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EFFICIENCY OF THE SECONDARY ELECTRON DETECTOR 

IN THE SCANNING ELECTRON MICROSCOPE 

Zbigniew Czyzewski* and David C. Joy 1 
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1 Also Oak Ridge National Laboratory, Oak Ridge, TN 37831 

Abstract 

The efficiency of the secondary electron detector in 
the scanning electron microscope (SEM) is one of the 
most important factors affecting the imaging process of 
the SEM. To compute the detector efficiency, the 
electrostatic field inside a specimen chamber must be 
known. A simple way of performing such calculations 
is to use a spreadsheet program which has a built-in 
capability of storing and performing some operations on 
three-dimensional matrices. Using a spreadsheet pro
gram makes it possible to solve the Laplace equation and 
calculate electron trajectories in geometrically complex 
electrostatic fields. This technique is applied to the 
estimation of detector efficiency in the SEM. 

Key Words: Detector efficiency, scanning electron 
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Introduction 

The electron microscope uses an electron beam to 
obtain various kinds of information about specimens. 
The electron beam is focussed by electrostatic and 
magnetic fields, and electron detectors employ electro
static fields to attract or deflect electrons. In many 
cases, the demand to calculate the electron trajectories in 
a fast and visual way is very strong. Unfortunately, 
Monte Carlo calculations of secondary electron emission 
rarely take into consideration the efficiency of an elec
tron detector even when theoretical data have been com
pared with experimental ones. Recently, however, Suga 
et al. (1990) incorporated the detector field into their 
calculations to estimate the SEM images quantitatively. 

When the total secondary electron emission yield is 
studied, a special semi-circular detector can be used and 
detector efficiency does not_ have to be considered. 
However, for other detector types, especially the 
Everhart-Thomley (ET) detector, used in the SEM it is 
sometimes necessary to include the detector efficiency 
when comparing with experimental data. The most crit
ical problem is simulating the secondary electron signal 
for the ET detector from specimen shapes other than 
planar. Most of the proposed topographical reconstruc
tion methods do not consider the detector efficiency at 
all, mainly because they are based on a two signal ratio 
approach and because the detector efficiency is different 
for various ET detectors provided by different vendors. 
Scanning microscope vendors try to optimize the ET de
tector efficiency and estimate it for various working 
conditions using sophisticated software. However, re
cently many researchers have been using spreadsheets to 
calculate the electrostatic potential (Leclerc and Sanche, 
1990; Orvis, 1987; Czyzewski and Joy, 1992), and it is 
possible to write a spreadsheet application to determine 
an electron trajectory inside any chamber and even esti
mate the detector efficiency for a given chamber geom
etry and a parameter set. 

In this paper, an application of a spreadsheet pro
gram (Lotus 1-2-3, release 3.1+) to compute the elec
tron trajectories in a truly three-dimensional space is 
presented. A similar application but two-dimensional 
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was described by Bradley and Joy (1991). The Laplace 
equation can be solved in a simple and visual way. The 
advantage of the spreadsheet for this problem lies in the 
ease of performing each step: initialization of the bound
ary conditions, iterative solution of the Laplace equation 
and calculation of trajectories. 

The Laplace Equation 

The Laplace equation is solved by an explicit finite
difference method, which is based on the discretization 
of space and the central difference approximation for the 
derivative. In a threeadimensional space composed of 
cubic cells of dimension t.3, the Laplace equation takes 
the form: 

</>(i, j, k) = [</>(i+l,j, k) + </>(i-1,j, k) + 
</>(i,j+l, k) + </>(i,j-1, k) + 
¢(i, j, k+l) + </>(i, j, k-l)]/6, (1) 

where (i, j, k) = (xn/t., Yn/t., 2n/t.) is the coordinate, 
in t. units, of the grid point characterizing cell n. 

The potential at a point (i,j,k) is therefore simply 
the average of the potentials in the immediate surround
ing points, a property of several scalar fields. As calcu
lations are performed, the boundaries will send their po
tential to their neighborhood, expand and mix through 
space until a convergence is attained (that is, the poten
tial at any point does not change significantly with fur
ther calculations). The information given by the bound
aries has therefore traveled through space, and the scalar 
field is completely defined from explicit dependence 
stated by equation (1). Using a spreadsheet to 
perform potential calculations is very easy and, most 
importantly, is a visual process. In the three
dimensional spreadsheet space one has to draw the 
boundary of the chamber and apply the bias values to it. 
This process can be relatively slow for very complicated 
geometries. Finally, the other inner cells of the volume 

Figure 1. Equipoten
tial lines for the 
Hitachi S-800 cham
ber (52 mm x 20 
mm); detector bias 
+ 200 V; detector lo
cated on the right 
wall of the chamber; 
sample pos1lion 
center of the short 
horizontal bar near 
the zero of the 
horizontal scale. 
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of interest are assigned the average function for adjacent 
cells to model equation (1). A short macro starts the 
calculation, and one may observe the convergence of the 
potential in any region of the spreadsheet. 

To illustrate this approach, the geometry of the 
Hitachi S-800 chamber was copied in a coarse approxi
mation into a spreadsheet as a 21 by 53 by 53 matrix. 
The chamber height was assumed to be 20 mm and the 
diameter 52 mm; the detector diameter was assumed to 
be 8 mm and its length inside the chamber I mm. Fig
ure 1 shows results for the electrostatic field in the form 
of equipotential lines for a grounded specimen and a 
+ 200 V detector bias. The field around the specimen 
is very weak. 

Electron Trajectories 

Once the potentials are calculated, it is easy to 
compute the electron trajectories within the same spread
sheet file. Trajectory calculations visualize the origin of 
the divergence between potential settings suggested by 
standard electron optics and those necessary to achieve 
maximum current in the real system. From the many 
approaches to trajectory calculation, the parametric so
lution of Newton's second law with respect to time and 
adimensional spatial units was chosen. This approach 
was proposed by Leclerc and Sanche (1990) in their 
spreadsheet calculations. The three components of the 
force acting on the electron at a particle position ex
pressed in the t. units (x/t., ylt., zit.) are calculated 
from linear approximation of the potential within the 
grid points surrounding the (x/t., y/t., zit.) trajectory 
point. Then the spreadsheet calculates the time steps 
corresponding to an adimensional spatial displacement s 
in all x, y, and z directions, and the smaller time inter
val is chosen to compute the subsequent position. The 
procedure is repeated until a boundary is reached. For 
s = I, the electron trajectory is exactly related to the 
grid resolution, although the smaller s is the smoother is 

lV lOV sov 

10 0 10 20 
Distance-off center (mm) 
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the computed trajectory, and the better the trajectory 
accuracy is. However, for very small values of dis
placement, s, the time necessary for trajectory calcula
tion is much longer, while trajectory accuracy is not sig
nificantly improved because it is limited by the space 
interval, ~, of the potential field. Space charge effects 
on the trajectories are not taken into account by these 
calculations, but, for lens systems aberrations, can be 
monitored graphically. A magnetic field can also be 
easily incorporated into an electron trajectory calcula
tion, no matter if it is homogeneous or not. 

Once the potential field has been calculated, its 
values might be extracted, if there is memory limitation, 
and electron trajectories can be computed. Figure 2 
shows electron trajectories for the Hitachi S-800 cham
ber. Because the field around the specimen is very 
weak, the detector can only attract electrons from its 
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side. The higher the electron energy, the lower the de
tector efficiency is. Figure 3 presents trajectories for a 
specimen biased at -100 V. In this case, a very small 
number of electrons reaches the detector. Electrons are 
repelled by the specimen field, and, because their energy 
is at least 100 e V, the detector field cannot attract these 
electrons unless their trajectories pass close to the detec
tor. A set of trajectories presented in Figures 1 and 2 
were chosen, for illustrative purposes, to lie on a plane 
determined by the center of the detector and the 
chamber-axis although all calculations were three
dimensional. 

Efficiency of the Everhart-Thornley Detector 

The efficiency of a conventional secondary detector 
in the SEM can be defined as a ratio of the number of 

Figure 2. Electron trajectories 
insice the S-800 chamber; detector 
and sample position as in Figure 1, 
in (b) and (c) half of the chamber 
shown; detector bias +200 V. Elec
tron energy: (a) 1 eV, (b) 4 eV, (c) 
10 eV; take-off angles: (a) -40°, 
-20°, 0°, 20°, 40°; (h) & (c) 0°, 
20°, 40°, 60°, 80°. 

Figure 3. Electron 
trajectories inside the 
S-800 chamber; half 
of the chamber shown; 
detector and sample 
position as in Figure 
1; detector bias + 200 
V. Specimen -100 V; 
take-off angles 0°, 
20°, 40°, 60°, 80°; 
electron energy: (a) 1 
eV, (b) 10 eV. 
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electrons collected by a detector to the total number of 
emitted electrons. To determine the detector efficiency, 
a large number of secondary electron trajectories over 
the whole range of emission angles has to be calculated. 
In general, the detector efficiency is a function of the 
chamber geometry and the detector bias. To study the 
effects of these two factors, two more chamber geome
tries were considered. They are depicted in Figure 4. 
Figure 4a presents the chamber geometry from Figure 1. 
The geometry in Figure 4b is primarily the same as that 
in Figure 4a, but the bottom of the chamber is lowered 
by 5 mm, and therefore this geometry is a better approx
imation to the real chamber of Hitachi S-800. In the 
following discussion, the geometry depicted in Figure 4a 
is named "shallow", and the geometry in Figure 4b 
"deep". Figure 4c shows a modification of the "deep" 
geometry with longer detector tube and is named a "long 
detector" geometry. Although it is possible to estimate 
a rank of the detector efficiency for these three geome
tries using other methods, the approach presented above 
offers not only the raw data on the detector efficiency 
but also the detailed information about potential field 
inside the chamber, which makes this approach very 
helpful in the detection optimization. 

Figure 5 presents the detector efficiency as a func
tion of electron energy and detector bias for the "deep" 
geometry. This figure confirms a well known fact that, 
when decreasing the electron energy or increasing the 
detector bias, detector efficiency increases. It was 
assumed that the angular distribution of secondary elec
trons is, according to Lambert's law, cos(3, where (3 is 
the take-off angle with respect to the chamber-axis. 

The detector efficiency reflects the distribution of 
the potential field. Therefore, a small increase of the 
potential on the way from the specimen to the detector 
for the "deep" geometry in comparison with "shallow" 
geometry leads to a little increase of the number of 
electrons reaching the detector (Figure 6). However, 

Figure 4 (top). Different geometry approximations to 
the Hitachi S-800 chamber: (a) shallow, as in Figure 1, 
52 mm x 20 mm, detector length inside chamber l mm; 
(b) deep, 52 mm x 26 mm, (c) long detector, 52 mm x 
26 mm, detector length 3 mm; detector at the right wall 
of the chamber, specimen stage in the center at the bot
tom of the chamber. 

Figure S (middle). Detector efficiency for chamber 
geometry shown in Figure 4b as a function of electron 
energy and detector bias as a parameter. 

Figure 6 (bottom). Detector efficiency for chamber ge
ometries shown in Figure 4; L long detector, D deep, 
and S shallow geometry; 200 and 400 are detector bias 
values in volts. 
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the same argument is not sufficient to explain the differ
ence in detector efficiency between the "deep" and "long 
detector" geometry for a low detector bias. ln fact, 
more electrons are directed towards a detector plane for 
the "long detector" geometry but the detector efficiency 
is smaller than in the case of the "deep" geometry for 
detector bias less than 280 V and for electron energy 
greater than 0.5 eV. The focusing strength of a detector 
is much less for "long detector" geometry. This focus
ing lens is formed by detector and surrounding chamber 
walls. Such a conclusion can be easily drawn when tra
jectories and potential fields are calculated in a visual 
way. 

With Monte Carlo simulation of secondary electron 
generation, the calculation for a single trajectory finishes 
when the trajectory emerges out of the specimen and 
there is not any shadowing effect for this trajectory. 
However, knowing the take-off angle of a trajectory and 
an acceptance range of the detector, one can determine 
if an electron will be collected or not. The collection 
range of a detector can be easily computed using the 
approach to trajectory calculation presented above. 

Discussion 

The application of a spreadsheet program to calcula
tion of the electron trajectories in an SEM chamber was 
presented. The three-dimensional chamber can be mod
elled and the potential field can be easily calculated in a 
visual way without having to rely on massive computer 
facilities. This approach can be successfully used for 
any type of detector and any electron signal in the SEM 
as weil as for other charged-particle trajectory 
calculations. 
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Discussion with Reviewers 

F. Hasselbach: What is a spreadsheet program, and 
what are its advantages compared to conventional ray 
tracing programs (e.g., the well known Simion 
program)? 
Authors: A spreadsheet program is a program which 
handles many different operations on matrices. It is 
usually equipped with high quality graphical user inter
face. Spreadsheets also provide simple programming 
language. When using numbers as elements of matrices, 
a spreadsheet program with its many built-in functions 
is a very useful tool for different kinds of calculations 
which require data to be stored in arrays. The advan
tages of a spreadsheet application over conventional 
tracing programs are: (a) simple and fast preparation of 
input data (chamber geometry, electrodes' polarization, 
etc.); (b) portability, the program can run on almost 
every personal computer; (c) high quality graphical user 
interface, the user may watch the dynamics of the calcu
lation process, final data can be presented m many 
graphical ways; and (d) ease of use. 

K. Murata: Could you comment the on effect of the 
magnetic field leaked from the objective lens on electron 
trajectories or the detector efficiency? 
Authors: ff the field is small and almost uniform, then 
the effect is negligible as all of the trajectories will just 
rotate about the optic-axis somewhat. If the field is very 
high, then clearly a full simulation of the effects of both 
E and B would have to be done. This is something that 
we cannot yet handle but it could be done. 

K. Murata: Have you calculated trajectories of elec
trons ejected from the chamber wall? Have you_ studied 
whether the detector efficiency varies with the detector 
position in the vertical direction? 
Authors: We have studied neither of these interesting 
problems using our spreadsheet application. 

M.A. Smith: What is the condition on s? Is s the 
displacement? If so, is not the smallest discrete 
value of s 6.? 
Authors: The electron trajectory is computed indjscrete 
points in space using the Newton equation. The distance 
between two consecutive points is determined, in our 
application, from the condition that the maximum 
distance for either direction (X, Y, Z) is equal to s. 
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Therefore, s is a displacement and, here, is expressed in 
t. units. The smallest value of s is 0. 

K. Murata: Could you show the exit angle region of 
electrons to be detected in a polar diagram? 
Authors: The exit angle region of electrons is a rapidly 
varying function of an electron energy and a take-off 
angle as well as a chamber geometry. For any set of 
values of these parameters, the exit angle range of elec
trons to be detected is a binary function of an azimuthal 
angle. An electron reaches a detector or it does not. 
This function can be easily obtained in our spreadsheet 
application. You probably mean the averaged exit angle 
region over the azimuthal angle range. We have not 
done such a calculation. 
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F. Hasselbach: Can you give some data on calculation 
times and hardware requirements? 
M.A. Smith: What kind of computer did the authors 
use? How long did it take to do calculation for Figure 
1? How much computing time and RAM are required 
for a typical calculation? Can one watch the conver
gence in three dimensions with the spreadsheet program? 
Authors: We used IBM PC 386 with math co-processor 
and 16 meg RAM. There are minimal hardware re
quirements for real three-dimensional calculations. The 
potential calculations are relatively slow, and it took ap
proximately 1 hour to obtain data for Figure 1. One can 
watch the convergence in three dimensions with the 
spreadsheet program. Trajectories are calculated rela
tively fast with an average time of 10 sec for one 
trajectory. 
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