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ABSTRACT 

A key challenge in testing and operating small satellites is the determination of the moment of inertia.  Attitude 

control systems engineers use the moment of inertia to develop closed loop pointing controllers as well as accurate 

feed-forward pointing commands that predict the satellite’s motion.  Traditionally, engineers measure the satellite 

moment of inertia using a mass properties table.  However, for small, relatively lightweight satellites, this process is 

error-prone and costly regardless of the satellite size.  This paper presents a novel on-orbit inertia-estimation 

technique.  The algorithm is based on standard non-linear function solvers that can be run on the ground and requires 

only a rudimentary initial inertia estimate as a starting point (such an estimate can be obtained from structural 

modeling software).  In addition to estimating the satellite inertia matrix, the estimator can also provide rate sensor 

scale-factor corrections.  This paper demonstrates the inertia and scale factor estimator using the MOST spacecraft 

(now in its fifth year of operations). 

MOTIVATION 

Microsatellites have been identified as an enabling 

technology for science and defense
1,2

.  With their small 

size and relatively low cost to build and launch, 

academia and industry alike are turning to small 

satellites to meet their mission
3,4

.  As the popularity of 

microsatellites increases, so do the performance 

expectations of microsatellites.  End users desire big-sat 

performance at the size and cost of a small-sat.  To 

meet this goal, microsatellite prime contractors 

continually look for ways to improve pointing 

performance while reducing program costs. 

One of the ways in which microsatellite prime 

contractors can reduce cost is to shorten the integration 

and test phase of the microsatellite program.  This can 

be done by relying on engineering analysis and on-orbit 

commissioning to replace some of the ground testing 

that is typically part of big-satellite programs.   

This paper specifically addresses mass properties 

testing.  Typically, a fully-integrated spacecraft in its 

launch configuration is mounted to a mass properties 

table late in the integration and test program.  The mass 

properties table spins the spacecraft about all three axes 

and measures the dynamic response to determine the 

full three-by-three inertia tensor as well as the location 

of the centre of mass. 

The purpose of determining the mass properties is 

twofold.  Firstly, launch providers impose inertia and 

centre of mass constraints on all payloads.  As such, the 

launch providers typically require some evidence of 

testing or analysis to back up the mass properties 

estimates.  Secondly, high performance attitude control 

systems use the inertia estimate of the satellite to 

compute accurate control torques aimed at providing 

fine pointing control.   

An on-orbit method for precisely determining the 

inertia tensor could: 

1. Eliminate or significantly reduce the scope of 

the mass properties testing required prior to 

launch (thus shortening the program schedule 

and reducing cost). 

2. Increase the accuracy of the inertia estimate 

for control purposes since the spacecraft 

inertia would be evaluated while the spacecraft 

is in its deployed, on-orbit configuration as 

opposed to its launch configuration. 

Case Study:  Microvariability and Oscillations of Stars 

(MOST) Spacecraft 

Recent analysis of slew performance on the MOST 

spacecraft (see Figure 1) has indicated that tracking 

errors due to feed-forward control commands may be 

due in part to errors in the pre-flight estimation of the 

spacecraft moment of inertia matrix ( J ).  During 

integration and test activities, the MOST spacecraft 

underwent mass properties testing at the David Florida 

Laboratories (DFL) to determine its moment of inertia 

tensor and the location of the spacecraft centre of mass 

(see Figure 2).  While the centre of mass location was 

only required for launch vehicle integration purposes, 
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the moment of inertia matrix plays a key role in the 

generation of feed-forward commands.  As such, errors 

in J  lead to feed-forward errors that must be corrected 

by the feedback control system. 

 

Figure 1:  Artist's Concept of MOST On-Orbit 

To correct these errors, a procedure was desired to 

obtain a more accurate estimate of J  while the 

spacecraft is on-orbit.  By applying known torques to 

the spacecraft using the on-board reaction wheels and 

monitoring the resulting motion, a non-linear estimator 

was developed to compute the elements of the J  

matrix. 

 

Figure 2:  MOST Spacecraft during Mass Properties 

Testing 

ON-ORBIT INERTIA ESTIMATION 

Developing an on-orbit inertia estimator requires 

careful consideration of the dynamics, available sensor 

observations and the resulting observability of the 

spacecraft system.  In the absence of perfect 

measurements, imperfect sensors must be used to 

estimate the inertia tensor.   

Dynamics 

The familiar rotational dynamics of a rigid body are: 

hd
&=τ  (1) 

where dτ  is the external disturbance torque on the 

spacecraft, h  is the total spacecraft momentum and the 

dot denotes time differentiation.  The momentum of a 

rigid body spinning at a rate of ω  is: 

ωJhbody =  (2) 

If reaction wheels are used, the stored reaction wheel 

momenta ( wh ) contribute to the total spacecraft 

momentum as: 

wwbody hJhhh +=+= ω  (3) 

Substituting Equation (3) into Equation (1): 

wwd hhJJ && +++= ×× ωωωωτ  (4) 

Usually, the wh
&  term is written as a control torque as: 

wc h&−=τ  (5) 

Finally, Equation (4) can be rewritten as: 

wdc hJJ ×× ++=+ ωωωωττ &  (6) 

Equation (6) illustrates the non-linear relationship 

between the inertia tensor ( J ) and the body rates.   

By integrating Equation (6), a time history of body rates 

can be computed.  From the time history of body rates, 

the orientation of the spacecraft can be obtained in a 

using a quaternion formulation.  The quaternion is 

defined as
5
: 
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where 
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and the variables a  and φ  represent the Euler axis and 

angle parameters respectively.  With a time history of 

body rates, the quaternion dynamics are defined by the 

following equations: 

( )ωηεε 1+= ×

2

1
&  (10) 

ωεη T

2

1
−=&  (11) 

By integrating the above equations, a time history of 

quaternions can be computed.  The next section 

describes the measurements assumed to be available for 

estimating the inertia tensor. 

Measurements 

Most inertial-pointing microsatellites require rate 

sensors to support slew control.  A cluster of rate 

sensors can provide three-axis spin rate information, 

depending on their configuration.  However, all rate 

sensors suffer from the following shortcomings: 

1. Temperature-dependent bias error 

2. Scale factor error 

Equation (7) illustrates how the rate sensor bias and 

scale factor errors affect the rate sensor measurements: 

bCK trueratemeas += ωω  (12) 

where trueω  is the vector of the actual spacecraft body 

rates, measω  is the vector of the rate sensor 

measurements, K  is a diagonal matrix containing the 

rate sensor scale factors (one for each rate sensor) b  is 

the vector of the rate sensor biases (one for each rate 

sensor) and rateC  is the transformation matrix used to 

express body rates in the local sensor frame. 

On most spacecraft, the rate sensor biases are usually 

estimated and compensated for by the attitude 

estimator
6
.  This estimation technique uses information 

from other absolute position sensors to derive the bias 

for each rate sensor.  As such, rate sensor bias errors 

would not affect inertia estimation. 

The rate sensor scale factor errors can be partially 

temperature dependent, but generally arise from 

mounting misalignments and small errors during 

calibration.  If rate sensors are to be used as inputs to an 

inertia estimation routine, the rate sensor scale factor 

errors must be accounted for to prevent erroneous 

inertia estimates. 

In much the same way that the rate sensor biases can be 

estimated using other absolute position sensors, so too 

can the rate sensor scale factors.  A star tracker can 

provide a highly-accurate attitude measurement (in the 

form of a quaternion) to complement the rate sensor 

measurements.  The following subsection describes the 

theory behind a combined inertia and rate sensor scale 

factor estimator using rate sensor and star tracker 

measurements. 

Estimator Design 

Since the inertia tensor is a dynamic quantity, 

spacecraft rotational motion is required to fully observe 

its components.  The estimation process involves 

commanding a series of slews that adequately exercise 

rotational motion about all three orthogonal axes of the 

spacecraft.  Rate sensor measurements are collected 

throughout each slew as well as star tracker 

measurements immediately prior to and following each 

slew.  Note that relatively fast slews (on the order of 

one degree per second) are required such that the off-

axis gyric motion of the satellite (which defines off-axis 

terms of the inertia estimator) can be observed using the 

rate sensors.  The required slew rates depend on the 

accuracy of the rate sensors.  Larger slew rates produce 

larger gyric precessions which must be large enough to 

be measured by the rate sensors at an acceptable signal 

to noise ratio.  At such large slew rates, it is assumed 

that star tracker measurements during the slew are not 

available (and only available immediately prior to and 

following the slew). 

The inertia and rate sensor scale factor estimator design 

is based on the fundamental principle behind all 

estimators:  to determine the state vector that minimizes 

the difference between the actual measurements and the 

computed measurements based on the state vector. 

The above statement can be stated mathematically as: 

Find the state vector, X̂ , that minimizes the cost 

functional: 

( )( ) ( )( )XzyRXzy
T

ˆˆ 1 −−=Θ −
 (13) 
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Where y  is the vector of measurements, ( )Xz ˆ  is the 

vector of computed measurements using the state vector 

X̂  and 
1−R  is the measurement noise matrix that 

weights measurements differently based on their 

relative sensor noise.  The case where a linear 

relationship exists between the measurements and the 

state vector as: 

( ) XHXz ˆˆ =  (14) 

And where the measurements are tainted with purely 

Gaussian noise, has a well-documented solution known 

as the weighted least squares estimator (WLSE)
7
.  In 

this case, the optimal solution takes the form: 

( ) yRHHRHX TT 111ˆ −−−=  (15) 

A non-linear version of the WLSE
8
, however it requires 

explicit computation of 
( )
X

Xz

ˆ

ˆ

∂

∂
.  In the case of the 

inertia estimator with three rate sensors, the state vector 

is: 
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where 
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is the full 9x9 symmetric inertia tensor and 
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is the vector of rate sensor scale factors (in this case, 

assuming three rate sensors are present.  Note that the 

nonlinear dynamics of Equations (6), (10) and (11) do 

not lend themselves easily to isolating the measurement 

vector as a function of the state vector or the required 

partial derivative.  As such, a different method of 

estimating the inertia tensor and rate sensor scale 

factors was required.  However, while the closed form 

solutions of the WLSE and the non-linear WLSE are 

not applicable to the inertia estimation problem, the 

fundamental principle of finding the state vector that 

minimizes the difference between the actual and 

computed measurements still holds. 

By assuming a particular inertia tensor and set of rate 

sensor scale factors, the cost functional can be 

computed for each slew using the commanded torques, 

measured wheel momenta and non-linear dynamics of 

Equations (6), (10) and (11).  Figure 3 illustrates how 

the cost is computed for a single slew based on a 

particular estimate of J  and K : 

 

Figure 3:  Cost Computation Algorithm per Slew 

Figure 4 illustrates how the costs from each test slew 

are combined to form a total cost that can be minimized 

though the selection of appropriate values of J  and 

K . 
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Figure 4:  Optimization Algorithm 

The function minimization can be carried out using any 

non-linear function solver.  For the results presented in 

this paper, the author used the Matlab

 function:  

fmincon.m to minimize the cost functional, however 

many other function-minimizing techniques are 

available
9
. 

RESULTS 

This section provides results from a simulation of 

MOST and from actual MOST flight data that 

demonstrate the effectiveness of the inertia and rate 

sensor scale factor estimator presented in this paper. 

Simulations 

As part of MOST operations, MSCI maintains a 

dynamic simulator of the MOST microsatellite.  The 

simulator enables the user to define a true inertia (used 

in the dynamics engine of the simulator) different from 

the control inertia (used by the attitude controller).  

Similarly, the user can inject incorrect rate sensor scale 

factors. 

With errors ranging from one to four percent on all 

components of the inertia tensor and all three rate 

sensor scale factors, a set of five slews were conducted 

to produce body rates about all three axes.  Figure 5 

illustrates the slew profiles of each test slew used in the 

simulator. 
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Figure 5:  Test Slew Profiles for Simulated Inertia 

Estimation 

Table 1 summarizes the results of the simulated inertia 

estimation procedure (all inertias are reported in units 

of kg-m
2
). 

Table 1:  Simulated Inertia Estimation Results 

 True 

Value 

Initial 

Est. 

Initial 

Error 

New 

Est. 

New 

Error 

xxJ  3.3311 3.3977 -2% 3.3461 -0.45% 

yyJ  2.2024 2.1363 3% 2.2060 -0.16% 

zzJ  1.8033 1.8394 -2% 1.7965 0.37% 

xyJ  -0.0119 -0.0124 -4% -0.0023 81.0% 

xzJ  0.0027 0.0028 -3% 0.0017 37.8% 

yzJ  0.0161 0.0158 2% 0.0222 -37.7% 

1K  1.01 1.00 -1% 1.0099 0.01% 

2K  1.02 1.00 -2% 1.0228 -0.28% 

3K  0.98 1.00 2% 0.9792 0.08% 

Rate 
(deg/s) 
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The results in Table 1 show a dramatic error reduction 

in the primary components of the inertia tensor as well 

as the three rate sensor scale factors.  While the cross 

terms in the inertia tensor get worse following the 

estimation procedure, their magnitude with respect to 

the diagonal entries indicates suggests they play a 

minor role in the dynamics. 

Table 2 demonstrates the overall performance increase 

resulting from the inertia estimation procedure.  The 

MOST slew control strategy first performs a fast (one 

degree per second) slew, followed by a fine correction 

slew.  The fast slew uses rate sensors alone since the 

star tracker is not sensitive enough for stars streaking 

across the CCD at one degree per second.  The purpose 

of the fine correction slew is thus to correct for errors 

resulting from feedforward control errors (i.e., inertia 

errors) and rate sensor errors (i.e., rate sensor bias drift 

and rate sensor scale factor errors).  As such, the size of 

the correction slew is a good indicator of the quality of 

the inertia estimate as well as the rate sensor scale 

factors (in addition to the rate sensor bias drift during 

the slew since bias estimation is typically not done 

during slews). 

Table 2:  Simulated Performance Improvements 

 
Old 

Params 

New 

Params 

Correction Slew Size 

(arcseconds) 
349 140 

The data in Table 2 indicates that the size of the 

simulated correction slew reduced by more than a factor 

of two following a slew of approximately five degrees. 

MOST Data 

Prior to launch, MOST underwent mass properties 

testing at the David Florida Laboratories (DFL) in 

Ottawa, Ontario, Canada.  At that time, the inertia 

tensor was measured and uploaded into the spacecraft 

software. 

In July, 2007, a set of five inertia estimation slews were 

commanded on the MOST spacecraft.  Figure 6 

illustrates the slew profiles commanded on the MOST 

spacecraft for the purpose of inertia estimation. 
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Figure 6:  Test Slew Profiles for MOST Inertia 

Estimation 

Table 3 summarizes the results of the MOST inertia 

estimation procedure (all inertias are reported in units 

of kg-m
2
).  Of course, a true measure of the MOST 

inertia is not available. 

Table 3:  MOST Inertia Estimation Results 

 Initial 

Est. 

New 

Est. 

xxJ  3.4084 3.3853 

yyJ  2.1836 2.2168 

zzJ  1.6808 1.7868 

xyJ  -0.0407 -0.0273 

xzJ  -0.0958 -0.0033 

yzJ  0.0208 0.0052 

1K  1.0000 1.0072 

2K  1.0000 1.0028 

3K  1.0000 1.0037 

Rate 
(deg/s) 
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To evaluate the quality of the inertia tensor and rate 

sensor scale factor estimates, identical slews prior to 

and following the inertia estimation procedure were 

compared.  Table 4 illustrates the reduction in size of 

the correction slew following a 38-degree slew 

command. 

Table 4:  MOST Performance Improvements 

 
Old 

Params 

New 

Params 

Correction Slew Size 

(arcseconds) 
1641 1020 

The data in Table 4 indicates that a 38% reduction in 

the size of the correction slew occurred resulting from 

the inertia and rate sensor scale factor updates.  As 

such, the update was deemed effective and worthwhile. 

DISCUSSION 

It should be noted at this point that errors in the moment 

of inertia tensor are not the only errors that cause feed-

forward control errors.  Other possible sources of error 

include: 

• Misalignment errors 

o Reaction wheel / star tracker misalignment 

o Reaction wheel / rate sensor misalignment 

o Rate sensor / star tracker misalignment 

• Reaction wheel torque application errors 

• Reaction wheel command lag 

• Rate sensor bias errors 

• Disturbance torques 

While the above errors are important, they have either 

not been considered or compensated for during the 

inertia estimation.  The following subsections describe 

how each type of error was treated during the inertia 

estimation: 

Misalignment Errors 

Misalignment errors have the potential to produce large 

pointing errors during slews, depending on the size of 

the slew.  For the rate sensors, the magnitude of the 

error varies as the sine of the slew angle.  As such, rate 

sensor misalignments have no effect for slews of 180 

degrees and their maximum is for slews of 90 degrees.  

In order to minimize the effect of misalignment errors 

on the inertia estimation, slews close to 0 or 180 

degrees should be planned during the inertia estimation 

procedure.   

While it may be possible to design test slews that are 

either very small or very large (i.e., close to 180 

degrees), viewing zone limitations may make this 

constraint impractical to meet.  However, since the 

inertia estimator presented herein also estimates the rate 

sensor scale factors, it is possible that rate sensor and 

reaction wheel misalignments could be partially 

compensated for by modified rate sensor scale factors.  

This is because, to first order, misalignment errors tend 

to manifest themselves as slight insensitivities to on-

axis motion. 

Reaction Wheel Torque Application Errors 

In many cases, a torque application error is 

indistinguishable from an inertia error about the wheel 

axis.  From the inertia estimator's perspective, all torque 

application errors will be interpreted as inertia errors.  

As such, reaction wheel torque errors will be 

compensated by adjusting the inertia tensor.  As is the 

case with the misalignment errors, a purposefully 

“incorrect” inertia tensor and/or rate sensor scale factors 

can compensate for wheel torque application errors. 

If torque application and/or misalignment errors are 

suspected, extra care should be taken when using the 

modified inertia tensor and rate sensor scale factors.  If 

a different combination of reaction wheels and rate 

sensors were to be used (e.g., switching to a backup 

reaction wheel or sensor), the inertia estimation would 

need to be repeated since torque application errors and 

misalignments are specific to particular sensors and 

actuators, rather than the inertia which has been 

modified.   

Reaction Wheel Command Lag 

Reaction wheel command lag can be compensated for, 

as long as the lag is well-known.  Prior to executing the 

inertia estimation procedure, this lag would need to be 

identified and incorporated into the dynamics to ensure 

that command lags are not interpreted as inertia errors. 

Rate Sensor Bias Errors 

During normal operations, the Extended Kalman Filter 

(EKF) estimates the rate sensor biases.  To remove 

complexity from the inertia estimator, the rate sensor 

biases are not included in the filter.  Prior to estimating 

the inertia matrix, a snapshot of the current rate sensor 

biases should be taken.  These biases should then be 

used during the inertia estimation process to correct the 

rate sensor measurements.  Assuming that the biases 

will not change appreciably during the short inertia 
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identification process, this approximation should not 

result in large inertia estimation errors. 

Disturbance Torques 

Disturbance torques will be present during the inertia 

estimation and will taint the estimates.  The most 

prominent disturbance torque will be due to magnetic 

dipoles in the spacecraft interacting with the earth's 

magnetic field.  Magnetic torques of this nature are 

periodic with a period of a half orbit (or approximately 

50 minutes at the altitude of MOST).  To minimize the 

effect of the disturbance torques, the time required to 

perform the estimation process should be minimized.   

CONCLUSIONS 

This paper has presented a unique technique for 

estimating the inertia tensor.  To ensure accurate 

estimation results, the rate sensor scale factors are also 

estimated along with the inertia tensor. 

Results from both the MOST simulator and the actual 

MOST spacecraft on-orbit indicate that the inertia 

estimation technique is not only effective but 

worthwhile since better inertia estimates reduce the size 

of correction slews required.   

While launch providers will likely continue to require 

explicit mass properties testing, the techniques 

presented in this paper enable a spacecraft controls 

engineer to further hone the inertia estimates during 

spacecraft commissioning.  On-orbit inertia estimation 

also ensures that the spacecraft is being evaluated in its 

on-orbit / operational configuration, which may not be 

possible on the ground prior to launch. 

While such a procedure has proven effective at 

improving the performance of MOST, it provides much 

more benefit to future microsatellites such as NEOSSat 

(Near Earth Object Surveillance Satellite).  With a 

procedure and associated analysis algorithms available 

to identify the spacecraft inertia matrix on-orbit, it may 

be possible to eliminate or significantly reduce the 

scope of the inertia identification element of the mass 

properties testing activities.  A rudimentary inertia 

estimate could be obtained from the structural analysis 

software prior to launch.  This inertia matrix could be 

used until a more accurate inertia matrix could be 

obtained during the on-orbit identification procedure 

outlined in this document. 
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