. When a 
increases, which is the case for low values of E and 
high values of Z, H tends to 1/2. Thus, H lies 
between 1/2 and I, and D, of the K curve, lies 
between I and 2. For a given element with high 
enough initial value of E, when the electron scatters 
into the solid, it loses energy, thus, a increases, and 
H goes to 1/2. As a result a shift from a persistent 
process to a random walk process when an electron 
scatter into a solid is predicted by equation ( 15). 
Also, equation ( 15) predicts that D, of the K curve, 
should increase with Z. However, for electron 
scattering in gold, equations ( I 5) and ( 16) predict a 
value of H equal to about 0.95 for E equals 2 keV. 
Thus, electron scattering in gold when E equals 2 
keV should be described by a persistent process, 
which is in flagrant contradiction with the 
observation of Gauvin and Drouin ( I 992) of the 
shift of a persistent to a random walk process, for 
an electron scattering in Au with E0 = I 00 keV, 
which occurs for E equal to around 95 keV. Since 
equation (14) does not include the effect of the 
azimuthal angle on H, the shift of a persistent to a 
random walk process for the scattering of electrons 
in solids is certainly caused by the net effect of the 
azimuthal angle, with uniform probability 
distribution and mean value equal to n, on the 
trajectory of the electron in as a function of time. It 
follows that equation ( 15) is not appropriate to 
compute the fractal dimension of electron 
trajectories in solids. 

A more appropriate equation can be obtained 
ifwe assume that D, of the K curve, is given by: 
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( 17) 

where fp is the fraction of the electron trajectory 

which is described by a persistent process and in 
such a case we assume that the fractal dimension is 
equal to I. ( I - f p) is the fraction of the electron 

trajectory which is described by a random walk 
process. In this case the fractal dimension is equal 
to 2. Thus, equation ( 17) predicts values of D 
which lie between I and 2. Equation ( 17) also 
assumes that there is a jump for the local fractal 
dimension from I to 2 where the shift from a 
persistent to a random walk process occurs which is 
certainly not the case in reality where a gradual 
transition should be observed. fp is equal to the 

ratio of the diffusion depth to the electron range, 
Zd!Xr. Since it is difficult to precisely find fp from 

Monte Carlo simulations using the box counting 
method, an experimental determination of fp will 

be useful for a first modelization of D for electron 
trajectories. Using the expression for Zd obtained 

by Cosslett ( 1964) from experimental 
measurements in Al, Cu, Ag and Au at 20 keV, fp 
is given by: 

(18) 

Equation (18) describes self-similarity in this way: 
the fraction of an electron trajectory which is 
persistent is not a function of E0 ; thus when 

equation ( 18) is valid, the shape of an electron 
trajectory in a solid of a given composition is the 
same for any value of E0 . Therefore, an electron 

trajectory with initial energy E0
1 will look the 

same (from a statistical point of view) to that 

having an initial energy equal to the value Ea2 if it 

is magnified by the value x/3/x1-:
1 

where x/; is the 
r 

electron range with initial energy Ei. 

Inserting equation ( 18) into equation ( 17) 
gives: 

D = 4 + 22 · 
Z+8 

(I 9) 

Figure 8 shows the backscattering coefficient, 
taken from Heinrich (1966), as a function of D, 
computed using equation ( 19), for C, Al, Cu, Ag 
and Au. It is seen that the backscattering 
coefficient, T], increases with D. This means that 
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when the fraction of an electron trajectory which is 
described by a persistent process decreases, the 
shift from this process to a random walk process 
occurs at a shorter distance from the top surface of 
the specimen. As a result, the probability that an 
electron escapes the specimen increases. As a 
result, the general behaviour of Figure [8] seems 
logical but the exact variation depends on the 
validity of equation (19). Also, since ri is a 
function of E0 only when E0 is below 10 keV 
(Darlington and Cosslett, 1972), D is a function of 
Z only when E0 is greater than 10 keV. Therefore, 
the shape of electron trajectories in solids, for a 
specific Z, are not self-similar as a function of E0 
when E0 s 10 ke V. The form of equation (19) is 
expected to be valid when E ~ 10 keV, but the 
exact coefficients depend on equation (18). 

Also, equation ( 19) depends only on the 
validity of equation (17) which assumes a 
discontinuity on the local fractal dimension, as 
explained above. Therefore, equation ( 19) is a first 
attempt to modelize the fractal dimension of the 
electron trajectories in solids computed using 
Monte Carlo simulations and from accurate 
determination of D as a function of E0 (when 
E0 s 10 keV) and Z. A more precise modelization 
of D will certainly emerge, but the general form of 
equation (19) is expected to be valid when 
E0 ~ 10 keV. 

Figure 9 shows a parabolic behaviour of T] as 
a function of D and raises the following question : 
What is the backscattering coefficient when the 
scattering of electrons in solids is fully described 
by a random walk process (when D = 2)? As a this 
tentative answer to crucial question, from a 
fundamental point of view, our Monte Carlo 

'l 0.25 

o., j-

005 ~ 

D 

Figure 8. Backscattering coefficient, TJ, as a 
function of D, computed using equation ( 19) for C, 
Al, Cu, Ag and Au. The values of T] were taken 
from Heinrich ( 1966). 
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Figure 9. T] as a function of Z from Heinrich 
(1966). Also, T] as a function of Z computed at 30 
keV assuming complete random walk with 00 

computed with equation (22a) and (22b) 
respectively with Bethe law (B) of energy loss 
(Livingston and Bethe, 1937) and computed with 
equation (22a) with Joy and Luo (1989) (J.L.) law 
of energy loss. 
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program has been modified to simulate electron 
trajectories which are described by a pure random 
walk process. This has been done by computing 
the polar angle in this way : 

(20) 

and 00 by two different ways : 

80 = 0, (2 la) 

or 
(21 b) 

Figure 9 shows ri as a function of Z computed at 
30 ke V with equations (20) and (21 a) or (21 b) 
respectively for C, Al, Cu, Ag and Au. Also, the 
values measured by Heinrich (1966) are shown for 
comparison. From these results, it is clear that 
when electrons scatter into solids with a complete 
random walk process that the backscattering 
coefficient is significantly greater than those 
measured experimentally or simulated with 0i 
computed with equation (I) since Murata et al. 
(1973) have obtained ri values which are m 
excellent agreement with those measured by 
Heinrich ( 1966). Therefore, the fact that measured 
T] values are significantly smaller than those 
simulated with complete randomness is the proof 
that the persistent part of the diffusion of electrons 
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in solids plays a major role in the behaviour of 
electron scattering in solids. When Z decrease, 
measured ri values decreases meaning that the 
persistent part of electron trajectories in solids 
increases, as predicted by equation ( 18). Thus, the 
general meaning of equation ( 19) and of Figure 8 
seems to be logical. Also, since ri varies 
significantly less with Z in a complete random walk 
process than in reality, this proves that the 
outstanding chemical contrast of backscattering 
images in the scanning electron microscopes is the 
result of the strong variation of the fraction of 
electron trajectories which are described by a 
persistent process as a function of Z. Also, this is 
confirmed when we compare ri computed with 
equation (20) and equations (21 a) or (21 b ), 
respectively. Equation (21 a) is the case when the 
first trajectory of electrons in solids is persistent 
and all the others random, and equation (21 b) is the 
case of complete randomness. When equation 
(21 a) is used, for all Z, ri are smaller than those 
computed with equation (21 b ). The difference is 
about 6% for C and decreases as Z increases and 
equals about 3% for gold. Therefore, only one step 
of electron trajectories which is persistent (the 
initial speed only) is sufficient to give a variation of 
about 5% on rJ. 

Concerning the maximum value of ri in the 
case of complete randomness, it is clear that this 
value, for a given Z, is smaller than I but greater 
than I /2 and that these values depend on the energy 
loss, since values computed with the energy loss of 
Joy and Luo ( 1989) are smaller than those 
computed with dE/dS given by equation (5). 
Therefore, the way that electron loss energy 
certainly affects the values of the real 
backscattering coefficients. If there was no energy 
loss, a complete random walk, for all Z values, 
should give ri = I as the number of collisions goes 
to infinity. It is because of the energy loss, that the 
ri values computed with complete randomness, are 
smaller than one. 

Multifractal 

The Hausdorff-Besicovitch dimension 
obtained from the plot of log (N(8)) versus log (8) 
has a serious limitation. If the number of times that 
the electron trajectory cut a given box of size 8 is 
greater than 1, this information is not included 
because, each time that the electron trajectory cuts 
a box, only one count is counted. Thus, to 
overcome this difficulty, for each box which cut by 
the electron trajectory, a probability µi is measured. 
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~ti is equal to the number of times that the electron 
cuts the box i divided by the total number of 
counts. Because of the way in which we are 
computing the number of times that an electroncuts 
a box i, our computed values µi are the respective 
fraction of the total length of the electron trajectory 
in the box i. With the probabilities µi, the function 
N(8, q) is defined in this way : 

(22) 
i=I 

where N is the number of boxes covering the 
electron trajectory and q is the moment order of the 
measure. N(8, q) is related to the size of the boxes 
8 by: 

N(8, q) = k 8-t(q) (23) 

where k is a constant and t(q) is the mass exponent 
that controls how the moments of the probabilities 
{µi} scale with 8. For q = 0, N(8, 0) is equal to N 
and t(0) is equal to the Hausdorff-Besicovitch 
dimension D. 

The probabilities {µi} are a function of the 
size of the boxes, 8. These probabilities can be 
related to the Lipschitz-Holder exponent a 
according to: 

a 
µi = 8 . (24) 

Each probability {µi} is then characterized by 
a specific exponent a for a given 8. The 
multifractal spectrum of the Lipschitz-Holder 
exponents is given by the function f(a) which is 
obtained from the curve which relates t(q) as a 
function of q by the use of the Legendre's 
transform (see Feder, 1988) : 

and 

d 
a(q) = ---r(q) 

dq 

f(a(q)) = q a(q) + t(q) 

(25) 

(26) 

Let N(µa) be the number of probabilities {µi} 
defined by the exponent a for a given 8 value. 
Then, N(µa) scales with 8 according to : 

(27) 

where K is another constant and f(a) is the fractal 
dimension of the subset of probabilities {µa}. As a 
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resu It, a curve described by a mu I ti fractal measure 
has a continuous spectrum of fractal dimensions. 

Gauvin and Drouin ( I 992) have shown, 
from the trajectory of an electron simulated in Au 
with E0 equal to 30 keV, that the distribution of the 
trajectory of incident electrons in solids that cut 
boxes of size o, is described by a multifractal 
measure. Here, the energy distribution of 
backscattered electrons is studied using multifractal 
analysis for electron trajectories simulated in C, Cu 
ai<l Au with E0 equals 30 keV. The probabilities 
µi are computed as follows : 

N8 
µf = N (28) 

T 

where N~ is the number of backscattered electrons 

having an energy between (i - 1) ~0 and ;~0 with I 

:s: i :s: 5-l. 

Figure IO shows the energy distribution of 
backscattered electrons in C, Ag and Au with 
E0 = 30 keV. These distributions are presented as 
d17/dW as a function of W where W = E/E0 and E 
is the energy of the backscattered electron. These 
distributions have been obtained from simulations 
of I 00,000 electrons. For Au, Ag and C, the most 
probable energies are equal to 0.92, 0.88 and 0.56, 
respectively. As Z decreases, the mean energy 
decreases and the distribution becomes broader. 
This behaviour is well known. 

Figure 11 shows the f(ex) curves for these 
three energy distributions. In these curves, the 

largest ex values correspond to the smallest ~t~ , so 
they show the information concerning the tails of 
these distributions. Since silver has the greatest 
variation of ex, this means that more information is 
included in the tails of dri/dW versus W than in the 
other distributions. C has the least information in 
the tails and Au is in between. To characterize the 
nature of the distribution of d17/dW versus W, the 
f(ex) curves are a powerful tool and they will 
certainly be very useful to characterize all 
distributions generated by Monte Carlo simulations 
because the scattering of electrons in solids is a 
physical phenomenon which is generated by a set 
of independent physical process acting 
simultaneously. f(a) curves play a central role to 
describe such phenomena. 

Carbon 30 ke V 

O.CXXJ7 

~ ~ ~ ~ ; ~ ~ ~ ~ ~ ~ ; ~ ~ ~ ~ ~ ! ~ ~ ~ ~ ~ ~ ~ 
w 

a) 

Silver 30 keV 

0.01:? 

. 0.0\ 

0.00, 

dTl/dW0.006 

0.00< 

0002 

w 

b) 

Gold 30 keV 

0.025 

0.02 

0015 

dTl/dW 

OOI 

0.00, 

o L. =-y/111/111,mmJJJJ:wm.wJ 
~ ! ! ~ ~ ~ ~ ~ ~ ~ ~ ; ~ ~ ~ ~ ~ ! ~ ; ~ ~ ~ ~ ~ 

w 

c) 

Figure I 0. d17/dW as a function of W . for 
E0 = 30 keV. a) C, b) Ag, c) Au. 
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Conclusions 

Fractal analysis is a powerful tool to describe 
electron scattering in solids from a fundamental 
point of view and this will certainly help to validate 
the numerous Monte Carlo codes used to simulate 
the trajectories of electrons in solids. The electron 
trajectory in 913 simulated by the Monte Carlo's 
method is fractal for a given range of 8 where 8 is 
in the order of the electron trajectory and I ~ D ~ 
2. The first part of the scattering of an incident 
electron in solids is described by a persistent 
process where the last part is described by a 
random walk process. The cumulative effect of the 
azimuthal angle of collision gives this transition. 
When Z decreases, the fraction of persistence 
increases when electron scatters into the solid. 

A simple model to compute D has been 
proposed and a relation has been found between D 
and TJ. This model, which depends on .z only, is 
expected to be valid when E0 ~ IO keV. When 
Eo ~ 10 keY, a more elaborate model will give D 
as a function of Z and E0 . The variation of the 
fraction of an electron trajectory in a solid which is 
described by a persistent process with the atomic 
number explains the outstanding chemical contrast 
of backscattered images. The energy distribution 
of backscattered electrons is described by a 
multifractal measure and the shape of the 
corresponding f(a) curves is function of the atomic 
number of the target. 
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Discussion with Reviewers 

Z. Czyzewski : The Mott scattering cross-section is 
a better approximation for elastic scattering than 
the Rutherford one. Could you show any 
comparison of the D dimension for electron 
trajectories calculated using Mott cross-section and 
Rutherford formula? Please, comment any 
differences between these two data sets. 
Authors : Before commenting on any differences 
between different sets of data, we believe that we 
must assess the accuracy of the method used to 
measure D. We are currently valiating several 
methods us-ing trajectories of complete random 
walk where D is known to be equal to 2. 

Z. Czyzewski : Could you show an example of the 

D dimension when a mean value of N(8) is used 
for all electron trajectories as a function of the 
number of trajectories used in calculations. You 
suggest in the paper that it is much better approach 

than that which measures N(8)for all trajectories 
together. 
Authors : Table 2 shows an example where the 
mean value of D is computed from 5 independent 
values of D obtained from 5 electron trajectories 
simulated in Au with E0 = keV. Again, we believe 

that before comparing different results, we must 
validate the precision of the methods used to 
measure D. 
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