Estimating River Discharge from Aerial Imagery

Tyler V. King¹, Bethany T. Neilson¹

Additional contributions from:
Mitchell Rasmussen¹, Douglas Kane², and Levi Overbeck²

¹Utah State University
²University of Alaska Fairbanks
Global Decline in River Gauging Stations

http://www.bafg.de/GRDC
The Rise of Remote Sensing of River Discharge

Pros
- Remotely sensed
- Global coverage
- Low operational cost

Cons
- Coarse resolution
- Weather interference
- High initial costs
The Rise of Remote Sensing of River Discharge
Hydraulic Modeling

Elevation

Distance across river
Estimating Discharge

Aerial Imagery

Model Output
Hydraulic Modeling

Observed Discharge: 2.8 m3 s$^{-1}$
Modeled Discharge: 2.8 m3 s$^{-1}$
Hydraulic Modeling

River Kilometer: 35
River Kilometer: 22
River Kilometer: 13
Conclusion

• River discharge can be accurately estimated through coupling of high resolution aerial imagery, photogrammetry, and hydraulic modeling

Significance

• This provides an opportunity to extend and densify our current gauging station network while avoiding issues with satellite based remote sensing

Limitations

• Requires:
 • A clear view of the channel (minimal overhanging vegetation)
 • Assumptions about basic channel shape
 • Wide range of widths in response to discharge

Next Steps

Thank you

Funding:
• NSF-ARC 1204220 and NSF-ARC 1204216
• NSF Arctic LTER (NSF-DEB 1026843)
• Utah Water Research Laboratory, Utah State University

Additional thanks to:
Austin Jensen, Milada Majerova, Randy Fulweber, Jason Stuckey, Madeline Merck, Katie Harrold, Rob Gieck, Jorge Noguera, Shannon Syrstad, Bayani Cardenas, Mike O’Connor