High Performance Optical Imaging Payloads for Smallsat Missions

SSC08-VI-6

G. Tyc, W. Larson
MDA Corporation
Canada

T. Butlin
Orbital Optics Ltd
United Kingdom

N. Waltham, N. Morris, I. Tosh
Rutherford Appleton Lab
United Kingdom

August 12, 2008

22nd Annual AIAA/USU Conference on Small Satellites
Outline

• Camera & Spacecraft Dev’t Program Overview
• Optical Camera Design
• Camera Hardware Testing
• Payload Controller, Processor & Memory Unit (PCPMU)
• Camera System Performance
• Hi-Res Optical Spacecraft Design
• Summary
Development Program Overview

• Two classes of Hi-Res Camera in development
 – RALCam-4: 1.0 m GSD @ 600 km altitude
 – RALCam-5: 0.5 m GSD @ 500 km altitude

• Camera’s designed together to share same technology
 – Telescope optics & structure identical BUT RALCam-5 is scaled up in size to increase aperture
 – Focal Plane & Electronics Assembly (FPEA) is same for both

• PCPMU is MDA’s re-configurable payload electronics
 – performs all payload control & data handling for future MDA missions
 – Both classes of optical camera, radar missions & Comms missions

• Developed MDA’s next-generation Hi-Res mission offering
 – Leveraged elements of the RapidEye spacecraft design
Payload Architecture

- **OPTICAL CAMERA**
 - Telescope Optics & Structure
 - Focal Plane & Electronics Assembly (FPEA)

- **Payload Controller, Processor & Memory Unit (PCPMU)**
 - Camera Command
 - Image Data

- **X-Band Tx 1-2**
 - I,Q,CLK
 - Gimbal Control

- **Antenna Gimbals 1-2**
 - ANTENNA

- **Spacecraft Bus**
 - Heater Power
 - FPEA Power
 - ON-OFF
 - PPS Synch
 - PCPMU Power
 - CAN

MDA
RALCam-4 Optical Camera

Key Parameters

- Mass: 76 kg
- Power: 60 W
- Length: 1.17 m
- Height: 0.75 m
- Width: 0.83 m
- Focal Length: 6000 mm
- Aperture: 480 mm

- Near-zero CTE materials used (CFRP & Zerodur)
RALCam-5 Optical Camera

The following are changes from RALCam-4:
- scaled up in size to increase aperture
- increased detectors in focal plane
- “wrap around” camera frame

Key Parameters
- Mass: 220 kg
- Power: 120 W
- Length: 1.95 m
- Height: 1.25 m
- Width: 1.38 m
- Focal Length: 10,000 mm
- Aperture: 800 mm
- Same materials as RALCam-4
RALCam 4 & 5 Focal Plane

5 spectral bands:

- **PAN**: 450 – 700 nm
- **Blue**: 450 – 520 nm
- **Green**: 520 – 600 nm
- **Red**: 630 – 690 nm
- **NIR**: 760 – 900 nm

PAN Sensor
- Pixel size: 10µm
- Number of pixels: 20,580 (RALCam-4), 32,868 (RALCam-5)
- Number of TDI stages: 96

MS Sensor
- Pixel size: 40µm
- Number of pixels: 4 x 5,145 (RALCam-4), 4 x 8,217 (RALCam-5)
- Number of TDI stages: 16

Not used for RALCam-4
Optical Camera Key Features

• Active On-Orbit Optics (AO3) System
 – Telescope optics re-aligned in space using a proprietary approach
 – Removes need to maintain very high optical component stability from Lab to on-orbit - a significant cost driver
 – Maintains high image quality

• FPEA
 – Custom CCD’s (Pan and MS) developed with e2v (UK) from ground up together with Front End Electronics (RAL)
 – Leverage heritage processes & technology for ultra-high data quality
 – Designed to allow for low recurring costs – optimized to reduce price point

• Telescope
 – CFRP telescope structure & zerodur mirrors – provide near-zero CTE and remain low cost

• Camera Structural and Thermal Isolation from Bus
 – Elastomeric isolators used (with launch locks) for jitter suppression
 – Also provide thermal & structural isolation (e.g., bus distortion or non-flatness a non-issue)
Optical Camera Dev’t Status

• The camera design is based significantly on the technology developed and proven on the RALcam-1 camera
 – in-orbit on the Topsat Mission since 2005

• The camera design is well advanced and hardware procurement is in process (long lead items)
 – Key design elements based on proven well understood technologies & processes (e.g., AO³ actuators, CCD detector)
 – Key Suppliers identified
 – Mirror procurement in process
 – Focal plane layout and CCD designs are defined
 – Key components identified, risk-reduction test program in process

• Significant risk reduction work has already been undertaken
 – Structural engineering model built and tested to confirm structural design and optical element stability under loads (a key risk)
 – Detailed optical design and analysis performed that assesses tolerancing and other manufacturing related elements
Testing Status

Structural qualification model of telescope underwent environmental test campaign
- Vibration
- Thermal-Vacuum

Key Test Results:
1. Telescope survived the typical launch environments.
2. Natural frequency meets requirements.
3. Optical alignment stability during vibration is well within the correction capability using the AO3 system (with ample margin).
4. CTE of the telescope tube was measured and found to be $0.2 \times 10^{-6} \, ^{\circ}\text{C}$.
5. Qualified primary mirror mounting technique to the bulkhead panel (used dummy optics).
PCPMU

- Provides Instrument Control
- Drive electronics
 - X-band antenna gimbals
 - Camera AO³ alignment system
- JPEG2000 compression (real-time)
- Large On-board data storage capacity
 - Non-volatile memory (Flash)
 - 0.5 to 4 Tbits at EOL
- Data formatting (e.g., CCSDS, RS encoding)
- Data Encryption (triple DES or AES)
- Instrument high speed data interface
 - up to 8 Gbps
- Interface to X-Band Tx (up to 800 Mbps)
- Power conditioning
- Fully redundant architecture
 - RALCam-4: 12 boards (8 powered)
 - RALCam-5: 16 boards (11 powered)

RALCam-4:
- Mass = 21 kg
- Power = 58 W (imaging)
 - 82 W (Imaging & DL)
 - 0 W (data retention)

RALCam-5:
- Mass = 27 kg
- Power = 87 W (imaging)
 - 95 W (Imaging & DL)
 - 0 W (data retention)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Detail</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSD</td>
<td>Pan band (@ 600 km)</td>
<td>1.0 m</td>
</tr>
<tr>
<td></td>
<td>MS bands</td>
<td>4.0 m</td>
</tr>
<tr>
<td>Swath Width</td>
<td>Pan & MS bands (@ 600 km)</td>
<td>20.6 km</td>
</tr>
<tr>
<td>MTF</td>
<td>Pan band - across track</td>
<td>> 16.1%</td>
</tr>
<tr>
<td></td>
<td>Pan band - along track</td>
<td>> 10.8%</td>
</tr>
<tr>
<td>SNR</td>
<td>Pan band</td>
<td>> 146</td>
</tr>
<tr>
<td></td>
<td>sun angle = 67.3 deg, TDI = 24</td>
<td></td>
</tr>
<tr>
<td>TDI levels</td>
<td>Pan / MS bands</td>
<td>96 / 16</td>
</tr>
<tr>
<td>Resolution</td>
<td>Pan & MS bands</td>
<td>12 bits</td>
</tr>
</tbody>
</table>
RALCam-5 Performance Spec

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSD</td>
<td>Pan band (@ 600 km)</td>
<td>0.5 m</td>
</tr>
<tr>
<td></td>
<td>MS bands</td>
<td>2.0 m</td>
</tr>
<tr>
<td>Swath Width</td>
<td>Pan & MS bands (@ 600 km)</td>
<td>16.4 km</td>
</tr>
<tr>
<td>MTF</td>
<td>Pan band - across track</td>
<td>>16.1%</td>
</tr>
<tr>
<td></td>
<td>Pan band - along track</td>
<td>>10.8%</td>
</tr>
<tr>
<td>SNR</td>
<td>Pan band</td>
<td>> 98</td>
</tr>
<tr>
<td></td>
<td>sun angle = 80.1 deg, TDI = 96</td>
<td></td>
</tr>
<tr>
<td>TDI levels</td>
<td>Pan / MS bands</td>
<td>96 / 16</td>
</tr>
<tr>
<td>Resolution</td>
<td>Pan & MS bands</td>
<td>12 bits</td>
</tr>
</tbody>
</table>
0.8 m / 1.0 m Class Spacecraft
Spacecraft Configuration

- Camera Support Frame
- Bus Avionics
- X-Band Tx
- Propulsion Module
Spacecraft Configuration

Spacecraft Mass: 366 kg
Power generation: 132 W (Orbit average)
Propulsion Module

Cold Gas Prop System Baseline
Delta V = 35 m/s
Altitude = 600 km (gives 1 m GSD)

Hydrazine Prop System Option
Delta V = 165 m/s
Altitude = 480 km (gives 0.8 m GSD)
Low Cost Launch Options

- Falcon 1E launch vehicle
- DNEPR launch vehicle
- Soyuz launch vehicle
0.5 m Class Spacecraft
Low Cost Launch Options

Minotaur IV launch vehicle

Falcon-9 launch vehicle
Summary

• MDA’s Hi-Res optical cameras and spacecraft
 – designed to provide very high image quality at highly competitive price points
 – S/C price point enables launching small constellations to provide unprecedented coverage and performance
 – High Reliability & Lifetime (> 7 years)

• Key Price Point Enablers
 – AO³ system
 – Integrated Focal Plane & FEE in the FPEA
 – PCPMU
 – Proven Processes for use of commercial EEE parts
 – Highly compact S/C design requiring low power
 • deployed solar panels not required, high agility, low cost launch options